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ABSTRACT: The engineering of novel protein-ligand binding interactions, particularly for complex drug-like molecules, is an 
unsolved problem which could enable many practical applications of protein biosensors. In this work, we analyzed two engineered 
biosensors, derived from the plant hormone sensor PYR1, to recognize either the agrochemical mandipropamid or the synthetic 
cannabinoid WIN55,212-2. Using a combination of quantitative deep mutational scanning experiments and molecular dynamics 
simulations, we demonstrated that mutations at common positions can promote protein-ligand shape complementarity and revealed 
prominent differences in the electrostatic networks needed to complement diverse ligands. MD simulations indicate that both PYR1 
protein-ligand complexes bind a single conformer of their target ligand that is close to the lowest free energy conformer. 
Computational design using a fixed conformer and rigid body orientation led to new WIN55,212-2 sensors with nanomolar limits of 
detection. This work reveals mechanisms by which the versatile PYR1 biosensor scaffold can bind diverse ligands. This work also 
provides computational methods to sample realistic ligand conformers and rigid body alignments that simplify the computationa l 
design of biosensors for novel ligands of interest.   
 
Introduction 

 

The design and engineering of proteins for specific, 
reversible, and high affinity binding with small molecule 
ligands remains a grand challenge in biotechnology. 
Fundamentally, design presents a stringent test for the 
predictive control of molecular recognition events. Practically, 
new protein-ligand binders can drive new biosensors where 
the molecular recognition domain is integrated with or coupled 
to an output signal 1. Functional biosensors can enable a wide 
range of biotechnologies including recent examples in 
agrochemical control of plant traits 2, real-time analysis of 
neurotransmitter activity 3, and spatiotemporal control of 
cellular therapies 4–7. 

 

New protein-ligand binders have been created by 
reengineering an existing binding site to recognize different 
new molecules 8–13 or by screening sequence libraries to 
identify binders 14. There have also been several reports of 
computationally designed protein binders 15–21. These 
computationally designed proteins bind just a handful of 
ligands that are not fully representative of drug-like 
molecules which contain many rotatable bonds and multiple 

functional groups 1,22. To inform the engineering and design of 
new protein biosensors, there is a pressing need to understand 
protein binding to a broader range of more complex and 
flexible small molecules.  

 

Many of the above sensors are bespoke designs, where one 
protein scaffold or fold binds one unique ligand. However, 
several protein folds have evolved and been engineered to 
bind diverse ligands with affinity and specificity. For example, 
the immunoglobulin fold used by antibodies is quite successful 
in the molecular recognition of both protein and small 
molecule ligands 23,24. Members of both the lipocalin fold and 
the START superfamily naturally bind, and can further be 
engineered to bind, a variety of small molecule ligands 25–30. 
Richer information on the sequence, structural, and 
mechanistic basis of ligand binding may be found by 
interrogating a sensor family9s recognition of distinct ligands 
rather than bespoke designs. 

 

The START domain superfamily member PYR1 has 
recently been engineered to recognize dozens of natural and 
synthetic cannabinoids, organophosphates, and fungicides 
with micromolar to picomolar EC50s 2,13,31. PYR1, along with 
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its binding partner HAB1, is part of a natural chemically 
induced dimerization (CID) system utilized by the plant 
hormone abscisic acid 32,33. Engineered PYR1 binds its 
cognate ligand independently from HAB1, which then enables 
HAB1 recognition to form a ternary complex (Figure 1A) 34. 
This 8molecular ratchet9 architecture is particularly well-suited 

for biosensors because the same molecular recognition 
component can be coupled to many different output signals 1.  

 

Crystal structures of both the wild-type and several engineered 
sensors all show a similar gate-latch-lock mechanism13,35,  

 
Figure 1 | An overview of PYR1-HAB1 binding and structural features. A. Cartoon of two-step binding process in which 

PYR1 first binds its ligand before dimerizing with HAB1. An effective binding constant Kd,eff can describe the overall reaction 
equilibrium. B. Structure of PYR1 (blue) with abscisic acid (orange) bound, complexed with HAB1 (green) (PDB 3QN1), with the 
top and bottom of the binding pocket labeled. The bound water coordinating abscisic acid and HAB1 is shown as a red sphere. C. 
Abscisic acid binding is facilitated by the coordination of a water molecule (red sphere) at the top of the pocket by PYR1 residues 
P88 and R116, HAB1 W385, and an abscisic acid carbonyl. Abscisic acid is stabilized in the bottom of the pocket by electrostatic 
complementary between PYR1 K59 and the abscisic acid carboxylate.  

 

in which a hydrogen bond acceptor on the bound ligand 
coordinates a key water molecule at the top of the binding 
pocket (Figure 1B) 13. The role of this water molecule appears 
to be distinct from other waters resolved in the electron 
density. Despite this common latch mechanism 36, it is unclear 
how this protein binding pocket can be engineered to form the 
varied molecular interactions that would be needed to bind 
such diverse chemical ligands with the described high affinity 
and specificity.  

 

Understanding the sequence, structural, and mechanistic 
determinants of binding is essential for identifying the key 
residues that must remain intact for each ligand to bind and 
allow formation of the ternary complex, as well as which 
positions are amenable to mutations. Such insight can also 
help uncover mechanisms for promoting or curtailing ligand 
recognition, such as the formation of salt bridges or other 
electrostatic interactions. As water is known to mediate the 
gate-latch-lock closure mechanism, an analysis of the role of 
other water molecules present in the electron density of crystal 
structures will determine other ways in which water may 
influence the protein sequence, and binding capacity for 
diverse ligands. Determining the set of ligand conformers that 
may fit into the binding pocket could uncover metrics for 
predicting the allowable conformer space, which is critical for 
protein-ligand binding design.  

 

To understand why engineered PYR1 scaffolds recognize 
such a diverse array of ligands, we used deep mutational 
scanning to map the sequence determinants of binding for two 
engineered biosensors, one sensitive to the agrochemical 
mandipropamid (PYR1mandi) and the other to the synthetic 
cannabinoid (+)-WIN55,212-2 (PYR1WIN). These two sensors 
differ by amino acid mutations at a total of 7 positions, and the 
ligands differ by 4 carbons and 6 rotatable bonds 37. 
Mutational landscape maps were complemented with 
molecular dynamics (MD) simulations to probe the unique 
importance of the coordinated water molecules of the gate-
latch-lock closure mechanism, compared to other present 
waters, and to visualize the role of salt bridges on mechanisms 
of binding. For each sensor, we identified critical positions 
restricted to only 1-2 allowable amino acids and highlighted 
key differences in the electrostatic interactions required to 
complement different ligand structural features. This contrasts 
with positions that exhibited comparably higher residue 
flexibility in the binding pocket and illustrates, along with MD 
analysis of conformer preference and experimental 
characterization of variants with additive mutations, how 
compatible conformers may have been selected for during 
directed evolution of the sensor. Using insights from this 
study, we computationally designed new PYR1 sensors for the 
synthetic cannabinoid (±)-WIN55,212-2. This detailed study 
of molecular recognition maps the essential mutations for 
high-affinity ligand binding in the PYR-HAB biosensor 
scaffold, highlighting differences in binding principles 
between dissimilar ligands on a common scaffold and 
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informing the requirements for computational and rational 
design of biosensors for other diverse ligands.  

 

Results 

 

Quantitative binding affinity measurements using deep 
mutational scanning  

 

We used deep mutational scanning to assess the sequence 
determinants of ligand recognition for the PYR1mandi and 
PYR1WIN engineered biosensors (full genotypes listed in 
Supplemental 

 

Figure 2. | Deep mutational scanning was used to calculate the quantitative effective binding affinities of many biosensor 
variants in parallel. A. An overview of library sorting and deep mutational scanning to reconstruct binding curves and calculate 
the effective dissociation constant Kd,eff,i for each protein variant. B. Comparison of calculated log(Kd,eff,i/Kd,eff,WT) values for 
replicate sorting experiments for the PYR1mandi and PYR1WIN sensors. C. Comparison of calculated log(Kd,eff,i/Kd,eff,WT) values to 
isogenic titration values for engineered biosensors.  

 

Table S1). For each biosensor we created a single site-
saturation mutagenesis library at 27 positions inside and 
adjacent to the PYR1 pocket. Mutations to either cysteine or 
stop codons were excluded from analysis (see Methods). Each 
library was cloned into a yeast surface display vector and 
expressed for evaluation by fluorescence activated flow 
cytometry. To evaluate variant binding, each library was 
sorted at a constant HAB1T+ (a computationally 
thermostabilized N-HAB1 13) concentration over a range of 
ligand concentrations, with the top 15-25% of binders 
collected for each ligand concentration (Figure 2A). These 
sorted populations were then sequenced, with the number of 
reads in the sorted population compared to the number of 
reads in a reference population of all displayed protein 
variants, to calculate the probability that each variant was 
collected. The effective dissociation constant, Kd,eff, for each 
variant can be calculated by maximum likelihood estimation 
algorithm from MAGMA-seq 38. The expression 
log(Kd,eff,i/Kd,eff,WT) is used to quantify  the relative binding of 
variant i compared to the wild-type sensor. Kd,eff is a function 
of the PYR1-ligand binding affinity as well as the binding 
affinity from HAB1 for the PYR1-ligand complex. 

 

The value of  log(Kd,eff,i/Kd,eff,WT) for the PYR1mandi and 
PYR1WIN mutational variants calculated from deep mutational 
scanning of library titrations are reported in supplementary 
dataset 1. To assess the internal reproducibility of our 
protocol, biological replicates of the PYR1mandi and PYR1WIN 

libraries were sorted on separate days and processed as 
duplicates. For the PYR1mandi sensor, we observed an R2 
correlation of 0.78 and mean absolute error (MAE) in log-
units of 0.21 (approx. 60% unsigned error in the relative Kd,eff ; 
Figure 2B). Biological replicates for the PYR1WIN sensor 
processed on different days have an R2 = 0.81 and a mean 
absolute error of 0.15 in log units (Figure 2B). We also 
performed single variant (isogenic) titrations of 11 PYR1mandi 
and PYR1WIN mutational variants spanning over a 100-fold 
range of inferred Kd,eff,i/Kd,eff,WT values. The average MAE was 
0.22 log units relative to the inferred values from the 
population measurements (Figure 2D-E), indicating a similar 
experimental reproducibility between population and 
individual measurements. Population measurements from 
library titrations were also further validated by a phosphatase 
inhibition assay with purified protein in vitro (Figure S2).  
While in vitro EC50 values and yeast measurements of 
effective dissociation constants cannot be quantitatively 
compared 34, the relative order of variants is the same.  The 
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heatmaps in figures 3 and 4 include a subset of the data 
encompassing the 23 ligand-facing positions and display the 
average of two replicates unless a value could be calculated 
from only one replicate. 

 

Sequence-function basis for ligand recognition in the 
engineered mandipropamid sensor 

 

The agrochemical fungicide mandipropamid is a 23-carbon 
structure containing two phenyl rings, three ether linkages, 
and two alkynes (Figure 3A). To accommodate such a large 
molecule, the crystal structure of the engineered PYR1mandi 

sensor (PDB 4WVO 2) shows the ligand compressed in a 
closed, 8clamshell9 conformation, with both ring structures 
pointed up in the pocket (close to HAB1W385) and a carbonyl 
group pointed down (away from HAB1W385) (Figure 3B). 
Figure 3C contains a heatmap summarizing the results of two 
replicate deep mutational scanning experiments, considering 
the 23 ligand-facing residues included in the mutational 
library. Overall, 77% (319/414) of single point mutations are 
destabilizing by greater than 50-fold (Figure 3C). 9% 
(34/414) of single-point mutations either improve effective 
binding affinity or are tolerated within less than a 2-fold 
reduction in binding affinity 

 

 
 

Figure 3. | Deep mutational scanning of the mandipropamid engineered biosensor. A. Chemical structure of 
mandipropamid. B. The mandipropamid ligand binding pocket (PDB 4WVO) color-coded by conservation of position. The side 
chains of the 23 amino acid positions mutated are shown. C. Heatmap of calculated relative binding affinities of  single-point 
mutations to the mandipropamid sensor, expressed as log(Kd,eff,i/Kd,eff,WT), with blue binding more favorably and orange less 
favorably. 

 

(log(Kd,eff,i/Kd,eff,WT) < 0.30 ). Data from the remaining 61 
positions could not be fit to curves to calculate binding 
affinity. 

 

The PYR1mandi heatmap highlights several key amino acid 
interactions that are critical to ligand binding. Relative to WT 
PYR1, the PYR1mandi construct analyzed by deep mutational 
scanning contains six mutations (Y58H, K59R, V81I, F108A, 

S122G, F159L) found through directed evolution to enable 
mandipropamid binding 2 (Table S1). The reversion mutations 
(R59K, I81V, A108F, G122S, L159F) are deleterious yet 
tolerated within a 2.6 to 11-fold reduction in binding affinity. 
Position R59 is notably one of several positions to tolerate 
very few other mutations away from wild-type. Other largely 
conserved positions include P88 and H115, which coordinate a 
bound water molecule forming the 8gate9 13,32, as well as R79, 
E94, and E141 that form intrapocket salt bridges (R79-E94; 
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R59-E141) as evident in the crystal structure of the PYR1mandi 
complex.  

 

In contrast, other positions accommodate significant 
mutational flexibility. These positions tend to be near the top 
of the binding pocket, encoding aliphatic residues such as I81, 
V83, L87, A108, L117, L159, A160, and V163 that can 
accommodate mutations to other similarly-sized or slightly 
larger aliphatics (Figure 3C). Position A108 notably can 
accommodate all but proline, aspartic acid, lysine, and 
arginine. Nine mutations improved binding affinity by 2.5-fold 
or greater, corresponding to log(Kd,eff,i/Kd,eff,WT) < -0.40. These 
were V83L, A108I/V, A160I/V/T, and V164I/L, as well as 
G122M. All nine mutations were from a smaller residue to a 

larger, usually hydrophobic residue, suggesting that these 
substitutions provided additional van der Waals packing and 
improved shape complementarity to the bound conformer of 
the mandipropamid ligand.  

 

PYR1WIN sensor ligand binding  

 

We also performed deep mutational scanning on PYR1WIN, 
an engineered biosensor that recognizes the synthetic 
cannabinoid (+)-WIN55,212-2 (Figure 4A). PYR1WIN was 
identified through a mutational library screen and contains 
mutations K59Q, F159A, and A160I away from the PYR1 
sequence 13. The solved structure of an engineered biosensor 

 
Figure 4. Deep mutational scanning of the WIN engineered biosensor A. Chemical structure of WIN 55,212-2 ligand. B. WIN 

sensor ligand binding pocket in the PYL2WIN structure (PDB 7MWN 13). Highlighted positions are labeled with the corresponding 
PYR1 number scheme for consistency. C. Heatmap of calculated relative binding affinities of single-point mutations to the WIN 
sensor, expressed as log(Kd,eff,i/Kd,eff,WT). with blue binding more favorably and orange less favorably. 

 

bound to WIN55,212-2 shows superficially similar 
mechanisms of ligand binding with the PYR1mandi structure. 
The naphthalene and morpholine rings of WIN55,212-2 are 
folded in a compressed, 8clamshell9 orientation (Figure 4B). 
Like PYR1mandi, the PYR1WIN sensor binds via a water-
mediated bond with a key hydrogen bond acceptor in the gate-
latch-lock mechanism 13. Unlike the PYR1mandi sensor, there is 
a considerable void at the 8bottom9 of the pocket at, and 
adjacent to, position 59.  

 

Figure 4C shows a heatmap of deep mutational scanning 
results for the PYR1WIN sensor for 23 ligand-facing positions. 
PYR1WIN sequence-binding maps exhibited considerably more 
sequence permissibility compared to the PYR1mandi sensor. 
While P88 and H115 are largely conserved, only 50% 
(205/414) of all single point mutations are destabilizing by 
greater than 50-fold, and 13% (53/414) either show improved 
binding or have less than a 2-fold reduction in binding affinity. 
Unlike the PYR1mandi sensor which tolerated only 59K/R & 
141E/P, position 59 in PYR1WIN tolerates the chemically 
diverse mutations to Q59Y and Q59G with less than a 2-fold 
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reduction in binding affinity, while Q59M, Q59A, Q59S, and 
the reversion mutant Q59K all improve binding affinity 
(Figure 4C). At position 141, all possible mutations other than 
to the large or positively charged residues Y,F,P,K, and R are 
tolerated within a 2-fold affinity reduction, and many 
mutations improve binding affinity. Since the original K59Q 
mutation disrupted the K59-E141 salt bridge, the combined 
mutational results show the relative unimportance of this local 
electrostatic environment on WIN ligand recognition. This is 
consistent with the solved structural complex, as E141 does 
not appear to contribute to hydrogen bonding or charge 
satisfaction for the WIN ligand. The R79-E94 salt bridge was 
also disrupted, with position 94 tolerating mutations to 
W,Y,P,I,V,G,T,Q,D,H, and K within a 4-fold reduction in 
binding affinity, while R79 remains conserved (Figure 4C).  

 

While the electrostatic networks are very different, the 
PYR1WIN sensor accommodates similar mutational flexibility 
to the PYR1mandi sensor at the top of the binding pocket, 
particularly positions V81, V83, V87, and V163 (Figure 4C). 
Mutations V81I, V83L, V83I, and L87M improve effective 
binding affinity, suggesting that subtle changes in van der 
Waals packing from aliphatic substitutions can improve shape 
complementarity. Notably, positions 159 and 160 also near the 
top of the pocket did not show similar mutational tolerance. 
The reversion mutations A159F and I160A result in greater 
than 50-fold worse binding, and at both positions only 
mutations to valine are tolerated within a 2-fold decrease in 
binding affinity (Figure 4C). The relatively small or large size 
of the aliphatic residues at those positions is critical, as the 
naphthalene ring of WIN55,212-2 protrudes close to the 
alanine at position 159 while space is opened near position 
160. 

 

A key difference between the PYR1mandi and PYR1WIN 
sensors is the relative packing at the bottom of the binding 
pocket, with the compressed <clamshell= orientation of 
WIN55,212-2 sitting higher in the pocket and not extending 
functional groups down like the mandipropamid ligand 
(Figure 4B). Positions S122 and V164 tolerate significantly 
more variability in the PYR1WIN sensor than in PYR1mandi, 
with both positions tolerating mutation within 50-fold 
destabilization to nearly any other amino acid (Figure 4C). 
This could be explained by the fact that both S122 and V164 
residues are at the bottom of the pocket and distal from the 
WIN ligand. At position V164, which is located on the inside 
face of the central alpha helix, mutations to either the 
positively charged amino acids histidine or lysine or a 
mutation to the larger aliphatic residue leucine can improve 
binding affinity. The positively charged residues H/K likely 
coordinate the unpaired E141, while a larger aliphatic residue 
is likely filling void space in the lower pocket otherwise 
occupied by solvent.  

 

In summary, deep mutational scanning identifies 
mechanisms of ligand recognition common to both engineered 
biosensors. Protein shape complementarity to the bound ligand 
is driven by aliphatic residues at the top of the pocket, with 
gain of function mutations likely improving van der Waals 
packing. In both sensors, the preservation of key residues 
satisfies hydrogen bond acceptors not used in coordinating the 
latch water molecule, with the arginine at position 79 notably 

conserved across both sensors. In contrast, the other charged 
residues at positions 59, 94, and 141 had varying differences 
in conservation between sensors. The PYR1WIN sensor was 
much more tolerant to mutation, likely owing to the relative 
paucity of ligand contacts at the bottom of the binding pocket.  

 

However, we were struck by several additional questions 
raised by the deep mutational scanning results that, if 
addressed, could improve our structural and physicochemical 
understanding necessary for de novo design of new sensors. 
First, whether residues not involved in the gate-latch-lock 
mechanism also formed water-mediated binding interactions 
that influenced the observed mutational profiles, as some 
differences in amino acid identities at each position could be 
rationalized by bound waters. Second, while the electrostatic 
network surrounding mandipropamid in the PYR1mandi sensor 
does not tolerate single mutations that disrupt only one end of 
a salt bridge, it is unclear whether the whole electrostatic 
network is required for enforcing binding affinity. Third, our 
deep mutational scanning method analyzed single mutations in 
isolation, raising questions about whether mutations acted on 
the same ligand internal conformation and rigid body 
orientation in the PYR1 binding pocket. If the ligand 
conformation and orientation was fixed for high affinity 
sensors, then individual point mutations would be expected to 
contribute additively to effective affinity gains found during 
directed evolution, simplifying engineering workflows. 
Knowledge of likely final fixed conformers could also 
improve computational design, enabling identification of 
many additive point mutations during the initial design 
process.  

 

Functional role of water networks to ligand recognition 
in engineered biosensors  

 

The crystal structures of multiple engineered PYR1 sensors, 
including PYR1mandi and PYR1WIN, show the ligand binding 
via one or two coordinated waters at the mouth of the ligand 
binding pocket 13. To investigate the possible functional role 
of other coordinated water networks, we performed all-atom 
MD simulations of the PYR1mandi sensor in complex with 
HAB1 (see Methods). From these MD simulations, we 
identified both direct and water-mediated non-bonded 
interactions between protein residues and the ligand using a 
heavy atom distance threshold of 4Å. We then quantified the 
relative occupancy R of direct versus water-mediated 
interactions using the formula R = D-WD+W⨉I where D is 
the occupancy of direct non-bonded interactions between a 
given residue and the ligand, W is the occupancy of water 
mediated non-bonded interactions between the same residue 
and ligand, and I is the total occupancy of either direct or 
water mediated non-bonded interactions. We computed the 
relative occupancy of these interactions for all residues in both 
the receptor and HAB1. We considered residues with R < -0.7 
to have <dominant= water-mediated interactions (Figure 5A–
B, S3).  

 

We then sought to determine which of these water mediated 
interactions are both strong and maintain stability throughout 
the simulation, suggesting which water molecules are more 
likely to significantly contribute to the ligand binding 
mechanism. We explain the determination of <strong= and 
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<stable= h-bonds in the methods below. For PYR1mandi, the 
only protein residues which had <dominant= (R < -0.7) water-
mediated interactions which were classified as both strong and 
stable were those formed with residue W385 on HAB1 
(Figure 5C,E) which is consistent with the crystal structure. 
For PYR1WIN, the dominant water-mediated interactions that 
were both strong and stable were found with residues W385 
on HAB1 as well as residues R79 and F108 on the receptor 
(Figure 5D,F). The conservation of the coordinated water 
molecule participating in the gate-latch-lock mechanism at the 
top of the binding pocket demonstrates the importance of this 
interaction. The PYR1WIN exclusive coordinated water 
molecules near the bottom of the binding pocket are likely a 
compensation for the lack of direct non-bonded interactions in 
that region. Likely due to the compact nature of the molecule 
as well as difference in chemical functionalization, the WIN 
ligand binds in a similar but distinct region of the binding 
pocket compared to mandipropamid, leaving a much larger 
cavity within the pocket (Figure 5E,F). These coordinated 
waters fill the observed void in the binding pocket and provide 
crucial stabilizing non-bonded interactions which, as 
suggested by deep mutational scanning, may also be filled 
with larger aliphatic residues. 

 

 

 
 Figure 5 | Conserved water coordination at mouth of 

PYR1mandi and PYR1WIN sensors while other coordinated 

waters are sensor-specific. A-B. The structures show the 
relative occupancy of direct vs water-mediated non-bonded 
interactions between the ligand and both the sensor and HAB1 
for PYR1mandi and PYR1WIN sensors. Only residues with |R| > 0.5 
are shown (Full data Figure S3). Those residues with water 
dominated non-bonded interactions are identifiable with a 
deeper blue hue and an R score closer to -1. C-D. Water-
mediated H-bonds between the ligand and W385 are stable for 
both PYR1mandi and PYR1WIN as demonstrated by sharp peaks 
with a mean of less than 2.5A in the distribution of hydrogen–
acceptor distances. Despite several bonds close to the 
threshold, no other waters were observed as strong and stable 
in MD simulations for PYR1mandi. PYR1WIN does form additional 
stable, strong, and dominant H-bonds with PYR1 residues R79 
and F108. The structure of the binding pocket for both the 
PYR1mandi (E) and PYR1WIN(F) sensors requires the water 
mediated interactions(blue) with W385 at the top of the binding 
pocket due primarily to an absence of direct non-bonded 
interactions(orange) in that region, but only PYR1WIN has a gap 
in the bottom of the binding pocket which must be compensated 
for by additional water-mediated h-bonds.  

 

Electrostatic contributions to ligand recognition probed 
by molecular dynamics and mutational analysis 

 

To address the precise role of the charged residues, and the 
two salt bridges observed previously in crystal structures, on 
ligand recognition, we performed MD simulations of several 
engineered biosensors. To establish that MD results were 
consistent with the experimental results from deep mutational 
scanning, we compared the calculated ΔΔG from relative free 
energy calculations performed with Hamiltonian replica 
exchange simulations to log(Kd,eff,i/Kd,eff,WT) for several 
mutations in the PYR1mandi sensor and verified that the same 
trends were observed in experiment and MD (Figure S5). In 
MD, stable salt-bridges R59-E141 and R79-E94 (Figure 6A) 
in the PYR1mandi were observed both with and without HAB1 
present with mean occupancies of 91% and 100% respectively 
(Figure S5). This suggests that the formation of these H-
bonds precede the secondary HAB1 binding event and are 
potentially necessary for initial PYR1-mandi complex 
formation. Additionally, R59 forms a stable H-bond with a 
mean occupancy of 98% with the mandipropamid 
ligand, appearing to stabilize the binding pocket as 
demonstrated by the significant reorientation of the ligand in 
the absence of this H-bond (Figure 6B, S6).  

 

We performed simulations of the PYR1mandi sensor with the 
mutation E141Y to investigate how the binding pocket 
changes in the absence of these stabilizing salt-bridge 
interactions. We verified that PYR1mandi/E141Y variant remained 
stable during simulation following an equilibration period to 
ensure we are analyzing the equilibration ensemble (Figure 
S7). PYR1mandi/E141Y was demonstrated to have significantly 
reduced binding affinity in deep mutational scanning (Figure 
3C), presumably by breaking the R59-E141 salt bridge. In 
simulations of PYR1mandi/E141Y, the occupancy of the R59-
Y141 H-bond is less than 10%, compared to mean occupancy 
of 91% for the R59-E141 H-bond in PYR1mandi (Figure S6). 
When E141 is mutated to tyrosine, R59 adopts a conformation 
like that of the apo state (Figure 6A-B) which prompts the 
formation of the R59-E94 H-bond, which is also present in 
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Apo PYR1mandi (Figure S6). These differences in the H-bond 
network within the binding pocket prevent the formation of 
the H-bond between the ligand and R59. The absence of this 
H-bond results in the destabilization of the ligand in the WT 
binding conformation and subsequent movement of the ligand 
to the top of the binding pocket (Figure 6B and S6-S7). 
Though the PYR1mandi/E141Y variant results in minimal 
reorientation of the backbone of PYR1, this ligand binding 
location is not conducive to the formation of the PYR1-HAB1 
complex (Figure 6A, S8). This suggests that R59 serves as an 
anchor for mandipropamid, ensuring binding occurs in an 
orientation which allows for the subsequent binding of HAB1 
to the complex. Overall, molecular dynamics simulations 
support that the formation of the R59-E141 salt bridge via 
electrostatic interaction enables the H-bonding of R59 to 
mandipropamid necessary for ligand recognition by correctly 
positioning residue R59 for binding.  

 

To build on the mechanistic insights of single mutations 
gained from simulation, we experimentally probed double 
mutants of the R59-E141 and R79-E94 salt bridges. While 
single mutations to R59 or E141 in PYR1mandi leave one half 
of an unsatisfied salt bridge intact, simultaneous mutation at 
both ends can explore the full impact of the electrostatic 
interaction. We hypothesize that if the effect of the salt bridge 
is simply the maintenance of electrostatic neutrality in the 
pocket, then swapping the salt bridge to R59E/E141R should 
still maintain binding. If, on the other hand, R59 contributes a 
critical H-bond donor to the ligand, this could be partially 
satisfied by a residue like Gln containing an H-bond donor. To 
test these hypotheses, we constructed the double mutants 
PYR1mandi/R59E/E141R and PYR1mandi/R59Q/E141Q and performed 
titrations of different concentrations of mandipropamid 
(Figure 6D, S9). The mutation E141Q was chosen as a non-
charged isostere maintaining charge neutrality. In attempting 
to swap the charge across the salt bridge with mutations R59E 
and E141R, we found that binding was ablated, even at 100 
¼M concentration of mandipropamid. Removing both charges 
with simultaneous glutamine mutations resulted in functional 
binding, albeit with a significantly worse Kd,eff. These results 
show that maintenance of electrostatic neutrality alone is not 
enough to enable binding. However, electrostatic neutrality 
combined with the presence of a hydrogen bond donor can 
maintain mandipropamid recognition. These results agree with 
our molecular dynamics simulations (Figure S10), in that it is 
the H-bonding capability at position R59 that is essential for 
ligand recognition.  

 

 
Figure 6. Electrostatic interactions facilitate H-bonding 

to stabilize the bottom of the mandi ligand binding pocket, 
which is necessary for HAB1 binding to the receptor-
ligand complex. A. There are two primary salt bridges 
present within the binding pocket of PYR1mandi with ligand 
bound, R79–E94 and R59–E141 (shown in cyan). In the 
absence of ligand, R59 (shown in white) is oriented up into the 
space ligand will occupy, forming a salt bridge with E94. 
These are observed in MD simulations as well as in the crystal 
structure (PDB 4WVO) B. In MD simulations of the ligand 
complex with PYR1mandi/E141Y, the E141Y mutation prevents salt 
bridge formation with R59, and R59 orients upward similar to 
the absence of ligand. Y141 instead adopts an extended, 
nearly perpendicular conformation (shown in yellow) as its 
backbone loop shifts. C. In complex with PYR1mandi/E141Y, the 
ligand (shown in yellow) exhibits a significantly different 
binding conformation than the WT PYR1mandi complex. We 
predict that the absence of an anchoring H-bond between the 
ligand and the reoriented R59 in the PYR1mandi/E141Y variant is 
the primary cause for this change in ligand orientation. The 
position of mandipropamid in PYR1mandi/E141Y causes a direct 
clash with the predicted location of W385 thus suggesting that 
this mutation would disrupt the gate-latch-lock mechanism 
and prevent ternary complex formation. D.  Yeast surface 
display titrations of PYR1mandi, PYR1mandi R59Q/E141Q, and 
PYR1mandi R59E/E141R. Relative fluorescence intensity (RFI) is 
determined by secondary labeling using streptavidin-
phycoerythrin after initial labeling with indicated ligand 
concentration and 100 nM biotinylated HAB1T+. Error bars 
represent 1 s.d. In relative fluorescence for n = 2 replicates. 
Inset cytograms show binding of HAB1T+ versus display of 
PYR1 variant on the surface of yeast. The cytogram for 
PYR1mandi R59Q/E141Q shows the positive result of binding and the 
cytogram of PYR1mandi R59E/E141R shows the lack of binding for 
that variant. 

 

The R79-E94 salt bridge provides both electrostatic 
neutrality and potential PYR1 local secondary structure 
stabilization. MD simulations reveal that R79 forms a h-bond 
with the main chain carbonyl of F52 with >90% occupancy in 
both apo and ligand bound PYR1mandi (Figure S12), 
suggesting a potential structural role for this residue. This is 
consistent with the deep mutational scanning results that 
residue R79 is critical in both sensors. To test this hypothesis, 
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we prepared a series of double mutants that maintain 
electrostatic neutrality. If the PYR1 structure is not impacted, 
these mutants should still result in functional binders, as 
neither residue appears to be hydrogen bonding with the 
ligand in PYR1mandi or PYR1WIN. However, all double mutants 
tested (PYR1mandi/R79E/E94R, PYR1mandi/R79A/E94A, 
PYR1mandi/R79T/E94Q, PYR1WIN/R79T/E94Q, PYR1WIN/R79I/E94L) 
resulted in a total loss of ligand binding (Figure S13). Using 
MD simulations, we determined that the PYR1mandi/R79E/E94R 
variant maintains the 59-141 salt bridge suggesting that 
maintenance of this salt-bridge alone is not sufficient to enable 
ligand binding (Figure S11). To determine whether mutation 
at R79 results in a PYR1 not able to maintain HAB1 
recognition, we tested binding of PYR1 mutants in the 
presence of biotinylated HAB1T+ and in the absence of ligand. 
The parental PYR1mandi and PYR1WIN sensors, and all R79 
mutants assayed, bound weakly at low micromolar HAB1T+ 
concentrations and with no difference compared to the 
parental sensors (Table S4). Combined, these results suggest 
that R79 is important for maintenance of local, though not 
global, structure necessary for ligand binding. 

 

Conformer selection of high affinity sensors 

 

While a solved crystal structure captures a single ligand 
conformation in the binding pocket, a protein-ligand complex 
could accommodate different modes of binding to different 
ligand conformers. To address this, we used MD simulation to 
sample the mandipropamid and WIN55,212-2 ligand 
conformations adopted in solution and compared these to the 
conformers sampled in complex with their engineered PYR1 
variant. During 3 independent 300 ns MD simulations of 
PYR1mandi and PYR1WIN in complex with the ligand and 
HAB1 only one ligand conformer was observed which 
matches in the published crystal structures 4WVO (Figure 
7A) and 7MWN (Figure 7B), respectively. Using temperature 
replica exchange MD simulation, we sampled conformations 
of both ligands in solvent allowing us to rank the energy 
clustered ligand conformers (See methods for additional 
details). We found that the observed conformer is among the 
most energetically favorable solution conformation (Fig 7C-
D). The free energy penalty relative to the lowest energy 
conformer in solution is below 1 KBT for both ligands, and 
both are estimated roughly to pay less than 1 kcal/mol free 
energy penalty to go from all conformers in solution to the 
complexed conformer 39. While the low-energy protein-ligand 
complex does not necessarily bind the lowest-energy ligand 
conformer in solution, the conformations which are selected 
are not unduly strained or otherwise highly unlikely to occur 
in solution. 

 
Figure 7: PYR1mandi and PYR1WIN select for a single low-energy ligand conformer. We evaluated the conformational 

flexibility of mandipropamid (A) and WIN55,212-2 (B) in solvent using temperature replica exchange molecular dynamics which 
allowed us to rank clusters of conformers for each ligand in solution. We hypothesize that mandipropamid conformer cluster 11 
could accommodate mutations requiring the rotation of a methyl propargyl ether group. The conformer which is sampled when the 
ligand is in complex with PYR1 is indicated with a star and is the 5th and 4th lowest free energy  conformation for mandipropamid 
(C)  and WIN (D) respectively.  E-F. Probability of observed conformer cluster in the 300 K replicate during temperature replica 
exchange molecular dynamics in solvent for mandipropamid and WIN55,212-2). 

Many protein-ligand complexes gain increasing ligand 
binding affinity through the accumulation of additional 
mutations that each individually improve binding affinity 40,41. 
A first-order approximation for additivity of mutational effect 
is that mutations do not change ligand conformer nor rigid 
body orientation. Thus, if PYR1mandi and PYR1WIN each bind 
only a single ligand conformer in a constrained rigid body 
orientation, then further mutations should be additive unless 
part of the conformer can rotate.  

 

To probe whether the additional mutations would continue 
to select for a single conformer, we performed experiments on 
multi-mutants of both sensors to compare the predictive 
benefit of additive mutations to experimentally-determined 
changes in binding affinity. The mutant of PYR1WIN had the 
mutations Q59M/Y120F/E141M (Figure 8A left), all of 
which deep mutational scanning indicated improved binding 
compared to WT PYR1WIN. Ligand titrations at a constant 



 10 

HAB1T+ concentration were performed for this mutant and the 
binding affinity was compared to the original sensor, as in 
Figure 3C and 4C (Figure 8B left). PYR1WIN Q59M/Y120F/E141M 
had a Kd,eff that was ~10-fold lower than the original PYR1WIN 
sensor, showing this expected additive effect and suggesting 
that WIN was in the same conformation for each individual 
mutation (Figure 8C left). 

For the mandi sensor, titrations of the double mutant 
A108T/L159F matched the decrease in binding affinity 
compared to WT PYR1mandi predicted by deep mutational 
scanning (Figure S14 left). In contrast, PYR1mandi A108I/V164L 

and PYR1mandi G122M/A160I were expected to increase binding 
affinity compared to PYR1mandi. However, titrations of 
PYR1mandi A108I/V164L (Figure 8A right) indicate that the double 
mutant does decrease Kd,eff, but by a different magnitude than 
would be 

predicted for fully additive mutations (Figure 8B,C right). 
Similar results were observed for PYR1mandi G122M/A160I (Figure 
S14 right). In these double mutants without additivity, the 
combined mutations were close to each other in space and 
present in the pocket where the mandipropamid molecule has 
a freely rotatable methyl propargyl ether group sticking into 
the bottom of the pocket, suggesting that each mutation acts 
on a different, or constellation of, ligand conformation(s) in 
the same approximate rigid body orientation (Figure 7A). 

 
Figure 8: Degree of mutational additivity indicates 

conformer selection in engineered biosensors. A) Structures 
of PYR1WIN Q59M/Y120F/E141M (left) and PYR1mandi A108I/V164L (right). 
The PYR1 backbone is shown as a teal ribbon. Ligands and 
mutated residues are shown as sticks. B) Yeast surface display 
titrations of multi-mutant biosensors for WIN (left) and mandi 
(right) compared with original sensor. PE fluorescence is 
determined by secondary labeling using streptavidin-
phycoerythrin after initial labeling with indicated ligand 
concentration and 100 nM biotinylated HAB1T+. Error bars 
represent 1 s.d. in relative PE fluorescence for n=4 (two 
technical replicates for two biological replicates).  C) 

Predicted additive improvement of mutations in binding 
affinity compared to experimentally observed relative binding 
affinity. PYR1WIN Q59M/Y120F/E141M (left) is additive while 
PYR1mandi A108I/V164L (right) is not. Error bars represent the 
summation of mean absolute error for each mutation (gray) or 
mean absolute error for titrations (colored).  

 

Computational design of WIN binding from a fixed 
selected conformer  

 

If high-affinity protein-ligand binders select for a single 
ligand conformer, then correctly identifying likely ligand 
conformations and placements in the binding pocket would be 
crucial for design success. To illustrate the importance of 
conformer selection and placement, we tested whether 
computational design could result in functional PYR1 
biosensors for a control ligand when provided a fixed ligand 
conformer in the known rigid body orientation. We performed 
Rosetta FastDesign 42 on the experimentally determined 
PYL2-WIN55212,2 crystal structure with PYR1WIN mutations 
reverted to wild-type PYR1/PYL2 sequences, with the goal of 
predicting the reverted mutations needed for ligand binding. 
FastDesign suggested the mutations S92V (deleterious in the 
high affinity sensor; Fig 4C) and F159AMVI (allowable; Fig 
4C). We tested combinations of mutations at these positions 
along with the known electrostatic-altering K59Q mutation 
observed in the PYR1WIN sensor. All six designs bound WIN 
using our yeast display assay (Fig 9, S15), and two sensors 
with an F159A mutation bound with a high nM limit of 
detection (Fig 9). Overall, these results show that physically 
based energy functions (Rosetta) are sufficient for identifying 
binding sequences if a compatible ligand conformation and 
rigid body orientation can be identified.  

 

Figure 9: Computational design of PYR1-ligand binding 
from a selected fixed conformer. Yeast surface display 
titrations of computationally designed PYR1 biosensors shown 
in red and blue binding WIN55,212-2. The wild-type PYR1WIN 
sensor shown in black. PE fluorescence is determined by 
secondary labeling using streptavidin-phycoerythrin after 
initial labeling with indicated ligand concentration and 100 
nM biotinylated HAB1T+. Error bars represent 1 s.d. in 
relative PE fluorescence for n=2 (two technical replicates for 
one biological replicate, second biological replicate in figure 
S12). 

 

Discussion 
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In this work we analyzed the structural, sequence, and 
mechanistic determinants of binding in two engineered PYR1 
biosensors. We performed deep mutational scanning, used MD 
simulation to explore conformer selection and mechanisms of 
ligand binding, generated multi-mutants to test distinct 
biophysical hypotheses, and used computational design to 
apply these insights to design new PYR1WIN sensors.  

 

Some lessons for computational design will apply to 
engineering PYR1 for binding to other novel ligands, and may 
apply to computational design of protein-ligand binding more 
broadly. In the PYR1 scaffold, mutations at the top of the 
binding pocket to different sized aliphatics appear to increase 
shape complementarity for improved binding affinity. 
Additionally, hydrogen bonds with available ligand functional 
groups can stabilize binding, particularly at position 59 to 
anchor the ligand in the bottom of the binding pocket. The 
nature of the H-bond networks between ligand and protein are 
closely related to the electrostatic environment in the binding 
pocket, as the charge of residues forming hydrogen bonds 
must be balanced across the pocket by salt bridges. Balancing 
charge in the pocket is important for high-affinity binding, but 
not sufficient alone if ligand-stabilizing H-bonds are removed. 
While we determined through MD that water-mediated latch 
closure involving HAB1W385 is essential to ligand binding in 
engineered PYR1-HAB1 complexes, additional water 
molecules can play a role in filling the bottom of the binding 
pocket for compact ligands, such as bound WIN55,212-2, 
forming stable water-mediated interactions between protein 
and ligand. These lessons suggest that to engineer PYR1 
binding to novel ligands one should focus on satisfying ligand 
H-bond acceptors, balancing charge across the binding pocket, 
and targeting mutations to complement ligand size and shape 
to the top of binding pocket. Indeed, following these lessons 
led to computational design of sequence-distinct PYR1 
proteins which recognize WIN55,212-2 with high nanomolar 
limit of detection on the yeast surface. 

 

High affinity biosensors are likely evolved for a single 
ligand conformer, or closely-related cluster, in the same rigid 
body orientation through the accumulation of additive 
beneficial mutations. This hypothesis is also supported by our 
MD simulations observing that PYR1mandi and PYR1WIN each 
bind a single ligand conformer. This idea of conformer 
selection by the accumulation of beneficial additive mutations 
can be seen in the development of the PYR1mandi sensor 2 and 
the broader screening of organophospates and cannabinoids 13. 
These papers showed that the PYR1 binding pocket is 
unusually pliable, with medium affinity binders able to be 
identified from a small number of mutations. In Park et al, an 
early PYR1 sensor binding mandipropamid contained only the 
mutations K59R, S122G, and F108A and bound the ligand 
with low micromolar responsiveness, while additional affinity 
maturation of the sensor added the mutations Y58H, V81I, and 
F159L 2. However, the deep mutational scanning data from 
this work indicates that position 108 of PYR1mandi can tolerate 
significant mutation, and is improved by substitution to the 
slightly larger non-polar aliphatic residues isoleucine and 
valine. 

 

Under the mechanism that acquiring more additive 
mutations fixes the ligand to only a handful of similar ligand 

conformations, we hypothesize that the original F108A 
mutation opened the ligand binding pocket to accept the 
mandipropamid molecule, and then additional mutations 
selected for a narrower range of allowed conformers. This can 
also be understood as a tradeoff between enthalpy and entropy 
in the overall free energy of the system, in which restricting 
the allowed ligand conformers increases the free energy by 
decreasing the entropy, but is outweighed by the more 
negative enthalpy from improved binding affinity. If the 
accumulation of additive mutations fixes conformer selection 
in the binding pocket, then sensors with fewer mutations are 
more likely to bind their ligand weakly and less specifically, 
and sensor variants containing more mutations would be easier 
to further mature through directed evolution because each 
additional mutation is more likely to be additive.  

 

Another crucial computational design consideration is the 
rigid body placement of the appropriate conformer with 
respect to the protein binding pocket. The mutational and MD 
studies here reiterated the known importance of the bound 
water coordinated by Trp385 13,35. Because for all known 
biosensors a ligand H-bond acceptor coordinates this bound 
water, the design process for PYR1 is considerably simplified 
compared to scaffolds without an appropriate anchor point. 
Indeed, aligning the known WIN conformer to its known H-
bond acceptor geometry, followed by Rosetta FastDesign 42, is 
sufficient to generate designs that recognize WIN with a 
nanomolar limit of detection. Developing new deep learning 
methods to learn and design small molecule-protein 
interactions is in vogue 15,43–48. We suggest that comparable 
attention should be placed with the choice of ligand conformer 
and rigid body orientation.  

 

Conclusion 

 

In this work we analyzed two engineered biosensors to 
understand how the same PYR1 protein scaffold can be 
mutated to bind two ligands with very different structural 
features. We evaluated the sequence determinants of binding 
using deep mutational scanning and performed molecular 
dynamics analysis to elucidate key mechanisms of binding for 
multiple ligands. This analysis provides insight into how 
electrostatic networks complement different ligand structural 
features, how the directed evolution of protein-ligand 
interactions can promote selection of a specific conformer, and 
how proper sampling of plausible conformers is critical for 
successful computational design. While the insights from this 
work can directly inform PYR1 scaffold engineering for novel 
ligand biosensors, selection of a limited conformer repertoire 
is likely a trait of many high affinity protein-ligand 
interactions and can be applied generally for computational 
design.  

 

Methods 

 

Construction of PYR1mandi and PYR1WIN mutational 
libraries 

 

Single-site saturation mutagenesis libraries of the PYR1mandi 
and PYR1WIN sensors were created using comprehensive 
nicking mutagenesis, in which each specified position was 
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mutated to every other amino acid plus stop codon49. For the 
PYR1mandi sensor, plasmid pJS624 was mutated using NNK 
primers at positions 59, 60, 61, 62, 79, 81, 83, 87, 88, 89, 91, 
92, 94, 108, 109, 110, 115, 117, 120, 122, 141, 158, 159, 160, 
163, 164, and 167 to create library L054. For the PYR1WIN 
sensor, plasmid pRMC005 was generated by Golden Gate 
assembly of synthetic dsDNA (eBlock, Integrated DNA 
Technologies) into vector pND003 (Daffern et. al. 2023) and 
mutated using NNK primers at positions 59, 61, 62, 79, 81, 83, 
87, 88, 89, 91, 92, 94, 108, 109, 110, 115, 116, 117, 120, 122, 
141, 158, 159, 160, 163, 164, 167 to create library L058. 
Primer sequences are listed in Table S2. Library plasmids 
were transformed into chemically competent EBY100 cells as 
described (Medina-Cucurella and Whitehead 2018) and stored 
as 1 ml stocks at OD600=1 in yeast storage buffer at -80℃.  

 

L054 replicates A and B were made as two separate library 
reactions, then screened on different days. L058 was a single 
library where two replicates were screened on different days.  

 

Preparation of HAB1 for binding assays 

 

An N-terminal truncation of HAB1 (ΔN-HAB1) purified 
and stored in saturated ammonium sulfate at 100¼M, as 
described in Steiner et al50. For use in yeast surface display 
assays, the protein was centrifuged at 17,000 x g for 10 
minutes to pellet. The supernatant was removed by pipette and 
discarded, and the pellet was resuspended an equivalent 
volume of ice-cold CBSF++ (CSBF: 20mM sodium citrate, 
147mM NaCl, 4.5mM KCl, 0.1% w/v bovine serum albumin, 
pH 8.0 adjusted with 1M sodium hydroxide, sterile filtered), 
1mM freshly dissolved DTT, 1mM TCEP, pH 8.0). The 
resuspended HAB1 was then desalted using a ZebaTM spin 
desalting column (Thermo) equilibrated with CBSF++ and 
stored on ice.  

 

Yeast surface display of PYR1 variant libraries 

 

Yeast surface display of PYR1 variant libraries were 
performed according to Steiner et al., with the following 
modifications50. 1ml yeast stocks of libraries L054 and L058 
were thawed, centrifuged at 16,000 x g for 1 min, resuspended 
in 1ml of SDCAA plus 10 ¼l Pen-Step (10,000 U/ml, Life 
Technologies), and grown for 4-6h at 30℃ with shaking at 
300rpm. Expression was induced by resuspending the SDCAA 
culture in 1 ml SDGCAA (1 part SDCAA to 9 parts SGCAA) 
plus 10 ¼l Pen-Step to OD600=1 and growing for 20-22h at 
22℃, after which cells were resuspended in 1ml CBSF 
(20mM sodium citrate, 147 mM NaCl, 4.5mM KCl, 1 g/L 
bovine serum albumin) at OD600=2. 

 

For each ligand labeling concentration, 200 ul cells at 
OD600=2 were mixed with 20 ¼l ligand diluted in DMSO and 
100 ¼l prepared HAB1 diluted in CSBF++, to a final volume 
of 1ml in CBSF buffer, ensuring a consistent 1:50 ligand stock 
dilution and 1:10 HAB1 stock dilution across all reactions. 
Reactions were incubated at room temperature on a benchtop 
plate agitator for 30 minutes. Reactions were then centrifuged 
at 16,000 x g for 1 min to pellet, cells were washed with 1ml 
CBSF, and centrifuged again. After the supernatant was 
removed by pipet, reactions were labeled with 12¼l anti-c-

myc-FITC (Miltenyi Biotec), 5¼l SAPE (streptavidin-R-
phycoerythrin, Life Technologies), and 378 ¼l CBSF. 
Labeling reactions were incubated for 10 minutes on ice 
protected from light, then centrifuged and washed with 1ml 
CBSF as above, then centrifuged and stored on ice with the 
supernatant removed.  

 

Cell sorts were performed on a Sony SH800S cell sorter 
(Sony Biotechnology), with cell pellets resuspended in 1ml of 
CSBF immediately before reading. For each sample, roughly 
the top 25% of displaying cells by binding signal were 
collected. Cell sorter parameters and full sorting statistics are 
listed for each sensor replicate in the supplementary data file 
PYR1_DMS_supplemental_data&primers.xlsx. Collected 
cells were suspended in 5ml SDCAA media plus 50 ¼l Pen-
Step and incubated at 30℃ with shaking at 300 rpm for 30–40 
hrs, before freezing as 1 ml cell stocks at OD600=4 in yeast 
storage buffer at -80℃. 

 

Deep sequencing preparation  

 

Cells samples collected from library sorting were prepared 
for deep sequencing as described in Medina-Cucurella and 
Whitehead (Medina-Cucurella and Whitehead 2018), using a 
Zymo Yeast Plasmid Miniprep II kit (Zymo Research) and a 
Monarch PCR & DNA Cleanup kit (NEB) with the following 
changes. Samples were amplified using inner primers ACL-
P1060 and ACL-P1061 in a 40¼l PCR reaction using Q5 Hot 
Start 2x Master Mix (New England Biolabs) for 20-25 cycles 
at an annealing temperature of 64°C. 5 ¼L of PCR product 
from the inner primer amplification was cleaned using 5¼L 
Exonuclease I (NEB) and 2¼L rSAP (NEB), incubating for 15 
min at 37°C then 15 min at 80°C. 1.6¼L of cleanup product 
DNA was carried forward to the 2nd PCR reaction using 
Illumina TruSeq small RNA adapters in a 25¼l Q5 reaction for 
20-25 cycles at an annealing temperature of 64°C. Samples 
were purified using Agencourt Ampure XP beads (Beckman 
Coulter), quantified using PicoGreen (ThermoFisher), pooled, 
and sequenced on an Illumina MiSeq using 2 x 250 bp paired-
end reads by the Rush University Medical Center sequencing 
facility.  

 

Maximum likelihood estimation analysis of sequencing 
data 

 

Variant read counts obtained from deep sequencing were 
processed by a maximum likelihood estimation method as in 
Petersen et. al.38. We excluded STOP codons from analysis 
because the reference population used was selected for the 
displayed population, removing most variants containing 
STOP codons from the analysis. Additionally, we removed 
cysteines owing to the complicated reducing conditions 
necessary to perform yeast surface display titrations50. 

 

Construction and yeast surface display of isogenic 
variants  

 

Individual PYR1 sequence variants for isogenic titrations, 
analysis of electrostatic variants, and conformer selection 
experiments were constructed by Golden Gate assembly of an 
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eblock DNA sequence (Integrated DNA Technologies) into 
vector pND003 (Daffern et. al. 2023). All plasmids are listed 
in table S3.  

 

Preparation of cell cultures for yeast surface display 
titrations of isogenic variants was performed as above for the 
display of PYR1 libraries. Yeast surface display titrations 
were performed according to Steiner et al AiChE 2020, with 
the following modifications. For each ligand labeling 
concentration, 5ul cells at OD600=2 were mixed with 1¼l 
ligand diluted in DMSO and 5¼l prepared HAB1 diluted in 
CSBF++, to a final volume of 50¼l in CBSF buffer, ensuring a 
consistent 1:50 ligand stock dilution and 1:10 HAB1 stock 
dilution across all reactions. Reactions were incubated at room 
temperature on a benchtop plate agitator for 30 minutes. 
Reactions were then centrifuged at 2,500 x g for 5 min to 
pellet, cells were washed with 200¼l CBSF, and centrifuged 
again. After the supernatant was removed by flicking, 
reactions were labeled with 0.6¼l anti-c-myc-FITC (Miltenyi 
Biotec), 0.25¼l SAPE (streptavidin-R-phycoerythrin, Life 
Technologies), and 49.15¼l CBSF. Labeling reactions were 
incubated for 10 minutes on ice protected from light, then 
centrifuged and washed with 200¼l CBSF as above, then 
centrifuged and stored on ice with the supernatant removed.  

 

Binding measurements were performed on a Sony SH800S 
cell sorter (Sony Biotechnology), with cell pellets resuspended 
in 100¼l of CSBF immediately before reading. Sample 
analysis was performed using FlowJo 10, and binding 
parameters were determined in Graphpad Prism 10.1.0 using 
the specific binding with Hill slope nonlinear regression 
function.  

 

ΔN-HAB1 phosphatase inhibition assays 
 

Recombinant PYR1WIN , PYR1MANDI , and their mutant 
derivatives were expressed in E. coli as 6x-His-MBP fusion 
proteins and purified by immobilized metal affinity 
chromatography as previously described.52 The concentrations 
of active receptors in the PYR1WIN  and PYR1MANDI  
preparations were inferred by titrations against ΔN-HAB1 at 
saturating ligand concentrations.  Phosphatase inhibition 
assays were conducted using 10 nM ΔN-HAB1, 40 nM active 
receptor (determined by titration;  1986 ng of PYR1WIN , 303 
ng of PYR1MANDI), and varying ligand concentrations 
(solvated in DMSO),  in a reaction buffer containing 100 mM 
Tris-HCl –pH7.9, 100 mM NaCl, 3 mg/ml BSA, 0.1% 2-
mercaptoethanol, 1 mM MnCl2, and 1 mM 4-
methylumbelliferyl phosphate (added immediately before 
collecting reaction velocities).  Fluorescence data were 
collected on a Tecan Spark multimode microplate reader and 
reaction velocities and used to calculate PP2C activities 
relative to control (0 nM ligand) reactions. Reactions were 
conducted with quadruplicate technical replicates, and  IC50 
values for PP2C inhibition were inferred from fits of the dose-
response data to a 4-parameter log-logistic using the drc 
package in R.53 Mandipropamid and WIN 55212-2 were 
purchased as analytical grade chemicals from Sigma (USA) 
and Cayman Chemicals (USA), respectively. 

 

 

Molecular dynamics simulations 

 

All molecular dynamics (MD) simulations were performed 
using GROMACS 2020.6. All proteins were parameterized 
using the amber ff14sb protein force field and all ligands were 
parameterized using GAFF. The protonation state was 
determined using the H++ server at a pH of 7. All mutant 
proteins were prepared using MODELLER. Hydrogen mass 
repartitioning was applied using ParmEd. The simulation box 
was constructed to maintain a minimum 1 nm distance to the 
periodic boundary condition, and sodium and chloride ions 
were added to neutralize the system and maintain 0.15M salt 
concentration. The procedure for all simulations was as 
follows: energy minimization to 100 kJ/mol/nm energy 
threshold, 100 ns NVT equilibration with the Berendsen 
thermostat, and 100 ns NPT equilibration with the Berendsen 
thermostat and barostat. Production simulations were 300 ns, 
unless otherwise specified, and were run with a 4 fs time step 
using the Parrinello-Rahman barostat and v-rescale thermostat 
at 1 atm and 300 K. All input simulation files are provided at 
the Github repository shirtsgroup/PYR1_Design.  

 

The initial structures for PYR1Mandi and PYR1WIN in 
complex with HAB1 and the ligand were taken from x-ray 
crystal structures (PDB 4WVO and 7MWN respectively). We 
ran simulations of PYR1Mandi and PYR1WIN in the absence of 
HAB1 as well as apo PYR1 simulations in the absence of both 
HAB1 and the ligand. The same PYR1 structure was used to 
initiate all simulations with either HAB1 or both HAB1 and 
the ligand removed. Mutant simulations used the WT crystal 
structure as a base and then a mutation was performed using 
MODELLER. A 5-50 ns equilibration period was included in 
all simulations to allow for conformational changes to be 
made from these artificial augmentations to the initial 
structure as well as to allow the system to settle at the 
equilibration temperature and pressure. The equilibration 
period was determined by the lack of systematic change in the 
protein backbone RMSD. 

 

We analyzed simulations for non-bonded interactions which 
were broadly defined as a heavy atom distance of less than 4 
Å using MDTraj compute_distances function. In order to 
quantify the stability of the water-mediated hydrogen bonds, 
we computed the distance distribution between the hydrogen 
and the acceptor in the water mediated H-bond for all residues 
with dominant water-mediated interactions. We computed the 
mean distance to quantify the strength of the H-bond. and the 
standard deviation of the distance distribution to quantify the 
relative stability of the H-bond, both between the water 
molecule and the protein residue as well as the water molecule 
and the ligand. <Strong= H-bonds were classified as having a 
relatively short mean distance of 2-2.5 Å while weak H-bonds 
had a longer mean distance of 2.5-4 Å. <Stable= H-bonds were 
defined as having a standard deviation in bond length of 
<0.45Å. The numerical ranges for classifying strong and 
stable H-bonds were set to include 95% of analyzed water–
residue H-bonds (Figure S4). We included H-bonds with 
solvent exposed residues as well as residues within the binding 
pocket which were of the same type as those engaging in 
water-mediated H-bonds with the ligand.  

 

In addition to standard MD, we also performed alchemical 
relative free energy (RFE) calculations as well as temperature 
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replica exchange molecular dynamics simulations (TREMD). 
The crystal structure conformation was used as the WT for 
RFE simulations and then hybrid topologies and coordinates 
were generated for mutated residues using PMX. The same 
energy minimization and equilibration steps were carried out 
for each of the 18 intermediate » states. Production 
simulations were completed using Hamiltonian replica 
exchange using a 2 fs time step and were completed for 25 ns 
for each replicate. Analysis was completed using the 
alchemlyb package with reported ΔΔG estimates computed 
using MBAR. The TREMD simulations were run with only 
the ligand in solvent with sodium and chloride ions to 
maintain a 0.15 M salt concentration. 27 temperature 
replicates were used varying from 300 K to 450 K with 
conformational swaps allowed every 2 ps. All conformational 
analysis came from only the 300 K replicate. Sampled ligand 
conformations were first sorted based on sampled dihedral 
angles computed using MDTraj and these conformations were 
then clustered using nearest neighbor clustering on pairwise 
heavy atom RMSD. The relative free energy of a conformer 
can be computed since these MD simulations maintain the 
Boltzmann distribution, thus G -kBTlog(ppref) in which pref 
is the probability of the most probable conformation and p is 
the probability of any given conformation. The analysis code 
can be found at the Github repository 
shirtsgroup/PYR1_Design. 

 

Computational design and experimental validation 

 

For computational design, the PYL2WIN structure PDB 
7MWN was manually stripped of all accessory ions and water 
molecules, other than the key water coordinating by the gate-
latch-lock binding mechanism, leaving the WIN55,212-2 
ligand in place on a separate chain. To eliminate WIN55212-2 
binding, we reverted the PYL2WIN sequence to the wild-type 
PYL2 sequence by mutating Q59K, A165F, and I166V in 
PyMOL. Computational design using FastRelax 42 with the 
default energy function was performed using PyRosetta4 
version 
2021.26+release.b308454c455dd04f6824cc8b23e54bbb9be2c
dd7, performing design on 9 subtle variations of ligand 
alignment to the water molecule. Output designs were 
screened using PyMOL to ensure the ligand formed a polar 
contact with the water molecule and were scored by Rosetta 
on interface energy, buried unsatisfied hydrogen bonds, shape 
complementarity, and total score.  

 
Across all designs that passed screening for ligand-water 
contacts, Rosetta design suggested the mutations K64(59)VAN, 
S96(92)V, E147(141)Y, and F165(159)AMVI (corresponding 
PYR1 numbering in parenthesis). Based on previous experience 
with poor prediction of electrostatic interactions by Rosetta, we 
excluded mutations at PYR1 positions 59 and 141, instead 
incorporating the PYR1WIN-mutation K59Q into designs. DNA 
sequences of the wild-type PYR1 sequence with combinations 
of the point mutations K59Q, S92V, F159A, F159V, A160I, 
and A160V were ordered (Integrated DNA Technologies) and 
cloned by Golden Gate Assembly 51 into the pND003 vector. 
Constructs were expressed in yeast surface display and binding 
affinity to WIN55212,2 was analyzed as previously described 
for isogenic variants. 
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