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ABSTRACT

Heterogeneous data widely exists in various high-impact applica-
tions. Domain adaptation and out-of-distribution generalization
paradigms have been formulated to handle the data heterogeneity
across domains. However, most existing domain adaptation and
out-of-distribution generalization algorithms do not explicitly ex-
plain how the label information can be adaptively propagated from
the source domains to the target domain. Furthermore, little effort
has been devoted to theoretically understanding the convergence
of existing algorithms based on neural networks.

To address these problems, in this paper, we propose a generic
distributional network of networks (TENON) framework, where each
node of the main network represents an individual domain associ-
ated with a domain-specific network. In this case, the edges within
the main network indicate the domain similarity, and the edges
within each network indicate the sample similarity. The crucial idea
of TENON is to characterize the within-domain label smoothness
and cross-domain parameter smoothness in a unified framework.
The convergence and optimality of TENON are theoretically ana-
lyzed. Furthermore, we show that based on the TENON framework,
domain adaptation and out-of-distribution generalization can be
naturally formulated as transductive and inductive distribution
learning problems, respectively. This motivates us to develop two
instantiated algorithms (TENON-DA and TENON-OOD) of the proposed
TENON framework for domain adaptation and out-of-distribution
generalization. The effectiveness and efficiency of TENON-DA and
TENON-0QD are verified both theoretically and empirically.
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1 INTRODUCTION

Modern machine learning algorithms have demonstrated remark-
able success across a wide range of high-impact applications, such
as sentiment analysis [57], news tagging classification [31], etc.
One common assumption behind these algorithms is that the train-
ing and test samples are independently and identically distributed
(IID). However, this IID assumption is often violated in real scenar-
ios where the samples are collected from heterogeneous domains
under distribution shift [48], e.g., Amazon review collected from
different products [8], news headlines collected from different time
stamps [53]. Two learning paradigms have been developed to ad-
dress the challenge of data heterogeneity across domains: domain
adaptation [4, 57] and out-of-distribution generalization [6, 34].
As shown in Figure 1(a), domain adaptation! aims at learning a
prediction function on a target domain with only unlabeled train-
ing samples, by exploiting knowledge from source domains. In
contrast, out-of-distribution generalization optimizes a domain-
agnostic model from source domains such that this model can be
directly applied to any relevant unseen target domains. Different
from domain adaptation, target domains are unseen during training
for out-of-distribution generalization.

Most existing domain adaptation and out-of-distribution gen-
eralization algorithms [2, 28, 47, 57] build a single model to learn
the domain-invariant representation from different domains. The
invariant representation learned by a domain-agnostic model can
be explained as the common knowledge shared by all domains.
Nevertheless, it is a strong assumption that all domains share the
same model parameters. This is because this assumption underes-
timates the domain-specific characteristics encoding class separa-
bility. Though recent works [7, 40, 51] propose to learn both with-
domain specificity and cross-domain commonality, disentangling
domain-invariant and domain-specific representations is a nontriv-
ial task. This is because it is challenging to accurately differentiate
the domain-invariant representation from the domain-specific rep-
resentation within samples. The aforementioned frameworks might
suffer from the following limitations. First, the connection between
the domain relationship and the model (parameters) similarity is
under-explored, e.g., similar domains may share similar model pa-
rameters [24, 49]. Second, it is not explained how the label informa-
tion can be adaptively propagated from the source domain to the
target domain. Third, little effort has been devoted to understanding

't is also termed as “multi-source domain adaptation” to indicate the existence of
multiple source domains in previous works [39, 57]. In this paper, we use the generic
term “domain adaptation” by assuming that at least one source domain is available.


https://doi.org/10.1145/3637528.3671994
https://doi.org/10.1145/3637528.3671994

KDD ’24, August 25-29, 2024, Barcelona, Spain

Source P{  Source P§

Target Pt
Source P3  Source P}

Domain adaptation
Domain adaptation (Transductive distribution learning)
t °

Source P{  Source P} Target Py

(unseen)
Source P§  Source P§ Target P}

(unseen) Out-of-distribution generalization

Out-of-distribution generalization (Inductive distribution learning)
(a) Heterogeneous domains (b) Network of networks

Figure 1: Illustration of the network of networks on handing
heterogeneous domains (semantic classification on Amazon
products [8] is used where green indicates negative review
and orange indicates positive review). (a) Domain adapta-
tion and out-of-distribution (OOD) generalization involve
different domains. Target domains are unseen during train-
ing for out-of-distribution generalization. (b) In the network
of networks, each node of the main network represents one
domain, and it is formed by a network over domain-specific
samples. For OOD generalization, the dotted lines indicate
that the edges between source and target domains are acces-
sible only during the testing phase.

the model convergence of previous algorithms [2, 45, 47, 57] based
on deep neural networks.

To this end, in this paper, we propose a generic distributional
network of networks (TENON) framework, which allows each do-
main to learn domain-specific model parameters. It is motivated
by recent observation [6, 50] that both domain adaptation and out-
of-distribution generalization can be explained as follows. Given a
meta-distribution £, the data distributions Py, - - - , Px of different
domains can be considered as IID realizations of &2, and the samples
{xl]?, yf }:l:kl within domain k are IID realizations from Pj. Having
this in mind, TENON reformulates the heterogeneous domains as a
network of networks [36], which encodes both high-level domain
relationships and low-level sample relationships. As shown in Fig-
ure 1(b), the main network characterizes the relationship among
different domains, where each node (blue circles) is a domain, and
the edges (solid or dotted blue lines) imply domain similarity. Each
domain is further represented by a domain-specific network (e.g., a
network within each blue circle), where each node (colored prod-
ucts) is a sample, and the edges (black lines) imply sample similarity.
The intuition behind TENON is that (i) domains share similar model
parameters [49, 56] if they have similar data distributions, and (ii)
samples tend to have similar class labels if they are similar in the
input space [58, 60]. To this end, the proposed TENON framework
is composed of both within-domain label smoothness and cross-
domain parameter smoothness regularizations. We theoretically
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show that the convergence and optimality of TENON can be guar-
anteed when using overparameterized neural networks [20, 25] to
instantiate the learning functions of TENON.

More specifically, Figure 1(b) shows that domain adaptation [57]
and out-of-distribution generalization [6, 34] can be naturally con-
sidered as transductive and inductive distribution learning prob-
lems, respectively. That is, domain adaptation can build a network of
networks using source and target domains as a pre-processing step.
Here the sample similarity within each domain-specific network
and domain similarity within the main network can be empirically
estimated using input samples. Then using the constructed network
of networks, we propose an instantiated algorithm (TENON-DA) of
TENON to propagate the knowledge from labeled source domains
to the unlabeled target domain for domain adaptation. In contrast,
out-of-distribution generalization can only access source (training)
domains, and thus we build a network of networks over source
domains during training. During the testing phase, target (testing)
domains will be added to the main network as the new nodes. As a
result, out-of-distribution generalization is formulated as an induc-
tive learning [17] problem w.r.t. the network of networks. To solve
this problem, we propose another instantiated algorithm (TENON-
00D) of TENON to generalize the relevant knowledge from source
(training) domains to target (testing) domains. The effectiveness
and efficiency of TENON-DA and TENON-OOD are demonstrated in a
variety of data mining tasks. The major contributions of this paper
are summarized as follows.

e Framework: We propose a generic distributional network
of networks (TENON) framework for modeling data hetero-
geneity across domains. Notably, TENON provides a unified
viewpoint of domain adaptation and out-of-distribution gen-
eralization. Furthermore, the convergence and optimality of
TENON are theoretically analyzed.

e Algorithms: We provide two instantiated algorithms (i.e.,
TENON-DA and TENON-00D) of TENON for domain adaptation
and out-of-distribution generalization. It is revealed that both
algorithms inherit the convergence properties of the TENON
framework. Besides, in the context of domain adaptation, we
show that TENON-DA minimizes the error upper bound of the
target domain.

e Experiments: Extensive experiments on various data sets
demonstrate the effectiveness and efficiency of the proposed
algorithms for both domain adaptation and out-of-distribution
generalization.

The rest of the paper is organized as follows. Section 2 summa-
rizes the related work and Section 3 provides the problem settings.
In Section 4, we propose a novel distributional network of networks
(TENON) framework, followed by the instantiated algorithms for do-
main adaptation and out-of-distribution generalization in Section 5.
Section 6 shows the experimental results, and finally, we conclude
the paper in Section 7.

2 RELATED WORK

2.1 Domain Adaptation

Domain adaptation [4, 35] studies the transfer of knowledge or
information from source domains to a relevant target domain. It is
theoretically shown [1, 44, 47, 57] that the generalization error of
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a learning algorithm within the target domain can be bounded by
the source errors and domain discrepancy. This thus leads to the
domain adaptation algorithms [9, 14, 30, 33, 39, 50, 55] by empiri-
cally minimizing the prediction errors within source domains and
distribution discrepancy across domains. The most similar works to
ours include [5, 52], where Xu et al. [52] build a domain graph to en-
code topological structures among different domains and Berthelot
et al. [5] unify the semi-supervised learning and domain adapta-
tion. However, our TENON framework is fundamentally different
from previous works in the following aspects. First, previous works
leverage a single model to learn domain-invariant representation,
whereas TENON enables the domain-specific models to character-
ize the domain relationship. Second, the global convergence and
optimality of TENON are analyzed theoretically. In contrast, little
theoretical analysis regarding the convergence of domain adapta-
tion algorithms is provided in previous works. Third, our TENON
framework can be applied to both domain adaptation and out-of-
distribution generalization, while previous works consider only the
domain adaptation settings.

2.2  Out-of-Distribution Generalization

Out-of-distribution (OOD) generalization aims at learning a domain-
agnostic model from an arbitrary number of training source do-
mains [6, 21, 34]. In recent years, various OOD generalization al-
gorithms have been proposed from the following aspects: domain-
invariant representation learning [2, 28], meta regularization [3, 27],
domain augmentation [46, 59], gradient operation [42, 45], etc.
These algorithms directly apply the learned model to the new test-
ing domains. Compared to previous works, the proposed TENON
framework focuses on explicitly propagating model parameters
from training to testing domains based on the distribution simi-
larity among domains. This is in sharp contrast to previous works
which learn a commonly shared model among all domains.

3 PROBLEM DEFINITIONS

We let X and Y be the input space and output space, respec-
tively. Suppose there are K different domains drawn from a meta-
distribution 42, ie., Py, - ,Pgx ~ & where P, denotes the data
distribution? of the k™ domain over X x /. Each domain is asso-
ciated with a model f(+;0;) : X — Y parameterized by 0. There
are n labeled or unlabeled samples in domain k, where xlk € Xis
the input sample and yf is the output label if available. In addition,
we let I denote the identity matrix, || - ||, and || - || denote L, norm
and Frobenius norm, respectively.

Following [4], we focus on the problem of learning from different
domains, where data heterogeneity exists among domains. Specif-
ically, in this paper, we focus on two research problems: domain
adaptation [4, 57] and out-of-distribution generalization [6, 21].
Both research problems involve modeling the data heterogeneity
across domains. Their goal is to learn a prediction function on
the target domain without label information, by leveraging latent
knowledge from relevant source domains.

2In this paper, we will use P to denote both the data distribution of domain k and
the domain k itself.
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PROBLEM DEFINITION 1 (DOMAIN ADAPTATION). Given a set of
source domains {Py. }f:_ll each with labeled samples {xlk, y{‘}?:kl
a target domain Px with only unlabeled samples {xf(}:lfl domain
adaptation aims to learn a prediction function on the target domain

using knowledge from source domains.

and

PROBLEM DEFINITION 2 (OUT-OF-DISTRIBUTION GENERALIZA-
TION). Given a set of source domains {Pj }Ik<_1 each with samples

{x{‘, yf? ?:kl, out-of-distribution generalization aims to learn a predic-
tion function from source domains such that this prediction function

can be directly applied to unseen target domains.

As illustrated in Figure 1, a group of distributions (or domains)
{Px }I]le over a meta-distribution & can be formulated as a network
of networks [36], where each node of the main network represents
a domain and each network is formed by domain-specific samples.
This motivates us to rethink the modeling of data heterogeneity
by capturing both sample similarity within domains and distribu-
tion similarity across domains. First, in each domain, two samples
tend to have similar output values if they are similar in the input
space [19, 58, 60]. Second, given a learning algorithm f(-), two
domains would be close in the parameter space if they are distribu-
tionally similar [49, 56].

4 PROPOSED FRAMEWORK

In this section, we propose a simple and generic distributional net-
work of networks (TENON) framework for modeling heterogeneous
data from multiple domains.

4.1 Distributional Network of Networks

It is shown [50] that knowledge transferability can be positively
correlated with the distribution similarity across domains. This
motivates us to model the heterogeneous domains by capturing the
domain relationship in the parameter space (shown in Figure 2). To
this end, we propose a simple yet generic distributional network of
networks (TENON) framework with the following objective function.

K

nk 2
. k k
min 2 ) [[£Gxki00 o]
O =1 = 2

Label consistency within domain
2
k.
185 & | faeko0)  £O50k)

ST

ij
i Dk Dk 1
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Label smoothness within domain

1 X 0 0 |
k k’
+2 Z dkk’
Kk =1

VMie Mo

Parameter smoothness across domains

F

where sl’Y indicates the sample similarity between xl].< and x}‘ within
the k-th domain, and dit- denotes the domain similarity between
the k-th domain and the k’-th domain. Here Dfl. = Z?’;l sfj and
My = ZII<<’=1 di- 0 denotes the model parameters within the
k-th domain. A > 0 is a hyper-parameter to balance different terms.
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Figure 2: Illustration of TENON in information propagation.
Label information is propagated in the labeling space within
each domain, while parameter information is propagated in
the parameter space across domains.

Following [19, 58], the sample similarity slkj can be empirically
estimated as follows.

oy = e o et =<5

where o € R is a hyper-parameter. In addition, a variety of do-
main discrepancy measures have been proposed to model the het-
erogeneous domains, e.g., A -divergence [4], Maximum Mean
Discrepancy [15, 30], Wasserstein distance [44], f-divergence [1],
etc. It is flexible in defining diss in Eq. (1) based on existing do-
main discrepancy measures. In this paper, under the covariate shift
assumption [38] (i.e., P(y|x) is shared for all domains), we use Maxi-
mum Mean Discrepancy (MMD) [15] to define the domain similarity
diy as follows.

2
nys

L8 sy - LS )
= % = !

dxr = exp (—o - MMD(k, k"))

MMD(k, k")

Hyc

where ¢(+) : X — Hy is a kernel mapping from an input space X
to a reproducing kernel Hilbert space (RKHS) H.

The intuition behind Eq. (1) is explained as follows. The first term
captures the consistency of models {f(+; (9k)}1k<=1 with the prior la-
bel information. The second term measures the label smoothness
within each domain. It implies that input samples have similar pre-
diction values if they are similar in the input space. Furthermore,
the third term measures the cross-domain model smoothness in the
parameter space. Notably, graph-based parameter smoothness regu-
larization [29, 56] has been studied in multi-task learning. However,
compared to previous works, our framework of Eq. (1) explicitly re-
veals the connection between the domain distribution discrepancy
and the model (parameters) similarity, i.e., domains have similar
model parameters if they are distributionally similar. Furthermore,
by incorporating the within-domain label smoothness regulariza-
tion (i.e., the second term of Eq. (1)), TENON allows propagating
label information from labeled source samples to unlabeled target
samples, whereas previous works [29, 56] collaboratively update
the model parameters over the labeled samples from all domains.
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As shown in Figure 2, the label information encoded by a domain-
specific model is propagated within each domain, while the model
information is propagated across domains in the parameter space.
We show in Subsection 4.3 that in the special case where dir =0
for all domains k, k’, the objective of TENON in Eq. (1) exactly re-
covers the label propagation [58, 60] in every domain. On top of
label propagation, the parameter propagation of TENON enables han-
dling data heterogeneity when samples are collected from multiple
domains [33, 49, 57].

4.2 Convergence Analysis

The convergence and optimality of TENON can be analyzed by con-
sidering different instantiations of learning models {f(:; Qk)}le.
In the following, we start with the simple linear regression func-
tions, i.e., f(x;0) = Qlfx forall k € {1,2,---,K}. The following
lemma shows the global convergence and optimality of the TENON
framework.

LEMMA 3. Given linear models f (x; 0;) = Gfoork e{1---,K},
the objective of Eq. (1) can be minimized at

(4 I I

e =X ((A + )LJI) XTX + (XTX) XTBX) v

where©® = [91T ,917;]T,Xk = [x{cxéc ,x],ik],}’: [y% ,y}“,
.’yf,...)ny]Tand

X4 0 0 Al 0 0
. 0 Xy --- 0 A 0 A, --- 0
X=1. . . s A=

0 0 - Xy 0 0o --- AK

B =Ikd,,xKkdi, — B ®la;,xd;,

where Ay = (D*) 128k (D¥)~1/2 s the normalized sample similar-
ity matrix of domain k with Ay, =1— Ay, andB = M-12pM~1/2 s
the normalized domain similarity matrix.3 ® denotes the Kronecker
product of two matrices. dip, is the dimensionality of input samples.

Next, we instantiate the learning models { f(-; 6x) }K=l with over-
parameterized neural networks [20, 25]. This allows us to reveal
the convergence of TENON in Eq. (1) with commonly used neural
network architectures*. For notation simplicity, we will use f(-;©)
to denote the overall learning function with f (xk;0) = f (ks 0r)
for any sample x¥ from domain k. It is observed [25] that neu-
ral network f(-;®) can be approximated by its linearized version

fh“(-;G)), ie., sup;sg Hﬁ(x; 0) - f,h“(x; @)H = O(h_%) where h is
the width of neural networks.> f;(-;®) denotes the model at time
step ¢, and fi%(-; @) is given by the first order Taylor expansion of
f(;0): fthn(x; 0) = fo(x;0)+Vfi(x;0) (0; — Op) Inspired by this
observation, we generalize the results of Lemma 3 by instantiating
{¢; Gk)}f:l with neural networks. The following theorem shows

3 Sk is sample similarity matrix of domain k with the entry [Sk],-j = sfj, and DX is
a diagnal matrix with the entry [D¥]; = Dﬁ D is domain similarity matrix with
the entry [ D]xxs = digs, and M is a diagnal matrix with the entry [M ] = Mg.
4Following [25], O denotes the vectorized parameters of the neural network model
within domain k here.

5In this case, “width" can be the number of neurons in a fully-connected layer or the
number of channels in a convolutional layer.
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the global convergence of TENON under gradient descent when the
layer width of {f(-; (9k)}f=1 goes to infinity.

THEOREM 4 (CONVERGENCE AND OPTIMALITY OF TENON). Let X
denote all training samples. In the limit of layer width, the model
parameters © in the objective of Eq. (1) converges to

Jlim ©; = -Ve Fo(X) Kb I (Q = Ay) + 0

wheret is the training time step, ©¢ denotes the initialized parameters,
and fy(X) = vec(fo(x¥;00)i € {1,2, -+ ,mg bk € {1,2,--- ,K}) is
model output with initialized parameters. Moreover, the prediction
function f(-;0;) of Eq. (1) for any testing sample x* within domain
k converges to
: k. _ k -1 -1
Jim £ (x%5 k) = AKni (x5, X) Ky
+ fo(xK; 6x) — K (x5, X) Kb T 7102
where
T =A+ A+ Ky Vo s (X)BVe fo(X) Ktk
Q =Ky Ve fo(X)BO, + (A + AD) o (X)
KNTK(xk’X) =[0,---,0, a)lf,--- ,w”;k ,0,-+-,0]

N—— ——
Within domain k

and KNtk = diag(K11, Koo, - - ,Kgk). Kig is a neural tangent ker-
nel [20] matrix within domain k, i.e., its entry is given by [Ky]ij =

(VoL foxks 00, Vo, fo(x¥: 060 ). oF = (Vo fo(F: 00, Vo, fo(xk: 00) ).

4.3 Discussion

In this section, we provide a more intuitive explanation regarding
how the proposed TENON framework enables within-domain label
propagation and cross-domain parameter propagation, respectively.

COROLLARY 5 (INDIVIDUAL LABEL PROPAGATION). In the special
case where diyr = 0 (k # k), with the same conditions as Theorem 4,
foranyk € {1,---,K}, the predicted values of f (+; 0).) in Eq. (1) over

the training samples X;. = [xf, e ,xﬁk] in domain k converge to
Jim fy (Xj; 05 = (1= ) (T - ah) ™y )

where f; (Xi: 0) = [ (X500, fi (K5 00). -, fi (k0017 vk =
[yf, k.- gk 1T
xk, it holds

Jlim £ (%5 6¢) = (1~ )Knmie (2, XK (1= @A) ™! yg

+ ook 0) — K (5, Xp) K L fo (X)

It can be seen from Eq. (2) in Corollary 5 that when all domains
are irrelevant (i.e., dgxr = 0 for any k # k'), the objective of TENON
is equivalent to standard label propagation [19, 58, 60] on each
individual domain and no knowledge is shared across domains. Fur-
thermore, previous label propagation approaches [58, 60] focus on
transductive semi-supervised learning, where labels are inferred for
a set of unlabeled training samples (shown in Eq. (2)), whereas Corol-
lary 5 provides a feasible solution for inductive semi-supervised
learning, where the labels can be inferred for new unseen testing
samples (shown in Eq. (3)).

| i
,and o = 317 . Furthermore, for any testing sample
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Algorithm 1 TENON-DA

Input: (K — 1) source domains {Pg};' ", a target domain Pg;
Output: Predicted output values of target samples.

K-1
k=1

L ———— Training Stage (Pre-computing) ——————
: Calculate all sample similarity sfj and domain similarity dy;
: fork=1,---,Kdo
Calculate block neural tangent kernel Kyx;
Calculate inverse matrix Kl;lg;
fork’=k+1,---,K do
Calculate block neural tangent kernel Kyg+;
end for
: end for
. Calculate TKNTK;
: Calculate y* = AK;I}FKF_ly = M(TKnTk) " lys
: Obtain target propagated labels yy = [y*]-ng:;
P ————— Inference Stage
. for testing sample x}?St from target domain K do

R A A

e e
WO = O

—
'S

Calculate neural tangent kernel Ky (xt5%, X);
Calculate y}?St = Kyg (xtest, XK)ygs

: end for

= e
P -]

COROLLARY 6 (GLOBAL PARAMETER PROPAGATION). In the special
case where sfj =0( # j,k=1,---,K), with the same conditions
as Theorem 4, for any k € {1,---,K}, the model parameters 0} of
f(0y) in Eq. (1) is updated under gradient descent as follows.

Oc(t+1) = (1 = I - AVF(Xe) 'V (X)) 0k ()

K
Ak T
+1 ) =0k (1) +nAVf(Xp) ¥k
=1 VMikMp e
where 1) is the learning rate and 0y (t) denotes the model parameters
Oy at time step t.

Corollary 6 reveals that if we do not consider the sample similar-
ity, i.e., sllfj =0(i # j,k=1,---,K), the model parameters 0y of the
domain k would recursively aggregate knowledge from all other
domains. More specifically, if two domains have similar data distri-
butions, i.e., diys is large, it is more likely to propagate parameter
knowledge between these two domains. This observation is also
consistent with previous works [24, 49].

5 PROPOSED ALGORITHMS

In this section, we provide two instantiated algorithms of TENON for
domain adaptation (TENON-DA) and out-of-distribution generaliza-
tion (TENON-0OD). The crucial idea is to formulate domain adaptation
and out-of-distribution generalization as transductive distribution
learning and inductive distribution learning w.r.t. network of net-
works [36], respectively.

5.1 Transductive Distribution Learning

We formulate domain adaptation [47] as a transductive distribution
learning problem. As shown in Figure 1(b), each domain (source or
target domain) is formulated as a node in the main network, and
samples within each domain form a domain-specific network. Thus,
domain adaptation aims to propagate the label information (1) from
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source domains to the target domain (domain-level propagation)
and (2) from labeled samples to unlabeled samples (sample-level
propagation). To this end, we instantiate the proposed TENON frame-
work (denoted as TENON-DA) for domain adaptation below.

Given K — 1 source domains {Pk}K ~1 each with labeled samples
{x P 1, and a target domain Px With only unlabeled samples
{xK } ;2> the objective function of TENON-DA is directly given by Eq.
(1). Here the class label 4 (k = 1, K
sample xl]F is represented as a one-hot vector, and the class label le

— 1) of source training

of unlabeled target training sample xl.K is initialized as a zero vector.
Following Theorem 4, we can obtain the closed-form solution of
TENON-DA as follows. Suppose fy(;©) = 0,0 = 0, the predicted
class labels of target training samples are given by

y}’} = [y*]_nK: where y = AKNTKF ly

where [y*]_p,: denotes the last ng rows of predicted output values
y*. Moreover, for any new target testing sample x5, the predicted
class label via TENON-DA is

Y™ = ANt O™ XKyl ™y = Kk ¢ XDy (4)

test test K )]

where Kk (¢, Xk) = [KNTR (X, x5 ), -+, KNTr (x5, x5
We see that TENON-DA is a non-parametric domain adaptation ap-
proach. As shown in Algorithm 1, we can pre-compute the prop-
agated labels y} for unlabeled target training samples. Then, the
class label of any testing target sample is inferred using the propa-
gated labels y}- and the neural tangent kernel vector Kxx (xS, Xk )
between this testing sample and the target training samples.

In the following, we theoretically analyze the generalization
bound of TENON-DA for domain adaptation.

THEOREM 7 (GENERALIZATION OF TENON-DA). Suppose that the
learning models are instantiated with infinitely wide neural networks,
given the hypothesis space H, for any hypothesis f(-; ;) € H and
any § € (0,1), with probability at least 1 — §, the expected error of
the target domain can be upper bounded by

ZZHf(x 00 - o]

k=1 i=1

Ex-py [||f (x;6x) —f(xi9i<)||§]

i Zk: £k 0p) ~ f(Xf;Gk)
LS 2
! O
+- > d -
ZQ(Xk,e*)+ A(g*’.‘.’g;()+0(M)
nKLr -
fkon)  f(xK:6;)

where Q(Xp, 0 ) = Z” 1 U denotes the la-

Wi,

bel smoothness overQZ = argming Ep, [f(xk;07),y ], AOT, -,
2

0;) =

0 0y
K . - _Ur 2
Zk,k’:l die VMie VMo 2 and { = max {A"KLR > nklg } Lz

and Ug are constants depending on the maximum and minimum
eigenvalues of L + KI_<i< respectively, where Ly is the symmetrically
normalized Laplacian matrix of the target domain.
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Algorithm 2 TENON-O0OD

Input: K source (training) domains {Py }Ik(:l;

Output: Predicted output values of target samples.
L ———— Training Stage (Pre-computing) ——————
2: Calculate FKNTK (same procedures as Lines 2-10in Alg. 1);
3. Calculate y* = AKNTKF y = MTKn1R) Y3
4 ———— Inference Stage
5. for xt‘eSt from target (testing) domain K + 1 do

6: Calculate neural tangent kernel d)(x}gfrtl, X);

7. Calculate ytESt = %@(x}?itl,X)KﬁlTKF_ v
8: end for

It can be seen from Theorem 7 that the generalization error of
TENON-DA on the target domain is determined by the following cru-
cial factors. One is the empirical prediction error given by TENON-DA
(see Eq. (1)) over source and target training samples. The other one
is the optimal label smoothness within each domain and the opti-
mal parameter smoothness across domains. We would like to point
out that previous works study the generalization performance of
domain adaptation using either domain discrepancy [1, 55, 57] or
label smoothness [35] across domains, by assuming that all do-
mains share the same hypothesis. The learned prediction function
in those works might lose domain-specific information, resulting
in sub-optimal performance on the target domain. Though some
recent works [40, 51] propose to learn both domain-invariant and
domain-specific representations, their theoretical generalization
performance is unclear. Instead, in this paper, we leverage the sim-
ple distributional network of networks framework to model data
heterogeneity in domain adaptation with theoretical guarantees
(e.g., the first three terms of the upper bound in Theorem 7 result
in the optimization framework of Eq. (1) for domain adaptation).

5.2 Inductive Distribution Learning

We can formulate the out-of-distribution generalization [16, 23] as
an inductive distribution learning problem. As illustrated in Fig-
ure 1(b), all source (training) domains can be used to construct
a network of networks. Since the target (testing) domains are
only available during the testing phase, they will be added to the
main network as new nodes after model training. Therefore, out-
of-distribution generalization can be considered as an inductive
distributional learning problem, given the formulated network of
networks. To solve this problem, we instantiate the proposed TENON
framework (denoted as TENON-OOD) with the following training and
inference stages (see Algorithm 2).

e Training Stage: Given K source (training) domains {Py }le
each with labeled samples {x }1 1» the objective function
of TENON-OOD during training can be directly given by Eq.
(1). Thus, based on Theorem 4, we can obtain the closed-
form solution for model parameters {Gk}f:1 over training
domains.

0" = AVe o (X) Kyt Ity

where ©* = [QTT, e HI"(T]T. Here 9;; denotes the optimized
model parameters within domain k.
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o Inference Stage: In the inference stage, we can learn the
model parameters 0y, for a new target (testing) domain
Px+1 as follows. For standard out-of-distribution general-
ization, no prior knowledge regarding the target (testing)
domain is available before model inference. In this case,
we assume that the new target (testing) domain can be
considered as a new (domain) node for the previously de-
rived network of networks. The edge weight ¢ between
this new node and previous nodes within the main net-
work is simply set as 1. Considering the objective func-
2
tion ming, ZEZ}:I dir ”% - \/A% o We obtain the
closed-form solution 6y = % ZIk(:l 0, and thus the pre-

dicted class label of any testing sample x}?frtl

is given by

A
test _ test -1 -1
YK = Eq’(xfgipX)KNTKr y

where ® (x5, X) = [KNTr (xS, x1), -+ KNt (%58, %7,

e ,KNTK(x}gfrtl, x}(), e ,KNTK(x}gfrtl, anK ] denotes the neu-

ral tangent kernel between xtest

k., and samples from training

domains.

5.3 More Discussion Regarding Algorithms 1&2

It can be seen that the term I' in Algorithms 1&2 involves the
computationally expensive gradient terms Vg fo(X).

T = A+ 1+ Kyl Vo fo (X)BVe fo(X) T Kyix

However, we have the following observations.

R T
Ve fo(X)BVe fo(X)
T
= Vo fo(X) (Ikd,,xkd;, =B ® L4, xd;,) Vo fo(X)
di dip dix
K K .- —IK_K
My My, Vi Mo 12 Vi Mic 1K
21 K 22 K 2K K
-K | VMM 2 VM2 My, 22 VMy2- Mk 2K
= RANTK 3 A A
dK1' dKz. dkk
K K L. —KE__K
VMg -Mi K1 VMg -Mzz K2 VMkk Mgk KK

It shows that the term T in Algorithms 1&2 can be efficiently calcu-
lated using the domain similarity di;s and neural tangent kernel
Ky’ between domain k and domain k’.

5.4 Computational Complexity

Algorithms 1&2 show that the time complexity of TENON-DA and
TENON-00D is determined by the calculation of neural tangent kernel
(NTK) of any pair of training samples and the inversion of the
propagation matrix T'KnTg. The time complexity of calculating
NTK over all domains is O(7%) [37], where 7i = Zle ny denotes
the number of all training samples. The inversion of 'KnTk requires
O(72%). Following [19], we can use the conjugate gradient method
to solve the linear system (FKnTk) y* = Ay, in order to estimate the
propagated labels y*. This allows us to reduce the time complexity
from O(7®) to O(bii?), where b is the number of iterations. In this

SWithout prior knowledge regarding the unseen target domain, we assume that the
unseen target domain is equally similar to all source domains. In this case, only the
parameter smoothness regularization (i.e., the third term in Eq. (1)) will be available to
optimize the model parameters of this unseen target domain.
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case, we term the variants of TENON-DA and TENON-0OD algorithms
with conjugate gradient as TENON-DA-Fast and TENON-OOD-Fast,
respectively (see subsection 6.3.3 for more empirical analysis).

6 EXPERIMENTS

In the experiment, we evaluate the proposed TENON algorithms on
domain adaptation and out-of-distribution generalization data sets.

6.1 Experimental Setup

6.1.1 Data Sets. We use the following data sets.

e Amazon Review [8]: It contains positive and negative prod-
uct reviews from four different domains: Books, DVD, Elec-
tronics, and Kitchen. Following [47, 57], we use top-5000
frequent unigrams/bigrams to extract the bag-of-words fea-
tures for Amazon reviews. Each review is associated with a
binary label indicating positive or negative sentiment.

e CityCam [54]: CityCam is a large-scale web camera data
set. It contains images captured by several cameras in dif-
ferent city locations. Following [11], we use images from
four cameras (with IDs: 253, 495, 511, and 572). Each image
has a 2048-dimensional feature vector extracted from the
pre-trained ResNet-50 [18]. Specifically, in this paper, we
consider a binary classification task based on the number of
vehicles within the camera images, i.e., whether there are at
least 10 cars in an image.

o Huffpost [31]: Huffpost contains article headlines associated
with 11 news categories collected from the Huffington Post
from 2012 to 2018. Following [53], we use pre-trained Dis-
tilIBERT [43] to extract a 768-dimensional feature vector for
each new headline. The task is to identify the news tags of
article headlines as one of the following 11 categories: Black
Voices, Business, Comedy, Crime, Entertainment, Impact,
Queer Voices, Science, Sports, Tech, Travel.

o ArXiv [10]: ArXiv provides metadata of arXiv preprints from
2007 to 2023. As illustrated in [53], each preprint consists of
a paper title and its corresponding primary categories. The
paper title can further be represented as a 768-dimensional
feature vector using pre-trained DistilBERT [43]. The task of
ArXiv is to predict the primary category of arXiv pre-prints
from their paper titles.

e CivilComments [22]: CivilComments consists of comments
scraped from the internet. It contains 8 demographic identi-
ties: male, female, LGBTQ, Christian, Muslim, other religions,
Black, or White. Each identity is considered as a single do-
main. CivilComments involves a binary classification task
to determine whether a comment is toxic.

6.1.2  Baselines. In the experiment, we consider the following do-
main adaptation baselines, including (1) semi-supervised learn-
ing: LabelProp [12, 58], and (2) domain adaptation: DANN [14],
MDAN [57], M3SAD [39], DARN [47], and GRDA [52]. In addition,
we use the following out-of-distribution generalization baselines:
ERM, DANN [14], IRM [2], SD [41], Fish [45], and EQRM [13].

6.1.3 Configuration. Following [47], we use a 3-layer multi-layer
perceptron (MLP) to instantiate the prediction function for all
baselines. Then we implement our proposed algorithms using the
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Model Amazon Review CityCam
Books DVD Electronics Kitchen 253 495 511 572
LabelProp [58] | 0.707810.0040 0.729440.0093 0.7699+0.0079 0.779910.0082 0.674140.1360 0.6312100470 0.675310.0888 0.7560.0.0564
DANN [14] 0.6958+0.0157 0.7229+0.0031 0.7818+0.0053 0.7879+0.0072  0.7804+0.0415 0.6716+0.0499 0.8498.0.0136 0.7563+0.0344
MDAN [57] 0.719640.0095 0.743210.0205 0.774410.0121 0.7869+0.0156 0.8007+0.0579 0.6685+0.0339 0.8222100227 0.7280+0.0261
M3SAD [39] | 0.7019+00232 0.7251:+00210 0.77531+0.0117 0.7893+0.013¢4  0.8064400581 0.6175400286 0.7970+0.0357 0.76210.0531
DARN [47] 0.7175+0.0126 0.7412+0.0180 0.7703x0.0119 0.7888+0.0145  0.8243+0.0392 0.6795+0.0321 0.8271x0.0161 0.7547+0.0385
GRDA [52] 0.711040.0099 0.7294100110 0.771410.0091 0.788440.0056 0.7949+00751 0.6698+0.0340 0.8254+0.0196¢ 0.7495+0.0389
TENON-DA-Fast|0.7241+9.0146 0.7499+0.0101 0.7713+0.0093 0.789810.0101 0.835910.0146 0.7145:0.0122 0.7918+0.0104 0.7857+0.0176
TENON-DA 0.723840.0135 0.7503.0.0094 0.776310.0065 0.785140.0037 0.8350+00156¢ 0.7143+10.0134 0.793210.0097 0.7859.0.0182
Table 1: Domain adaptation on Amazon review and CityCam data sets
Model ‘ 2013 2014 2015 2016 2017 2018 Avg.
LabelProp [58] 0.531240.0109 0.2942.0.0095 0.2641.0.0202 0.3535..0.0237 0.390040.0145 0.505540.0165 0.3897
DANN [14] 0.417140.0293 0.351040.0234 0.384710.0423 0.4468.0.0205 0.4568..0.0352 0.5490..0.0254 0.4342
MDAN [57] 0.417140.0293 0.3365+0.0481 0.3757 +0.0546 0.442410.0207 0.439210.0267 0.501940.0322 0.4188
M3SAD [39] 0.4077+0.0290 0.349040.0439 0.405540.0380 0.4468..0.0246 0.4455.0.0281 0.487940.0398 | 0.4237
DARN [47] 0.417140.0293 0.3944.0.0140 0.3902.9.0375 0.455310.0205 0.4951.0.0227 0.5601+0.0106 0.4520
GRDA [52] 0.432410.0330 0.3671+0.0234 0.353910.0255 0.453410.0150 0.452040.0153 0.498740.0137 0.4262
TENON-DA-Fast | 0.5850100110 0.5028.0.0183 0.457310.0275 0.4995.0.0129 0.4556100295 0.5201.:9.0080 | 0.5033
TENON-DA 0.5851.:0.0110 0.5028 190183 0.4575.00273 0.4987+0.0131 0.465140.0132 0.519840.0080 | 0.5048

Table 2: Domain adaptation on the Hoffpost data set (“Avg." indicates the average accuracy over all target domains)

Model ‘ 2009 2011 2013 2015 2017 2019 2021 ‘ Avg.

LabelProp [58] | 0.700640.0267 0.6938400060 0.7186400063 0.6780100056 0.6717100130 0.6857+00085 0.674140.0099 | 0.6889
DANN [14] 0.748310.0122 0.6943.00387 0.71874+00304 0.7283.0.0092 0.7183+00081 0.7293.+0.025¢ 0.7213+0.0350 | 0.7226
MDAN [57] 0.748310.0122 0.7161400075 0.6251400819 0.6593400535 0.6748+00254 0.6944.00410 0.7139+00223 | 0.6903
M3SAD [39] 0.553340.0099 0.602640.1134 0.6845400637 0.7151400200 0.698040017¢ 0.7384400117 0.74734+00174 | 0.6770
DARN [47] 0.748310.0122 0.7228.0.0110 0.7123400302 0.7177+00196 0.7126400151 0.7456.0.0054 0.7471+0.0140 | 0.7295
GRDA [52] 0.7414100219 0.718640.0041 0.66624+00482 0.6956400385 0.6777+00215 0.7035+0.0286 0.7366+0.0103 | 0.7056
TENON-DA-Fast | 0.761910.0098 0.716110.0064 0.741510.0071  0.715510.0070 0.721640.0034 0.733610.0076 0.7297+0.0124 | 0.7314
TENON-DA 0.7621.0.0100 0.7157+0.0063 0.74204.0.0067 0.71954+00053 0.7241.90014 0.7403+00078 0.7477+0.0096 | 0.7359

Table 3: Domain adaptation on the ArXiv data set (“Avg." indicates the average accuracy over all target domains)

Model ‘ Male Female LGBTQ Christian Muslim Others Black White ‘ Avg

ERM 0.6859+0.0091 0.642810.0186 0.6796+0.0226 0.70584+0.0248 0.739610.0258 0.7024.400074 0.711810.0169 0.6796+0.0137 |0.6934
DANN [14] 0.685040.0096 0.645310.0249 0.6794.0.0202 0.716040.0156 0.734040.0207 0.6984+0.0058 0.68724+0.0280 0.6776+0.0145 |0.6904
IRM [2] 0.684840.0087 0.643210.0199 0.686210.0186 0.707140.0240 0.741640.0195 0.702840.0083 0.7121400192 0.6837+0.0121 |0.6951
SD [41] 0.6777+0.0119 0.6449:0.0189 0.6847+0.0216 0.7068+0.0250 0.746410.0152 0.7031+0.0088 0.709210.0192 0.6784+0.0105 |0.6939
Fish [45] 0.688240.0055 0.665040.0059 0.679310.0079 0.7363.0.0195 0.7512400117 0.6944.00125 0.721940.0071 0.6912.9.0105/0.7034
EQRM [13] 0.688240.0094 0.6603+0.0034 0.6830+0.0176 0.723740.0269 0.751740.0063 0.6969+0.0083 0.7269+0.0067 0.6899+0.0096 |0.7025
TENON-OOD-Fast|0.6922_9.0062 0.6678+0.0045 0.6968+0.0074 0.7236+0.0059 0.750210.0062 0.700610.0110 0.7037+0.0096 0.6813+0.0077 |0.7020
TENON-00D 0.690940.0082 0.6702.0.0030 0.7044+0.0063 0.7217+0.0086 0.7620.9.0066 0.7022+0.0089 0.7294.+9.0055 0.6909+0.0048 [0.7089

Table 4: Out-of-distribution generalization on CivilComments (“Avg." indicates the average accuracy over all testing domains)

NTK [26] induced by a 3-layer MLP with infinite width. The classifi-
cation accuracy is used as the evaluation metric in the experiments.

In addition, we set ¢ = 2, A = 1 in our experiments.

6.2 Main Results

In the following, we discuss the evaluation results of TENON algo-

rithms for domain adaptation and out-of-distribution generaliza-

tion.
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6.2.1  Domain Adaptation. Tables 1-3 provide the evaluation com-
parison between TENON-DA and baselines on various data sets (the
best results are indicated in bold). All the experiments are repeated
five times and then we report the mean and standard deviation
of classification accuracies. For each run, we randomly select 200
samples from each domain as the training samples and others as
the testing samples. Specifically, for Amazon Review and CityCam
data sets, following [47], we take one domain (e.g., "Books") as the
target domain, and others domains (e.g., “DVD", “Electronics" and
“Kitchen") as source domains. In contrast, Hoffpost and ArXiv data
sets [53] contain evolving domains where the data distribution is
changing over time. In this case, we take one specific time stamp as
the target domain and all historical time stamps as source domains.

We have the following observations from Tables 1-3. (1) Label-
Prop considers propagating the label information within a single
graph. It does not capture the data heterogeneity among different
domains, thus leading to sub-optimal performance in domain adap-
tation. (2) Compared to domain adaptation baselines, our proposed
non-parametric TENON-DA algorithm can achieve superior perfor-
mance in most cases. This observation verifies the effectiveness
of TENON-DA in handling heterogeneous data across domains. (3)
TENON-DA-Fast achieves comparable performance with TENON-DA.
Furthermore, Figure 3(b) shows that TENON-DA-Fast significantly
reduces the running time compared to TENON-DA.

6.2.2  Out-of-Distribution Generalization. Table 4 shows the results
of TENON-00D on the CivilComments data set (the best results are in-
dicated in bold). In this case, we take one domain (e.g., "Male") as the
unseen testing target domain and others (e.g., “Female”, “LGBTQ",
“Christian", “Muslim", “Others", “Black", and “White") as source train-
ing domains. It is observed that TENON-OOD outperforms baselines
for out-of-distribution generalization.

6.3 Analysis

6.3.1 Ablation Study. Here we study the impact of within-domain
label smoothness regularization on the proposed TENON-DA/TENON-
00D algorithms. Table 5 reports the average accuracy of TENON-DA
and TENON-00D on ArXiv and CivilComments respectively. It indi-
cates that the label smoothness regularization improves the model
performance. Besides, Figure 3 compares the TENON-DA/TENON-00OD
algorithms with their approximation introduced in Subsection 5.4.
It can be seen that with only 10 iterations, TENON-DA-Fast/TENON-
00D-Fast based on conjugate gradient can efficiently achieve simi-
lar performance with their counterparts.

6.3.2 Hyperparameter Sensitivity. We investigate the impact of
hyperparameter A on the proposed TENON-DA and TENON-00D algo-
rithms. Figure 4 reports the results of TENON-DA and TENON-OOD on
ArXiv and CivilComments respectively. It is observed that both
algorithms are robust to the selection of 1.

6.3.3  Efficiency. Figure 5 shows the efficiency comparison between
TENON-DA algorithm and baselines, where the overall training run-
ning time is reported. It is observed that the proposed TENON-DA
algorithm is more computationally efficient than domain adaptation
baselines involving gradient descent training. Due to the efficient
approximation of matrix inversion, TENON-DA-Fast takes less time
than TENON-DA on Amazon Review and ArXiv data sets.
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Data ‘ TENON-DA  TENON-DA w/o label smoothness
Amazon Review 0.7589 0.7573
CityCam 0.7821 0.7642
Hoffpost 0.5048 0.4987
ArXiv 0.7359 0.7297
Data ‘ TENON-OOD TENON-00D w/o label smoothness
CivilComments | 0.7089 0.7054

Table 5: Ablation study

7 CONCLUSION

In this paper, we propose a generic distributional network of net-
works (TENON) framework for modeling data heterogeneity, us-
ing within-domain label smoothness and cross-domain parameter
smoothness. Then we provide two instantiated algorithms of TENON
for domain adaptation and out-of-distribution generalization. The
effectiveness and efficiency of our proposed algorithms are verified
theoretically and empirically.
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A APPENDIX

In the appendix, we provide the proof of theoretical results pre-
sented in the paper.

A.1 Proof of Lemma 3
Proor. The objective of Eq. (1) can be rewritten as follows.
e n . . 2
J(0) =0TXAXTe+0TBO + 1 - HxTe - sz
Then the derivative of J (©) is given by
T A< T Th T 2
27(0) 2(e7XAXTe +07BO +1-[XT0 -y|;)
0 0
= 2(XAX +B) @+ 21XX" @ - 22Xy

= 2 (XAXT + B+ 1XX") © - 22Xy
By setting =55~ 3‘7(6) = 0, the minimizer of J (©) is obtained at
NP . Aar\ LA
o =/1(XAXT+B+AXXT) Xy
A oTe  (oTo\"! (oTas o)t
=X (AxTx + (XTX) (XTBX) + /IXTX) v
which completes the proof. O

A.2 Proof of Theorem 4

Proor. Following [25], we consider the following linearized
neural network

() = o) + (Vo o))" (we)
where w; = 0; — 0y is the parameter change from the initial values.
Let W; = ©;—0 be the change of parameters from the initial val-
uesand f;(X) = Vec(ﬁ(x :0))i e {1,2,---,m L ke{1,2,--- ,K})
be the vectorized predicted values over all input samples. Based on
continuous time gradient descent [25], the evolution of the param-
eters can be expressed as

W, = —gv@j(e) - —gvefo(x)T (Aft A - y)) - nBe,

= —nVe /()T | (AVefs (X) +AVe /s (X)) W,

+ (Yo () Vi (X)T) ' Vofs(X)BW,

+(Vafo(X)Vofs (X)T) " Vo fs (X)BOs +Af(X) + 1fy(X) - Ay)

In this case, the ODE has a closed-form solution below.
o,
= —Vofy(X)T (AKNTK + AKnk + Kighye (ngo (X)BVefi (X)T))ﬂ
- (1= exp {1 (AR + K + Ktk (Vo 6 (X)BV0 /6(X)T) ) £}
- (Kt Voo (X)BOY + Afy(X) + £ (X) ~ Ay) + 60
Thus,

. Tyv—1 1
lim ©; = ~Vo fo(X) K I (2 - Ay) + €
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For an arbitrary point x¥, the predicted value is given by
£ 00)

R n -1
= A - Ktk (x5, X) (AKNTK + AKntk + Kytg (Vefo (X)BVefo (X)T))

. (I - exp {—17 (AKNTK + AKnk + Kyg (Vefo(X)ﬁVefo (X)T)) t}) y

+f0 (xk; 0r) — KnTk (xk,X) (AKNTK + AKNTK + KI?I"II‘K (V@fo (X)EV@fO (X)T))_l

. (H — exp {—I] (AKNTK + AKNTK + K;I’II'K (V@ﬁ) (X)BV@ﬁ) (X)T)) t})
- (K Voo ()BOY + Ay (X) + A/ (X))
Thus, it holds that
lim f; (xk;0,) = lim flm(x ;0k) = AKntk (6K, X) Kb Tty
+ o 6) — Kk (K, XKy I 71
which completes the proof. O

A.3 Proof of Corollary 5
Proor. In this case, it holds that B = Ok d,xKdy- Then for any
sample xk, it holds
N R -1
Fo %5 6) — K (x5, X) (AKNTK + AKntx + Kyt Vo fo (X)BVe fo (X)T)
- (K Voo (X)BOO + Af (X) + 2/5(X))

= fo(x*; ) — Knrx (%%, X) (AKNTK + /U(NTK)71 (Afo X)+1f (X))
= fo(x*; 01) — Knrie (x%, X) Ky /o (X)

= fo.(x*; k) — Knvrie (2%, X ) Kiep fo (X )
Thus,

N -1
tlglgoﬁ(xk; 6r) = AKnri (xF, X) (AKNTK + AKNTK) y

+ foxF; 00) — Kk (25, XK L fo (Xp)

=2 [o, 0, KK Xp), 0, ,o] ((A+MI) KNTK)ily
+ fo "3 06) = Kk (X8, Xp) K fo (Xe)

=K (xk,Xk) Kip (Mngoxng + Ingxne — Ak) ™ ¥
+ fo(x%; ) — Kk (K, XK fo (X)

s — [+k
For training samples Xy = [x7, -

xnk] the following holds
1 -1

A fr Qs B) = 375 (]I TSI ARG
which completes the proof. O

A.4 Proof Corollary 6

Proor. With linearized model f(xlk; o) = Vofo (xll.‘)THk, the
objective of Eq. (1) can be rewritten as follows.

K
O
J©)=1 kkz e M e, +AZZHf<xl,ek) .

Using gradient descent, for any k, it holds
29 (©)
Oc(t+1) = 0() —n =
k
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——— 0 (t)

=0, (t) — n|Ok(t) -
g ’]( g Z 1 VM My
2 (VO TV (X0 (1) = V£ (i) Ty ) )

= (1= 1=V FX0T V1 (X )05 (1)
K
Y

dicje
=1 VMM

which completes the proof. O

O (1) + 1AV F(Xp) Tyi

A.5 Proof of Theorem 7

Proor. Following standard machine learning theory [32], given
hypothesis space H and the loss function is bounded by B (for any
x, |f(x;0k) = f(x;6,)| < B), then for any f(-;0k) € H,

(7 0 - £ 03 )|

X~PK

log |H| +1log(2/6)
2ng

TR (F (xK50k) — 1 (s5505) ) + B

n
K i3

where |H]| is the size of the hypothesis space and can be further
bounded by the VC dimension of hypothesis space H. It holds

i Z (f (xf;OK) —f(xf;e;() )2
< ol oxis00 - otr xs:09) [+ - Jlotr xsi05))
+ i”g(f (Xs:05)) - f (Xi: 05 HZ

1 U .
*ﬁ |f (Xs:0s) - f (Xs:0%)

‘Z+ i%ﬂ(f (Xs;QS);f(XKﬁK))

= LR (f (Xs:03) £ Xs 05

ng Lg
2
K nj 2 1 K ng f(xk'Q ) f(xl?‘Qk)
k. _ .k z k i Vk) Jj’
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K 2
1 Or Oy
+ - dir’ -
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o o 112
0 0%) = vK P | e S -, -
where A(67,-- -, 05) 2 jr=1 Yk Wi~ Vo |, and {
Ugr 2
max {AHKLR > ngLg }
Note that in previous steps, we let
2
f(xf;ek) F&k:00)

K
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1 < o |
+— E dkk’ k'
2 \/Mk e |

where y5 = f(Xs;0s). We assume that R is strongly convex and
smooth. For any 0, 0, 9; € Rde, the following holds

R(35.9:) 2 R(50.91) + (52 - 9505, R (5 57)) + 2 52 -5

t 2
R(§5.51) < R(5.9%) + (3¢ = 9195 R (35.5%)) + =% [0 = 94
Then
o0 =962, = 225 =53] = 22 {lroxsion - rexssen)

. NI 2 FN
Hy: —9@s) || < -REs¥0)
R
Next, following [35], we show the strong convexity and smooth-
ness of R.
IR (s, §¢) _ 9Yr IR (s.31)
a@t 0: a}A’t
RGID g (x0T (1= Ak) VF (X0,
69[
dxy ( 0 O
&2 VMxx \WVMxx VMg
= VF(X)" (1= Ax) Vf (Xg)6; + 6,
K
SN ke,
My VMK
OR? (¥s, ¥
R Go30) g p(x)T (1= Ak) VF(Xe) +1
207
T T\7!
=970 (1= A+ (700 T 06007 060
B o vpxi)" e Rloxn
t
9 (9y: IR (f’s,f’t)) S V(X 7 IR (I, 92)
90, ( 0y Y F ) oyt - 90
IR* (I, 1)
= VX)) T =222 r(x
f(Xk) e - s f(Xi)
Thus,
IR® (§5, 1) T\ -1
AT Lk + (Vf(XK)Vf(XK) ) =Lk + Kgx

where Lg = I- Ay is a symmetrically normalized Laplacian matrix,
and Kk is the neural tangent kernel (NTK) matrix within the
target domain. Thus, Lg and Ug are given by the maximum and
minimum eigenvalues of Lg + Kk}( O
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