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ABSTRACT
Heterogeneous data widely exists in various high-impact applica-

tions. Domain adaptation and out-of-distribution generalization

paradigms have been formulated to handle the data heterogeneity

across domains. However, most existing domain adaptation and

out-of-distribution generalization algorithms do not explicitly ex-

plain how the label information can be adaptively propagated from

the source domains to the target domain. Furthermore, little effort

has been devoted to theoretically understanding the convergence

of existing algorithms based on neural networks.

To address these problems, in this paper, we propose a generic

distributional network of networks (TENON) framework, where each

node of the main network represents an individual domain associ-

ated with a domain-specific network. In this case, the edges within

the main network indicate the domain similarity, and the edges

within each network indicate the sample similarity. The crucial idea

of TENON is to characterize the within-domain label smoothness

and cross-domain parameter smoothness in a unified framework.

The convergence and optimality of TENON are theoretically ana-

lyzed. Furthermore, we show that based on the TENON framework,

domain adaptation and out-of-distribution generalization can be

naturally formulated as transductive and inductive distribution

learning problems, respectively. This motivates us to develop two

instantiated algorithms (TENON-DA and TENON-OOD) of the proposed
TENON framework for domain adaptation and out-of-distribution

generalization. The effectiveness and efficiency of TENON-DA and

TENON-OOD are verified both theoretically and empirically.
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1 INTRODUCTION
Modern machine learning algorithms have demonstrated remark-

able success across a wide range of high-impact applications, such

as sentiment analysis [57], news tagging classification [31], etc.

One common assumption behind these algorithms is that the train-

ing and test samples are independently and identically distributed

(IID). However, this IID assumption is often violated in real scenar-

ios where the samples are collected from heterogeneous domains

under distribution shift [48], e.g., Amazon review collected from

different products [8], news headlines collected from different time

stamps [53]. Two learning paradigms have been developed to ad-

dress the challenge of data heterogeneity across domains: domain

adaptation [4, 57] and out-of-distribution generalization [6, 34].

As shown in Figure 1(a), domain adaptation
1
aims at learning a

prediction function on a target domain with only unlabeled train-

ing samples, by exploiting knowledge from source domains. In

contrast, out-of-distribution generalization optimizes a domain-

agnostic model from source domains such that this model can be

directly applied to any relevant unseen target domains. Different

from domain adaptation, target domains are unseen during training

for out-of-distribution generalization.

Most existing domain adaptation and out-of-distribution gen-

eralization algorithms [2, 28, 47, 57] build a single model to learn

the domain-invariant representation from different domains. The

invariant representation learned by a domain-agnostic model can

be explained as the common knowledge shared by all domains.

Nevertheless, it is a strong assumption that all domains share the

same model parameters. This is because this assumption underes-

timates the domain-specific characteristics encoding class separa-

bility. Though recent works [7, 40, 51] propose to learn both with-

domain specificity and cross-domain commonality, disentangling

domain-invariant and domain-specific representations is a nontriv-

ial task. This is because it is challenging to accurately differentiate

the domain-invariant representation from the domain-specific rep-

resentation within samples. The aforementioned frameworks might

suffer from the following limitations. First, the connection between

the domain relationship and the model (parameters) similarity is

under-explored, e.g., similar domains may share similar model pa-

rameters [24, 49]. Second, it is not explained how the label informa-

tion can be adaptively propagated from the source domain to the

target domain. Third, little effort has been devoted to understanding

1
It is also termed as “multi-source domain adaptation" to indicate the existence of

multiple source domains in previous works [39, 57]. In this paper, we use the generic

term “domain adaptation" by assuming that at least one source domain is available.

https://doi.org/10.1145/3637528.3671994
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Figure 1: Illustration of the network of networks on handing
heterogeneous domains (semantic classification on Amazon
products [8] is used where green indicates negative review
and orange indicates positive review). (a) Domain adapta-
tion and out-of-distribution (OOD) generalization involve
different domains. Target domains are unseen during train-
ing for out-of-distribution generalization. (b) In the network
of networks, each node of the main network represents one
domain, and it is formed by a network over domain-specific
samples. For OOD generalization, the dotted lines indicate
that the edges between source and target domains are acces-
sible only during the testing phase.

the model convergence of previous algorithms [2, 45, 47, 57] based

on deep neural networks.

To this end, in this paper, we propose a generic distributional

network of networks (TENON) framework, which allows each do-

main to learn domain-specific model parameters. It is motivated

by recent observation [6, 50] that both domain adaptation and out-

of-distribution generalization can be explained as follows. Given a

meta-distribution P , the data distributions P1, · · · , P𝐾 of different

domains can be considered as IID realizations ofP , and the samples

{𝑥𝑘
𝑖
, 𝑦𝑘
𝑖
}𝑛𝑘
𝑖=1

within domain 𝑘 are IID realizations from P𝑘 . Having
this in mind, TENON reformulates the heterogeneous domains as a

network of networks [36], which encodes both high-level domain

relationships and low-level sample relationships. As shown in Fig-

ure 1(b), the main network characterizes the relationship among

different domains, where each node (blue circles) is a domain, and

the edges (solid or dotted blue lines) imply domain similarity. Each

domain is further represented by a domain-specific network (e.g., a

network within each blue circle), where each node (colored prod-

ucts) is a sample, and the edges (black lines) imply sample similarity.

The intuition behind TENON is that (i) domains share similar model

parameters [49, 56] if they have similar data distributions, and (ii)

samples tend to have similar class labels if they are similar in the

input space [58, 60]. To this end, the proposed TENON framework

is composed of both within-domain label smoothness and cross-

domain parameter smoothness regularizations. We theoretically

show that the convergence and optimality of TENON can be guar-

anteed when using overparameterized neural networks [20, 25] to

instantiate the learning functions of TENON.
More specifically, Figure 1(b) shows that domain adaptation [57]

and out-of-distribution generalization [6, 34] can be naturally con-

sidered as transductive and inductive distribution learning prob-

lems, respectively. That is, domain adaptation can build a network of

networks using source and target domains as a pre-processing step.

Here the sample similarity within each domain-specific network

and domain similarity within the main network can be empirically

estimated using input samples. Then using the constructed network

of networks, we propose an instantiated algorithm (TENON-DA) of
TENON to propagate the knowledge from labeled source domains

to the unlabeled target domain for domain adaptation. In contrast,

out-of-distribution generalization can only access source (training)

domains, and thus we build a network of networks over source

domains during training. During the testing phase, target (testing)

domains will be added to the main network as the new nodes. As a

result, out-of-distribution generalization is formulated as an induc-

tive learning [17] problem w.r.t. the network of networks. To solve

this problem, we propose another instantiated algorithm (TENON-
OOD) of TENON to generalize the relevant knowledge from source

(training) domains to target (testing) domains. The effectiveness

and efficiency of TENON-DA and TENON-OOD are demonstrated in a

variety of data mining tasks. The major contributions of this paper

are summarized as follows.

• Framework: We propose a generic distributional network

of networks (TENON) framework for modeling data hetero-

geneity across domains. Notably, TENON provides a unified
viewpoint of domain adaptation and out-of-distribution gen-

eralization. Furthermore, the convergence and optimality of

TENON are theoretically analyzed.

• Algorithms:We provide two instantiated algorithms (i.e.,

TENON-DA and TENON-OOD) of TENON for domain adaptation

and out-of-distribution generalization. It is revealed that both

algorithms inherit the convergence properties of the TENON
framework. Besides, in the context of domain adaptation, we

show that TENON-DAminimizes the error upper bound of the

target domain.

• Experiments: Extensive experiments on various data sets

demonstrate the effectiveness and efficiency of the proposed

algorithms for both domain adaptation and out-of-distribution

generalization.

The rest of the paper is organized as follows. Section 2 summa-

rizes the related work and Section 3 provides the problem settings.

In Section 4, we propose a novel distributional network of networks

(TENON) framework, followed by the instantiated algorithms for do-

main adaptation and out-of-distribution generalization in Section 5.

Section 6 shows the experimental results, and finally, we conclude

the paper in Section 7.

2 RELATEDWORK
2.1 Domain Adaptation
Domain adaptation [4, 35] studies the transfer of knowledge or

information from source domains to a relevant target domain. It is

theoretically shown [1, 44, 47, 57] that the generalization error of
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a learning algorithm within the target domain can be bounded by

the source errors and domain discrepancy. This thus leads to the

domain adaptation algorithms [9, 14, 30, 33, 39, 50, 55] by empiri-

cally minimizing the prediction errors within source domains and

distribution discrepancy across domains. The most similar works to

ours include [5, 52], where Xu et al. [52] build a domain graph to en-

code topological structures among different domains and Berthelot

et al. [5] unify the semi-supervised learning and domain adapta-

tion. However, our TENON framework is fundamentally different

from previous works in the following aspects. First, previous works

leverage a single model to learn domain-invariant representation,

whereas TENON enables the domain-specific models to character-

ize the domain relationship. Second, the global convergence and

optimality of TENON are analyzed theoretically. In contrast, little

theoretical analysis regarding the convergence of domain adapta-

tion algorithms is provided in previous works. Third, our TENON
framework can be applied to both domain adaptation and out-of-

distribution generalization, while previous works consider only the

domain adaptation settings.

2.2 Out-of-Distribution Generalization
Out-of-distribution (OOD) generalization aims at learning a domain-

agnostic model from an arbitrary number of training source do-

mains [6, 21, 34]. In recent years, various OOD generalization al-

gorithms have been proposed from the following aspects: domain-

invariant representation learning [2, 28], meta regularization [3, 27],

domain augmentation [46, 59], gradient operation [42, 45], etc.

These algorithms directly apply the learned model to the new test-

ing domains. Compared to previous works, the proposed TENON
framework focuses on explicitly propagating model parameters

from training to testing domains based on the distribution simi-

larity among domains. This is in sharp contrast to previous works

which learn a commonly shared model among all domains.

3 PROBLEM DEFINITIONS
We let X and Y be the input space and output space, respec-

tively. Suppose there are 𝐾 different domains drawn from a meta-

distribution P , i.e., P1, · · · , P𝐾 ∼ P where P𝑘 denotes the data

distribution
2
of the 𝑘th domain over X × Y. Each domain is asso-

ciated with a model 𝑓 (·;𝜃𝑘 ) : X → Y parameterized by 𝜃𝑘 . There

are 𝑛𝑘 labeled or unlabeled samples in domain 𝑘 , where 𝑥𝑘
𝑖
∈ X is

the input sample and 𝑦𝑘
𝑖
is the output label if available. In addition,

we let I denote the identity matrix, | | · | |𝑝 and | | · | |𝐹 denote 𝐿𝑝 norm

and Frobenius norm, respectively.

Following [4], we focus on the problem of learning from different

domains, where data heterogeneity exists among domains. Specif-

ically, in this paper, we focus on two research problems: domain

adaptation [4, 57] and out-of-distribution generalization [6, 21].

Both research problems involve modeling the data heterogeneity

across domains. Their goal is to learn a prediction function on

the target domain without label information, by leveraging latent

knowledge from relevant source domains.

2
In this paper, we will use P𝑘 to denote both the data distribution of domain 𝑘 and

the domain 𝑘 itself.

Problem Definition 1 (Domain Adaptation). Given a set of
source domains {P𝑘 }𝐾−1

𝑘=1
each with labeled samples {𝑥𝑘

𝑖
, 𝑦𝑘
𝑖
}𝑛𝑘
𝑖=1

, and
a target domain P𝐾 with only unlabeled samples {𝑥𝐾

𝑖
}𝑛𝐾
𝑖=1

, domain
adaptation aims to learn a prediction function on the target domain
using knowledge from source domains.

Problem Definition 2 (Out-of-Distribution Generaliza-

tion). Given a set of source domains {P𝑘 }𝐾𝑘=1 each with samples
{𝑥𝑘
𝑖
, 𝑦𝑘
𝑖
}𝑛𝑘
𝑖=1

, out-of-distribution generalization aims to learn a predic-
tion function from source domains such that this prediction function
can be directly applied to unseen target domains.

As illustrated in Figure 1, a group of distributions (or domains)

{P𝑘 }𝐾𝑘=1 over ameta-distributionP can be formulated as a network

of networks [36], where each node of the main network represents

a domain and each network is formed by domain-specific samples.

This motivates us to rethink the modeling of data heterogeneity

by capturing both sample similarity within domains and distribu-

tion similarity across domains. First, in each domain, two samples

tend to have similar output values if they are similar in the input

space [19, 58, 60]. Second, given a learning algorithm 𝑓 (·), two
domains would be close in the parameter space if they are distribu-

tionally similar [49, 56].

4 PROPOSED FRAMEWORK
In this section, we propose a simple and generic distributional net-

work of networks (TENON) framework for modeling heterogeneous

data from multiple domains.

4.1 Distributional Network of Networks
It is shown [50] that knowledge transferability can be positively

correlated with the distribution similarity across domains. This

motivates us to model the heterogeneous domains by capturing the

domain relationship in the parameter space (shown in Figure 2). To

this end, we propose a simple yet generic distributional network of

networks (TENON) framework with the following objective function.

min

{𝜃𝑘 }𝐾𝑘=1
𝜆

𝐾∑︁
𝑘=1

𝑛𝑘∑︁
𝑖=1

������𝑓 (𝑥𝑘𝑖 ;𝜃𝑘 ) − 𝑦𝑘𝑖 ������2
2︸                      ︷︷                      ︸

Label consistency within domain

+ 1

2

𝐾∑︁
𝑘=1

𝑛𝑘∑︁
𝑖, 𝑗=1

𝑠𝑘𝑖 𝑗

�������
������� 𝑓 (𝑥

𝑘
𝑖
;𝜃𝑘 )√︃
𝐷𝑘
𝑖𝑖

−
𝑓 (𝑥𝑘

𝑗
;𝜃𝑘 )√︃
𝐷𝑘
𝑗 𝑗

�������
�������
2

2︸                                       ︷︷                                       ︸
Label smoothness within domain

+ 1

2

𝐾∑︁
𝑘,𝑘 ′=1

𝑑𝑘𝑘 ′

�����
����� 𝜃𝑘√︁
𝑀𝑘𝑘

− 𝜃𝑘 ′√︁
𝑀𝑘 ′𝑘 ′

�����
�����2
𝐹︸                                    ︷︷                                    ︸

Parameter smoothness across domains

(1)

where 𝑠𝑘
𝑖 𝑗
indicates the sample similarity between 𝑥𝑘

𝑖
and 𝑥𝑘

𝑗
within

the 𝑘-th domain, and 𝑑𝑘𝑘 ′ denotes the domain similarity between

the 𝑘-th domain and the 𝑘′-th domain. Here 𝐷𝑘
𝑖𝑖

=
∑𝑛𝑘
𝑗=1

𝑠𝑘
𝑖 𝑗

and

𝑀𝑘𝑘 =
∑𝐾
𝑘 ′=1 𝑑𝑘𝑘 ′ . 𝜃𝑘 denotes the model parameters within the

𝑘-th domain. 𝜆 > 0 is a hyper-parameter to balance different terms.
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Figure 2: Illustration of TENON in information propagation.
Label information is propagated in the labeling space within
each domain, while parameter information is propagated in
the parameter space across domains.

Following [19, 58], the sample similarity 𝑠𝑘
𝑖 𝑗
can be empirically

estimated as follows.

𝑠𝑘𝑖 𝑗 = exp

(
−𝜎 ·

������𝑥𝑘𝑖 − 𝑥𝑘𝑗
������
1

)
where 𝜎 ∈ R is a hyper-parameter. In addition, a variety of do-

main discrepancy measures have been proposed to model the het-

erogeneous domains, e.g., HΔH -divergence [4], Maximum Mean

Discrepancy [15, 30], Wasserstein distance [44], 𝑓 -divergence [1],

etc. It is flexible in defining 𝑑𝑘𝑘 ′ in Eq. (1) based on existing do-

main discrepancy measures. In this paper, under the covariate shift

assumption [38] (i.e., P(𝑦 |𝑥) is shared for all domains), we use Maxi-

mumMean Discrepancy (MMD) [15] to define the domain similarity

𝑑𝑘𝑘 ′ as follows.

MMD(𝑘, 𝑘′) =

������
������ 1𝑛𝑘

𝑛𝑘∑︁
𝑖=1

𝜙 (𝑥𝑘𝑖 ) −
1

𝑛𝑘 ′

𝑛𝑘′∑︁
𝑗=1

𝜙 (𝑥𝑘
′
𝑗 )

������
������
2

HK

𝑑𝑘𝑘 ′ = exp

(
−𝜎 ·MMD(𝑘, 𝑘′)

)
where 𝜙 (·) : X → HK is a kernel mapping from an input space X
to a reproducing kernel Hilbert space (RKHS) HK .

The intuition behind Eq. (1) is explained as follows. The first term

captures the consistency of models {𝑓 (·;𝜃𝑘 )}𝐾𝑘=1 with the prior la-

bel information. The second term measures the label smoothness

within each domain. It implies that input samples have similar pre-

diction values if they are similar in the input space. Furthermore,

the third term measures the cross-domain model smoothness in the

parameter space. Notably, graph-based parameter smoothness regu-

larization [29, 56] has been studied in multi-task learning. However,

compared to previous works, our framework of Eq. (1) explicitly re-

veals the connection between the domain distribution discrepancy

and the model (parameters) similarity, i.e., domains have similar

model parameters if they are distributionally similar. Furthermore,

by incorporating the within-domain label smoothness regulariza-

tion (i.e., the second term of Eq. (1)), TENON allows propagating

label information from labeled source samples to unlabeled target

samples, whereas previous works [29, 56] collaboratively update

the model parameters over the labeled samples from all domains.

As shown in Figure 2, the label information encoded by a domain-

specific model is propagated within each domain, while the model

information is propagated across domains in the parameter space.

We show in Subsection 4.3 that in the special case where 𝑑𝑘𝑘 ′ = 0

for all domains 𝑘, 𝑘′, the objective of TENON in Eq. (1) exactly re-

covers the label propagation [58, 60] in every domain. On top of

label propagation, the parameter propagation of TENON enables han-
dling data heterogeneity when samples are collected from multiple

domains [33, 49, 57].

4.2 Convergence Analysis
The convergence and optimality of TENON can be analyzed by con-

sidering different instantiations of learning models {𝑓 (·;𝜃𝑘 )}𝐾𝑘=1.
In the following, we start with the simple linear regression func-

tions, i.e., 𝑓 (𝑥 ;𝜃𝑘 ) = 𝜃𝑇𝑘 𝑥 for all 𝑘 ∈ {1, 2, · · · , 𝐾}. The following
lemma shows the global convergence and optimality of the TENON
framework.

Lemma 3. Given linear models 𝑓 (𝑥 ;𝜃𝑘 ) = 𝜃𝑇𝑘 𝑥 for 𝑘 ∈ {1, · · · , 𝐾},
the objective of Eq. (1) can be minimized at

Θ∗ = 𝜆X̂
((
Â + 𝜆I

)
X̂𝑇 X̂ +

(
X̂𝑇 X̂

)−1
X̂𝑇 B̂X̂

)−1
y

whereΘ = [𝜃𝑇
1
, · · · , 𝜃𝑇

𝐾
]𝑇 ,X𝑘 = [𝑥𝑘

1
, 𝑥𝑘

2
, · · · , 𝑥𝑘𝑛𝑘 ], y = [𝑦1

1
, · · · , 𝑦1𝑛1 ,

· · · , 𝑦𝐾
1
, · · · , 𝑦𝐾𝑛𝐾 ]

𝑇 and

X̂ =


X1 0 · · · 0
0 X2 · · · 0
.
.
.

.

.

.
.
.
.

.

.

.

0 0 · · · X𝐾


, Â =


Ā1 0 · · · 0
0 Ā2 · · · 0
.
.
.

.

.

.
.
.
.

.

.

.

0 0 · · · Ā𝐾


B̂ = I𝐾𝑑𝑖𝑛×𝐾𝑑𝑖𝑛 − B ⊗ I𝑑𝑖𝑛×𝑑𝑖𝑛

where A𝑘 = (D𝑘 )−1/2S𝑘 (D𝑘 )−1/2 is the normalized sample similar-
ity matrix of domain 𝑘 with Ā𝑘 = I−A𝑘 , and B = M−1/2DM−1/2 is
the normalized domain similarity matrix.3 ⊗ denotes the Kronecker
product of two matrices. 𝑑𝑖𝑛 is the dimensionality of input samples.

Next, we instantiate the learning models {𝑓 (·;𝜃𝑘 )}𝐾𝑘=1 with over-
parameterized neural networks [20, 25]. This allows us to reveal

the convergence of TENON in Eq. (1) with commonly used neural

network architectures
4
. For notation simplicity, we will use 𝑓 (·;Θ)

to denote the overall learning function with 𝑓 (𝑥𝑘 ;Θ) = 𝑓 (𝑥𝑘 ;𝜃𝑘 )
for any sample 𝑥𝑘 from domain 𝑘 . It is observed [25] that neu-

ral network 𝑓 (·;Θ) can be approximated by its linearized version

𝑓 lin (·;Θ), i.e., sup𝑡≥0
������𝑓𝑡 (𝑥 ;Θ) − 𝑓 lin𝑡 (𝑥 ;Θ)

������ = O(ℎ−
1

2 ) where ℎ is

the width of neural networks.
5 𝑓𝑡 (·;Θ) denotes the model at time

step 𝑡 , and 𝑓 lin (·;Θ) is given by the first order Taylor expansion of

𝑓 (·;Θ): 𝑓 lin𝑡 (𝑥 ;Θ) = 𝑓0 (𝑥 ;Θ)+∇𝑓0 (𝑥 ;Θ) (Θ𝑡 − Θ0) Inspired by this
observation, we generalize the results of Lemma 3 by instantiating

{𝑓 (·;𝜃𝑘 )}𝐾𝑘=1 with neural networks. The following theorem shows

3S𝑘 is sample similarity matrix of domain 𝑘 with the entry [S𝑘 ]𝑖 𝑗 = 𝑠𝑘𝑖 𝑗 , and D𝑘 is

a diagnal matrix with the entry [D𝑘 ]𝑖𝑖 = 𝐷𝑘𝑖𝑖 . D is domain similarity matrix with

the entry [D]𝑘𝑘′ = 𝑑𝑘𝑘′ , andM is a diagnal matrix with the entry [M]𝑘𝑘 = 𝑀𝑘𝑘 .
4
Following [25], 𝜃𝑘 denotes the vectorized parameters of the neural network model

within domain 𝑘 here.

5
In this case, “width" can be the number of neurons in a fully-connected layer or the

number of channels in a convolutional layer.
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the global convergence of TENON under gradient descent when the

layer width of {𝑓 (·;𝜃𝑘 )}𝐾𝑘=1 goes to infinity.

Theorem 4 (Convergence and Optimality of TENON). Let X
denote all training samples. In the limit of layer width, the model
parameters Θ in the objective of Eq. (1) converges to

lim

𝑡→∞
Θ𝑡 = −∇Θ 𝑓0 (X)𝑇K−1

NTK
Γ−1 (Ω − 𝜆y) + Θ0

where 𝑡 is the training time step,Θ0 denotes the initialized parameters,
and 𝑓0 (X) = vec(𝑓0 (𝑥𝑘𝑖 ;𝜃

𝑘 ) |𝑖 ∈ {1, 2, · · · , 𝑛𝑘 }, 𝑘 ∈ {1, 2, · · · , 𝐾}) is
model output with initialized parameters. Moreover, the prediction
function 𝑓 (·;𝜃𝑘 ) of Eq. (1) for any testing sample 𝑥𝑘 within domain
𝑘 converges to

lim

𝑡→∞
𝑓𝑡 (𝑥𝑘 ;𝜃𝑘 ) = 𝜆KNTK (𝑥𝑘 ,X)K−1

NTK
Γ−1y

+ 𝑓0 (𝑥𝑘 ;𝜃𝑘 ) − KNTK (𝑥𝑘 ,X)K−1
NTK

Γ−1Ω

where

Γ = Â + 𝜆I + K−1
NTK

∇Θ 𝑓0 (X)B̂∇Θ 𝑓0 (X)𝑇K−1
NTK

Ω = K−1
NTK

∇Θ 𝑓0 (X)B̂Θ0 + (Â + 𝜆I) 𝑓0 (X)

KNTK (𝑥𝑘 ,X) = [0, · · · , 0, 𝜔𝑘
1
, · · · , 𝜔𝑘𝑛𝑘︸         ︷︷         ︸

Within domain 𝑘

, 0, · · · , 0]

and KNTK = diag(K11,K22, · · · ,K𝐾𝐾 ). K𝑘𝑘 is a neural tangent ker-
nel [20] matrix within domain 𝑘 , i.e., its entry is given by [K𝑘𝑘 ]𝑖 𝑗 =〈
∇𝜃𝑘 𝑓0 (𝑥

𝑘
𝑖
;𝜃𝑘 ),∇𝜃𝑘 𝑓0 (𝑥

𝑘
𝑗
;𝜃𝑘 )

〉
.𝜔𝑘
𝑖
=

〈
∇𝜃𝑘 𝑓0 (𝑥

𝑘
;𝜃𝑘 ),∇𝜃𝑘 𝑓0 (𝑥

𝑘
𝑖
;𝜃𝑘 )

〉
.

4.3 Discussion
In this section, we provide a more intuitive explanation regarding

how the proposed TENON framework enables within-domain label

propagation and cross-domain parameter propagation, respectively.

Corollary 5 (Individual Label Propagation). In the special
case where 𝑑𝑘𝑘 ′ = 0 (𝑘 ≠ 𝑘′), with the same conditions as Theorem 4,
for any 𝑘 ∈ {1, · · · , 𝐾}, the predicted values of 𝑓 (·;𝜃𝑘 ) in Eq. (1) over
the training samples X𝑘 = [𝑥𝑘

1
, · · · , 𝑥𝑘𝑛𝑘 ] in domain 𝑘 converge to

lim

𝑡→∞
𝑓𝑡 (X𝑘 ;𝜃𝑘 ) = (1 − 𝛼) (I − 𝛼A𝑘 )−1 y𝑘 (2)

where 𝑓𝑡 (X𝑘 ;𝜃𝑘 ) = [𝑓𝑡 (𝑥𝑘
1
;𝜃𝑘 ), 𝑓𝑡 (𝑥𝑘2 ;𝜃𝑘 ), · · · , 𝑓𝑡 (𝑥

𝑘
𝑛𝑘
;𝜃𝑘 )]𝑇 , y𝑘 =

[𝑦𝑘
1
, 𝑦𝑘

2
, · · · , 𝑦𝑘𝑛𝑘 ]

𝑇 , and 𝛼 = 1

𝜆+1 . Furthermore, for any testing sample
𝑥𝑘 , it holds

lim

𝑡→∞
𝑓𝑡 (𝑥𝑘 ;𝜃𝑘 ) = (1 − 𝛼)KNTK (𝑥𝑘 ,X𝑘 )K−1

𝑘𝑘
(I − 𝛼A𝑘 )−1 y𝑘

+ 𝑓0 (𝑥𝑘 ;𝜃𝑘 ) − KNTK (𝑥𝑘 ,X𝑘 )K−1
𝑘𝑘
𝑓0 (X𝑘 )

(3)

It can be seen from Eq. (2) in Corollary 5 that when all domains

are irrelevant (i.e., 𝑑𝑘𝑘 ′ = 0 for any 𝑘 ≠ 𝑘′), the objective of TENON
is equivalent to standard label propagation [19, 58, 60] on each

individual domain and no knowledge is shared across domains. Fur-

thermore, previous label propagation approaches [58, 60] focus on

transductive semi-supervised learning, where labels are inferred for

a set of unlabeled training samples (shown in Eq. (2)), whereas Corol-

lary 5 provides a feasible solution for inductive semi-supervised

learning, where the labels can be inferred for new unseen testing

samples (shown in Eq. (3)).

Algorithm 1 TENON-DA

Input: (𝐾 − 1) source domains {P𝑘 }𝐾−1
𝑘=1

, a target domain P𝐾 ;

Output: Predicted output values of target samples.

1: ——————— Training Stage (Pre-computing) ———————

2: Calculate all sample similarity 𝑠𝑘
𝑖 𝑗
and domain similarity 𝑑𝑘𝑘 ′ ;

3: for 𝑘 = 1, · · · , 𝐾 do
4: Calculate block neural tangent kernel K𝑘𝑘 ;
5: Calculate inverse matrix K−1

𝑘𝑘
;

6: for 𝑘′ = 𝑘 + 1, · · · , 𝐾 do
7: Calculate block neural tangent kernel K𝑘𝑘 ′ ;
8: end for
9: end for
10: Calculate ΓKNTK;

11: Calculate y∗ = 𝜆K−1
NTK

Γ−1y = 𝜆(ΓKNTK)−1y;
12: Obtain target propagated labels y∗

𝐾
= [y∗]−𝑛𝐾 :;

13: ——————— Inference Stage ————————————————

14: for testing sample 𝑥 test
𝐾

from target domain 𝐾 do
15: Calculate neural tangent kernel KKK (𝑥 test𝐾

,X𝐾 );
16: Calculate 𝑦test

𝐾
= KKK (𝑥 test𝐾

,X𝐾 )y∗𝐾 ;
17: end for

Corollary 6 (Global Parameter Propagation). In the special
case where 𝑠𝑘

𝑖 𝑗
= 0 (𝑖 ≠ 𝑗, 𝑘 = 1, · · · , 𝐾), with the same conditions

as Theorem 4, for any 𝑘 ∈ {1, · · · , 𝐾}, the model parameters 𝜃𝑘 of
𝑓 (·;𝜃𝑘 ) in Eq. (1) is updated under gradient descent as follows.

𝜃𝑘 (𝑡 + 1) =
(
(1 − 𝜂)I − 𝜆∇𝑓 (X𝑘 )𝑇∇𝑓 (X𝑘 )

)
𝜃𝑘 (𝑡)

+ 𝜂
𝐾∑︁
𝑘 ′=1

𝑑𝑘𝑘 ′√︁
𝑀𝑘𝑘𝑀𝑘 ′𝑘 ′

𝜃𝑘 ′ (𝑡) + 𝜂𝜆∇𝑓 (X𝑘 )𝑇 y𝑘

where 𝜂 is the learning rate and 𝜃𝑘 (𝑡) denotes the model parameters
𝜃𝑘 at time step 𝑡 .

Corollary 6 reveals that if we do not consider the sample similar-

ity, i.e., 𝑠𝑘
𝑖 𝑗

= 0 (𝑖 ≠ 𝑗, 𝑘 = 1, · · · , 𝐾 ), the model parameters 𝜃𝑘 of the

domain 𝑘 would recursively aggregate knowledge from all other

domains. More specifically, if two domains have similar data distri-

butions, i.e., 𝑑𝑘𝑘 ′ is large, it is more likely to propagate parameter

knowledge between these two domains. This observation is also

consistent with previous works [24, 49].

5 PROPOSED ALGORITHMS
In this section, we provide two instantiated algorithms of TENON for
domain adaptation (TENON-DA) and out-of-distribution generaliza-

tion (TENON-OOD). The crucial idea is to formulate domain adaptation

and out-of-distribution generalization as transductive distribution

learning and inductive distribution learning w.r.t. network of net-

works [36], respectively.

5.1 Transductive Distribution Learning
We formulate domain adaptation [47] as a transductive distribution

learning problem. As shown in Figure 1(b), each domain (source or

target domain) is formulated as a node in the main network, and

samples within each domain form a domain-specific network. Thus,

domain adaptation aims to propagate the label information (1) from
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source domains to the target domain (domain-level propagation)

and (2) from labeled samples to unlabeled samples (sample-level

propagation). To this end, we instantiate the proposed TENON frame-

work (denoted as TENON-DA) for domain adaptation below.

Given 𝐾 − 1 source domains {P𝑘 }𝐾−1
𝑘=1

each with labeled samples

{𝑥𝑘
𝑖
, 𝑦𝑘
𝑖
}𝑛𝑘
𝑖=1

, and a target domain P𝐾 with only unlabeled samples

{𝑥𝐾
𝑖
}𝑛𝐾
𝑖=1

, the objective function of TENON-DA is directly given by Eq.

(1). Here the class label 𝑦𝑘
𝑖
(𝑘 = 1, · · · , 𝐾 − 1) of source training

sample 𝑥𝑘
𝑖
is represented as a one-hot vector, and the class label 𝑦𝐾

𝑖

of unlabeled target training sample 𝑥𝐾
𝑖
is initialized as a zero vector.

Following Theorem 4, we can obtain the closed-form solution of

TENON-DA as follows. Suppose 𝑓0 (·;Θ) = 0,Θ0 = 0, the predicted
class labels of target training samples are given by

y∗𝐾 = [y∗]−𝑛𝐾 : where y∗ = 𝜆K−1
NTK

Γ−1y

where [y∗]−𝑛𝐾 : denotes the last 𝑛𝐾 rows of predicted output values

y∗. Moreover, for any new target testing sample 𝑥 test
𝐾

, the predicted

class label via TENON-DA is

𝑦test
𝐾

= 𝜆KNTK (𝑥 test𝐾
,X)K−1

NTK
Γ−1y = KKK (𝑥 test𝐾

,X𝐾 )y∗𝐾 (4)

where KKK (𝑥 test𝐾
,X𝐾 ) = [KNTK (𝑥 test𝐾

, 𝑥1
𝐾
), · · · ,KNTK (𝑥 test𝐾

, 𝑥𝐾𝑛𝐾 )].
We see that TENON-DA is a non-parametric domain adaptation ap-

proach. As shown in Algorithm 1, we can pre-compute the prop-

agated labels y∗
𝐾
for unlabeled target training samples. Then, the

class label of any testing target sample is inferred using the propa-

gated labels y∗
𝐾
and the neural tangent kernel vectorKKK (𝑥 test𝐾

,X𝐾 )
between this testing sample and the target training samples.

In the following, we theoretically analyze the generalization

bound of TENON-DA for domain adaptation.

Theorem 7 (Generalization of TENON-DA). Suppose that the
learning models are instantiated with infinitely wide neural networks,
given the hypothesis spaceH , for any hypothesis 𝑓 (·;𝜃𝑘 ) ∈ H and
any 𝛿 ∈ (0, 1), with probability at least 1 − 𝛿 , the expected error of
the target domain can be upper bounded by

E𝑥∼P𝐾

[����𝑓 (𝑥 ;𝜃𝐾 ) − 𝑓
(
𝑥 ;𝜃∗𝐾

) ����2
2

]
≤ 𝜁

[
𝜆

𝐾∑︁
𝑘=1

𝑛𝑘∑︁
𝑖=1

������𝑓 (𝑥𝑘𝑖 ;𝜃𝑘 ) − 𝑦𝑘𝑖 ������2
2

+ 1

2

𝐾∑︁
𝑘=1

𝑛𝑘∑︁
𝑖,𝑗=1

𝑠𝑘𝑖 𝑗

�������
������� 𝑓 (𝑥

𝑘
𝑖
;𝜃𝑘 )√︃
𝐷𝑘
𝑖𝑖

−
𝑓 (𝑥𝑘

𝑗
;𝜃𝑘 )√︃
𝐷𝑘
𝑗 𝑗

�������
�������
2

2

+ 1

2

𝐾∑︁
𝑘,𝑘′=1

𝑑𝑘𝑘′

�������� 𝜃𝑘√
𝑀𝑘𝑘

− 𝜃𝑘′√
𝑀𝑘′𝑘′

��������2
2

]
+ 1

𝑛𝐾𝐿R

𝐾∑︁
𝑘=1

Ω (X𝑘 , 𝜃 ∗𝑘 ) +
1

𝑛𝐾𝐿R
Δ(𝜃∗

1
, · · · , 𝜃 ∗𝐾 ) + O

(
log(1/𝛿 )
𝑛𝐾

)

where Ω(X𝑘 , 𝜃∗𝑘 ) =
∑𝑛𝑘
𝑖, 𝑗=1

𝑠𝑘
𝑖 𝑗

�����
����� 𝑓 (𝑥𝑘𝑖 ;𝜃 ∗𝑘 )√︃

𝐷𝑘
𝑖𝑖

−
𝑓 (𝑥𝑘

𝑗
;𝜃 ∗
𝑘
)√︃

𝐷𝑘
𝑗 𝑗

�����
�����2
2

denotes the la-

bel smoothness over𝜃∗
𝑘
= argmin𝜃 ′ EP𝑘 [𝑓 (𝑥𝑘 ;𝜃 ′), 𝑦𝑘 ],Δ(𝜃∗1 , · · · , 𝜃

∗
𝐾
) =∑𝐾

𝑘,𝑘 ′=1 𝑑𝑘𝑘 ′

�������� 𝜃 ∗
𝑘√
𝑀𝑘𝑘

− 𝜃 ∗
𝑘′√

𝑀𝑘′𝑘′

��������2
2

and 𝜁 = max

{
𝑈R

𝜆𝑛𝐾𝐿R
, 2

𝑛𝐾𝐿R

}
. 𝐿R

and 𝑈R are constants depending on the maximum and minimum
eigenvalues of L𝐾 + K−1

𝐾𝐾
respectively, where L𝑘 is the symmetrically

normalized Laplacian matrix of the target domain.

Algorithm 2 TENON-OOD

Input: 𝐾 source (training) domains {P𝑘 }𝐾𝑘=1;
Output: Predicted output values of target samples.

1: ——————— Training Stage (Pre-computing) ———————

2: Calculate ΓKNTK (same procedures as Lines 2-10 in Alg. 1);

3: Calculate y∗ = 𝜆K−1
NTK

Γ−1y = 𝜆(ΓKNTK)−1y;
4: ——————— Inference Stage ————————————————

5: for 𝑥 test
𝐾+1 from target (testing) domain 𝐾 + 1 do

6: Calculate neural tangent kernel Φ(𝑥 test
𝐾+1,X);

7: Calculate 𝑦test
𝐾+1 =

𝜆
𝐾
Φ(𝑥 test

𝐾+1,X)K
−1
NTK

Γ−1y;
8: end for

It can be seen from Theorem 7 that the generalization error of

TENON-DA on the target domain is determined by the following cru-

cial factors. One is the empirical prediction error given by TENON-DA
(see Eq. (1)) over source and target training samples. The other one

is the optimal label smoothness within each domain and the opti-

mal parameter smoothness across domains. We would like to point

out that previous works study the generalization performance of

domain adaptation using either domain discrepancy [1, 55, 57] or

label smoothness [35] across domains, by assuming that all do-

mains share the same hypothesis. The learned prediction function

in those works might lose domain-specific information, resulting

in sub-optimal performance on the target domain. Though some

recent works [40, 51] propose to learn both domain-invariant and

domain-specific representations, their theoretical generalization

performance is unclear. Instead, in this paper, we leverage the sim-

ple distributional network of networks framework to model data

heterogeneity in domain adaptation with theoretical guarantees

(e.g., the first three terms of the upper bound in Theorem 7 result

in the optimization framework of Eq. (1) for domain adaptation).

5.2 Inductive Distribution Learning
We can formulate the out-of-distribution generalization [16, 23] as

an inductive distribution learning problem. As illustrated in Fig-

ure 1(b), all source (training) domains can be used to construct

a network of networks. Since the target (testing) domains are

only available during the testing phase, they will be added to the

main network as new nodes after model training. Therefore, out-

of-distribution generalization can be considered as an inductive

distributional learning problem, given the formulated network of

networks. To solve this problem, we instantiate the proposed TENON
framework (denoted as TENON-OOD) with the following training and

inference stages (see Algorithm 2).

• Training Stage: Given 𝐾 source (training) domains {P𝑘 }𝐾𝑘=1
each with labeled samples {𝑥𝑘

𝑖
, 𝑦𝑘
𝑖
}𝑛𝑘
𝑖=1

, the objective function

of TENON-OOD during training can be directly given by Eq.

(1). Thus, based on Theorem 4, we can obtain the closed-

form solution for model parameters {𝜃𝑘 }𝐾𝑘=1 over training
domains.

Θ∗ = 𝜆∇Θ 𝑓0 (X)𝑇K−1
NTK

Γ−1y

whereΘ∗ = [𝜃∗𝑇
1
, · · · , 𝜃∗𝑇

𝐾
]𝑇 . Here 𝜃∗

𝑘
denotes the optimized

model parameters within domain 𝑘 .
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• Inference Stage: In the inference stage, we can learn the

model parameters 𝜃∗
𝐾+1 for a new target (testing) domain

P𝐾+1 as follows. For standard out-of-distribution general-

ization, no prior knowledge regarding the target (testing)

domain is available before model inference. In this case,

we assume that the new target (testing) domain can be

considered as a new (domain) node for the previously de-

rived network of networks. The edge weight
6
between

this new node and previous nodes within the main net-

work is simply set as 1. Considering the objective func-

tionmin𝜃𝐾+1
∑𝐾+1
𝑘,𝑘 ′=1 𝑑𝑘𝑘 ′

������ 𝜃𝑘√
𝑀𝑘𝑘

− 𝜃𝑘′√
𝑀𝑘′𝑘′

������2
𝐹
, we obtain the

closed-form solution 𝜃∗
𝐾+1 = 1

𝐾

∑𝐾
𝑘=1

𝜃∗
𝑘
, and thus the pre-

dicted class label of any testing sample 𝑥 test
𝐾+1 is given by

𝑦test
𝐾+1 =

𝜆

𝐾
Φ(𝑥 test𝐾+1,X)K

−1
NTK

Γ−1y

whereΦ(𝑥 test
𝐾+1,X) = [KNTK (𝑥 test𝐾+1, 𝑥

1

1
), · · · ,KNTK (𝑥 test𝐾+1, 𝑥

1

𝑛1
),

· · · ,KNTK (𝑥 test𝐾+1, 𝑥
1

𝐾
), · · · ,KNTK (𝑥 test𝐾+1, 𝑥

𝐾
𝑛𝐾

)] denotes the neu-
ral tangent kernel between 𝑥 test

𝐾+1 and samples from training

domains.

5.3 More Discussion Regarding Algorithms 1&2
It can be seen that the term Γ in Algorithms 1&2 involves the

computationally expensive gradient terms ∇Θ 𝑓0 (𝑋 ).

Γ = Â + 𝜆I + K−1
NTK

∇Θ 𝑓0 (𝑋 )B̂∇Θ 𝑓0 (𝑋 )𝑇K−1
NTK

However, we have the following observations.

∇Θ 𝑓0 (𝑋 )B̂∇Θ 𝑓0 (𝑋 )𝑇

= ∇Θ 𝑓0 (𝑋 )
(
I𝐾𝑑𝑖𝑛×𝐾𝑑𝑖𝑛 − B ⊗ I𝑑𝑖𝑛×𝑑𝑖𝑛

)
∇Θ 𝑓0 (𝑋 )𝑇

= KNTK −



𝑑11√
𝑀11 ·𝑀11

K11

𝑑12√
𝑀11 ·𝑀22

K12 · · · 𝑑1𝐾√
𝑀11 ·𝑀𝐾𝐾

K1𝐾

𝑑21√
𝑀22 ·𝑀11

K21

𝑑22√
𝑀22 ·𝑀22

K22 · · · 𝑑2𝐾√
𝑀22 ·𝑀𝐾𝐾

K2𝐾

.

.

.
.
.
.

.

.

.
.
.
.

𝑑𝐾1√
𝑀𝐾𝐾 ·𝑀11

K𝐾1
𝑑𝐾2√

𝑀𝐾𝐾 ·𝑀22

K𝐾2 · · · 𝑑𝐾𝐾√
𝑀𝐾𝐾 ·𝑀𝐾𝐾

K𝐾𝐾


It shows that the term Γ in Algorithms 1&2 can be efficiently calcu-

lated using the domain similarity 𝑑𝑘𝑘 ′ and neural tangent kernel

K𝑘𝑘 ′ between domain 𝑘 and domain 𝑘′.

5.4 Computational Complexity
Algorithms 1&2 show that the time complexity of TENON-DA and

TENON-OOD is determined by the calculation of neural tangent kernel

(NTK) of any pair of training samples and the inversion of the

propagation matrix ΓKNTK. The time complexity of calculating

NTK over all domains is O(𝑛2) [37], where 𝑛 =
∑𝐾
𝑘=1

𝑛𝑘 denotes

the number of all training samples. The inversion of ΓKNTK requires

O(𝑛3). Following [19], we can use the conjugate gradient method

to solve the linear system (ΓKNTK) y∗ = 𝜆y, in order to estimate the

propagated labels y∗. This allows us to reduce the time complexity

from O(𝑛3) to O(𝑏𝑛2), where 𝑏 is the number of iterations. In this

6
Without prior knowledge regarding the unseen target domain, we assume that the

unseen target domain is equally similar to all source domains. In this case, only the

parameter smoothness regularization (i.e., the third term in Eq. (1)) will be available to

optimize the model parameters of this unseen target domain.

case, we term the variants of TENON-DA and TENON-OOD algorithms

with conjugate gradient as TENON-DA-Fast and TENON-OOD-Fast,
respectively (see subsection 6.3.3 for more empirical analysis).

6 EXPERIMENTS
In the experiment, we evaluate the proposed TENON algorithms on

domain adaptation and out-of-distribution generalization data sets.

6.1 Experimental Setup
6.1.1 Data Sets. We use the following data sets.

• Amazon Review [8]: It contains positive and negative prod-

uct reviews from four different domains: Books, DVD, Elec-

tronics, and Kitchen. Following [47, 57], we use top-5000

frequent unigrams/bigrams to extract the bag-of-words fea-

tures for Amazon reviews. Each review is associated with a

binary label indicating positive or negative sentiment.

• CityCam [54]: CityCam is a large-scale web camera data

set. It contains images captured by several cameras in dif-

ferent city locations. Following [11], we use images from

four cameras (with IDs: 253, 495, 511, and 572). Each image

has a 2048-dimensional feature vector extracted from the

pre-trained ResNet-50 [18]. Specifically, in this paper, we

consider a binary classification task based on the number of

vehicles within the camera images, i.e., whether there are at

least 10 cars in an image.

• Huffpost [31]: Huffpost contains article headlines associated

with 11 news categories collected from the Huffington Post

from 2012 to 2018. Following [53], we use pre-trained Dis-

tilBERT [43] to extract a 768-dimensional feature vector for

each new headline. The task is to identify the news tags of

article headlines as one of the following 11 categories: Black

Voices, Business, Comedy, Crime, Entertainment, Impact,

Queer Voices, Science, Sports, Tech, Travel.

• ArXiv [10]: ArXiv provides metadata of arXiv preprints from

2007 to 2023. As illustrated in [53], each preprint consists of

a paper title and its corresponding primary categories. The

paper title can further be represented as a 768-dimensional

feature vector using pre-trained DistilBERT [43]. The task of

ArXiv is to predict the primary category of arXiv pre-prints

from their paper titles.

• CivilComments [22]: CivilComments consists of comments

scraped from the internet. It contains 8 demographic identi-

ties: male, female, LGBTQ, Christian, Muslim, other religions,

Black, or White. Each identity is considered as a single do-

main. CivilComments involves a binary classification task

to determine whether a comment is toxic.

6.1.2 Baselines. In the experiment, we consider the following do-

main adaptation baselines, including (1) semi-supervised learn-

ing: LabelProp [12, 58], and (2) domain adaptation: DANN [14],

MDAN [57], M3SAD [39], DARN [47], and GRDA [52]. In addition,

we use the following out-of-distribution generalization baselines:

ERM, DANN [14], IRM [2], SD [41], Fish [45], and EQRM [13].

6.1.3 Configuration. Following [47], we use a 3-layer multi-layer

perceptron (MLP) to instantiate the prediction function for all

baselines. Then we implement our proposed algorithms using the
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Model

Amazon Review CityCam

Books DVD Electronics Kitchen 253 495 511 572

LabelProp [58] 0.7078±0.0040 0.7294±0.0093 0.7699±0.0079 0.7799±0.0082 0.6741±0.1360 0.6312±0.0470 0.6753±0.0888 0.7560±0.0564
DANN [14] 0.6958±0.0157 0.7229±0.0031 0.7818±0.0053 0.7879±0.0072 0.7804±0.0415 0.6716±0.0499 0.8498±0.0136 0.7563±0.0344
MDAN [57] 0.7196±0.0095 0.7432±0.0205 0.7744±0.0121 0.7869±0.0156 0.8007±0.0579 0.6685±0.0339 0.8222±0.0227 0.7280±0.0261
M3SAD [39] 0.7019±0.0232 0.7251±0.0210 0.7753±0.0117 0.7893±0.0134 0.8064±0.0581 0.6175±0.0286 0.7970±0.0357 0.7621±0.0531
DARN [47] 0.7175±0.0126 0.7412±0.0180 0.7703±0.0119 0.7888±0.0145 0.8243±0.0392 0.6795±0.0321 0.8271±0.0161 0.7547±0.0385
GRDA [52] 0.7110±0.0099 0.7294±0.0110 0.7714±0.0091 0.7884±0.0056 0.7949±0.0751 0.6698±0.0340 0.8254±0.0196 0.7495±0.0389

TENON-DA-Fast 0.7241±0.0146 0.7499±0.0101 0.7713±0.0093 0.7898±0.0101 0.8359±0.0146 0.7145±0.0122 0.7918±0.0104 0.7857±0.0176
TENON-DA 0.7238±0.0135 0.7503±0.0094 0.7763±0.0065 0.7851±0.0037 0.8350±0.0156 0.7143±0.0134 0.7932±0.0097 0.7859±0.0182

Table 1: Domain adaptation on Amazon review and CityCam data sets

Model 2013 2014 2015 2016 2017 2018 Avg.

LabelProp [58] 0.5312±0.0109 0.2942±0.0095 0.2641±0.0202 0.3535±0.0237 0.3900±0.0145 0.5055±0.0165 0.3897

DANN [14] 0.4171±0.0293 0.3510±0.0234 0.3847±0.0423 0.4468±0.0205 0.4568±0.0352 0.5490±0.0254 0.4342

MDAN [57] 0.4171±0.0293 0.3365±0.0481 0.3757±0.0546 0.4424±0.0207 0.4392±0.0267 0.5019±0.0322 0.4188

M3SAD [39] 0.4077±0.0290 0.3490±0.0439 0.4055±0.0380 0.4468±0.0246 0.4455±0.0281 0.4879±0.0398 0.4237

DARN [47] 0.4171±0.0293 0.3944±0.0140 0.3902±0.0375 0.4553±0.0205 0.4951±0.0227 0.5601±0.0106 0.4520

GRDA [52] 0.4324±0.0330 0.3671±0.0234 0.3539±0.0255 0.4534±0.0150 0.4520±0.0153 0.4987±0.0137 0.4262

TENON-DA-Fast 0.5850±0.0110 0.5028±0.0183 0.4573±0.0275 0.4995±0.0129 0.4556±0.0295 0.5201±0.0080 0.5033

TENON-DA 0.5851±0.0110 0.5028 ±0.0183 0.4575±0.0273 0.4987±0.0131 0.4651±0.0132 0.5198±0.0080 0.5048

Table 2: Domain adaptation on the Hoffpost data set (“Avg." indicates the average accuracy over all target domains)

Model 2009 2011 2013 2015 2017 2019 2021 Avg.

LabelProp [58] 0.7006±0.0267 0.6938±0.0060 0.7186±0.0063 0.6780±0.0056 0.6717±0.0130 0.6857±0.0085 0.6741±0.0099 0.6889

DANN [14] 0.7483±0.0122 0.6943±0.0387 0.7187±0.0304 0.7283±0.0092 0.7183±0.0081 0.7293±0.0256 0.7213±0.0350 0.7226

MDAN [57] 0.7483±0.0122 0.7161±0.0075 0.6251±0.0819 0.6593±0.0535 0.6748±0.0254 0.6944±0.0410 0.7139±0.0223 0.6903

M3SAD [39] 0.5533±0.0099 0.6026±0.1134 0.6845±0.0637 0.7151±0.0200 0.6980±0.0176 0.7384±0.0117 0.7473±0.0174 0.6770

DARN [47] 0.7483±0.0122 0.7228±0.0110 0.7123±0.0302 0.7177±0.0196 0.7126±0.0151 0.7456±0.0054 0.7471±0.0140 0.7295

GRDA [52] 0.7414±0.0219 0.7186±0.0041 0.6662±0.0482 0.6956±0.0385 0.6777±0.0215 0.7035±0.0286 0.7366±0.0103 0.7056

TENON-DA-Fast 0.7619±0.0098 0.7161±0.0064 0.7415±0.0071 0.7155±0.0070 0.7216±0.0034 0.7336±0.0076 0.7297±0.0124 0.7314

TENON-DA 0.7621±0.0100 0.7157±0.0063 0.7420±0.0067 0.7195±0.0053 0.7241±0.0014 0.7403±0.0078 0.7477±0.0096 0.7359

Table 3: Domain adaptation on the ArXiv data set (“Avg." indicates the average accuracy over all target domains)

Model Male Female LGBTQ Christian Muslim Others Black White Avg

ERM 0.6859±0.0091 0.6428±0.0186 0.6796±0.0226 0.7058±0.0248 0.7396±0.0258 0.7024±0.0074 0.7118±0.0169 0.6796±0.0137 0.6934

DANN [14] 0.6850±0.0096 0.6453±0.0249 0.6794±0.0202 0.7160±0.0156 0.7340±0.0207 0.6984±0.0058 0.6872±0.0280 0.6776±0.0145 0.6904

IRM [2] 0.6848±0.0087 0.6432±0.0199 0.6862±0.0186 0.7071±0.0240 0.7416±0.0195 0.7028±0.0083 0.7121±0.0192 0.6837±0.0121 0.6951

SD [41] 0.6777±0.0119 0.6449±0.0189 0.6847±0.0216 0.7068±0.0250 0.7464±0.0152 0.7031±0.0088 0.7092±0.0192 0.6784±0.0105 0.6939

Fish [45] 0.6882±0.0055 0.6650±0.0059 0.6793±0.0079 0.7363±0.0195 0.7512±0.0117 0.6944±0.0125 0.7219±0.0071 0.6912±0.0105 0.7034
EQRM [13] 0.6882±0.0094 0.6603±0.0034 0.6830±0.0176 0.7237±0.0269 0.7517±0.0063 0.6969±0.0083 0.7269±0.0067 0.6899±0.0096 0.7025

TENON-OOD-Fast0.6922±0.0062 0.6678±0.0045 0.6968±0.0074 0.7236±0.0059 0.7502±0.0062 0.7006±0.0110 0.7037±0.0096 0.6813±0.0077 0.7020

TENON-OOD 0.6909±0.0082 0.6702±0.0030 0.7044±0.0063 0.7217±0.0086 0.7620±0.0066 0.7022±0.0089 0.7294±0.0055 0.6909±0.0048 0.7089

Table 4: Out-of-distribution generalization on CivilComments (“Avg." indicates the average accuracy over all testing domains)

NTK [26] induced by a 3-layer MLP with infinite width. The classifi-

cation accuracy is used as the evaluation metric in the experiments.

In addition, we set 𝜎 = 2, 𝜆 = 1 in our experiments.

6.2 Main Results
In the following, we discuss the evaluation results of TENON algo-
rithms for domain adaptation and out-of-distribution generaliza-

tion.
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6.2.1 Domain Adaptation. Tables 1-3 provide the evaluation com-

parison between TENON-DA and baselines on various data sets (the

best results are indicated in bold). All the experiments are repeated

five times and then we report the mean and standard deviation

of classification accuracies. For each run, we randomly select 200

samples from each domain as the training samples and others as

the testing samples. Specifically, for Amazon Review and CityCam

data sets, following [47], we take one domain (e.g., "Books") as the

target domain, and others domains (e.g., “DVD", “Electronics" and

“Kitchen") as source domains. In contrast, Hoffpost and ArXiv data

sets [53] contain evolving domains where the data distribution is

changing over time. In this case, we take one specific time stamp as

the target domain and all historical time stamps as source domains.

We have the following observations from Tables 1-3. (1) Label-

Prop considers propagating the label information within a single

graph. It does not capture the data heterogeneity among different

domains, thus leading to sub-optimal performance in domain adap-

tation. (2) Compared to domain adaptation baselines, our proposed

non-parametric TENON-DA algorithm can achieve superior perfor-

mance in most cases. This observation verifies the effectiveness

of TENON-DA in handling heterogeneous data across domains. (3)

TENON-DA-Fast achieves comparable performance with TENON-DA.
Furthermore, Figure 3(b) shows that TENON-DA-Fast significantly
reduces the running time compared to TENON-DA.

6.2.2 Out-of-Distribution Generalization. Table 4 shows the results
of TENON-OOD on the CivilComments data set (the best results are in-

dicated in bold). In this case, we take one domain (e.g., "Male") as the

unseen testing target domain and others (e.g., “Female", “LGBTQ",

“Christian", “Muslim", “Others", “Black", and “White") as source train-

ing domains. It is observed that TENON-OOD outperforms baselines

for out-of-distribution generalization.

6.3 Analysis
6.3.1 Ablation Study. Here we study the impact of within-domain

label smoothness regularization on the proposed TENON-DA/TENON-
OOD algorithms. Table 5 reports the average accuracy of TENON-DA
and TENON-OOD on ArXiv and CivilComments respectively. It indi-

cates that the label smoothness regularization improves the model

performance. Besides, Figure 3 compares the TENON-DA/TENON-OOD
algorithms with their approximation introduced in Subsection 5.4.

It can be seen that with only 10 iterations, TENON-DA-Fast/TENON-
OOD-Fast based on conjugate gradient can efficiently achieve simi-

lar performance with their counterparts.

6.3.2 Hyperparameter Sensitivity. We investigate the impact of

hyperparameter 𝜆 on the proposed TENON-DA and TENON-OOD algo-
rithms. Figure 4 reports the results of TENON-DA and TENON-OOD on

ArXiv and CivilComments respectively. It is observed that both

algorithms are robust to the selection of 𝜆.

6.3.3 Efficiency. Figure 5 shows the efficiency comparison between

TENON-DA algorithm and baselines, where the overall training run-

ning time is reported. It is observed that the proposed TENON-DA
algorithm is more computationally efficient than domain adaptation

baselines involving gradient descent training. Due to the efficient

approximation of matrix inversion, TENON-DA-Fast takes less time

than TENON-DA on Amazon Review and ArXiv data sets.
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Data TENON-DA TENON-DA w/o label smoothness

Amazon Review 0.7589 0.7573

CityCam 0.7821 0.7642

Hoffpost 0.5048 0.4987

ArXiv 0.7359 0.7297

Data TENON-OOD TENON-OOD w/o label smoothness

CivilComments 0.7089 0.7054

Table 5: Ablation study

7 CONCLUSION
In this paper, we propose a generic distributional network of net-

works (TENON) framework for modeling data heterogeneity, us-

ing within-domain label smoothness and cross-domain parameter

smoothness. Then we provide two instantiated algorithms of TENON
for domain adaptation and out-of-distribution generalization. The

effectiveness and efficiency of our proposed algorithms are verified

theoretically and empirically.
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A APPENDIX
In the appendix, we provide the proof of theoretical results pre-

sented in the paper.

A.1 Proof of Lemma 3
Proof. The objective of Eq. (1) can be rewritten as follows.

J (Θ) = Θ𝑇 X̂ÂX̂𝑇Θ + Θ𝑇 B̂Θ + 𝜆 ·
������X̂𝑇Θ − y

������2
2

Then the derivative of J (Θ) is given by

𝜕J (Θ)
𝜕Θ

=

𝜕

(
Θ𝑇 X̂ÂX̂𝑇Θ + Θ𝑇 B̂Θ + 𝜆 ·

����X̂𝑇Θ − y
����2
2

)
𝜕Θ

= 2

(
X̂ÂX̂𝑇 + B̂

)
Θ + 2𝜆X̂X̂𝑇Θ − 2𝜆X̂y

= 2

(
X̂ÂX̂𝑇 + B̂ + 𝜆X̂X̂𝑇

)
Θ − 2𝜆X̂y

By setting
𝜕J(Θ)
𝜕Θ = 0, the minimizer of J (Θ) is obtained at

Θ∗ = 𝜆
(
X̂ÂX̂𝑇 + B̂ + 𝜆X̂X̂𝑇

)−1
X̂y

= 𝜆X̂
(
ÂX̂𝑇 X̂ +

(
X̂𝑇 X̂

)−1 (
X̂𝑇 B̂X̂

)
+ 𝜆X̂𝑇 X̂

)−1
y

which completes the proof. □

A.2 Proof of Theorem 4
Proof. Following [25], we consider the following linearized

neural network

𝑓 lin𝑡 (𝑥) = 𝑓0 (𝑥) +
(
∇𝜃0 𝑓0 (𝑥)

)𝑇 (𝑤𝑡 )
where𝑤𝑡 = 𝜃𝑡 − 𝜃0 is the parameter change from the initial values.

LetW𝑡 = Θ𝑡−Θ0 be the change of parameters from the initial val-

ues and 𝑓𝑡 (𝑋 ) = vec(𝑓𝑡 (𝑥𝑘𝑖 ;𝜃
𝑘 ) |𝑖 ∈ {1, 2, · · · , 𝑛𝑘 }, 𝑘 ∈ {1, 2, · · · , 𝐾})

be the vectorized predicted values over all input samples. Based on

continuous time gradient descent [25], the evolution of the param-

eters can be expressed as

¤W𝑡 = −𝜂
2

∇ΘJ(Θ) = −𝜂
2

∇Θ 𝑓0 (𝑋 )𝑇
(
Âf𝑡 + 𝜆 (f𝑡 − y)

)
− 𝜂B̂Θ𝑡

= −𝜂∇Θ 𝑓0 (𝑋 )𝑇
( (

Â∇Θ 𝑓0 (𝑋 ) + 𝜆∇Θ 𝑓0 (𝑋 )
)
W𝑡

+
(
∇Θ 𝑓0 (𝑋 )∇Θ 𝑓0 (𝑋 )𝑇

)−1
∇Θ 𝑓0 (𝑋 )B̂W𝑡

+
(
∇Θ 𝑓0 (𝑋 )∇Θ 𝑓0 (𝑋 )𝑇

)−1
∇Θ 𝑓0 (𝑋 )B̂Θ0 + Â𝑓0 (𝑋 ) + 𝜆𝑓0 (𝑋 ) − 𝜆y

)
In this case, the ODE has a closed-form solution below.

Θ𝑡

= −∇Θ 𝑓0 (𝑋 )𝑇
(
ÂKNTK + 𝜆KNTK + K−1

NTK

(
∇Θ 𝑓0 (𝑋 )B̂∇Θ 𝑓0 (𝑋 )𝑇

))−1
·
(
I − exp

{
−𝜂

(
ÂKNTK + 𝜆KNTK + K−1

NTK

(
∇Θ 𝑓0 (𝑋 )B̂∇Θ 𝑓0 (𝑋 )𝑇

))
𝑡

})
·
(
K−1
NTK

∇Θ 𝑓0 (𝑋 )B̂Θ0 + Â𝑓0 (𝑋 ) + 𝜆𝑓0 (𝑋 ) − 𝜆y
)
+ Θ0

Thus,

lim

𝑡→∞
Θ𝑡 = −∇Θ 𝑓0 (X)𝑇K−1

NTK
Γ−1 (Ω − 𝜆y) + Θ0

For an arbitrary point 𝑥𝑘 , the predicted value is given by

𝑓 lin𝑡 (𝑥𝑘 ;𝜃𝑘 )

= 𝜆 · KNTK (𝑥𝑘 ,X)
(
ÂKNTK + 𝜆KNTK + K−1

NTK

(
∇Θ 𝑓0 (X)B̂∇Θ 𝑓0 (X)𝑇

))−1
·
(
I − exp

{
−𝜂

(
ÂKNTK + 𝜆KNTK + K−1

NTK

(
∇Θ 𝑓0 (X)B̂∇Θ 𝑓0 (X)𝑇

))
𝑡

})
y

+ 𝑓0 (𝑥𝑘 ;𝜃𝑘 ) − KNTK (𝑥𝑘 ,X)
(
ÂKNTK + 𝜆KNTK + K−1

NTK

(
∇Θ 𝑓0 (𝑋 )B̂∇Θ 𝑓0 (𝑋 )𝑇

))−1
·
(
I − exp

{
−𝜂

(
ÂKNTK + 𝜆KNTK + K−1

NTK

(
∇Θ 𝑓0 (𝑋 )B̂∇Θ 𝑓0 (𝑋 )𝑇

))
𝑡

})
·
(
K−1
NTK

∇Θ 𝑓0 (𝑋 )B̂Θ0 + Â𝑓0 (𝑋 ) + 𝜆𝑓0 (𝑋 )
)

Thus, it holds that

lim

𝑡→∞
𝑓𝑡 (𝑥𝑘 ;𝜃𝑘 ) = lim

𝑡→∞
𝑓 lin𝑡 (𝑥𝑘 ;𝜃𝑘 ) = 𝜆KNTK (𝑥𝑘 ,X)K−1

NTK
Γ−1y

+ 𝑓0 (𝑥𝑘 ;𝜃𝑘 ) − KNTK (𝑥𝑘 ,X)K−1
NTK

Γ−1Ω

which completes the proof. □

A.3 Proof of Corollary 5
Proof. In this case, it holds that B̂ = 0𝐾𝑑𝜃 ×𝐾𝑑𝜃 . Then for any

sample 𝑥𝑘 , it holds

𝑓0 (𝑥𝑘 ;𝜃𝑘 ) − KNTK (𝑥𝑘 ,X)
(
ÂKNTK + 𝜆KNTK + K−1

NTK
∇Θ 𝑓0 (𝑋 )B̂∇Θ 𝑓0 (𝑋 )𝑇

)−1
·
(
K−1
NTK

∇Θ 𝑓0 (X)B̂Θ0 + Â𝑓0 (X) + 𝜆𝑓0 (X)
)

= 𝑓0 (𝑥𝑘 ;𝜃𝑘 ) − KNTK (𝑥𝑘 ,X)
(
ÂKNTK + 𝜆KNTK

)−1 (
Â𝑓0 (X) + 𝜆𝑓0 (X)

)
= 𝑓0 (𝑥𝑘 ;𝜃𝑘 ) − KNTK (𝑥𝑘 ,X)K−1

NTK
𝑓0 (X)

= 𝑓0 (𝑥𝑘 ;𝜃𝑘 ) − KNTK (𝑥𝑘 ,X𝑘 )K−1
𝑘𝑘
𝑓0 (X𝑘 )

Thus,

lim

𝑡→∞
𝑓𝑡 (𝑥𝑘 ;𝜃𝑘 ) = 𝜆KNTK (𝑥𝑘 ,X)

(
ÂKNTK + 𝜆KNTK

)−1
y

+ 𝑓0 (𝑥𝑘 ;𝜃𝑘 ) − KNTK (𝑥𝑘 ,X𝑘 )K−1
𝑘𝑘
𝑓0 (X𝑘 )

= 𝜆

[
0, · · · , 0,K(𝑥𝑘 ,X𝑘 ), 0, · · · , 0

] ((
Â + 𝜆I

)
KNTK

)−1
y

+ 𝑓0 (𝑥𝑘 ;𝜃𝑘 ) − KNTK (𝑥𝑘 ,X𝑘 )K−1
𝑘𝑘
𝑓0 (X𝑘 )

= 𝜆K
(
𝑥𝑘 ,X𝑘

)
K−1
𝑘𝑘

(
𝜆I𝑛𝑘×𝑛𝑘 + I𝑛𝑘×𝑛𝑘 − A𝑘

)−1 y𝑘
+ 𝑓0 (𝑥𝑘 ;𝜃𝑘 ) − KNTK (𝑥𝑘 ,X𝑘 )K−1

𝑘𝑘
𝑓0 (X𝑘 )

For training samples X𝑘 = [𝑥𝑘
1
, · · · , 𝑥𝑘𝑛𝑘 ], the following holds

lim

𝑡→∞
𝑓𝑡 (X𝑘 ;𝜃𝑘 ) =

𝜆

𝜆 + 1

(
I𝑛𝑘×𝑛𝑘 − 1

𝜆 + 1

A𝑘

)−1
y𝑘

which completes the proof. □

A.4 Proof Corollary 6
Proof. With linearized model 𝑓 (𝑥𝑘

𝑖
;𝜃𝑘 ) = ∇𝜃 𝑓0 (𝑥𝑘𝑖 )

𝑇 𝜃𝑘 , the

objective of Eq. (1) can be rewritten as follows.

J (Θ) = 1

2

𝐾∑︁
𝑘,𝑘 ′=1

𝑑𝑘𝑘 ′

�����
����� 𝜃𝑘√︁
𝑀𝑘𝑘

− 𝜃𝑘 ′√︁
𝑀𝑘 ′𝑘 ′

�����
�����2
2

+ 𝜆
𝐾∑︁
𝑘=1

𝑛𝑘∑︁
𝑖=1

������𝑓 (𝑥𝑘𝑖 ;𝜃𝑘 ) − 𝑦𝑘𝑖 ������2
2

Using gradient descent, for any 𝑘 , it holds

𝜃𝑘 (𝑡 + 1) = 𝜃𝑘 (𝑡) − 𝜂
𝜕J (Θ)
𝜕𝜃𝑘
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= 𝜃𝑘 (𝑡) − 𝜂
(
𝜃𝑘 (𝑡) −

𝐾∑︁
𝑘 ′=1

𝑑𝑘𝑘 ′√︁
𝑀𝑘𝑘𝑀𝑘 ′𝑘 ′

𝜃𝑘 ′ (𝑡)

+ 𝜆
(
∇𝑓 (X𝑘 )𝑇∇𝑓 (X𝑘 )𝜃𝑘 (𝑡) − ∇𝑓 (X𝑘 )𝑇 y𝑘

) )
=

(
(1 − 𝜂)I − 𝜆∇𝑓 (X𝑘 )𝑇∇𝑓 (X𝑘 )

)
𝜃𝑘 (𝑡)

+ 𝜂
𝐾∑︁
𝑘 ′=1

𝑑𝑘𝑘 ′√︁
𝑀𝑘𝑘𝑀𝑘 ′𝑘 ′

𝜃𝑘 ′ (𝑡) + 𝜂𝜆∇𝑓 (X𝑘 )𝑇 y𝑘

which completes the proof. □

A.5 Proof of Theorem 7
Proof. Following standard machine learning theory [32], given

hypothesis space H and the loss function is bounded by 𝐵 (for any

𝑥 , |𝑓 (𝑥 ;𝜃𝑘 ) − 𝑓 (𝑥 ;𝜃∗𝑘 ) | ≤ 𝐵), then for any 𝑓 (·;𝜃𝐾 ) ∈ H ,

E𝑥∼P𝐾

[(
𝑓 (𝑥 ;𝜃𝐾 ) − 𝑓

(
𝑥 ;𝜃∗𝐾

) )2]
≤ 1

𝑛𝐾

𝑛𝐾∑︁
𝑖=1

(
𝑓

(
𝑥𝐾𝑖 ;𝜃𝐾

)
− 𝑓

(
𝑥𝐾𝑖 ;𝜃

∗
𝐾

) )
2

+ 𝐵

√︄
log |H | + log(2/𝛿)

2𝑛𝐾

where |H | is the size of the hypothesis space and can be further

bounded by the VC dimension of hypothesis space H . It holds

1

𝑛𝐾

𝑛𝐾∑︁
𝑖=1

(
𝑓

(
𝑥𝐾𝑖 ;𝜃𝐾

)
− 𝑓

(
𝑥𝐾𝑖 ;𝜃∗𝐾

) )
2

≤ 1

𝑛𝐾

������𝑓 (X𝐾 ;𝜃𝐾 ) − 𝑔
(
𝑓 (X𝑆 ;𝜃𝑆 )

) ������2 + 1

𝑛𝐾

������𝑔 (𝑓 (X𝑆 ;𝜃𝑆 )
)
− 𝑔

(
𝑓

(
X𝑆 ;𝜃∗𝑆

) ) ������2
+ 1

𝑛𝐾

������𝑔 (𝑓 (
X𝑆 ;𝜃∗𝑆

) )
− 𝑓

(
X𝐾 ;𝜃∗𝐾

) ������2
≤ 1

𝑛𝐾

𝑈R
𝐿R

������𝑓 (X𝑆 ;𝜃𝑆 ) − 𝑓
(
X𝑆 ;𝜃∗𝑆

) ������2 + 1

𝑛𝐾

2

𝐿R
R

(
𝑓 (X𝑆 ;𝜃𝑆 ) , 𝑓 (X𝐾 ;𝜃𝐾 )

)
+ 1

𝑛𝐾

2

𝐿R
R

(
𝑓

(
X𝑆 ;𝜃∗𝑆

)
, 𝑓 (X𝐾 ;𝜃∗𝐾 )

)
≤ 𝜁

(
𝜆

𝐾∑︁
𝑘=1

𝑛𝑘∑︁
𝑖=1

������𝑓 (𝑥𝑘𝑖 ;𝜃𝑘 ) − 𝑦𝑘𝑖 ������2
2

+ 1

2

𝐾∑︁
𝑘=1

𝑛𝑘∑︁
𝑖,𝑗=1

𝑠𝑘𝑖 𝑗

�������
������� 𝑓 (𝑥

𝑘
𝑖
;𝜃𝑘 )√︃
𝐷𝑘
𝑖𝑖

−
𝑓 (𝑥𝑘

𝑗
;𝜃𝑘 )√︃
𝐷𝑘
𝑗 𝑗

�������
�������
2

2

+ 1

2

𝐾∑︁
𝑘,𝑘′=1

𝑑𝑘𝑘′

�������� 𝜃𝑘√
𝑀𝑘𝑘

− 𝜃𝑘′√
𝑀𝑘′𝑘′

��������2
2

)
+ 1

𝑛𝐾𝐿R

𝐾∑︁
𝑘=1

Ω (X𝑘 , 𝜃 ∗𝑘 ) +
1

𝑛𝐾𝐿R
Δ(𝜃∗

1
, · · · , 𝜃 ∗𝐾 )

where Δ(𝜃∗
1
, · · · , 𝜃∗

𝐾
) =

∑𝐾
𝑘,𝑘 ′=1 𝑑𝑘𝑘 ′

�������� 𝜃 ∗
𝑘√
𝑀𝑘𝑘

− 𝜃 ∗
𝑘′√

𝑀𝑘′𝑘′

��������2
2

and 𝜁 =

max

{
𝑈R

𝜆𝑛𝐾𝐿R
, 2

𝑛𝐾𝐿R

}
.

Note that in previous steps, we let

𝑔(ŷ𝑠 ) = argmin

ŷ𝑡
R

(
ŷ𝑠 , ŷ𝑡

)
=

1

2

𝐾∑︁
𝑘=1

𝑛𝑘∑︁
𝑖, 𝑗=1

𝑠𝑘𝑖 𝑗

�������
������� 𝑓 (𝑥

𝑘
𝑖
;𝜃𝑘 )√︃
𝐷𝑘
𝑖𝑖

−
𝑓 (𝑥𝑘

𝑗
;𝜃𝑘 )√︃
𝐷𝑘
𝑗 𝑗

�������
�������
2

2

+ 1

2

𝐾∑︁
𝑘,𝑘 ′=1

𝑑𝑘𝑘 ′

�����
����� 𝜃𝑘√︁
𝑀𝑘𝑘

− 𝜃𝑘 ′√︁
𝑀𝑘 ′𝑘 ′

�����
�����2
2

where ŷ𝑠 = 𝑓 (X𝑠 ;𝜃𝑠 ). We assume that R is strongly convex and

smooth. For any 𝜃𝑠 , 𝜃𝑡 , 𝜃
′
𝑡 ∈ R𝑑𝜃 , the following holds

R
(
ŷ𝑠 , ŷ𝑡

)
≥ R

(
ŷ𝑠 , ŷ′𝑡

)
+

〈
ŷ𝑡 − ŷ′𝑡 , 𝜕ŷ′𝑡R

(
ŷ𝑠 , ŷ′𝑡

)〉
+ 𝐿R

2

������ŷ𝑡 − ŷ′𝑡
������2
2

R
(
ŷ𝑠 , ŷ𝑡

)
≤ R

(
ŷ𝑠 , ŷ′𝑡

)
+

〈
ŷ𝑡 − ŷ′𝑡 , 𝜕ŷ′𝑡R

(
ŷ𝑠 , ŷ′𝑡

)〉
+ 𝑈R

2

������ŷ𝑡 − ŷ′𝑡
������2
2

Then������𝑔 (ŷ𝑠 ) − 𝑔 (
ŷ∗𝑠

) ������2
2

≤ 𝑈R
𝐿R

������ŷ𝑠 − ŷ∗𝑠
������ = 𝑈R

𝐿R

������𝑓 (X𝑠 ;𝜃𝑠 ) − 𝑓 (X𝑠 ;𝜃∗𝑠 )������������ŷ𝑡 − 𝑔 (ŷ𝑠 ) ������2 ≤ 2

𝐿R
R (ŷ𝑠 , ŷ𝑡 )

Next, following [35], we show the strong convexity and smooth-

ness of R.
𝜕R (ŷ𝑠 , ŷ𝑡 )

𝜕𝜃𝑡
=
𝜕ŷ𝑡
𝜃𝑡

· 𝜕R (ŷ𝑠 , ŷ𝑡 )
𝜕ŷ𝑡

𝜕R (ŷ𝑠 , ŷ𝑡 )
𝜕𝜃𝑡

= ∇𝑓 (X𝑘 )𝑇 (I − A𝐾 ) ∇𝑓 (X𝑘 )𝜃𝑡

+
𝐾∑︁
𝑘′=1

𝑑𝐾𝑘′√
𝑀𝐾𝐾

(
𝜃𝑡√
𝑀𝐾𝐾

− 𝜃𝑘′√
𝑀𝑘′𝑘′

)
= ∇𝑓 (X𝑘 )𝑇 (I − A𝐾 ) ∇𝑓 (X𝑘 )𝜃𝑡 + 𝜃𝑡

−
𝐾∑︁
𝑘′=1

𝑑𝐾𝑘′√︁
𝑀𝑘′𝑘′

√
𝑀𝐾𝐾

𝜃𝑘′

𝜕R2 (ŷ𝑠 , ŷ𝑡 )
𝜕𝜃 2𝑡

= ∇𝑓 (X𝑘 )𝑇 (I − A𝐾 ) ∇𝑓 (X𝑘 ) + I

= ∇𝑓 (X𝑘 )𝑇
(
I − A𝐾 +

(
∇𝑓 (X𝐾 )∇𝑓 (X𝐾 )𝑇

)−1)
∇𝑓 (X𝑘 )

𝜕ŷ𝑡
𝜃𝑡

= ∇𝑓 (X𝑘 )𝑇 ∈ R𝑑𝜃 ×𝑛𝐾

𝜕

𝜕𝜃𝑡

(
𝜕ŷ𝑡
𝜃𝑡

· 𝜕R (ŷ𝑠 , ŷ𝑡 )
𝜕ŷ𝑡

)
= ∇𝑓 (X𝑘 )𝑇

𝜕R2 (ŷ𝑠 , ŷ𝑡 )
𝜕ŷ𝑡 · 𝜕𝜃𝑡

= ∇𝑓 (X𝑘 )𝑇
𝜕R2 (ŷ𝑠 , ŷ𝑡 )
𝜕ŷ𝑡 · 𝜕ŷ𝑡

𝑓 (X𝑘 )

Thus,

𝜕R2 (ŷ𝑠 , ŷ𝑡 )
𝜕ŷ𝑡 · 𝜕ŷ𝑡

= L𝐾 +
(
∇𝑓 (X𝐾 )∇𝑓 (X𝐾 )𝑇

)−1
= L𝐾 + K−1

𝐾𝐾

where L𝐾 = I−A𝐾 is a symmetrically normalized Laplacian matrix,

and K𝐾𝐾 is the neural tangent kernel (NTK) matrix within the

target domain. Thus, 𝐿R and 𝑈R are given by the maximum and

minimum eigenvalues of L𝐾 + K−1
𝐾𝐾

. □
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