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ABSTRACT: The engineering of novel protein-ligand binding interactions, particularly for complex drug-like molecules, is an
unsolved problem which could enable many practical applications of protein biosensors. In this work, we analyzed two engineered
biosensors, derived from the plant hormone sensor PYR1, to recognize either the agrochemical mandipropamid or the synthetic
cannabinoid WIN55,212-2. Using a combination of quantitative deep mutational scanning experiments and molecular dynamics
simulations, we demonstrated that mutations at common positions can promote protein-ligand shape complementarity and revealed
prominent differences in the electrostatic networks needed to complement diverse ligands. MD simulations indicate that both PYR1
protein-ligand complexes bind a single conformer of their target ligand that is close to the lowest free energy conformer.
Computational design using a fixed conformer and rigid body orientation led to new WINS55,212-2 sensors with nanomolar limits of
detection. This work reveals mechanisms by which the versatile PYR1 biosensor scaffold can bind diverse ligands. This work also
provides computational methods to sample realistic ligand conformers and rigid body alignments that simplify the computational

design of biosensors for novel ligands of interest.

Introduction

The design and engineering of proteins for specific,
reversible, and high affinity binding with small molecule
ligands remains a grand challenge in biotechnology.
Fundamentally, design presents a stringent test for the
predictive control of molecular recognition events. Practically,
new protein-ligand binders can drive new biosensors where
the molecular recognition domain is integrated with or coupled
to an output signal . Functional biosensors can enable a wide
range of biotechnologies including recent examples in
agrochemical control of plant traits 2, real-time analysis of
neurotransmitter activity 3, and spatiotemporal control of
cellular therapies 4.

New protein-ligand binders have been created by
reengineering an existing binding site to recognize different
new molecules '3 or by screening sequence libraries to
identify binders 4. There have also been several reports of
computationally designed protein binders '32!. These
computationally designed proteins bind just a handful of
ligands that are not fully representative of drug-like
molecules which contain many rotatable bonds and multiple

functional groups “?2. To inform the engineering and design of
new protein biosensors, there is a pressing need to understand
protein binding to a broader range of more complex and
flexible small molecules.

Many of the above sensors are bespoke designs, where one
protein scaffold or fold binds one unique ligand. However,
several protein folds have evolved and been engineered to
bind diverse ligands with affinity and specificity. For example,
the immunoglobulin fold used by antibodies is quite successful
in the molecular recognition of both protein and small
molecule ligands %, Members of both the lipocalin fold and
the START superfamily naturally bind, and can further be
engineered to bind, a variety of small molecule ligands -%°.
Richer information on the sequence, structural, and
mechanistic basis of ligand binding may be found by
interrogating a sensor family’s recognition of distinct ligands
rather than bespoke designs.

The START domain superfamily member PYR1 has
recently been engineered to recognize dozens of natural and
synthetic cannabinoids, organophosphates, and fungicides
with micromolar to picomolar EC50s >'**!. PYR1, along with
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its binding partner HABI1, is part of a natural chemically
induced dimerization (CID) system utilized by the plant
hormone abscisic acid *>**. Engineered PYR1 binds its
cognate ligand independently from HAB1, which then enables
HABI recognition to form a ternary complex (Figure 1A) 3.
This ‘molecular ratchet’ architecture is particularly well-suited
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for biosensors because the same molecular recognition
component can be coupled to many different output signals .

Crystal structures of both the wild-type and several engineered
sensors all show a similar gate-latch-lock mechanism'*-3,

Figure 1 | An overview of PYR1-HAB1 binding and structural features. A. Cartoon of two-step binding process in which
PYRI first binds its ligand before dimerizing with HABI. An effective binding constant K.y can describe the overall reaction
equilibrium. B. Structure of PYRI (blue) with abscisic acid (orange) bound, complexed with HABI (green) (PDB 3QN1), with the
top and bottom of the binding pocket labeled. The bound water coordinating abscisic acid and HAB1 is shown as a red sphere. C.
Abscisic acid binding is facilitated by the coordination of a water molecule (red sphere) at the top of the pocket by PYRI residues
P88 and R116, HABI W385, and an abscisic acid carbonyl. Abscisic acid is stabilized in the bottom of the pocket by electrostatic
complementary between PYRI1 K59 and the abscisic acid carboxylate.

in which a hydrogen bond acceptor on the bound ligand
coordinates a key water molecule at the top of the binding
pocket (Figure 1B) 3. The role of this water molecule appears
to be distinct from other waters resolved in the electron
density. Despite this common latch mechanism 3%, it is unclear
how this protein binding pocket can be engineered to form the
varied molecular interactions that would be needed to bind
such diverse chemical ligands with the described high affinity
and specificity.

Understanding the sequence, structural, and mechanistic
determinants of binding is essential for identifying the key
residues that must remain intact for each ligand to bind and
allow formation of the ternary complex, as well as which
positions are amenable to mutations. Such insight can also
help uncover mechanisms for promoting or curtailing ligand
recognition, such as the formation of salt bridges or other
electrostatic interactions. As water is known to mediate the
gate-latch-lock closure mechanism, an analysis of the role of
other water molecules present in the electron density of crystal
structures will determine other ways in which water may
influence the protein sequence, and binding capacity for
diverse ligands. Determining the set of ligand conformers that
may fit into the binding pocket could uncover metrics for
predicting the allowable conformer space, which is critical for
protein-ligand binding design.

To understand why engineered PYRI1 scaffolds recognize
such a diverse array of ligands, we used deep mutational
scanning to map the sequence determinants of binding for two
engineered biosensors, one sensitive to the agrochemical
mandipropamid (PYR1™"%) and the other to the synthetic
cannabinoid (+)-WIN55,212-2 (PYR1W™). These two sensors
differ by amino acid mutations at a total of 7 positions, and the
ligands differ by 4 carbons and 6 rotatable bonds ¥’.
Mutational landscape maps were complemented with
molecular dynamics (MD) simulations to probe the unique
importance of the coordinated water molecules of the gate-
latch-lock closure mechanism, compared to other present
waters, and to visualize the role of salt bridges on mechanisms
of binding. For each sensor, we identified critical positions
restricted to only 1-2 allowable amino acids and highlighted
key differences in the electrostatic interactions required to
complement different ligand structural features. This contrasts
with positions that exhibited comparably higher residue
flexibility in the binding pocket and illustrates, along with MD
analysis of conformer preference and experimental
characterization of variants with additive mutations, how
compatible conformers may have been selected for during
directed evolution of the sensor. Using insights from this
study, we computationally designed new PYR1 sensors for the
synthetic cannabinoid (+)-WIN55,212-2. This detailed study
of molecular recognition maps the essential mutations for
high-affinity ligand binding in the PYR-HAB biosensor
scaffold, highlighting differences in binding principles
between dissimilar ligands on a common scaffold and



informing the requirements for computational and rational
design of biosensors for other diverse ligands.

Results

Quantitative binding affinity measurements using deep
mutational scanning

We used deep mutational scanning to assess the sequence
determinants of ligand recognition for the PYR1™¢ and
PYR1Y™ engineered biosensors (full genotypes listed in
Supplemental
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Figure 2. | Deep mutational scanning was used to calculate the quantitative effective binding affinities of many biosensor
variants in parallel. A. An overview of library sorting and deep mutational scanning to reconstruct binding curves and calculate
the effective dissociation constant Ka i for each protein variant. B. Comparison of calculated log(K.cfi/Kaegwr) values for
replicate sorting experiments for the PYRI"™% and PYRI" sensors. C. Comparison of calculated log(Ka.s/Ka.egwr) values to

isogenic titration values for engineered biosensors.

Table S1). For each biosensor we created a single site-
saturation mutagenesis library at 27 positions inside and
adjacent to the PYR1 pocket. Mutations to either cysteine or
stop codons were excluded from analysis (see Methods). Each
library was cloned into a yeast surface display vector and
expressed for evaluation by fluorescence activated flow
cytometry. To evaluate variant binding, each library was
sorted at a constant HAB1™ (a computationally
thermostabilized AN-HAB1 '3) concentration over a range of
ligand concentrations, with the top 15-25% of binders
collected for each ligand concentration (Figure 2A). These
sorted populations were then sequenced, with the number of
reads in the sorted population compared to the number of
reads in a reference population of all displayed protein
variants, to calculate the probability that each variant was
collected. The effective dissociation constant, Ka.r, for each
variant can be calculated by maximum likelihood estimation
algorithm from MAGMA-seq *. The expression
log(Kaetri/Kaefrwr) is used to quantify the relative binding of
variant i compared to the wild-type sensor. Kqefr is a function
of the PYRI1-ligand binding affinity as well as the binding
affinity from HABI1 for the PYR1-ligand complex.

The value of log(Kaeti/Kaerwr) for the PYR1™4 and
PYR1Y™ mutational variants calculated from deep mutational
scanning of library titrations are reported in supplementary
dataset 1. To assess the internal reproducibility of our
protocol, biological replicates of the PYR1™4 and PYR1WN
libraries were sorted on separate days and processed as
duplicates. For the PYR1™ sensor, we observed an R?
correlation of 0.78 and mean absolute error (MAE) in log-
units of 0.21 (approx. 60% unsigned error in the relative Kaer ;
Figure 2B). Biological replicates for the PYR1VN sensor
processed on different days have an R* = 0.81 and a mean
absolute error of 0.15 in log units (Figure 2B). We also
performed single variant (isogenic) titrations of 11 PYR] ™
and PYR1"™mutational variants spanning over a 100-fold
range of inferred Kaetr.i/Kaetrwr values. The average MAE was
0.22 log units relative to the inferred values from the
population measurements (Figure 2D-E), indicating a similar
experimental reproducibility between population and
individual measurements. Population measurements from
library titrations were also further validated by a phosphatase
inhibition assay with purified protein in vitro (Figure S2).
While in vitro EC50 values and yeast measurements of
effective dissociation constants cannot be quantitatively
compared 34 the relative order of variants is the same. The



heatmaps in figures 3 and 4 include a subset of the data
encompassing the 23 ligand-facing positions and display the
average of two replicates unless a value could be calculated
from only one replicate.

Sequence-function basis for ligand recognition in the
engineered mandipropamid sensor

The agrochemical fungicide mandipropamid is a 23-carbon
structure containing two phenyl rings, three ether linkages,
and two alkynes (Figure 3A). To accommodate such a large
molecule, the crystal structure of the engineered PYR]™mand
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sensor (PDB 4WVO 2) shows the ligand compressed in a
closed, ‘clamshell’ conformation, with both ring structures
pointed up in the pocket (close to HAB1WV?%%) and a carbonyl
group pointed down (away from HAB1Y*%) (Figure 3B).
Figure 3C contains a heatmap summarizing the results of two
replicate deep mutational scanning experiments, considering
the 23 ligand-facing residues included in the mutational
library. Overall, 77% (319/414) of single point mutations are
destabilizing by greater than 50-fold (Figure 3C). 9%
(34/414) of single-point mutations either improve effective
binding affinity or are tolerated within less than a 2-fold
reduction in binding affinity
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Figure 3. | Deep mutational scanning of the mandipropamid engineered biosensor. A. Chemical structure of
mandipropamid. B. The mandipropamid ligand binding pocket (PDB 4WVO) color-coded by conservation of position. The side
chains of the 23 amino acid positions mutated are shown. C. Heatmap of calculated relative binding affinities of single-point
mutations to the mandipropamid sensor, expressed as log(Ka.f./Kaegwr), with blue binding more favorably and orange less

favorably.

(log(Kaefri/Kaerrwr) < 0.30 ). Data from the remaining 61
positions could not be fit to curves to calculate binding
affinity.

The PYR1™* heatmap highlights several key amino acid
interactions that are critical to ligand binding. Relative to WT
PYR1, the PYR1™"% construct analyzed by deep mutational
scanning contains six mutations (Y58H, K59R, V811, F108A,

S122G, F159L) found through directed evolution to enable
mandipropamid binding > (Table S1). The reversion mutations
(R59K, 181V, A108F, G122S, L159F) are deleterious yet
tolerated within a 2.6 to 11-fold reduction in binding affinity.
Position R59 is notably one of several positions to tolerate
very few other mutations away from wild-type. Other largely
conserved positions include P88 and H115, which coordinate a
bound water molecule forming the ‘gate’ '*¥2, as well as R79,
E94, and E141 that form intrapocket salt bridges (R79-E94;
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R59-E141) as evident in the crystal structure of the PYR1™!
complex.

In contrast, other positions accommodate significant
mutational flexibility. These positions tend to be near the top
of the binding pocket, encoding aliphatic residues such as I81,
V83, L87, A108, L117, L159, A160, and V163 that can
accommodate mutations to other similarly-sized or slightly
larger aliphatics (Figure 3C). Position A108 notably can
accommodate all but proline, aspartic acid, lysine, and
arginine. Nine mutations improved binding affinity by 2.5-fold
or greater, corresponding to log(Ka.fti/Kaerrwr) <-0.40. These
were V83L, A1081/V, A1601/V/T, and V164I/L, as well as
G122M. All nine mutations were from a smaller residue to a
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larger, usually hydrophobic residue, suggesting that these
substitutions provided additional van der Waals packing and
improved shape complementarity to the bound conformer of
the mandipropamid ligand.

PYR1W™ sensor ligand binding

We also performed deep mutational scanning on PYR1WN,
an engineered biosensor that recognizes the synthetic
cannabinoid (+)-WIN55,212-2 (Figure 4A). PYR1V™ was
identified through a mutational library screen and contains
mutations K59Q, F159A, and A160I away from the PYR1
sequence ‘3. The solved structure of an engineered biosensor
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Figure 4. Deep mutational scanning of the WIN engineered biosensor A. Chemical structure of WIN 55,212-2 ligand. B. WIN
sensor ligand binding pocket in the PYL2V™N structure (PDB 7MWN *3). Highlighted positions are labeled with the corresponding
PYRI number scheme for consistency. C. Heatmap of calculated relative binding affinities of single-point mutations to the WIN
sensor, expressed as l0g(Ka.fi/Kaqywr). with blue binding more favorably and orange less favorably.

bound to WINS55,212-2 shows superficially similar

mechanisms of ligand binding with the PYR1™4 structure.
The naphthalene and morpholine rings of WIN55,212-2 are
folded in a compressed, ‘clamshell’ orientation (Figure 4B).
Like PYR1™4 the PYR1W™N sensor binds via a water-
mediated bond with a key hydrogen bond acceptor in the gate-
latch-lock mechanism '3. Unlike the PYR1™% sensor, there is
a considerable void at the ‘bottom” of the pocket at, and
adjacent to, position 59.

Figure 4C shows a heatmap of deep mutational scanning
results for the PYR1WN sensor for 23 ligand-facing positions.
PYR1W™N sequence-binding maps exhibited considerably more
sequence permissibility compared to the PYR1™* sensor.
While P88 and H115 are largely conserved, only 50%
(205/414) of all single point mutations are destabilizing by
greater than 50-fold, and 13% (53/414) either show improved
binding or have less than a 2-fold reduction in binding affinity.
Unlike the PYR1™ sensor which tolerated only 59K/R &
141E/P, position 59 in PYR1WN tolerates the chemically
diverse mutations to Q59Y and Q59G with less than a 2-fold
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reduction in binding affinity, while Q59M, Q59A, Q59S, and
the reversion mutant Q59K all improve binding affinity
(Figure 4C). At position 141, all possible mutations other than
to the large or positively charged residues Y,F,P.K, and R are
tolerated within a 2-fold affinity reduction, and many
mutations improve binding affinity. Since the original K59Q
mutation disrupted the K59-E141 salt bridge, the combined
mutational results show the relative unimportance of this local
electrostatic environment on WIN ligand recognition. This is
consistent with the solved structural complex, as E141 does
not appear to contribute to hydrogen bonding or charge
satisfaction for the WIN ligand. The R79-E94 salt bridge was
also disrupted, with position 94 tolerating mutations to
W.,Y,P,ILV,G,T,Q,D,H, and K within a 4-fold reduction in
binding affinity, while R79 remains conserved (Figure 4C).

While the electrostatic networks are very different, the
PYR1W™N sensor accommodates similar mutational flexibility
to the PYR1™* sensor at the top of the binding pocket,
particularly positions V81, V83, V87, and V163 (Figure 4C).
Mutations V811, V83L, V831, and L87M improve effective
binding affinity, suggesting that subtle changes in van der
Waals packing from aliphatic substitutions can improve shape
complementarity. Notably, positions 159 and 160 also near the
top of the pocket did not show similar mutational tolerance.
The reversion mutations A159F and [160A result in greater
than 50-fold worse binding, and at both positions only
mutations to valine are tolerated within a 2-fold decrease in
binding affinity (Figure 4C). The relatively small or large size
of the aliphatic residues at those positions is critical, as the
naphthalene ring of WINS55,212-2 protrudes close to the
alanine at position 159 while space is opened near position
160.

A key difference between the PYR1™ and PYR1WN
sensors is the relative packing at the bottom of the binding
pocket, with the compressed “clamshell” orientation of
WINS55,212-2 sitting higher in the pocket and not extending
functional groups down like the mandipropamid ligand
(Figure 4B). Positions S122 and V164 tolerate significantly
more variability in the PYR1"N sensor than in PYR1™d,
with both positions tolerating mutation within 50-fold
destabilization to nearly any other amino acid (Figure 4C).
This could be explained by the fact that both S122 and V164
residues are at the bottom of the pocket and distal from the
WIN ligand. At position V164, which is located on the inside
face of the central alpha helix, mutations to either the
positively charged amino acids histidine or lysine or a
mutation to the larger aliphatic residue leucine can improve
binding affinity. The positively charged residues H/K likely
coordinate the unpaired E141, while a larger aliphatic residue
is likely filling void space in the lower pocket otherwise
occupied by solvent.

In summary, deep mutational scanning identifies
mechanisms of ligand recognition common to both engineered
biosensors. Protein shape complementarity to the bound ligand
is driven by aliphatic residues at the top of the pocket, with
gain of function mutations likely improving van der Waals
packing. In both sensors, the preservation of key residues
satisfies hydrogen bond acceptors not used in coordinating the
latch water molecule, with the arginine at position 79 notably

conserved across both sensors. In contrast, the other charged
residues at positions 59, 94, and 141 had varying differences
in conservation between sensors. The PYR1 ™™ sensor was
much more tolerant to mutation, likely owing to the relative
paucity of ligand contacts at the bottom of the binding pocket.

However, we were struck by several additional questions
raised by the deep mutational scanning results that, if
addressed, could improve our structural and physicochemical
understanding necessary for de novo design of new sensors.
First, whether residues not involved in the gate-latch-lock
mechanism also formed water-mediated binding interactions
that influenced the observed mutational profiles, as some
differences in amino acid identities at each position could be
rationalized by bound waters. Second, while the electrostatic
network surrounding mandipropamid in the PYR1™"% sensor
does not tolerate single mutations that disrupt only one end of
a salt bridge, it is unclear whether the whole electrostatic
network is required for enforcing binding affinity. Third, our
deep mutational scanning method analyzed single mutations in
isolation, raising questions about whether mutations acted on
the same ligand internal conformation and rigid body
orientation in the PYR1 binding pocket. If the ligand
conformation and orientation was fixed for high affinity
sensors, then individual point mutations would be expected to
contribute additively to effective affinity gains found during
directed evolution, simplifying engineering workflows.
Knowledge of likely final fixed conformers could also
improve computational design, enabling identification of
many additive point mutations during the initial design
process.

Functional role of water networks to ligand recognition
in engineered biosensors

The crystal structures of multiple engineered PYR1 sensors,
including PYR1™* and PYR1W™, show the ligand binding
via one or two coordinated waters at the mouth of the ligand
binding pocket . To investigate the possible functional role
of other coordinated water networks, we performed all-atom
MD simulations of the PYR1™"# sensor in complex with
HABI (see Methods). From these MD simulations, we
identified both direct and water-mediated non-bonded
interactions between protein residues and the ligand using a
heavy atom distance threshold of 4A. We then quantified the
relative occupancy R of direct versus water-mediated
interactions using the formula R = D-WD+W XI where D is
the occupancy of direct non-bonded interactions between a
given residue and the ligand, W is the occupancy of water
mediated non-bonded interactions between the same residue
and ligand, and I is the total occupancy of either direct or
water mediated non-bonded interactions. We computed the
relative occupancy of these interactions for all residues in both
the receptor and HAB1. We considered residues with R < -0.7
to have “dominant” water-mediated interactions (Figure SA—
B, S3).

We then sought to determine which of these water mediated
interactions are both strong and maintain stability throughout
the simulation, suggesting which water molecules are more
likely to significantly contribute to the ligand binding
mechanism. We explain the determination of “strong” and



“stable” h-bonds in the methods below. For PYR1™di the
only protein residues which had “dominant” (R < -0.7) water-
mediated interactions which were classified as both strong and
stable were those formed with residue W385 on HAB1
(Figure 5C,E) which is consistent with the crystal structure.
For PYRIW™, the dominant water-mediated interactions that
were both strong and stable were found with residues W385
on HABI1 as well as residues R79 and F108 on the receptor
(Figure 5D,F). The conservation of the coordinated water
molecule participating in the gate-latch-lock mechanism at the
top of the binding pocket demonstrates the importance of this
interaction. The PYR1WN exclusive coordinated water
molecules near the bottom of the binding pocket are likely a
compensation for the lack of direct non-bonded interactions in
that region. Likely due to the compact nature of the molecule
as well as difference in chemical functionalization, the WIN
ligand binds in a similar but distinct region of the binding
pocket compared to mandipropamid, leaving a much larger
cavity within the pocket (Figure 5E,F). These coordinated
waters fill the observed void in the binding pocket and provide
crucial stabilizing non-bonded interactions which, as
suggested by deep mutational scanning, may also be filled
with larger aliphatic residues.
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Figure 5 | Conserved water coordination at mouth of
PYR1™™% and PYR1"™ sensors while other coordinated
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waters are sensor-specific. A-B. The structures show the
relative occupancy of direct vs water-mediated non-bonded
interactions between the ligand and both the sensor and HABI
for PYRI™™4 gnd PYRI™™ sensors. Only residues with |R| > 0.5
are shown (Full data Figure S3). Those residues with water
dominated non-bonded interactions are identifiable with a
deeper blue hue and an R score closer to -1. C-D. Water-
mediated H-bonds between the ligand and W385 are stable for
both PYRI™™" gnd PYRIY'N as demonstrated by sharp peaks
with a mean of less than 2.5A in the distribution of hydrogen—
acceptor distances. Despite several bonds close to the
threshold, no other waters were observed as strong and stable
in MD simulations for PYRI™™¥. PYRIY™ does form additional
stable, strong, and dominant H-bonds with PYRI residues R79
and F108. The structure of the binding pocket for both the
PYRI™™% (E) and PYRIYM(F) sensors requires the water
mediated interactions(blue) with W385 at the top of the binding
pocket due primarily to an absence of direct non-bonded
interactions(orange) in that region, but only PYRI"™ has a gap
in the bottom of the binding pocket which must be compensated
for by additional water-mediated h-bonds.

Electrostatic contributions to ligand recognition probed
by molecular dynamics and mutational analysis

To address the precise role of the charged residues, and the
two salt bridges observed previously in crystal structures, on
ligand recognition, we performed MD simulations of several
engineered biosensors. To establish that MD results were
consistent with the experimental results from deep mutational
scanning, we compared the calculated AAG from relative free
energy calculations performed with Hamiltonian replica
exchange simulations to log(Kaf.i/Ka.erwr) for several
mutations in the PYR1™"% sensor and verified that the same
trends were observed in experiment and MD (Figure S5). In
MD, stable salt-bridges R59-E141 and R79-E94 (Figure 6A)
in the PYR1™"% were observed both with and without HAB1
present with mean occupancies of 91% and 100% respectively
(Figure S5). This suggests that the formation of these H-
bonds precede the secondary HAB1 binding event and are
potentially necessary for initial PYR1-mandi complex
formation. Additionally, R59 forms a stable H-bond with a
mean occupancy of 98% with the mandipropamid
ligand, appearing to stabilize the binding pocket as
demonstrated by the significant reorientation of the ligand in
the absence of this H-bond (Figure 6B, S6).

We performed simulations of the PYR1™"4 sensor with the
mutation E141Y to investigate how the binding pocket
changes in the absence of these stabilizing salt-bridge
interactions. We verified that PYR1mnd4/El41Y yariant remained
stable during simulation following an equilibration period to
ensure we are analyzing the equilibration ensemble (Figure
S7)._PYRI™MEIY w a5 demonstrated to have significantly
reduced binding affinity in deep mutational scanning (Figure
3C), presumably by breaking the R59-E141 salt bridge. In
simulations of PYR1™#EIIY "the occupancy of the R59-
Y141 H-bond is less than 10%, compared to mean occupancy
of 91% for the R59-E141 H-bond in PYR1™* (Figure S6).
When E141 is mutated to tyrosine, R59 adopts a conformation
like that of the apo state (Figure 6A-B) which prompts the
formation of the R59-E94 H-bond, which is also present in



Apo PYR1™4 (Figure S6). These differences in the H-bond
network within the binding pocket prevent the formation of
the H-bond between the ligand and R59. The absence of this
H-bond results in the destabilization of the ligand in the WT
binding conformation and subsequent movement of the ligand
to the top of the binding pocket (Figure 6B and S6-S7).
Though the PYR 1™ 4VEI4Y yariant results in minimal
reorientation of the backbone of PYRI, this ligand binding
location is not conducive to the formation of the PYR1-HABI1
complex (Figure 6A, S8). This suggests that R59 serves as an
anchor for mandipropamid, ensuring binding occurs in an
orientation which allows for the subsequent binding of HAB1
to the complex. Overall, molecular dynamics simulations
support that the formation of the R59-E141 salt bridge via
electrostatic interaction enables the H-bonding of R59 to
mandipropamid necessary for ligand recognition by correctly
positioning residue R59 for binding.

To build on the mechanistic insights of single mutations
gained from simulation, we experimentally probed double
mutants of the R59-E141 and R79-E94 salt bridges. While
single mutations to R59 or E141 in PYR1™*!! Jeave one half
of an unsatisfied salt bridge intact, simultaneous mutation at
both ends can explore the full impact of the electrostatic
interaction. We hypothesize that if the effect of the salt bridge
is simply the maintenance of electrostatic neutrality in the
pocket, then swapping the salt bridge to RS9E/E141R should
still maintain binding. If, on the other hand, R59 contributes a
critical H-bond donor to the ligand, this could be partially
satisfied by a residue like Gln containing an H-bond donor. To
test these hypotheses, we constructed the double mutants
PYRI1 mandi/RS9E/E141R and PYRI1 mandi/R59Q/E141Q and performed
titrations of different concentrations of mandipropamid
(Figure 6D, S9). The mutation E141Q was chosen as a non-
charged isostere maintaining charge neutrality. In attempting
to swap the charge across the salt bridge with mutations R59E
and E141R, we found that binding was ablated, even at 100
UM concentration of mandipropamid. Removing both charges
with simultaneous glutamine mutations resulted in functional
binding, albeit with a significantly worse Kaerr. These results
show that maintenance of electrostatic neutrality alone is not
enough to enable binding. However, electrostatic neutrality
combined with the presence of a hydrogen bond donor can
maintain mandipropamid recognition. These results agree with
our molecular dynamics simulations (Figure S10), in that it is
the H-bonding capability at position R59 that is essential for
ligand recognition.
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Figure 6. Electrostatic interactions facilitate H-bonding
to stabilize the bottom of the mandi ligand binding pocket,
which is necessary for HAB1 binding to the receptor-
ligand complex. A. There are two primary salt bridges
present within the binding pocket of PYRI™" with ligand
bound, R79-E94 and R59-E141 (shown in cyan). In the
absence of ligand, R59 (shown in white) is oriented up into the
space ligand will occupy, forming a salt bridge with E94.
These are observed in MD simulations as well as in the crystal
structure (PDB 4WVO) B. In MD simulations of the ligand
complex with PYRI"™™WEIIY the E141Y mutation prevents salt
bridge formation with R59, and R59 orients upward similar to
the absence of ligand. Y141 instead adopts an extended,
nearly perpendicular conformation (shown in yellow) as its
backbone loop shifts. C. In complex with PYRI™"WEIIY the
ligand (shown in yellow) exhibits a significantly different
binding conformation than the WT PYRI"™™ complex. We
predict that the absence of an anchoring H-bond between the
ligand and the reoriented R59 in the PYRI™"VEIY yqriant is
the primary cause for this change in ligand orientation. The
position of mandipropamid in PYRI™"VEM*Y cquses a direct
clash with the predicted location of W385 thus suggesting that
this mutation would disrupt the gate-latch-lock mechanism
and prevent ternary complex formation. D. Yeast surface
display titrations of PYRI™™4 PYR J"andi RIVEIIC gy g
PYR["andi ROEEIIR Relative fluorescence intensity (RFI) is
determined by secondary labeling using streptavidin-
phycoerythrin after initial labeling with indicated ligand
concentration and 100 nM biotinylated HABI™. Error bars
represent 1 s.d. In relative fluorescence for n = 2 replicates.
Inset cytograms show binding of HABI™ versus display of
PYRI variant on the surface of yeast. The cytogram for
PYR[™mandi ROVEINQ spoys the positive result of binding and the
cytogram of PYRI™"4 RSOEFEIAIR shovws the lack of binding for
that variant.

The R79-E94 salt bridge provides both electrostatic
neutrality and potential PYR1 local secondary structure
stabilization. MD simulations reveal that R79 forms a h-bond
with the main chain carbonyl of F52 with >90% occupancy in
both apo and ligand bound PYR1™"% (Figure S12),
suggesting a potential structural role for this residue. This is
consistent with the deep mutational scanning results that
residue R79 is critical in both sensors. To test this hypothesis,
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we prepared a series of double mutants that maintain
electrostatic neutrality. If the PYR1 structure is not impacted,
these mutants should still result in functional binders, as
neither residue appears to be hydrogen bonding with the
ligand in PYR1™4 or PYR1Y!™N, However, all double mutants
tested (PYleandi/R79E/E94R’ PYleandi/R79A/E94A’

PYRI1 mandi/R79T/E94Q, PYRI1 WIN/R79T/EQ4Q, PYRI1 WIN/R791/] E94L)
resulted in a total loss of ligand binding (Figure S13). Using
MD simulations, we determined that the PYR]™mand/R79E/E94R
variant maintains the 59-141 salt bridge suggesting that
maintenance of this salt-bridge alone is not sufficient to enable
ligand binding (Figure S11). To determine whether mutation
at R79 results in a PYR1 not able to maintain HAB1
recognition, we tested binding of PYR1 mutants in the
presence of biotinylated HAB1™* and in the absence of ligand.
The parental PYR1™"% and PYR1"N sensors, and all R79
mutants assayed, bound weakly at low micromolar HAB1™
concentrations and with no difference compared to the
parental sensors (Table S4). Combined, these results suggest
that R79 is important for maintenance of local, though not
global, structure necessary for ligand binding.

Conformer selection of high affinity sensors
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While a solved crystal structure captures a single ligand
conformation in the binding pocket, a protein-ligand complex
could accommodate different modes of binding to different
ligand conformers. To address this, we used MD simulation to
sample the mandipropamid and WINS55,212-2 ligand
conformations adopted in solution and compared these to the
conformers sampled in complex with their engineered PYR1
variant. During 3 independent 300 ns MD simulations of
PYR1™ and PYR1™™ in complex with the ligand and
HABI only one ligand conformer was observed which
matches in the published crystal structures 4W VO (Figure
7A) and 7TMWN (Figure 7B), respectively. Using temperature
replica exchange MD simulation, we sampled conformations
of both ligands in solvent allowing us to rank the energy
clustered ligand conformers (See methods for additional
details). We found that the observed conformer is among the
most energetically favorable solution conformation (Fig 7C-
D). The free energy penalty relative to the lowest energy
conformer in solution is below 1 KgT for both ligands, and
both are estimated roughly to pay less than 1 kcal/mol free
energy penalty to go from all conformers in solution to the
complexed conformer *. While the low-energy protein-ligand
complex does not necessarily bind the lowest-energy ligand
conformer in solution, the conformations which are selected
are not unduly strained or otherwise highly unlikely to occur
in solution.
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Figure 7: PYR1™% and PYR1"™ select for a single low-energy ligand conformer. We evaluated the conformational
flexibility of mandipropamid (A) and WIN55,212-2 (B) in solvent using temperature replica exchange molecular dynamics which
allowed us to rank clusters of conformers for each ligand in solution. We hypothesize that mandipropamid conformer cluster 11
could accommodate mutations requiring the rotation of a methyl propargyl ether group. The conformer which is sampled when the
ligand is in complex with PYRI is indicated with a star and is the 5th and 4th lowest free energy conformation for mandipropamid
(C) and WIN (D) respectively. E-F. Probability of observed conformer cluster in the 300 K replicate during temperature replica
exchange molecular dynamics in solvent for mandipropamid and WIN55,212-2).

Many protein-ligand complexes gain increasing ligand
binding affinity through the accumulation of additional
mutations that each individually improve binding affinity
A first-order approximation for additivity of mutational effect
is that mutations do not change ligand conformer nor rigid
body orientation. Thus, if PYR1™% and PYR1Y™ each bind
only a single ligand conformer in a constrained rigid body
orientation, then further mutations should be additive unless
part of the conformer can rotate.

40,41

To probe whether the additional mutations would continue
to select for a single conformer, we performed experiments on
multi-mutants of both sensors to compare the predictive
benefit of additive mutations to experimentally-determined
changes in binding affinity. The mutant of PYR1¥™ had the
mutations QS9M/Y 120F/E141M (Figure 8A left), all of
which deep mutational scanning indicated improved binding
compared to WT PYR1W™N, Ligand titrations at a constant



HAB1™ concentration were performed for this mutant and the
binding affinity was compared to the original sensor, as in
Figure 3C and 4C (Figure 8B left). PYR1WVIN QM/YI20FEI4IM
had a Kq.s that was ~10-fold lower than the original PYRTV™
sensor, showing this expected additive effect and suggesting
that WIN was in the same conformation for each individual
mutation (Figure 8C left).

For the mandi sensor, titrations of the double mutant
AT108T/L159F matched the decrease in binding affinity
compared to WT PYR1™%¢ predicted by deep mutational
scanning (Figure S14 left). In contrast, PYR]™mandi AI0SUVI6iL
and PYR]mandi GI22WALSOl were expected to increase binding
affinity compared to PYR1™"% However, titrations of
PYR]™mendi AISUVIGAL (Figure 8A right) indicate that the double
mutant does decrease Kaefr, but by a different magnitude than
would be

predicted for fully additive mutations (Figure 8B,C right).
Similar results were observed for PYR1™andi G122MWAISOL (Rjgyre
S14 right). In these double mutants without additivity, the
combined mutations were close to each other in space and
present in the pocket where the mandipropamid molecule has
a freely rotatable methyl propargyl ether group sticking into
the bottom of the pocket, suggesting that each mutation acts
on a different, or constellation of, ligand conformation(s) in
the same approximate rigid body orientation (Figure 7A).
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Figure 8: Degree of mutational additivity indicates
conformer selection in engineered biosensors. A) Structures
OfPYR] WIN Q59M/Y120F/E141M (left) and PYR]mandiAIOSI/V]ML (Vlght)
The PYRI backbone is shown as a teal ribbon. Ligands and
mutated residues are shown as sticks. B) Yeast surface display
titrations of multi-mutant biosensors for WIN (left) and mandi
(right) compared with original sensor. PE fluorescence is
determined by secondary labeling using streptavidin-
phycoerythrin after initial labeling with indicated ligand
concentration and 100 nM biotinylated HABI™. Error bars
represent 1 s.d. in relative PE fluorescence for n=4 (two
technical replicates for two biological replicates). C)

Predicted additive improvement of mutations in binding
affinity compared to experimentally observed relative binding
affinity. PYR]WIN Q39MYIZOFEIIM ([ofy) is additive while
PYRmandi AISIVIGHL (viapy) is not. Error bars represent the
summation of mean absolute error for each mutation (gray) or
mean absolute error for titrations (colored).

Computational design of WIN binding from a fixed
selected conformer

If high-affinity protein-ligand binders select for a single
ligand conformer, then correctly identifying likely ligand
conformations and placements in the binding pocket would be
crucial for design success. To illustrate the importance of
conformer selection and placement, we tested whether
computational design could result in functional PYR1
biosensors for a control ligand when provided a fixed ligand
conformer in the known rigid body orientation. We performed
Rosetta FastDesign *? on the experimentally determined
PYL2-WIN55212,2 crystal structure with PYR1V™N mutations
reverted to wild-type PYR1/PYL2 sequences, with the goal of
predicting the reverted mutations needed for ligand binding.
FastDesign suggested the mutations S92V (deleterious in the
high affinity sensor; Fig 4C) and F159AMVI (allowable; Fig
4C). We tested combinations of mutations at these positions
along with the known electrostatic-altering K59Q mutation
observed in the PYR1V™ sensor. All six designs bound WIN
using our yeast display assay (Fig 9, S15), and two sensors
with an F159A mutation bound with a high nM limit of
detection (Fig 9). Overall, these results show that physically
based energy functions (Rosetta) are sufficient for identifying
binding sequences if a compatible ligand conformation and
rigid body orientation can be identified.

10000 100 nM HABI"
: - PYRI WIN (KS9Q/F I59A/A1601)
: -e- PYR] K59Q/SO2V/F159A

: .e. PYRI K39Q/F159A

1 L] 1 L] L]
102 10! 10" 10! 102 103 104 105
[WIN] (nM)

Figure 9: Computational design of PYR1-ligand binding
from a selected fixed conformer. Yeast surface display
titrations of computationally designed PYRI biosensors shown
in red and blue binding WIN55,212-2. The wild-type PYRI™™N
sensor shown in black. PE fluorescence is determined by
secondary labeling using streptavidin-phycoerythrin after
initial labeling with indicated ligand concentration and 100
nM biotinylated HABI™. Error bars represent 1 s.d. in
relative PE fluorescence for n=2 (two technical replicates for
one biological replicate, second biological replicate in figure
S12).

Discussion
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In this work we analyzed the structural, sequence, and
mechanistic determinants of binding in two engineered PYR1
biosensors. We performed deep mutational scanning, used MD
simulation to explore conformer selection and mechanisms of
ligand binding, generated multi-mutants to test distinct
biophysical hypotheses, and used computational design to
apply these insights to design new PYR1Y™ sensors.

Some lessons for computational design will apply to
engineering PYRI1 for binding to other novel ligands, and may
apply to computational design of protein-ligand binding more
broadly. In the PYRI1 scaffold, mutations at the top of the
binding pocket to different sized aliphatics appear to increase
shape complementarity for improved binding affinity.
Additionally, hydrogen bonds with available ligand functional
groups can stabilize binding, particularly at position 59 to
anchor the ligand in the bottom of the binding pocket. The
nature of the H-bond networks between ligand and protein are
closely related to the electrostatic environment in the binding
pocket, as the charge of residues forming hydrogen bonds
must be balanced across the pocket by salt bridges. Balancing
charge in the pocket is important for high-affinity binding, but
not sufficient alone if ligand-stabilizing H-bonds are removed.
While we determined through MD that water-mediated latch
closure involving HAB1%3% is essential to ligand binding in
engineered PYR1-HAB1 complexes, additional water
molecules can play a role in filling the bottom of the binding
pocket for compact ligands, such as bound WINS55,212-2,
forming stable water-mediated interactions between protein
and ligand. These lessons suggest that to engineer PYR1
binding to novel ligands one should focus on satisfying ligand
H-bond acceptors, balancing charge across the binding pocket,
and targeting mutations to complement ligand size and shape
to the top of binding pocket. Indeed, following these lessons
led to computational design of sequence-distinct PYR1
proteins which recognize WIN55,212-2 with high nanomolar
limit of detection on the yeast surface.

High affinity biosensors are likely evolved for a single
ligand conformer, or closely-related cluster, in the same rigid
body orientation through the accumulation of additive
beneficial mutations. This hypothesis is also supported by our
MD simulations observing that PYR1™% and PYR1W™N each
bind a single ligand conformer. This idea of conformer
selection by the accumulation of beneficial additive mutations
can be seen in the development of the PYR1™"% sensor % and
the broader screening of organophospates and cannabinoids .
These papers showed that the PYR1 binding pocket is
unusually pliable, with medium affinity binders able to be
identified from a small number of mutations. In Park et al, an
early PYR1 sensor binding mandipropamid contained only the
mutations K59R, S122G, and F108A and bound the ligand
with low micromolar responsiveness, while additional affinity
maturation of the sensor added the mutations Y58H, V811, and
F159L 2. However, the deep mutational scanning data from
this work indicates that position 108 of PYR1™* can tolerate
significant mutation, and is improved by substitution to the
slightly larger non-polar aliphatic residues isoleucine and
valine.

Under the mechanism that acquiring more additive
mutations fixes the ligand to only a handful of similar ligand

conformations, we hypothesize that the original F108A
mutation opened the ligand binding pocket to accept the
mandipropamid molecule, and then additional mutations
selected for a narrower range of allowed conformers. This can
also be understood as a tradeoff between enthalpy and entropy
in the overall free energy of the system, in which restricting
the allowed ligand conformers increases the free energy by
decreasing the entropy, but is outweighed by the more
negative enthalpy from improved binding affinity. If the
accumulation of additive mutations fixes conformer selection
in the binding pocket, then sensors with fewer mutations are
more likely to bind their ligand weakly and less specifically,
and sensor variants containing more mutations would be easier
to further mature through directed evolution because each
additional mutation is more likely to be additive.

Another crucial computational design consideration is the
rigid body placement of the appropriate conformer with
respect to the protein binding pocket. The mutational and MD
studies here reiterated the known importance of the bound
water coordinated by Trp®*® 1335, Because for all known
biosensors a ligand H-bond acceptor coordinates this bound
water, the design process for PYR1 is considerably simplified
compared to scaffolds without an appropriate anchor point.
Indeed, aligning the known WIN conformer to its known H-
bond acceptor geometry, followed by Rosetta FastDesign 42, is
sufficient to generate designs that recognize WIN with a
nanomolar limit of detection. Developing new deep learning
methods to learn and design small molecule-protein
interactions is in vogue '>**8, We suggest that comparable
attention should be placed with the choice of ligand conformer
and rigid body orientation.

Conclusion

In this work we analyzed two engineered biosensors to
understand how the same PYR1 protein scaffold can be
mutated to bind two ligands with very different structural
features. We evaluated the sequence determinants of binding
using deep mutational scanning and performed molecular
dynamics analysis to elucidate key mechanisms of binding for
multiple ligands. This analysis provides insight into how
electrostatic networks complement different ligand structural
features, how the directed evolution of protein-ligand
interactions can promote selection of a specific conformer, and
how proper sampling of plausible conformers is critical for
successful computational design. While the insights from this
work can directly inform PYRI1 scaffold engineering for novel
ligand biosensors, selection of a limited conformer repertoire
is likely a trait of many high affinity protein-ligand
interactions and can be applied generally for computational
design.

Methods

Construction of PYR1™™4 and PYR1Y™ mutational
libraries

Single-site saturation mutagenesis libraries of the PYR] ™"

and PYR1™™ sensors were created using comprehensive
nicking mutagenesis, in which each specified position was
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mutated to every other amino acid plus stop codon®. For the
PYR1™4 sensor, plasmid pJS624 was mutated using NNK
primers at positions 59, 60, 61, 62, 79, 81, 83, 87, 88, 89, 91,
92, 94,108, 109, 110, 115, 117, 120, 122, 141, 158, 159, 160,
163, 164, and 167 to create library L054. For the PYR1WN
sensor, plasmid pPRMCO005 was generated by Golden Gate
assembly of synthetic dsDNA (eBlock, Integrated DNA
Technologies) into vector pNDOO3 (Daffern et. al. 2023) and
mutated using NNK primers at positions 59, 61, 62, 79, 81, 83,
87, 88, 89,91, 92, 94, 108, 109, 110, 115, 116, 117, 120, 122,
141, 158, 159, 160, 163, 164, 167 to create library L058.
Primer sequences are listed in Table S2. Library plasmids
were transformed into chemically competent EBY 100 cells as
described (Medina-Cucurella and Whitehead 2018) and stored
as 1 ml stocks at ODgoo=1 in yeast storage buffer at -80°C.

L054 replicates A and B were made as two separate library
reactions, then screened on different days. LO58 was a single
library where two replicates were screened on different days.

Preparation of HABI1 for binding assays

An N-terminal truncation of HAB1 (AN-HAB1) purified
and stored in saturated ammonium sulfate at 100uM, as
described in Steiner et al>. For use in yeast surface display
assays, the protein was centrifuged at 17,000 x g for 10
minutes to pellet. The supernatant was removed by pipette and
discarded, and the pellet was resuspended an equivalent
volume of ice-cold CBSF++ (CSBF: 20mM sodium citrate,
147mM NaCl, 4.5mM KCI, 0.1% w/v bovine serum albumin,
pH 8.0 adjusted with 1M sodium hydroxide, sterile filtered),
ImM freshly dissolved DTT, ImM TCEP, pH 8.0). The
resuspended HAB1 was then desalted using a Zeba™ spin
desalting column (Thermo) equilibrated with CBSF++ and
stored on ice.

Yeast surface display of PYR1 variant libraries

Yeast surface display of PYR1 variant libraries were
performed according to Steiner et al., with the following
modifications®. 1ml yeast stocks of libraries 054 and L058
were thawed, centrifuged at 16,000 x g for 1 min, resuspended
in 1ml of SDCAA plus 10 pl Pen-Step (10,000 U/ml, Life
Technologies), and grown for 4-6h at 30°C with shaking at
300rpm. Expression was induced by resuspending the SDCAA
culture in 1 ml SDGCAA (1 part SDCAA to 9 parts SGCAA)
plus 10 pl Pen-Step to ODeoo=1 and growing for 20-22h at
22°C, after which cells were resuspended in 1ml CBSF
(20mM sodium citrate, 147 mM NaCl, 4.5mM KCl, 1 g/L
bovine serum albumin) at ODeoo=2.

For each ligand labeling concentration, 200 ul cells at
ODsoo=2 were mixed with 20 pl ligand diluted in DMSO and
100 pl prepared HAB1 diluted in CSBF++, to a final volume
of 1ml in CBSF buffer, ensuring a consistent 1:50 ligand stock
dilution and 1:10 HAB1 stock dilution across all reactions.
Reactions were incubated at room temperature on a benchtop
plate agitator for 30 minutes. Reactions were then centrifuged
at 16,000 x g for 1 min to pellet, cells were washed with 1ml
CBSF, and centrifuged again. After the supernatant was
removed by pipet, reactions were labeled with 12ul anti-c-

myc-FITC (Miltenyi Biotec), Sul SAPE (streptavidin-R-
phycoerythrin, Life Technologies), and 378 pl CBSF.
Labeling reactions were incubated for 10 minutes on ice
protected from light, then centrifuged and washed with 1ml
CBSF as above, then centrifuged and stored on ice with the
supernatant removed.

Cell sorts were performed on a Sony SH800S cell sorter
(Sony Biotechnology), with cell pellets resuspended in 1ml of
CSBF immediately before reading. For each sample, roughly
the top 25% of displaying cells by binding signal were
collected. Cell sorter parameters and full sorting statistics are
listed for each sensor replicate in the supplementary data file
PYR1_DMS_supplemental_data&primers.xlsx. Collected
cells were suspended in 5Sml SDCAA media plus 50 pl Pen-
Step and incubated at 30°C with shaking at 300 rpm for 3040
hrs, before freezing as 1 ml cell stocks at ODeoo=4 in yeast
storage buffer at -80°C.

Deep sequencing preparation

Cells samples collected from library sorting were prepared
for deep sequencing as described in Medina-Cucurella and
Whitehead (Medina-Cucurella and Whitehead 2018), using a
Zymo Yeast Plasmid Miniprep II kit (Zymo Research) and a
Monarch PCR & DNA Cleanup kit (NEB) with the following
changes. Samples were amplified using inner primers ACL-
P1060 and ACL-P1061 in a 40ul PCR reaction using Q5 Hot
Start 2x Master Mix (New England Biolabs) for 20-25 cycles
at an annealing temperature of 64°C. 5 pL of PCR product
from the inner primer amplification was cleaned using Syl
Exonuclease I (NEB) and 2pL rSAP (NEB), incubating for 15
min at 37°C then 15 min at 80°C. 1.6uL of cleanup product
DNA was carried forward to the 2" PCR reaction using
Illumina TruSeq small RNA adapters in a 25pl Q5 reaction for
20-25 cycles at an annealing temperature of 64°C. Samples
were purified using Agencourt Ampure XP beads (Beckman
Coulter), quantified using PicoGreen (ThermoFisher), pooled,
and sequenced on an [llumina MiSeq using 2 x 250 bp paired-
end reads by the Rush University Medical Center sequencing
facility.

Maximum likelihood estimation analysis of sequencing
data

Variant read counts obtained from deep sequencing were
processed by a maximum likelihood estimation method as in
Petersen et. al.*. We excluded STOP codons from analysis
because the reference population used was selected for the
displayed population, removing most variants containing
STOP codons from the analysis. Additionally, we removed
cysteines owing to the complicated reducing conditions

necessary to perform yeast surface display titrations.

Construction and yeast surface display of isogenic
variants

Individual PYRI1 sequence variants for isogenic titrations,
analysis of electrostatic variants, and conformer selection
experiments were constructed by Golden Gate assembly of an
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eblock DNA sequence (Integrated DNA Technologies) into
vector pNDOO3 (Daffern et. al. 2023). All plasmids are listed
in table S3.

Preparation of cell cultures for yeast surface display
titrations of isogenic variants was performed as above for the
display of PYRI1 libraries. Yeast surface display titrations
were performed according to Steiner et al AiChE 2020, with
the following modifications. For each ligand labeling
concentration, 5ul cells at ODe¢oo=2 were mixed with 1ul
ligand diluted in DMSO and 5pl prepared HABI1 diluted in
CSBF++, to a final volume of 50ul in CBSF buffer, ensuring a
consistent 1:50 ligand stock dilution and 1:10 HAB1 stock
dilution across all reactions. Reactions were incubated at room
temperature on a benchtop plate agitator for 30 minutes.
Reactions were then centrifuged at 2,500 x g for 5 min to
pellet, cells were washed with 200ul CBSF, and centrifuged
again. After the supernatant was removed by flicking,
reactions were labeled with 0.6pl anti-c-myc-FITC (Miltenyi
Biotec), 0.25ul SAPE (streptavidin-R-phycoerythrin, Life
Technologies), and 49.15ul CBSF. Labeling reactions were
incubated for 10 minutes on ice protected from light, then
centrifuged and washed with 200p1 CBSF as above, then
centrifuged and stored on ice with the supernatant removed.

Binding measurements were performed on a Sony SH800S
cell sorter (Sony Biotechnology), with cell pellets resuspended
in 100ul of CSBF immediately before reading. Sample
analysis was performed using FlowJo 10, and binding
parameters were determined in Graphpad Prism 10.1.0 using
the specific binding with Hill slope nonlinear regression
function.

AN-HABI1 phosphatase inhibition assays

Recombinant PYR1IVIN, PYRIMANDL " and their mutant
derivatives were expressed in E. coli as 6x-His-MBP fusion
proteins and purified by immobilized metal affinity
chromatography as previously described.” The concentrations
of active receptors in the PYR1W™ and PYR1MAND!
preparations were inferred by titrations against AN-HABI at
saturating ligand concentrations. Phosphatase inhibition
assays were conducted using 10 nM AN-HABI, 40 nM active
receptor (determined by titration; 1986 ng of PYR1Y™ | 303
ng of PYRIMANPY “and varying ligand concentrations
(solvated in DMSO), in a reaction buffer containing 100 mM
Tris-HCI —pH7.9, 100 mM NaCl, 3 mg/ml BSA, 0.1% 2-
mercaptoethanol, 1 mM MnClz, and 1 mM 4-
methylumbelliferyl phosphate (added immediately before
collecting reaction velocities). Fluorescence data were
collected on a Tecan Spark multimode microplate reader and
reaction velocities and used to calculate PP2C activities
relative to control (O nM ligand) reactions. Reactions were
conducted with quadruplicate technical replicates, and ICso
values for PP2C inhibition were inferred from fits of the dose-
response data to a 4-parameter log-logistic using the drc
package in R.* Mandipropamid and WIN 55212-2 were
purchased as analytical grade chemicals from Sigma (USA)
and Cayman Chemicals (USA), respectively.

Molecular dynamics simulations

All molecular dynamics (MD) simulations were performed
using GROMACS 2020.6. All proteins were parameterized
using the amber ff14sb protein force field and all ligands were
parameterized using GAFF. The protonation state was
determined using the H++ server at a pH of 7. All mutant
proteins were prepared using MODELLER. Hydrogen mass
repartitioning was applied using ParmEd. The simulation box
was constructed to maintain a minimum 1 nm distance to the
periodic boundary condition, and sodium and chloride ions
were added to neutralize the system and maintain 0.15M salt
concentration. The procedure for all simulations was as
follows: energy minimization to 100 kJ/mol/nm energy
threshold, 100 ns NVT equilibration with the Berendsen
thermostat, and 100 ns NPT equilibration with the Berendsen
thermostat and barostat. Production simulations were 300 ns,
unless otherwise specified, and were run with a 4 fs time step
using the Parrinello-Rahman barostat and v-rescale thermostat
at 1 atm and 300 K. All input simulation files are provided at
the Github repository shirtsgroup/PYR1_Design.

The initial structures for PYR1M% and PYR1W™N in
complex with HAB1 and the ligand were taken from x-ray
crystal structures (PDB 4WVO and 7MWN respectively). We
ran simulations of PYR1M#4 and PYR1%'Nin the absence of
HABI as well as apo PYRI1 simulations in the absence of both
HABI1 and the ligand. The same PYRI1 structure was used to
initiate all simulations with either HAB1 or both HAB1 and
the ligand removed. Mutant simulations used the WT crystal
structure as a base and then a mutation was performed using
MODELLER. A 5-50 ns equilibration period was included in
all simulations to allow for conformational changes to be
made from these artificial augmentations to the initial
structure as well as to allow the system to settle at the
equilibration temperature and pressure. The equilibration
period was determined by the lack of systematic change in the
protein backbone RMSD.

We analyzed simulations for non-bonded interactions which
were broadly defined as a heavy atom distance of less than 4
A using MDTraj compute_distances function. In order to
quantify the stability of the water-mediated hydrogen bonds,
we computed the distance distribution between the hydrogen
and the acceptor in the water mediated H-bond for all residues
with dominant water-mediated interactions. We computed the
mean distance to quantify the strength of the H-bond. and the
standard deviation of the distance distribution to quantify the
relative stability of the H-bond, both between the water
molecule and the protein residue as well as the water molecule
and the ligand. “Strong” H-bonds were classified as having a
relatively short mean distance of 2-2.5 A while weak H-bonds
had a longer mean distance of 2.5-4 A. “Stable” H-bonds were
defined as having a standard deviation in bond length of
<0.45A. The numerical ranges for classifying strong and
stable H-bonds were set to include 95% of analyzed water—
residue H-bonds (Figure S4). We included H-bonds with
solvent exposed residues as well as residues within the binding
pocket which were of the same type as those engaging in
water-mediated H-bonds with the ligand.

In addition to standard MD, we also performed alchemical
relative free energy (RFE) calculations as well as temperature
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replica exchange molecular dynamics simulations (TREMD).
The crystal structure conformation was used as the WT for
RFE simulations and then hybrid topologies and coordinates
were generated for mutated residues using PMX. The same
energy minimization and equilibration steps were carried out
for each of the 18 intermediate A states. Production
simulations were completed using Hamiltonian replica
exchange using a 2 fs time step and were completed for 25 ns
for each replicate. Analysis was completed using the
alchemlyb package with reported AAG estimates computed
using MBAR. The TREMD simulations were run with only
the ligand in solvent with sodium and chloride ions to
maintain a 0.15 M salt concentration. 27 temperature
replicates were used varying from 300 K to 450 K with
conformational swaps allowed every 2 ps. All conformational
analysis came from only the 300 K replicate. Sampled ligand
conformations were first sorted based on sampled dihedral
angles computed using MDTraj and these conformations were
then clustered using nearest neighbor clustering on pairwise
heavy atom RMSD. The relative free energy of a conformer
can be computed since these MD simulations maintain the
Boltzmann distribution, thus G -kBTlog(ppref) in which pref
is the probability of the most probable conformation and p is
the probability of any given conformation. The analysis code
can be found at the Github repository
shirtsgroup/PYR1_Design.

Computational design and experimental validation

For computational design, the PYL2"™N structure PDB
TMWN was manually stripped of all accessory ions and water
molecules, other than the key water coordinating by the gate-
latch-lock binding mechanism, leaving the WINS55,212-2
ligand in place on a separate chain. To eliminate WIN55212-2
binding, we reverted the PYL2V™N sequence to the wild-type
PYL2 sequence by mutating Q59K, A165F, and 166V in
PyMOL. Computational design using FastRelax ** with the
default energy function was performed using PyRosetta4
version
2021.26+release.b308454c455dd04£6824cc8b23e54bbbobe2c
dd7, performing design on 9 subtle variations of ligand
alignment to the water molecule. Output designs were
screened using PyMOL to ensure the ligand formed a polar
contact with the water molecule and were scored by Rosetta
on interface energy, buried unsatisfied hydrogen bonds, shape
complementarity, and total score.

Across all designs that passed screening for ligand-water
contacts, Rosetta design suggested the mutations K64(59)VAN,
S96(92)V, E147(141)Y, and F165(159)AMVI (corresponding
PYRI numbering in parenthesis). Based on previous experience
with poor prediction of electrostatic interactions by Rosetta, we
excluded mutations at PYRI1 positions 59 and 141, instead
incorporating the PYR1"™-mutation K59Q into designs. DNA
sequences of the wild-type PYR1 sequence with combinations
of the point mutations K59Q, S92V, F159A, F159V, A1601,
and A160V were ordered (Integrated DNA Technologies) and
cloned by Golden Gate Assembly ! into the pND0O3 vector.
Constructs were expressed in yeast surface display and binding
affinity to WIN55212,2 was analyzed as previously described
for isogenic variants.
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