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ABSTRACT

As data privacy and security attract increasing attention, Federated
Recommender System (FRS) offers a solution that strikes a balance
between providing high-quality recommendations and preserving
user privacy. However, the presence of statistical heterogeneity
in FRS, commonly observed due to personalized decision-making
patterns, can pose challenges. To address this issue and maximize
the benefit of collaborative filtering (CF) in FRS, it is intuitive to
consider clustering clients (users) as well as items into different
groups and learning group-specific models. Existing methods ei-
ther resort to client clustering via user representations—risking
privacy leakage, or employ classical clustering strategies on item
embeddings or gradients, which we found are plagued by the curse
of dimensionality. In this paper, we delve into the inefficiencies
of the K-Means method in client grouping, attributing failures
due to the high dimensionality as well as data sparsity occurring
in FRS, and propose CoFedRec, a novel Co-clustering Federated
Recommendation mechanism, to address clients heterogeneity and
enhance the collaborative filtering within the federated framework.
Specifically, the server initially formulates an item membership
from the client-provided item networks. Subsequently, clients are
grouped regarding a specific item category picked from the item
membership during each communication round, resulting in an
intelligently aggregated group model. Meanwhile, to comprehen-
sively capture the global inter-relationships among items, we incor-
porate an additional supervised contrastive learning term based on
the server-side generated item membership into the local training
phase for each client. Extensive experiments on four datasets are
provided, which verify the effectiveness of the proposed CoFedRec .
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1 INTRODUCTION

With the rapid development of e-commerce and digital services,
people have become increasingly digital-centric [35]. They now
spend a significant amount of time online, exploring products, con-
tent, and services tailored to their interests. Traditional recom-
mender systems (RS) [1, 46] have proven to be indispensable for
e-commerce giants and various digital service providers. However,
these systems usually operate by consolidating vast amounts of
user data centrally, leading to potential privacy concerns. Federated
learning (FL) [5, 25, 40] is a method where multiple clients collab-
oratively train a deep learning model using their local data. This
decentralized approach promotes efficient information exchange
and ensures that each participant’s data remains private, without
being exposed to a central authority or other participants. The
Federated Recommender System (FRS) [56, 61] is built on this idea.

FRS is a specialized implementation of FL for recommendation
tasks. Instead of directly sending user interaction data to a central
server, FRS processes the data locally on users’ devices and only
the essential model updates are sent back to the central server for
global aggregation. Unlike other applications of FL [45, 63], where
there are fewer clients and each client possesses a large amount
of data from multiple individuals (known as cross-silo FL [21]), in
FRS, each user acts as a client constituting only one single user’s
profile (also known as cross-device FL [22]).

There is an increasing number of works [2, 29, 58] exploring
solutions for FRS. A typical approach involves the utilization of
FedAvg [40] to generate a global model and then fine-tune the
model on the client side [66]. However, this single global aggrega-
tion is inherently designed for IID data. In practical scenarios, the
data available on each device is generated or produced by users,
usually non-IID [15], reflecting users’ different preferences or deci-
sion habits. To model the heterogeneity across the clients (users),
there are works [11, 36, 64] that assume the whole population could
be partitioned into distinct clusters or groups, characterized by
analogous preferences. On the other hand, collaborative filtering
(CF) [18, 41] has proven successful in recommender systems whose
power is confined in the federated setting where the entire dataset
is not available. However, we can expect an increase in accuracy
by finding out the neighbors of users through clustering and then
gathering collaborative insights. In this light, learning a group-level
model customized for each user group can boost the algorithm’s
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adaptability to heterogeneous clients’ data and the ability to trans-
fer positive knowledge among clients by factoring in collaborative
insights. In this paper, however, we observe that the widely de-
ployed clustering method which groups the clients using a distance
function applied to the updates uploaded by clients [34, 43, 49] in
FL is inefficient in the FRS setting since querying neighbors of high
quality is nearly impossible when the feature space is sparse.

To address the challenges mentioned above, we propose a co-
clustering mechanism CoFedRec for FRS to effectively group clients
without accessing their profiles. The core insights come from (i) the
heterogeneity across clients in FR (ii) the understanding of CF
whose key idea is to predict the interests of a user by collecting
preferences from many neighborhoods. Specifically, we turn to the
experiment results to analyze the inherent limitations of the classi-
cal clustering strategies and introduce the co-clustering mechanism.
In each communication round, the global aggregation is performed
as a preliminary step to gather the global item relationship, which
yields an item membership via the K-Means clustering technique
upon the global item representation. The server algorithm then im-
plements the co-clustering by computing similarity scores among
clients regarding a selected item category, which allows a specific
item category to cluster users into two distinct groups, the similar
group, and the dissimilar group. Within the similar group, users
tend to react similarly towards that type of item. All the clients in
the similar group will update their item embedding network with
the aggregated group model while those in the dissimilar group will
retain their local model waiting for the subsequent communication
rounds. In addition to the group model, the item membership will
be distributed to all the clients. Inspired by the theory of Supervised
Contrastive Learning (SCL) [23], a local supervised contrastive term
is integrated into the local training phase, ensuring that the locally
learned item representations retain the global item insights.

Our contributions are summarized as follows:

e We analyze the failure of classical clustering technique K-
Means in the federated recommendation setting and propose
a novel co-clustering federated recommendation mechanism
CoFedRec which groups users based on specific item cate-
gories within each communication round and generates an
intelligent group model containing the collaborative infor-
mation from the neighbors. Our proposed paradigm applies
to different backbones.

e We introduce a supervised contrastive term into the local
training phases to encode the global item relationship in the
user individual item network. This ensures that our proposed
CoFedRec not only effectively leverages user collaborative
information, but also seamlessly integrates global insights
into the local training process.

e We conduct extensive experiments on four real-world datasets
with various settings, which demonstrate the effectiveness
and rationality of CoFedRec.

2 PRELIMINARY
2.1 Problem Statement

We consider a federated recommender system consisting of a central
server and multiple distributed clients where each client represents
an individual user. We use U = {uy,uy, .. .,u|U|} to represent all
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users and I = {i1, iz, ..., |} to represent all items where |U| and
|I| denote the total number of users and items respectively. Each
client corresponds to a user, and each client has its own rating
vector [ry;]72, which is given by a user u to an item i and m is the
number of items that the user u has interacted with. To protect user
privacy, only recommendation models, instead of user data, can
be exchanged between the server and the user devices. Thus, the
goal of federated recommender systems is to collaboratively train
models for each user to predict its rating for each item i without
sharing the individual interaction records.

2.2 Failure in User Clustering

The prevailing federated recommender systems draw inspiration
from FedAvg [40], i.e., sharing the clients’ recommendation models
by a global aggregation, and then the clients perform the local fine-
tuning upon the global model [10]. However, due to the diverse
preferences among different users, item distribution across clients
can be discrepant, leading to potential imbalances. The global ag-
gregation without taking into account the discrepancy of these
user preferences might introduce undesirable noise in the recom-
mendation results. Additionally, Collaborative Filtering (CF) has
proven effective in recommendation systems by leveraging the rat-
ings or interactions of neighbor users who have exhibited similar
preferences or behaviors to the target user in the past. Thus, it is in-
tuitive to introduce the clustering to group clients and items before
the server-side aggregation, potentially bringing out and leverag-
ing underlying patterns or similarities among them. The typical
clustering methods like the K-Means approach [33, 37], works by
computing distances between points, which have shown its strong
performance in centralized recommendation scenarios [4, 52, 67]
while posing challenges in federated recommendation scenarios.

In the realm of federated recommendation, to protect privacy, di-
rect access to user embeddings on the server side becomes restricted.
Instead, we must rely on updates provided by participant clients to
execute user clustering. If traditional clustering algorithms are used
to solve the above problem, matrix-object data need to be trans-
formed. One of the most significant issues encountered is the curse
of dimensionality [20, 26], a problem that arises when we attempt
to flatten item embedding matrices. In high-dimensional spaces, the
data points become increasingly sparse and the distances between
data points grow larger. This sparsity can make clustering algo-
rithms, like K-Means, less effective as points in high-dimensional
spaces tend to be almost equidistant to each other, reducing the
algorithm’s ability to discern distinct clusters.

To illustrate the challenges further, we analyze the results of
applying the K-Means method with k = 2 and k = 10 on the
MovieLens-100k dataset for client clustering upon their item net-
works. The result of k = 2 reveals a highly imbalanced clustering
outcome, with user counts drastically skewed: one cluster contains
only a single user, and the other contains 942 users. When k = 10,
the situation does not improve significantly. 8 out of the 10 clus-
ters contain just a single user, the figure illustration is attached
in Appendix E. This phenomenon verifies the conclusion before,
K-Means tends to cluster all the points into one single cluster as
the distances between data points become more uniform, which un-
derscores the difficulties of applying typical clustering techniques
to high-dimensional data in federated recommendation scenarios.
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Figure 1: The overall framework of CoFedRec. The pink
dots represent the individual models uploaded by partic-
ipant clients and the green dots are the item embedding
vectors of the global aggregation results. Two key parts in
CoFedRec are (i) Co-clustering mechanism to cluster partic-
ipant clients into similar group and dissimilar group and
an intelligent group model is generated within the similar
group; (ii) Supervised contrastive term upon the global item
membership is integrated into the loss function of the local
training phase to include the global item insights.

Therefore, we can conclude that using the typical clustering
method like K-Means does not necessarily lead to good performance
on client grouping under the federated recommendation setting.

3 PROPOSED METHOD

In this section, we present CoFedRec, as shown in Figure 1, a novel
Co-clustering Federated Recommendation mechanism which grou-
ps clients w.r.t the item categories on the server side and introduces
a supervised contrastive term in the local training phase.

3.1 Co-clustering for User Partitioning

We’ve discussed the importance of user clustering and the chal-
lenges it brings under the federated recommendation scenario in
Section 2.2. In this section, to address this challenge, we propose
to group users upon a specific item category and generate a group
model by aggregating the updates within a potentially similar user
group.

In light of the observation that it is improbable for users to
possess identical interests across all items but rather shared pref-
erences for specific types of items, it becomes natural to classify
users based on their affinities for different item categories. Specif-
ically, during each communication round, we focus on a single
item category and divide users into two distinct groups based on
their likeness or dislikeness for that particular category. To inte-
grate collaborative effects into the learning processes, aggregation
is conducted within the user group displaying similar preferences
because if users demonstrate shared tastes for a particular category
of items, probably, they will also have some other common prefer-
ences. As such, this aggregation method facilitates the transmission
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of beneficial knowledge, incorporating collaborative steps while
safeguarding user privacy. Notably, this approach obviates the need
to discern that it is the predilection or antipathy a congruous group
exhibits towards a specific item type.

At each round t, the server is required to serve a core client
¢ € U and an item category k, specifically, to find the neighbors of
the client ¢ w.r.t the item category k. To achieve this, the server first
performs a global aggregation over all the item networks uploaded
by the participant clients and then generates an item membership M
(which will be elaborately explained in Section 3.2) detailing which
items fall under which categories. By specifying the item category
k, we could have all the items belonging to category k, denoted
as M = {ili € I, M[i] = k}. Then we compute the similarity
among the core client and all other participants on the selected
item category of their item networks. Here we adopt the cosine
similarity:

Sy = Z ot Tl Lu€epP (1)
[Ve,il * [Va,il

ie My
where V. ; and V,, ; represent the vectors of item i under the category
k of the core client ¢ and the participant user u respectively. s, is
the similarity score of the core client ¢ and the participant user u
w.r.t the items category k. P is the participant client set. With this
equation, we could obtain the similarity score list S = {s1, s2, S|P 1

Upon computing the cosine similarity scores for all participants,
to identify the similar group Ds and dissimilar group Dg;,, we
propose to use the first elbow point of the similarity scores to
divide the participant clients into Ds and Dg;,, which is essentially
the point at which the rate of progression of the similarity scores
marks a significant change.

To find the split, we first sort similarity scores as {s1, sz, ..., sp|/ }
(here s/ is no longer corresponding to the similarity score of the
user 1 but the user with the highest similarity score.) and construct
a line that links the first and last points of the similarity scores.

L(x) = s1 +x(s;p) — s1) @)

where x is a scalar parameter that determines a point’s position
along the line L(x).

For each point s, in similarity scores, we calculate its orthogonal
distance to the line L(x), which is achieved by projecting s, onto
L(x) and computing the Euclidean distance between s, and its
projection. Let h;, = s, — 51+ be the vector from the first point s+ to
a point s;,. The scalar projection of h;, onto L(x) is given by:

hu . (S|p|/ - S]')
= oo — B ®)
Is|p) — s1/]
The orthogonal distance d;, from point s, to L(x) can then be
computed as:

dy = |hy - xu(s|P\’ =)l (4)
the point e with the maximum distance d, to the line L(x) is
considered as the elbow point. This point essentially delineates the

optimal neighbors for the core client on the selected item category,
denoted as similar group Ds, otherwise, dissimilar group D y;;:

u € D, ifdy > de,
u € Dgjs, ifdy <de,
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Once groups are formed, a group aggregation is performed to
transfer the collaborative information within the similar group:

1
Vs & Vu (5)
D 2

All the participants in the similar group will update their item em-
bedding networks with the group model V. With this co-clustering
approach, users in the same group might have similar preferences,
and thus the information can be shared among them more confi-
dently. The clients within the dissimilar group will be disregarded
to prevent the transfer of low-quality knowledge among heteroge-

neous data.

3.2 Local Supervised Contrastive Learning

In the previous section, we propose co-clustering to discover com-
mon preferences across clients and then cluster them into the simi-
lar group and the dissimilar group, excluding the latter during the
aggregation phase. However, this could result in ignoring some
diverse information, as the global insight might partially originate
from the dissimilar clients that were disregarded.

To consider the inter-relationships among items globally, we
generate an item membership vector M on the server side through
item clustering. Recall that at each round, for N participant clients,
the server will receive N individual item embedding matrices V;, €
R'”Xd, u=1{1,2,..,N} and d is the dimension of the item embed-
ding, uploaded by the participant clients. The server first performs
the global aggregation over N local item embedding matrices:

1 N
Voo Z Vu (6)
u=1
To categorize items, the global item embedding vectors {Vg,i}lilp

where Vy; = Vy[i,:] for i = {1,2,..., |I|}, will be grouped into K
clusters. We adopt the K-Means to do the item clustering. Assuming
that the number of clusters is K, the K-Means method aims to find
K centroids C = {cy,...,ck},cr € R1¥4 Vk € [K] that it uses to
define clusters by minimizing the objective:

2
$e(Vg,i:C) = IVg,i = Cli7 ()
where ||-|| F denotes the Frobenius norm. Then the set of centroids
C* = {01‘ e c;‘(} gives rise to an optimal segmentation, denoted as

UK, C7, where Vk € [K1, G} = (Vg & Vg =Xl < Vi~ chllF,
Vi e [|I|],m € [K]}.

Upon obtaining the global item clusters, the server returns an
item membership vector M € R to all the participant clients,
where the value M| ] at a specific index j indicates the cluster to
which the corresponding item j belongs.

Considering that the client updates the local item network based
on the group model which solely contains the information from
its similar neighbor clients after partitioning, it becomes rather re-
strictive, lacking a comprehensive view that the global information
can provide. To harness the inherent similarity and diversity of the
items, we enhance the local training by incorporating a supervised
contrastive learning objective utilizing global item membership.

Supervised Contrastive Learning (SCL) [23] integrates the strengt-
hs of both supervised learning and contrastive learning. Utilizing
label information, SCL learns representations that bring positive
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pairs closer together and push negative pairs apart, which hence
improves the quality of the representation. In our case, items cate-
gorized within the same cluster are considered positive pairs, while
those from disparate clusters are treated as negative pairs. We can
bring together the representation among items that share simi-
larities, and concurrently, push apart the representation between
those belonging to distinct clusters by minimizing the following
SupContrast term (e.g. for the user u):

Z ( eXP(Vu,i . Vu,z/T)
Yaen{i} XP(Vu,i - Via/7)

®)

where Z(i) = {z € I\{i} : §; = §;} is the set of the indices of all
positive items w.r.t item i. 7 is the temperature parameter to control
the uniformity of the representation in the embedding space. - is
the dot product.

By incorporating global information into the local training pro-
cess, the client can update their personalized model with valuable
group-level information while integrating intricate global relation-
ships among items within a federated framework.

1
tw == 2% | 7257

iel z€Z(i)

3.3 Overall Workflow

We subsequently develop our federated recommendation via the
proposed co-clustering mechanism, detailed in Algorithm 1.

To illustrate the overall workflow of the co-clustering federated
recommendation mechanism, we employ a personalized federated
recommendation algorithm [66] as our backbone model in the en-
suing discussion.

3.3.1 Local training. We first discuss the local training process.
In a typical FRS with implicit feedback, each user u has it’s rating
vector [rui]lill where ry; = 1 if the user u interacted with item
i, otherwise, ry; = 0. The actual ratings provided by the user are
represented by ry;, while the predicted ratings are denoted as 7y;.
Each client (user) u holds its own personalized item network
Vu and score function 8, which is implemented as a one-layer
multilayer perception (MLP) here. The client’s local dataset D, is
organized as a set of user-item interactions where each interaction
is represented as a tuple (u, i, ry;). During each communication
round, the client’s individual item embedding module V,, is updated
by the server-side generated model if it belongs to the similar group,
otherwise, retains the model from the local training. The objective
of the local training on client u is to minimize the binary cross-
entropy loss plus the supervised contrastive learning term:

> loghui— Y. log(1=uir) +ALsup (9)

(w,i)€Dy, (ui’)eDy

Ly(Vy,0y) = -

where 7y,; is computed through the score function 6,. The client
first updates its 8, using stochastic gradient descent (SGD) and
then updates item embedding network V;, via SGD as a post-tuning
process. A is a hyperparameter to control the linear weight.

3.3.2  Server Update. The server initiates one global model, specifi-
cally an item embedding network, used as initial parameters for all
client models. During each round, the server begins by randomly
selecting a subset of participant clients P and acquiring their item
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embeddings V,,u = {1,2,..,|P|}. Then, the server randomly identi-
fies a core user and selects an item category after computing the
item membership M introduced in Section 3.2. Utilizing the user
co-clustering technique presented in Section 3.1, the server, for the
chosen item category, calculates the similarities between the core
user and other participant clients and divides them into the similar
group and the dissimilar group. Within the similar group, aggre-
gation takes place to derive a group-specific model. Subsequently,
the group model is distributed back to the corresponding clients
for their local upadates.

4 EXPERIMENTS

In this section, we conduct experiments to evaluate the performance
of our proposed method. Our experiments intend to answer the
following research questions:

e RQ1: How does CoFedRec perform in the federated recommen-
dation task compared with the baseline models?

o RQ2: How do different components in our mechanism contribute
to the performance?

e RQ3: How good is the generalizability of our proposed CoFedRec ?

o RQ4: Do all the clients (users) effectively participate in the group-
specific aggregation and how good are the clustering results?

4.1 Datasets

To evaluate our proposed CoFedRec , we conduct experiments on
four datasets with different scales: MovieLens-100K, MovieLens-1M
1117], FilmTrust 2 [16], and LastFM-2K 3 [7]. The detailed statistics
of each dataset, the preprocessing procedures, and the construction
of the training, validation and test sets are shown in Appendix A.1.

4.2 Experimental Settings

4.2.1  Evaluation metrics. We evaluate the model performance with
Top-K evaluation metrics [28, 59], including Hit Ratio (HR) and
Normalized Discounted Cumulative Gain (NDCG). Following the
previous work setting, we fix K as 10 and adopt an efficient sampling
strategy that randomly selects 99 unobserved items for each user,
performing a ranking evaluation among 100 items (including the
test item).

4.2.2  Baselines. We compare our proposed CoFedRec with the gen-
eral and state-of-the-art baselines containing both centralized and
federated methods. For the model GPfedRec [65], we present out-
comes obtained on the FilmTrust dataset using our implementation,
and for all other datasets, we directly cite the results as provided
by the authors of GPfedRec. The details of the baseline methods
are described in Appendix A.2.

4.2.3  Experimental settings. Following the methodology in [18],
we sample four negative instances for every positive instance. Test
results are presented based on the optimal validation outcomes.
The reported best-performing baseline models are significant w.r.t.
the second best performing with p-value < 0.05. Given the inherent
variability in our approach, we conducted five runs of our method
on each dataset. To provide a conservative estimate, we consistently

!https://grouplens.org/datasets/movielens/
Zhttps://guoguibing.github.io/librec/datasets.html
3https://grouplens.org/datasets/hetrec-2011/
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Algorithm 1 federated recommendation with CoFedRec

Server Update:

1: Initialize item embedding Vp,item cluster number K

2: for eachroundt = 1,2, ... do

3: P « (randomly select participant clients for each round from
all clients)

4. for client i € P in parallel do

V; « ClientUpdate(i, Vs, M) or ClientUpdate(i, M) {Vs = Vo

for all the clients at round 0}

6. end for

7. /* Item clustering */

8 Vg |Tl\ Zlﬂl V., {global aggregation}

w

9. MeRXII Kmeans({Vg,i}l.ill) {obtaining item member-
ship vector}
10: /" User partitioning */
11: ¢ « (randomly select a core user for this round from all
participant clients P)
12: [indicesy] « (randomly select an item category k from item
membership and obtain the corresponding indices vector)
13:  for client u € P do
14: similarity « SimilaritySocre(Vy [indicesy], V. [indicesi])
15:  end for
16:  Dg, Dgjs < (find the elbow point of all the similarities and
split the clients into similar group and dissimilar group)
17 Vg« ﬁ 2ueD, Vu {aggregating within similar group}
18: end for
CLient Update:

1: Download item embedding Vs and item membership M from
server if the client is in the similar group; Otherwise, only
download the item membership M

: Initialize V;, with the latest update

: Sample negative instances set D,, from 7,

: B « (split Dy, U D;; into batches of size B)

: for local epoche =1,2,... do

for batch b € B do

Compute loss Ly, (Vy, 6,,) with Eq. 9
Model parameters update

end for

. end for

: Return V,, to server

B RN = NS

[
=

reported the lowest value from these five iterations. Detailed hy-
perparameter settings for each dataset across models can be found
in the Appendix A.3.

4.3 Main Results & Discussion (RQ1)

In this section, we investigate the overall performance of our pro-
posed CoFedRec and the detailed results are shown in Table 1. From
Table 1, we derive several insightful findings: (i) CoFedRec demon-
strates superior and consistent performance across all datasets.
Specifically, it outperforms baseline methods, achieving the high-
est scores on MovieLens-100K and MovieLens-1M. For FilmTrust
dataset, our model performs best in terms of HR@10 and ranks sec-
ond in NDCG@10. Similarly, on LastFM-2K dataset, it ranks third
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in HR@10 and second in NDCG@10, narrowly trailing the best-
performing model by only 0.01%. Additionally, the improvements
made by our method are substantial. A salient one is its perfor-
mance on MovieLens-100k: 72.85 — 77.52 on HR@10 and 43.89 —
50.65 on NDCG@10. It indicates the superiority of our co-clustering
mechanism (including the user co-clustering and local supervised
contrastive learning) in exploring the neighbors of both the users
and items to enlighten the personal recommendations. (ii) In the
experiment, the four datasets we selected are representative, two
relatively large datasets and two on a smaller scale. Our proposed
CoFedRec secures the top position on these four datasets, which
proves the robustness of our approach. (iii) If we take a look at
the results of the FedPerGNN which lags behind all other baselines,
we could conclude that the privacy-protect nature of FRS limits
the graph models to capture high-order user-item interactions, po-
tentially constraining their full potential in this task. Thus, it is
compelling to use co-clustering methods to capture collaborative
insights and neighbor information. (iv) The clustering-based base-
line PerFedRec shows excellent performance on several metrics,
which confirms the necessity of applying the clustering in FRS.
(v) We note that on some datasets, CoFedRec even outperforms
the centralized methods. We attribute the result to the following
reasons. Firstly, in the centralized setting, all users share the same
item embeddings and score function and only user embeddings are
kept for personalization capture, which may lose the ability to main-
tain a sufficient personal preference for each user. In comparison,
our backbone method keeps user embeddings and score functions
as private components to learn user characteristics. Secondly, in
federated scenarios, where user-item interactions are processed
across scattered local datasets, the co-clustering mechanism can
facilitate more insightful aggregation and discover deeper user-user
and item-item associations across clients, effectively bridging the
gap between centralized and federated approaches.

4.4 Abalation Study (RQ2)

In this section, we investigate the effectiveness of each component
in our proposed CoFedRec . We denote the strong baseline method
PFedRec as the original method (Origin in Table 2), which aggre-
gates users without distinguishing user clusters. We note that our
proposed CoFedRec has two main components, server-side client
co-clustering and client-side local supervised contrastive learning
term. We denote these two parts as User_P and Item_SC respec-
tively in Table 2. For comparison, we also consider client-side item
similarity learning (denoted as component Item_S) whose learning
objective is defined as:

11 Vii - Vi
Ly =- - _— (10)
* [Dyl |Z(D)] iEZD:u i’eZZ(i) [IViill - ”Vu,i’ |
then the local training loss is replaced with:
Lu(Vio0u) == > loghui= . log(l=Fur)+ALs (11)

(u,i) €Dy (wieD;

From Table 2, we can observe that all the components are very
important and designed reasonably. Note that integrating User_P re-
sults in a notable performance boost, which verifies the importance
of distinguishing similar users and the generation of a group-level

model. When we compare the extra local training loss terms, Item_S
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and Item_SC, the results show that both of these two components
have a positive effect on the performance while the latter yields
a greater improvement. The primary difference is that the Item_S
considers only the alignment between the positive item pairs while
the Item_SC focuses solely on aligning positive item pairs, while
Item_SC takes into account both alignment and uniformity during
local item representation learning. This outcome emphasizes the
significance of including the global view information as well. In
sum, our co-clustering mechanism, containing the co-clustering
and the local supervised contrastive learning, facilitates the transfer
of high-quality knowledge by identifying the effective neighbors
while capturing the global item collaborative information.

4.5 Generalization Analysis (RQ3)

4.5.1 Effects on different backbones. To evaluate the generaliza-
tion ability of our proposed CoFedRec, we incorporate our method
with three different backbones. The performance is shown in Table
3. Although different models are trained locally, a consistent im-
provement can be observed when incorporating our mechanism.
It indicates that our proposed CoFedRec is independent of the spe-
cific local model, and the potential of CoFedRec can be explored
extensively with more powerful local models. The improvement in
MovieLens-100K is more apparent when compared with MovieLens-
1M. We attribute it to its smaller quantity of items which enables
more faithful item clustering, subsequently leading to more strate-
gic user partitioning and therefore, more effective aggregation
within the similar group.

4.5.2  Privacy protection with virtual rating. The primary goal of
the FRS is to predict the rating of an item i for a client u without
disclosing their rating behaviors or records. The task of federated
recommendation with the implicit data naturally protects user pri-
vacy to a certain extent for the reason: (i) it can be seen from the
objective function of local training that when using the local dataset
to train the model, all items that have not generated actions are
treated as negative samples, which indirectly protects the user’s
behavioral privacy; (ii) we adopted dual personalized proposed by
PFedRec as the backbone to preserve the user-specific personaliza-
tion, meaning that the score function is always kept locally, which
prevents the server from inferring the user’s behavior through
the item network itself. Moreover, FedRec [29] proposes to use
virtual scoring during the local training phase together with the
true interactions to prevent the leakage of user interaction history
when uploading gradients. To rigorously assess the robustness of
CoFedRec , we employed the virtual rating strategy, sampling items
at varying ratios and randomly assigning virtual ratings (either
0 or 1) during local training phases. As shown in Table 4, as the
virtual rating ratio increases from 0 to 0.4, CoFedRec experiences a
slight performance drop and even at a noise ratio of 0.4, our model
consistently outperforms the majority of baseline models.

4.6 A Close Look at CoFedRec (RQ4)

4.6.1 Randomness analysis. In every training round, a user is se-
lected at random to act as the core user. Simultaneously, an item
category is randomly chosen to categorize the users. This inher-
ently introduces randomness into the training process. Therefore,
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Table 1: Experimental results on the four real-world datasets through different methods with % omitted. The best results are
highlighted in boldface. Underlined values indicate the second best.

Models MovieLens-100K MovieLens-1M FilmTrust LastFM-2K
HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

. MF [27] 65.43 40.16 68.61 41.33 92.09 81.99 82.88 70.81
Centralized

NCF [18] 66.17 39.82 68.76 41.90 92.42 82.70 85.06 73.75

FedMF [9] 65.11 39.13 67.52 38.12 89.49 76.31 68.44 52.97

FedeRank [3] 45.81 25.56 45.05 24.50 90.95 82.25 72.75 66.09

FedNCF [44] 60.13 34.31 65.78 38.67 92.34 79.87 80.19 70.11

FedPerGNN [57] 35.84 19.15 43.87 24.33 92.01 82.53 72.06 57.51

FedRecon [50] 65.01 38.49 60.43 34.89 91.76 81.94 82.65 67.85

Federated MetaMF [30] 66.06 39.82 45.08 25.07 92.50 82.89 81.81 66.39

FedFast [42] 43.69 23.22 43.71 22.99 88.92 69.79 75.62 70.41

PerFedRec [36] 60.23 42.05 61.01 43.11 92.34 88.80 63.19 50.70

PFedRec [66] 71.05 43.89 73.62 44.35 91.44 82.36 82.06 73.14

GPFedRec [65] 72.85 43.77 72.17 43.61 90.14 80.88 83.44 74.11

CoFedRec 77.52 50.65 77.75 48.81 94.05 85.20 82.75 74.10

Table 2: Effectiveness of different components of CoFedRec on
MovieLens-100K and MovieLens-1M.

MovieLens-100K MovieLens-1M

Models
HR@10 NDCG@10 HR@10 NDCG@10
Origin 71.05 43.89 73.62 44.35
User_P 75.93 47.23 73.92 45.72
Item_S 72.75 44.26 73.66 44.67
Item_SC 73.91 44.78 74.09 4445
CoFedRec 77.52 50.65 77.75 48.81

Table 3: Experiment comparisons of CoFedRec on MovieLens-
100K and MovieLens-1M with different backbones.

MovieLens-100K MovieLens-1M

Models
HR@10 NDCG@10 HR@10 NDCG@10
FedMF [9] 65.11 39.13 67.52 38.12
w/ Ours 77.09 49.90 71.39 45.10
118.40% 127.52% 15.73% 1 18.31%
FedNCF [44] 60.13 34.31 65.78 38.67
w/ Ours 71.58 51.29 66.16 41.88
119.04% 149.49% 1058% 1 8.30%
PFedRec [66] 71.05 43.89 73.62 44.35
w/ Ours 77.52 50.65 77.75 48.81
19.11% 11540% 15.61% T 10.06%

in this section, we assess the involvement of each client in the ag-
gregation of the group model. We evaluated the number of times
each client participated in over 100 training rounds on both the
MovieLens-100k and MovieLens-1m datasets. The results are pre-
sented in Figure 2. From the results, all clients have had an op-
portunity to contribute to the aggregation of the group models.
Specifically, for the MovieLens-100k dataset, 69.64% of the clients

Table 4: Performance on MovieLens-100K with varying ratios
of virtual rating added to the individual local datasets.

Models Noise size A=0 1=0.1 A=0.2 A=0.3 A1=0.4
HR@10 71.05 72.00 72.96 72.53 70.52
PFedRec [66
edRec [66] G0 43.89 4466 4426 44.67 43.69
CoFedRec  HR@10 77.52 7550 75.18 75.72 72.43
NDCG@10  50.56 46.33 45.20 45.97 45.31
200/ 3000 1
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(a) MovieLens-100k (b) MovieLens-1M
Figure 2: Distribution of Clients’ Participation Rounds on
MovieLens-100k and MovieLens-1M Datasets

participated in more than 70 rounds. In contrast, for the MovieLens-
1m dataset, 82.53% of the clients engaged in over 70 rounds. The
results highlight that the introduced randomness by our approach
does not entirely preclude any client from participating in group
aggregation. Instead, it facilitates user selection, allowing them to
partake in an aggregation process that aligns with their preferences.

4.6.2  Visualization of clustering effects . In this section, we analyze
the clustering results with our proposed CoFedRec to provide more
insights. In Figure 3, we utilize t-SNE [54] to visualize the item
embeddings of the global model on MovieLens-100k and FilmTrust
(For clear visualization, We randomly select 8 and 10 item categories
from the total 30 clusters for two datasets respectively). We can
observe that the item embeddings are well scattered with the extra
local supervised contrastive learning. Then we consider the quality
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(a) MovieLens-100K (b) FilmTrust

Figure 3: Visulization of the clustering results on items.

of the user clustering. Following what we discussed in Section 2.2,
in very high-dimensional spaces, even arbitrary data can appear
to have structure. While t-SNE is designed to preserve local struc-
tures in the data, there’s a significant risk of misreading patterns
when flattening the individual item embedding matrices into a very
high dimension, especially when the number of samples is much
smaller than the number of dimensions. Therefore, visualizing the
item embedding matrices uploaded by the clients through t-SNE
technique may not yield intuitive results The detailed analysis for
this can be found in Appendix E.

5 RELATED WORK
5.1 Clustered Federated Learning

Federated learning (FL) is a distributed machine learning par-
adigm which allows a bunch of clients to jointly train a global
model without revealing clients’ private data to other participants
[34, 51, 62]. Based on the participating clients, FL can be classified
into cross-device FL [53], involving numerous individual users, and
cross-silo FL, which typically considers organizations as clients [19].
Many research efforts in FL address diverse concerns such as com-
munication efficiency [25], privacy [13], data heterogeneity [12],
and the cold start problem [55]. Clustered Federated Learning
(CFL) [6, 14, 60] enhances FL scenarios with diverging, or non-1ID,
data distributions by clustering similar clients for joint training,
mitigating interference from heterogeneous clients. To identify the
cluster partitions, Briggs et al. [6] propose a hierarchical clustering
step that calculates the similarity of client models to the global
model. Sattler et al. [49] introduce a bi-partition method based on
the cosine similarity of the client gradients. Mansour et al. [39]
assign each client a cluster model that has the minimum loss. Ruan
et al. [48] indicate each client can also follow a mixture of multiple
distributions and follow this setting to train both local and cluster
models. However, all the above-mentioned methods focus on the
cross-silo setting. There’s less exploration of the CFL in cross-device
settings due to the large quantities and the sparsity of the clients’
models. In this paper, we focus on cross-device CFL, especially the
problem of federated recommendation (FR), enhancing the FR with
the idea of co-clustering.

5.2 Fenderated Recommendation

Federated Recommendation System (FRS) protects user privacy
in recommendations by leveraging the strengths of FL [61]. FCF [2]
first applies the thought of collaborative filtering to FRS, followed
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by FedMF [9] and FedNCF [44]. They expand upon centralized tech-
niques [18, 27] in the federated context. FedRec [29] studies explicit
feedback problems in FRS. FedFast [42] samples participating users
in each training round and accelerates the learning to convergence.
FedeRank [3] allows users to control the portion of data that can
be shared, and train a personal factorization model of each user.
To enhance personalization, PFedRec [66] retains the score func-
tion module locally and integrates a post-tunning procedure. Other
techniques like GNNs [32, 38, 57, 65] and meta-learning [30] are
also explored to improve the performance of the FRS under various
subtopics. Notably, the aforementioned FRS studies aggregate a sin-
gular global model at the server end and integrate this global model
into clients’ local training processes accordingly, potentially intro-
ducing noise when user data distribution is discrepant. In response
to this challenge, there’s a shift towards creating group-specific
models using clustering techniques that better cater to diverse user
preferences [11, 68]. PerFedRec [36] clusters similar users by user
embeddings. FPPDM [31] focuses on multi-domain recommenda-
tion, aligning users by their attributes. SemiDFEGL [47] introduces
device-to-device collaborations to improve scalability, where users
within the group form a local communication graph to perform col-
laborative learning. However, these methods may risk user profile
exposure as user representations are disseminated either to servers
or other clients. In our research, we develop a co-clustering mech-
anism that operates on clients’ updates rather than specific user
profiles, generating an intelligent group model each round while
integrating the global insights simultaneously thereby improving
the precision and relevance of recommendations.

6 CONCLUSION

In this paper, we revisit the significance of clustering in federated
recommendation. We analyze the failure of directly applying typi-
cal clustering method K-Means in FRS and propose a pioneering
Co-clustering Federated Recommendation mechanism (CoFedRec)
for FRS which incorporates two key ideas: (i) To deal with the
heterogeneity across clients and harness user collaborative insights,
we group clients into similar and dissimilar groups concerning
item classifications. This allows for generating a group-specific
model tailored to the similar group during each communication
round. (if) Local supervised contrastive learning term is further in-
troduced to include the global item insights. Extensive experiments
on 4 real-world datasets demonstrate the superior performance of
our proposed method, which outperforms a bundle of baselines.
One direction extension of our work is to perform nested client
partitioning w.r.t more item categories via our co-clustering mech-
anism in a single communication round. Moreover, the adaptability
of CoFedRec ensures its easy integration with existing FRS. In the
future, we’d like to test our model with more advanced backbones.
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A EXPERIMENT SETUP
A.1 Dataset Details

In this section, we introduce the details of the datasets used and how
we preprocess the data and construct the training, validation and
test set. The two MovieLens datasets record the users’ interactions
with the MovieLens website over the course of years. Only users
who have at least 20 ratings are reserved. FilmTrust is also collected
from a movie-rating website. But interactions in FilmTrust are less,
and accordingly, its sparsity is comparatively high. LastFM-2K con-
tains users’ music listening information from the music streaming
service Last.fm, where users’ listening behavior results in corre-
sponding tags. For FilmTrust and LastFM-2K, we filter out users
with less than 5 interactions. The statistics of the four datasets
are detailed in Table 5. Given our focus on implicit feedback rec-
ommendation in this study, we converted the explicit ratings in
each dataset into implicit feedback, specifically, designating a "1"
to signify that an item was rated by a user. According to the time
stamp of interactions, we employ each user’s latest rating record
to construct the testing set, the next latest records to constitute the
validation set, while all remaining records form the training set.

Table 5: Dataset Statistics.

Dataset Interactions Users Items Sparsity
MovieLens-100K 100,000 943 1,682  93.70%
MovieLens-1M 1,000,209 6,040 3,706  95.53%
FilmTrust 34,888 1,227 2,059  98.62%
LastFM-2K 185,650 1,600 12,454 99.07%

A.2 Baselines

We compare our proposed CoFedRecwith the following baselines

containing both centralized and federated methods.
Centralized methods:

e Matrix Factorization (MF) [27]: Upon the user-item rating
matrix, MF maps users and items to a joint latent space, so that
the interactions are modeled as the inner product of user and
item embeddings.

e Neural Collaborative Filtering (NCF) [18]: It proposes to uti-
lize an MLP to model the user-item interaction function.

Federated methods:

e FedeRank [3]: FedeRank learns a personal factorization model
onto every user device and allows users to share a portion of
their private data, which helps protect the privacy of the user.

e FedMF [9]: It is a framework implemented based on Federated
Collaborative Filtering (FCF) [2] where user embedding is main-
tained locally and item embeddings are aggregated globally.

o FedNCF [44]: It is a federated version of NCF. A generalized MF
(GMF) and an MLP are used to represent user embeddings and
item embeddings respectively.

o FedPerGNN [57]: It assigns GNN models for each client to utilize
its superiority in capturing high-order user-item information.

e FedRecon [50]: Utilizing a reconstruction-based approach, Fe-
dRecon re-initializes local user embedding every 2 rounds in our
implementation and aggregates item network globally.
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Table 6: Learning rate of all models across four datasets.

Models ML-100K ML-1M FilmTrust LastFM-2k
MF 0.001 0.001 0.001 0.001
NCF 0.001 0.001 0.001 0.001
FedMF 0.1 0.1 0.1 0.1
FedeRank 0.1 0.1 0.1 0.1
FedNCF 0.05 0.05 0.05 0.05
FedPerGNN 0.1 0.1 0.1 0.1
FedRecon 0.1 0.1 0.1 0.1
MetaMF 0.0001 0.0001 0.0005 0.0001
FedFast 0.05 0.05 0.05 0.05
PerFedRec 0.01 0.01 0.01 0.01
PFedRec 0.1 0.1 0.1 0.05
GPFedRec % * 0.05 *
CoFedRec 0.1 0.1 0.1 0.05

o MetaMF [30]: MetaMF introduces a meta-network to generate
private item embedding and rating prediction function so that
user model parameters can be reduced. We modify the final layer
to adapt to federated recommendations with implicit feedback.

o FedFast [42]: FedFast introduces two components, ActvSAMP
and ActvAGG, which enable a more intelligent selection of users
to participate in each round of training.

o PerFedRec jointly [36]: PerFedRec trains a federated GNN to
cluster users and then learns models for each cluster. Finally,
each user learns a personalized model via model adaptation.

e PFedRec [66]: PFedRec proposes a dual personalization mecha-
nism that emphasizes capturing personalized information through
a post-tuning procedure.

e GPFedRec [65]: GPFedRec constructs a user relationship graph
based on the item embeddings received and learns user-specific
item embeddings as a regularizer for users’ local training.

A.3 Hyperparameter Settings

To ensure a fair comparison across all methods, we maintain a
consistent setting: a batch size of 256, an embedding size of 32, and a
training round capped at 100. The only exceptions are FedMF, whose
convergence needs 300 training rounds, and FedRecon, which does
so within 500 rounds. We search for the appropriate learning rate for
each model based on the validation sets and the details are shown
in Table 6. The hyperparameter A is fine-tuned within the range of
[0.0005,0.001, 0.005, 0.01, 0.05, 0.1, 0.3, 0.5] and the hyperparameter
7 for the local supervised contrastive learning in the range [0.1,0.5]
with the step of 0.1. The Specifics for CoFedRec are shown in Table
7. We optimize the centralized MF, NCF, and FedNCF with Adam
optimizer [24] and SGD [8] for all the other models.

B COMMUNICATION EFFICIENT ANALYSIS

In this section, we systematically evaluate the communication ef-
ficiency of our proposed CoFedRec. Due to the inherent charac-
teristics of federated learning, multiple iterations of parameter ex-
changes are necessary between the server and the clients to finalize
the training procedure. Hence, the efficiency of communication
plays a pivotal role in FRS implementations.
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To elucidate the superior communication efficiency of our pro-
posed CoFedRec, we’ll dissect it step by step. At each round t, a
subset of participant clients P; is selected. Each participant client
u sends its updated item embedding V;, to the server. Thus, the
communication cost for collecting item embeddings from all the
participant clients would be proportional to the size of P; multiplied
by the size of each item network. During the client update phase, the
server sends the item embedding V; to a subset of participant clients
identified as the "similar group" and the item membership A to all
the participants. Depending on the fraction of clients in the similar
group, this could be a varying portion of P;. The communication
cost here is the sum of the size of V5 multiplied by the number of
clients in the similar group and the size of A multiplied by P; where
A is a vector in the real implementation and is quite small in size
compared with the model Vs. Hence, when compared with other
baseline models, the efficiency of our proposed CoFedRec stems
from the fact that we eliminate the need to distribute the aggregated
model back to all the participating clients.

Table 7: Specifics of our proposed CoFedRec on four datasets.

ML-100K ML-1M  FilmTrust LastFM-

2k
A 0.005 0.005 0.05 0.001
T 0.1 0.5 0.5 0.5
item clusters 30 45 30 500
best round 93 70 78 68

Table 8: Performance of varying weights of the local super-
vised contrastive learning term (@K=10).

Datasets A 0.001 0.005 0.01 0.05 0.1 0.3

HR 72.85 77.52 75.08 74.87 74.02 66.17
ML-100K NDCG 45.43 50.56 48.86 49.01 47.36 41.05

HR 7293 7775 74.02 7225 62.68 56.90

ML-1M NDCG 45.60 48.81 45.66 46.15 37.11 33.41

C STUDY OF THE HYPERPARAMETERS

In this section, we study the two main factors of our methods, the
effect of the number of item clusters and the effect of the local
supervised contrastive learning term.

In our co-clustering mechanism, users are grouped based on item
categories. Consequently, the quality of item classification directly
affects user partitioning. The optimal number of clusters can in-
deed vary significantly across different datasets, as it is closely tied
to the intrinsic characteristics of each dataset. In our method, we
regarded it as a hyperparameter and we have conducted extensive
hyperparameter tuning to find the most suitable number of clusters.
Drawing from practical experience, we consider that after partition-
ing items, each category should, on average, contain no fewer than
ten items. Depending on the size of the dataset, we therefore search
for the optimal number of item clusters within the respective range.

4We cite the results of GPFedRec directly from the original paper.
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As illustrated in Figure 4, we plot the performance variations of
our proposed method on the MovieLens-100K and MovieLens-1M
datasets as the number of item clusters changes. It can be observed
that performance declines when the number of item clusters is
either too large or too small, due to either over-segmentation or
overly broad classification.
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Figure 4: Effect of the number of the item clusters.

We adjusted the weight of the local supervised contrastive learn-
ing term from 0.0005 to 0.5 to examine its impact on model perfor-
mance. The outcomes on MovieLens-100K and MovieLens-1M are
presented in Table 8. We found that, when incorporating this extra
learning term with an appropriate weight, they can enhance local
item representation learning by capturing more global information.

Table 9: Experiment results on full rank evaluation (@K=10).
The best results are highlighted in boldface. Underlined val-
ues indicate the second best.

ML-100K ML-1M FilmTrust
Models
HR NDCG HR NDCG HR NDCG
MF 16.76  9.26 8.84 4.47 69.44 50.35
NCF 18.98 11.56 9.67 4.89 68.87  49.00
FedMF 14.10 7.16 6.61 3.14 59.66  37.10

FedNCF 1591 818 7.81 391 4817 3557
FedPerGNN 573  3.15 421 216 6895 4731
FedRecon 1644 840 851 416 6887 49.08
MetaMF 1633 952  9.00 697  70.09 49.91
PFedRec  19.19 11.02 10.13 504 7137 5182
CoFedRec 21.63 12.64 13.20 8.90 72.78 52.93

D RESULTS ON FULL RANK EVALUATION

In the main experiment, we adopt an efficient sampling strategy. It
samples 100 items per user for evaluation, which contain a positive
item and 99 randomly selected negative items. In this section, we
evaluate CoFedRec in the full ranking list, which is more challeng-
ing because the involved items increase dramatically. We evaluate
CoFedRec with typical baselines on MovieLens-100K, MovieLens-
1M and FilmTrust. The experimental results are shown in Table 9. It
can be seen that our proposed CoFedRec outperforms all baselines,
verifying its effectiveness.

E USER PARTITIONING ANALYSIS

In our endeavor to understand the problem of K-Means clustering
on the MovieLens-100K dataset, as mentioned in Section 2.2, we
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applied the K-Means algorithm with two different cluster counts:
k = 2 and k = 10. Figure 5 showcases the extremely imbalanced
clustering outcome. For example, in Figure 5a, green stars denote
cluster 1, while the solitary orange star, representing cluster 2, is
nestled within cluster 1. This observation reaffirms our insights
from Section 2.2 about the inherent challenges of K-Means in high-
dimensional spaces, where data points tend to be near-equidistant,
rendering them challenging to distinguish effectively.

FRPRREE

(a) Number of Clusters = 2 (b) Number of Clusters = 10
Figure 5: Visualization for clustering results on MovieLens-
100K via K-Means.

We next turn our attention to evaluating the quality of user
clustering. As discussed in Section 2.2, traditional data processing
methods often underperform when dealing with high-dimensional
data. This issue becomes particularly pronounced in our settings,
where the dimensionality of each sample is considerably larger than
the total number of available samples. High dimensionality with
a relatively small number of data points can lead to noise in the
data and potential overfitting. Specifically, high-dimensional spaces,
due to their inherent vastness, can often be deceptive. Imagine
having only a few points scattered in an immense space, even if
these points were placed randomly, it might seem like they form
some sort of pattern or structure simply because there are so many
possibilities for them to potentially align in certain ways. This noise,
when interpreted as genuine data structure, can cause models or
techniques, like t-SNE, to overfit.
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Figure 6: Visualization of the elbow point corresponding to
the optimal performance round for both MovieLens-100K
and MovieLens-1M datasets.

Examining the ’elbow point’ used to segregate the similar and
dissimilar groups offers further insights. As shown in Figure 6, an
evident turning point exists, facilitating the clear differentiation
between these groups. This observation underscores the efficacy of
our co-clustering mechanism in user partitioning, notably without
necessitating access to individual profiles.
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