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A B S T R A C T   

The construction industry is integrating robots into critical tasks at an accelerated pace, with the aim of 
enhancing efficiency, safety, and productivity. However, construction tasks requiring dexterity remain a chal
lenge due to the need for precise movements, accurate perception, real-time decision-making, and a compre
hensive understanding of the environment. To address these challenges, the introduction of embodied artificial 
intelligence (AI) represents a significant shift in robotic capabilities to enhance their alignment with the broader 
spectrum of construction settings. Rooted in cognitive science, embodied AI emphasizes the integration of an 
agent’s physical form into its computational intelligence processes. It resembles how humans develop motor 
skills by interacting with physical world. This paper introduces DEXBOT, an exploratory framework for designing 
construction robots capable of high dexterity using embodied AI principles that mimics human strategies in 
complex tasks. The framework outlines six key perspectives for solving high-dexterity tasks with embodied AI: 
scene understanding, localization and motion planning, position-based control, force-based control, sequence 
planning, and correction decision-making. By presenting preliminary test cases for each perspective, the paper 
emphasizes the role of embodied AI in advancing dexterity level of construction robots. The DEXBOT framework 
is expected to encourage interdisciplinary collaboration of designing capable construction robots in the future.   

1. Introduction 

The construction industry has witnessed an increasing adoption of 
robots in a spectrum of tasks, with the goal of enhancing the efficiency, 
safety, and productivity of construction operations [1], such as the 
bricklaying robot [2], robotic welding [3], and UAV/UGV for inspection 
[4]. Despite the advancements, the need for sophisticated collaborative 
robots becomes apparent in high-dexterity construction tasks i.e., tasks 
requiring fine motor skills, precise manipulation, and adaptive re
sponses to unpredictable environments, which continue to pose 
considerable challenges for robotic applications, such as pipefitting, 
instrument installation, and electrical wiring [5–7]. These tasks chal
lenge conventional robot control methods by not only demanding 
technical precision (accurate perception, real-time decision-making, and 
semantic understanding [8]) but also an advanced understanding of 
human behaviors and needs. The dynamic, uncertain nature of con
struction sites, with varying materials, unforeseen obstacles, and un
certain human actions [9], further highlights the importance of 

developing robotic systems that can effectively interact and collaborate 
with human workers, adapting in real time to their actions and 
decisions. 

This paper proposes that one of the enablers for robotics to effec
tively execute dexterous construction tasks is integrating embodied 
artificial intelligence (AI) in the design of robots. Embodied AI repre
sents a branch of AI methods that focus on modeling the complex in
teractions between AI and the physical environment to enable a more 
robust adaptation to the environment [10]. Rooted in the process of 
humans developing motor skills, embodiment originally refers to the 
role of the body of an agent (e.g., humans) in shaping intelligence, which 
involves sensory perception, motor control, and adaptive learning from 
physical interactions and experiences [11]. Embodied AI emphasizes 
real-time sensory data incorporation, enabling agents to respond more 
effectively to dynamic, unstructured environments and human presence. 
[10]. This approach can enables robots to interact with the environment 
and human workers in a more sophisticated and nuanced way, facili
tating more effective reactions in dynamic and unstructured 

* Corresponding authors. 
E-mail addresses: you.h@ufl.edu (H. You), zhoutianyu@ufl.edu (T. Zhou), qi.zhu@nist.gov (Q. Zhu), ye.yang@ufl.edu (Y. Ye), eric.du@essie.ufl.edu (E.J. Du).  

Contents lists available at ScienceDirect 

Advanced Engineering Informatics 

journal homepage: www.elsevier.com/locate/aei 

https://doi.org/10.1016/j.aei.2024.102572 
Received 11 January 2024; Received in revised form 22 March 2024; Accepted 25 April 2024   

mailto:you.h@ufl.edu
mailto:zhoutianyu@ufl.edu
mailto:qi.zhu@nist.gov
mailto:ye.yang@ufl.edu
mailto:eric.du@essie.ufl.edu
www.sciencedirect.com/science/journal/14740346
https://www.elsevier.com/locate/aei
https://doi.org/10.1016/j.aei.2024.102572
https://doi.org/10.1016/j.aei.2024.102572
https://doi.org/10.1016/j.aei.2024.102572
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aei.2024.102572&domain=pdf


Advanced Engineering Informatics 62 (2024) 102572

2

environments [12]. Recent advances in embodied AI hold great poten
tial for significantly improving the capabilities of construction robots to 
facilitate complex construction tasks. 

Despite the potential of embodied AI for enabling dexterous con
struction robots, a systematic framework that can guide the high-level 
design and integration processes seems missing. The significance of 
such a framework is twofold. One the one hand, a framework for robotic 
embodied AI can establish design standards for robot sensing, motor 
control, and learning mechanisms, essential for high-dexterity tasks. On 
the other hand, a systematic framework can encourage collaboration, 
accelerate research progress, and ensure that advances in embodied AI 
can be effectively and safely transferred to real-world construction tasks 
[13]. This is particularly crucial for enhancing the robotic applications 
in construction, where the need for intuitive, responsive, and safe in
teractions between humans and robots is paramount. The lack of such a 
framework may attributed to challenges in bridging the gap between 
existing robotics and AI methods and their challenges in the diverse and 
dynamic construction environment. First, the field of embodied AI is still 
in its infancy, and researchers are still exploring the best approaches for 
integrating AI into any physical system including construction robots 
[11]. Second, the construction tasks are complex and multifaceted, 
presenting a significant challenge in developing a universal methodol
ogy framework that can be applied across different types of construction 
projects [14]. The dynamic nature of construction environments and 
workers further aggravates this challenge, as robots need to adapt and 
respond to changing conditions in real-time [15]. Consequently, studies 
in construction automation tend to focus on very specific applications 
and tasks. Finally, the integration of embodied AI in dexterity-capable 
construction robots requires an interdisciplinary research approach, as 
it involves the convergence of AI and robotics. However, these are 
traditionally separate fields, and therefore the development of a sys
tematic methodology framework for integrating embodied AI in con
struction robots requires collaboration and knowledge-sharing between 
experts in multiple disciplines. 

To address this gap, this paper proposes an enhancement through the 
DEXBOT framework based on the existing foundation. This enhance
ment emphasizes the infusion of embodied AI principles into established 
frameworks for the design of dexterity-capable construction robots. 
Rather than introducing an entirely new paradigm, DEXBOT is designed 
to augment existing models with capabilities that significantly elevate 
the potential for sophisticated human-robot interactions, adaptability, 
and precision in unstructured environments. It meticulously details the 
roles embodied AI can play in various aspects of construction robotics, 
including scene understanding, localization and motion planning, 
position-based and force-based control, as well as sequence planning 
and the crucial decision-making processes of correction, rework, or 
discard. These steps serve as building blocks for the construction of 
capable robots that are pivotal for robots to effectively work alongside 
humans in unstructured environments. For each step, we will present 
preliminary test cases to showcase the unique role of embodied AI. By 
demonstrating the potential benefits of embodied AI for construction 
robotics, this paper aims to encourage further research and development 
in this area, ultimately leading to more capable and efficient construc
tion robots in performing high-dexterity tasks. 

2. Literature review 

2.1. HRI in construction 

The construction industry is witnessing a transformative shift to
wards HRI, moving from traditional, isolated human and robot roles to a 
collaborative, integrated approach. This shift, driven by the industry’s 
growing emphasis on efficiency, safety, and productivity, is redefining 
the landscape of construction operations [16]. The evolution of HRI in 
construction reflects both technological and cultural shifts. Robots are 
increasingly seen as collaborative partners rather than mere tools, a 

change driven by the need for enhanced safety in hazardous construc
tion environments [17]. Robots in roles like structural assembly or 
material handling alleviate the risk to human workers, taking on tasks 
that are either too dangerous or physically demanding [18]. The ad
vancements facilitating this integration are multifaceted. Innovations in 
sensor technology allow robots to have a heightened awareness of their 
human counterparts, leading to safer and more efficient collaboration 
[19]. 

Furthermore, developments in AI and machine learning equip robots 
with the ability to predict human actions, thereby enhancing collabo
rative efforts [20]. Deep Reinforcement Learning (DRL) and Deep 
Imitation Learning [21] emerge as key methodologies, with DRL opti
mizing decision-making through trial and error and DIL enhancing ro
bots’ ability to learn from human actions directly [22]. This shift 
underscores a strategic move towards integrating human expertise into 
robotic systems, especially in complex construction tasks requiring high 
levels of dexterity [23]. DIL methods, such as behavioral cloning and 
generative adversarial imitation learning, have proven particularly 
effective in narrowing the gap between robotic capabilities and human 
skill, by enabling robots to replicate expert human behaviors quickly 
[24]. This integration not only accelerates the learning curve but also 
enriches robots’ operational versatility, making them more adept at 
responding to the nuanced dynamics of construction sites [22]. By 
emphasizing human demonstrations—from visual cues to force inter
actions—as fundamental elements of robot training, we underscore the 
growing importance of HRI in the construction industry [25,26]. This 
approach not only streamlines the process of robot training but also 
ensures that robots can work alongside humans more efficiently and 
safely, embodying the nuanced demands of construction tasks through a 
harmonious blend of human insight and robotic precision. 

Despite these advancements, HRIs in construction face several 
challenges. Communication barriers between humans and robots remain 
a significant hurdle. Developing an intuitive, user-friendly framework 
for human-robot interaction is crucial for maximizing the efficiency and 
safety of these collaborations [27]. Ensuring the safety of human 
workers in close proximity to robots is another critical area requiring 
ongoing research and development [28]. The advancements and chal
lenges in HRI underscore the need for a comprehensive framework that 
not only enhances human-robot collaboration but also leverages the 
latest technological innovations [29]. Embodied AI bridges the gap be
tween advanced robotic capabilities and intuitive, efficient HRIs by 
enabling robots to understand and respond to the physical world in a 
more human-like manner [11]. 

2.2. Construction robot and design framework 

In recent years, the construction literature has shown a growing in
terest in robotic methods to support construction operations, aiming to 
enhance efficiency, safety, and productivity [30]. The applications of 
construction robotics, from material handling [31] and site preparation 
[14] to search and rescue [32], structural assembly and installation 
[33], painting and plastering [34] and robot-based inspection [35–37], 
have not only improved operational efficiency but also facilitated novel 
Human-Robot Interactions (HRIs) in construction scenarios. These 
advanced applications demonstrate the potential for collaborative in
teractions between humans and machines, ensuring safety and quality 
control across various construction tasks. 

Innovations in mechanical designs, dynamic control methods, and 
human-robot collaboration have been specifically tailored to meet the 
unique challenges and requirements of construction tasks. The explo
ration of mobile manipulators for construction waste management [38] 
and UAV-UGV collaboration for site inspection [39–42] highlights the 
diversity in mechanical designs aimed at task-specific functionality. 
Moreover, novel control methods and efforts to improve robots’ envi
ronmental and scene understanding capabilities [43–45] reflect the push 
towards increasing adaptability and precision within complex work 
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environments. 
Recent research also underscores the active roles of human agents in 

robotics, with mixed reality for robot teleoperation [46] and the use of 
haptic controllers for intuitive interactions [47–49] being explored. 
However, meeting the dexterity and adaptivity requirements of con
struction tasks remains challenging. Robots capable of performing a 
range of simple manipulation actions encounter difficulties in contact- 
rich interactions [15], highlighting the need for more effective force- 
based controls and enhanced perception capabilities. The increasing 
demand for a synergistic blend of human expertise and robotic efficiency 
[50,51] underscores the imperative for advanced HRIs in construction 
robotics. 

Existing work in construction robotics has proposed systematic 
frameworks addressing these challenges through innovations in design 
and integration processes [52–56]. Yet, the inclusion of embodied AI 
elements is increasingly recognized as essential to further enhance robot 
dexterity and adaptability in unstructured environments. Studies have 
emphasized embodied AI’s contribution to scene understanding, local
ization, motion planning, and intuitive human-robot collaboration 
[57–59], bridging the gap between robotic capabilities and the nuanced 
demands of construction tasks. Furthermore, advancements in 
embodied AI have led to the exploration of force-based control methods 
and sequence planning tailored for construction robotics [57], enabling 
robots to engage in more sophisticated interactions and decision-making 
processes. The development of frameworks that integrate embodied AI 
for high-dexterity tasks has become a focal point for recent research 
[60], demonstrating its potential to significantly improve the capabil
ities of construction robots [61,62]. 

In summary, while considerable progress has been made in con
struction robotics, the integration of embodied AI elements into existing 
frameworks emerges as a pivotal step towards overcoming challenges 
related to dexterity and adaptability. This approach promises to revo
lutionize construction robotics, enabling robots to effectively work 
alongside humans in complex and dynamic environments, thus 
addressing the evolving challenges of modern construction sites. 

2.3. Embodied AI for robotics 

The concept of embodied AI stems from the paradigm of embodied 
cognition, which argues that cognitive processes are influenced by the 
physical attributes of the body [63]. In robotics, embodied AI entails the 
physical instantiation of an AI system in a robotic body that allows it to 
interact with and learn from its environment [12]. The argument is that 
an AI should not merely act as a separate entity (such as a decision unit 
based on pre-fed training data); instead, it should be integrated with the 
body to leverage sensory and motor systems that interact dynamically 
with the environment in real-time [64]. By incorporating embodied AI 
into robotics, robots can be equipped with advanced perception, plan
ning, and control mechanisms, allowing them to perform complex tasks 
in real-world environments [65]. Moreover, the incorporation of AI- 
interpreted human intention emerges as a critical complement to these 
capabilities [66]. By understanding and anticipating human intentions, 
embodied AI can facilitate more intuitive and seamless human-robot 
interactions, effectively bridging the gap between human operators 
and robotic systems [67]. This nuanced interpretation of human intent 
allows robots to adjust their actions proactively [68], aligning with the 
operator’s goals and preferences [69], thereby optimizing collaboration 
and efficiency in tasks requiring close human-robot cooperation. Re
searchers have been exploring the potential of embodied AI in robotics 
and have been developing novel techniques to enhance the capabilities 
of robots [70,71]. 

To be noted, the literature has noticed multiple challenges in real
izing a full-span embodied intelligent robot. One of these challenges 
relates to robot perception and scene understanding abilities, which are 
critical for robots to interact effectively with their surroundings [72]. 
Various methods have been proposed to enhance robot perception, such 

as deep learning techniques for object recognition [73], semantic seg
mentation for scene understanding [74], and reinforcement learning for 
human-inspired perception designs [75]. These advances have enabled 
robots to better perceive and interpret their environment, paving the 
way for more complex interactions and tasks. Another critical compo
nent of embodied AI is the development of efficient and adaptive control 
mechanisms for robots. Traditional controllers rely mainly on position- 
based controls, where the goal is to achieve the desired positions [76]. 
Recently, the robotics literature has highlighted the importance of 
exploring better force-based or touch-based control methods, where 
robots can react to physical forces in a more direct way [77–79]. In a 
recent review study [65], researchers found that the ability of robots to 
sense and model force and contact information through tactile or other 
force sensors would be critical to realize embodied intelligence in ro
botics. Finally, researchers also noted that the fulfillment of embodied 
AI would require intelligent agents to make spontaneous sequence de
cisions based on the real-time feeding of physical features of the sur
rounding environment. For example, Batra, et al. [78] found that a 
challenge to be resolved for embodied intelligent robots should be the 
ability to sense, understand and model the physical characteristics of the 
scene and objects, and thus make an arrangement decision without 
human intervention. 

In summary, the literature on embodied AI for robotics has seen 
considerable progress in recent years, with advances in perception, 
planning, and control mechanisms, as well as high-level sequence 
decision-making. There is an emergent need for a systematic framework 
that categorizes the roles of embodied AI for dexterity-capable robots in 
dynamic and unstructured environments such as construction, to 
benchmark the progress and challenges in the area. Addressing this gap 
in the literature can lead to the systematic development of more capable 
and efficient construction robots, which can revolutionize the con
struction industry by automating a wide range of dexterous assembly 
tasks that are currently only performed by humans. 

Our framework, grounded in embodied AI, is tailored to meet the 
unique challenges of HRIs in construction. By focusing on key elements 
of dexterity and adaptability, it comprehensively integrates steps 
essential for embodied capabilities in robots. This includes advanced 
perception, adaptive control, and sophisticated learning mechanisms, 
ensuring effective and safe collaboration between robots and human 
workers. Our approach revolutionizes the role of robots in construction, 
moving towards a seamless integration of human expertise and robotic 
efficiency. This paradigm shift, enabled by embodied AI, equips con
struction robots with enhanced capabilities to perform complex tasks, 
transforming the construction industry with innovative assembly tech
niques and collaborative strategies. 

3. Framework of dexterity-capable construction robot 

3.1. Overall architecture 

We focus on three major types of construction tasks: structural as
sembly, material handling, and quality inspection, which reflects con
struction’s fundamental challenges, emphasizing the importance of 
precision, efficiency, and safety. These tasks, integral to construction 
success, illustrate our framework’s versatility and impact, aligning 
closely with the industry’s diverse requirements. In structural assembly, 
precision and safety are crucial due to the risk of structural failure [80]. 
Material handling’s efficiency and adaptability are key due to diverse 
material characteristics, posing logistical and safety challenges [81]. For 
quality assessment, ensuring accuracy and consistency in defect detec
tion is crucial to uphold construction standards and avoid rework [82]. 
To address the concerns of the above tasks, we propose the framework 
for using embodied AI to enable dexterity-capable robots for construc
tion tasks, or the DEXBOT framework. Fig. 1 illustrates the framework of 
DEXBOT. 

To ensure robots interpret environments and navigate efficiently, we 
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propose the scene understanding and localization & motion planning to 
provide a foundation for precision in assembly, material handling and 
inspection in construction. The inclusion of scene understanding as a 
foundational step is motivated by the necessity for robots to interpret 
complex and dynamic environments accurately. This capability is cen
tral to embodied AI, which emphasizes the importance of sensory data in 
informing robotic perception and action [83]. For the scene under
standing phase, embodied AI provides rich physical information and 
semantics for the robot to interpret the environment, identify individual 
objects, their dimensions, and positions, and more importantly, the 
physical properties and relationships among the objects. 

The localization and motion planning are derived from the essential 
requirements for autonomous navigation and task execution in un
structured construction environments. Embodied AI posits that effective 
action is contingent upon an agent’s understanding of its position within 
a space and its ability to plan movements that are coherent with the 
physical laws and environmental constraints [84]. In this step, the robot 
must accurately map its physical position within the workspace, identify 
the location of assembly components, and chart a clear, efficient tra
jectory to move from one point to another while avoiding any obstacles. 
These first two steps resemble how a human worker estimates physical 
properties of obstacles along the navigation path, not only including the 
kinematics but also the potential interaction with the environment, such 
as moving obstacles away and identifying potential hazards. Embodied 
AI provides the foundation for perceiving the physical properties of the 
environment. 

To enable precise manipulation and interaction with various mate
rials, we propose the position-based control and force-based control, 
which is key for assembling construction components accurately, 
handling materials safely and performing detailed inspections [85]. The 
distinction between position-based and force-based control methods 
reflects the nuanced requirements of construction tasks, which often 
demand a combination of precision and adaptability. The theoretical 
foundation for these control strategies is situated in the concept of 
embodied interaction, where the robot must not only execute pre- 
defined paths but also respond to real-time feedback and physical re
sistances encountered during construction task execution [86]. Position- 

based controls enable the robots to maneuver accurately in the task 
space, pick up objects, and align them precisely for assembly, while also 
adjusting to small deviations in real-time. As for a human worker, this 
step requires understandings of objects’ physical properties, such as 
texture, weight, material, and geometry, for the optimal selection of 
objects and position control mauver strategies. Embodied AI could grant 
robot the same level of understanding. Force-based control is needed for 
the robot to sense the force interaction and apply the force corre
spondingly for assembly tasks such as screwing, pressing, or fitting parts 
together. Embodied imitation learning can be utilized to learn from 
human workers involving the delicate balance, applying enough force to 
accomplish the task without damaging the components or the robot 
itself. 

Based on the scene understanding results and constraints of the 
force-based control, step 5, sequence decision, is needed for robots to 
determine the optimal order of actions. The inclusion of sequence 
planning acknowledges the complexity of construction tasks that require 
the execution of multiple, interdependent actions. Embodied AI, with its 
emphasis on adaptive behavior based on environmental feedback, pro
vides a theoretical framework for understanding how robots can opti
mize construction task sequences to enhance efficiency and effectiveness 
in real-world scenarios [11]. This involves an understanding of de
pendencies between actions, the constraints, and the potential for time 
efficiencies in the order they are executed. Embodied AI can play a vital 
role in verifying algorithm-based sequence decisions by examining the 
physical constraints, such as the physical capabilities of assembly 
components and the possible interactions with the environment. 

Finally, after the robot exerts the actions in the real world, the 
feedback is analyzed in step 6. This step addresses the critical need for 
robots to not only perform tasks but also to evaluate the outcomes and 
decide on subsequent actions. This capacity for self-assessment and 
decision-making is a hallmark of advanced embodied AI systems, 
drawing on theories of autonomous decision-making and machine 
learning to enable robots to learn from their actions and improve task 
performance over time [87,88]. Here, like an experienced human 
worker, the robot evaluates the results of its actions, compares them to 
the intended outcome, and decides if corrective actions are needed or if 

Fig. 1. Architecture of DEXBOT framework; critical steps rely on embodied AI that learns from the physical interactions with the environment.  
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the task was completed successfully. If the construction task is success
ful, the robot can move on to the next task or, if necessary, iterate the 
current task with the revised parameters. Embodied AI can provide ro
bots with the capability to learn from these feedback loops, enhancing 
their adaptive responses over time. These second two steps enhance all 
tasks by optimizing action sequences and adapting to feedback, crucial 
for streamlining assembly processes, ensuring efficient material man
agement, and maintaining high-quality standards. 

In summary, embodied AI serves as a cornerstone in uniting the six 
crucial stages of our framework. Initially, it processes sensory data for 
scene understanding, laying the groundwork for accurate localization 
and adaptive motion planning. This comprehensive environmental 
awareness enables the robot to execute actions with precision, using 
position-based and force-based control methods tailored to the task’s 
specific requirements. Sequence planning then leverages this integrated 
data, allowing the robot to execute a series of interconnected actions 
aimed at achieving complex objectives. Crucially, embodied AI evalu
ates the outcomes of these actions, enabling the robot to make informed 
decisions about correction, rework, or alternative strategies as needed. 
This iterative cycle of action, evaluation, and adaptation—rooted in the 
robot’s sensory and motor systems—illustrates how embodied AI not 
only interlinks these stages but also perpetuates continuous improve
ment and learning, thereby optimizing the robot’s interaction with and 
adaptation to its operational environment. 

We propose that the integration of embodied design principles is 
fundamental for realizing embodied intelligence in robotics for 
dexterous tasks. This novel approach creates a holistic, adaptive system 
capable of navigating complex physical environments, interpreting as
sembly goals, executing precise movements, applying appropriate force, 
efficiently deciding on task sequences, and learning from its actions. 
Each step of our framework, from scene understanding to decision- 
making, is interconnected and mutually enhanced by embodied 
design, emphasizing its vital role in enhancing robot dexterity and 
human-robot interaction in construction settings. The subsequent sec
tions will delve into the technical details of each step, supported by case 
studies that illustrate the practical applications and benefits of our in
tegrated approach. 

3.2. Scene understanding 

Developing a robust ability for scene understanding is the first step 
towards integrating embodied AI into construction robots. The con
struction environment is highly dynamic and unorganized, presenting 
unique challenges that demand effective perception and interpretation 
capabilities [89]. These challenges have been addressed through various 
existing methods that enhance a robot’s scene understanding. Computer 
vision methods can help robots identify and understand the various 
objects and structures within the construction site via object recognition 
and semantic segmentation based on imagery data collected from sen
sors like LiDAR and RGB-D cameras [90]. These systems are also attuned 
to recognize and differentiate human workers, ensuring safe and intui
tive human-robot collaboration. Semantic segmentation further aids in 
this by providing detailed contextual information about the environ
ment, enhancing the robot’s ability to interact appropriately with both 
the physical site and human workers [91]. These techniques can provide 
detailed information about the objects’ positions, orientations, and se
mantic relationships, supporting more nuanced and safe interactions 
between robots and construction personnel [92]. 

While the recent advances in scene understanding have substantially 
promoted the quality of semantic outcomes, i.e., understanding the 
categories, identities, and contextual meanings of objects [93], we argue 
that granting robots the human-like ability to comprehend the physical 
properties of identified objects is also critical to enhancing their capa
bilities. Specifically, detected objects should be mapped with their 
physical categorizations, thus enriching the semantic understanding 
with a deeper, physical comprehension of the environment [94]. Such a 

mapping allows the robot to better understand the implications of 
interacting with these objects physically, or what we call, embodied 
sensing. Embodied AI offers tremendous potential for facilitating the 
development of embodied sensing which is the foundation for better 
maneuverability of construction robots [95]. 

Fig. 2 shows the workflow of how the proposed embodied sensing 
can enhance the scene understanding capabilities of construction robots. 
The case involves an intelligent agent (such as a construction robot or 
the AI that controls it) identifying stacked pipes along with an estima
tion of their key physical properties (such as weight and materials). 
Embodied sensing utilizes recognized scenes and objects (based on point 
cloud) with virtual objects (i.e., prefabs) in-game engine, and assigns 
physics properties and interactions based on the elemental models 
established by Universal Scene Description (USD) [96]. First, we utilized 
an adaptive LiDAR scanning method developed by You, et al. [9] to 
generate the augmented dense point cloud of the objects and environ
ment. The scanned point cloud was fed to a density-based clustering for 
object identification. Then, we employed 3D point cloud detection al
gorithms, such as PointNet++ network [97] to detect the type of the 
segmented point cloud and estimate the pose. Afterward, a shared pre
fab library that contains objects in the working scene will be utilized. All 
objects collected in the library are provided with IDs, classes (scenery 
objects and dynamic objects), pose, quality, dimensions, and prefab 
models. Preparatory works include the collection of dimensional pa
rameters of main objects and virtual object modeling. Then, raw point 
cloud data is replaced with corresponding physics prefabs. The object’s 
key information (name, dimensions, pose) is subscribed from ROS. The 
name and dimensions of the identified object are used as the search key 
in the prefab library. Based on the mapping relationships between an 
object and the prefab, a virtual object with all physical properties in the 
library is generated via USD. A key decision point is what objects in the 
working scene should be replaced with virtual models for enhanced 
physics simulation at what time point. We define two classes for adap
tive physics modeling, including scenery objects (such as environment 
and stationary structures), and dynamic objects (such as payload objects 
and other movable objects interacting with the robot). Scenery objects 
will be replaced immediately at the early phase of the process, while 
dynamic objects will be replaced based on their relevance to the task and 
the accumulation of motion and kinematics data. The last step is to call 
the physics USD schema to retrieve pre-established physics simulation 
data for expedited physics modeling and simulation. To simplify the 
physics simulation while still capturing representative physics processes 
in heavy rigging, the rigid body primer is recommended [98]. In our 
framework, a rigid body is described by its pose (position and orienta
tion), as well as its mass distribution (center of mass position and an 
inertia tensor). The body also has a velocity (linear and angular vectors). 
Given the state, or the state history of the bodies at a specific time, we 
compute the updated state of the bodies a moment in time later, with the 
general desire being that the bodies’ movement while constrained by the 
constraints obeys the laws of physics. 

To illustrate the effectiveness of the proposed method, we tested our 
method on stacked object detection which is a common scene in con
struction site. Firstly, the robot would try to identify the location of each 
single pipe based on the point cloud detection results. Secondly, it would 
apply the PointNet++ detection network to classify the segmented 
single pipe and predict its label which is associated with the prefab in 
USD. Fig. 3 showed the segmentation results of the stacked pipe. 
Different colors corresponding to different pipes. Table 1 listed the 3D 
IoU results for each pipe and the overall evaluation. The visual results 
and the IoU accuracies showed that all the items could be well identified 
and segmented. 

Additionally, we listed the classification results in Table 1 based on 
the segmented pipe to map to the prefab ID. Note that the primary goal 
was to ensure the detected pipe was accurately recognized as its specific 
prefab category, rather than broadly categorizing it among various 
prefabs. The emphasis was not on the overall classification accuracy of 
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the detection network across multiple object types but on its ability to 
correctly map a segmented object to a particular type. 

From the above case, we show that by developing a robust physics- 
modeling ability for scene understanding, embodied AI can enable 
construction robots to better comprehend their dynamic and unorga
nized surroundings. The method for incorporating physical properties 
into the objects of digital twin models should expedite the learning 
process of the AI system with precise models of real-world physics. This 
enhanced perception and interpretation capability is a critical step for 
integrating embodied AI in construction robotics. 

3.3. Localization and motion planning 

Localization and motion planning that suit well for dynamic and 
unorganized construction workplaces is another fundamental capability 
for dexterity-capable construction robots. It includes the need for both 
the navigation of the entire robotic platform and the manipulative mo
tions to collaborate with human workers. Unlike robotic applications in 
well-controlled environments where objects, tools, and resources are 
placed at relatively fixed locations, construction robots often need to 
accurately locate a dynamic entity and move it along a desired path 
[99]. The need for effective localization and motion planning techniques 
arises from the confined spaces of most construction workplaces due to 
the unique geometries of built structures, irregular layouts, and the 
presence of numerous workers [100]. These factors make it difficult for 

robots to perform tasks that require precise object manipulation and 
transportation. To address these challenges, control-based or learning- 
based techniques have been developed and explored, such as Simulta
neous Localization and Mapping (SLAM), advanced control methods, 
heuristic search algorithms, and reinforcement learning methods 
[101–103]. 

Despite the efficacy of the above methods, construction robotics 
faces unique challenges including uncertainties in the environment (e.g., 
unexpected obstacles or changes in the terrain), uncertainties in the 
robot’s sensory data (due to sensor noise or inaccuracies), uncertainties 
in the robot’s actions (e.g., due to control errors or mechanical failures), 
and especially the uncertainties related to human workers (e.g., un
predictable human behaviors) [54]. These uncertainties also make it 
difficult for robots to make accurate predictions about the consequences 
of their actions and to plan their movements effectively. We propose that 
embodied AI could offer potential solutions to the issues associated with 
uncertainties in construction environments. Embodied AI allows agents 
to interact within a simulated environment that accurately mirrors the 
complexity and unpredictability of real-world conditions [104]. Using 
embodied AI, robots can be trained in a simulated construction envi
ronment that closely mimics the real world, encompassing a variety of 
scenarios such as unexpected obstacles, changes in terrain, variable 
lighting conditions, and the presence of dust or debris. Virtual training 
allows robots to better adapt their understanding of the environment, 
update path planning, and control strategies more efficiently, even in 

Fig. 2. Workflow of the embodied sensing for scene understanding including physical properties alignment.  

Fig. 3. Pipe segmentation results with the original point cloud (left) and the segmented result (right).  

Table 1 
3D IoU for each pipe and classification results.  

Pipe Number 1 2 3 4 5 6 7 8 9 10 

3D IoU (%) 90.2 % 94.6 % 91.3 % 93.4 % 89.6 % 91,7% 88.9 % 85.6 % 88.9 % 90.6 % 
Classified Label “pipe” “pipe” “pipe” “pipe” “pipe” “pipe” “pipe” “pipe” “pipe” “pipe”  
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the face of inherent uncertainties [105]. Moreover, unpredictable 
human behaviors can also be modeled in these simulators, enabling the 
robots to continuously learn and adapt their behavior to minimize the 
impact of these uncertainties on their performance. The simulated 
environment also offers the advantage of allowing robots to make mis
takes and learn from them without causing any real-world injury or 
delay [106]. Robots trained in a diverse range of simulated scenarios 
could better navigate complex environments and perform complex tasks 
with high levels of autonomy and precision. 

In the following test case, we show the comparison of path planning 
results using the traditional visual-based SLAM method and embodied 
reinforcement learning [98] method. As shown in Fig. 4, all objects are 
assigned physical properties that enable them to provide similar-to-real 
collision and force feedback when interacting with the mobile robot. 
Some objects are relatively static (e.g., walls) and some objects are 
movable (e.g., cardboard boxes). This environment simulates a close-to- 
real-life navigation scenario in which objects can be interacted with at 
different extents. For the visual-based method, the agent uses the LiDAR 
sensor to capture the spatial information and uses the point cloud visual 
SLAM method to build the map and find the path to the target (see 
Fig. 5). The robot is required to use the visual inputs to avoid collision 
with the obstacles and find the path to access the target. For the ERL 
group, the agent uses the same sensors to explore the environment, 
while being allowed to interact with objects. A proximal policy 
optimization-based reinforcement learning kernel is applied to both 
conditions to train the agent to find the target. Negative rewards are 
given for hard colliding with static items, and positive rewards are given 
for reaching the target. In addition, for every step the agent takes it 
would get a negative reward so that it would be forced to find the fastest 
path by either shifting the soft item or passing through the gap between 
the obstacles and trying to avoid collision with hard item at the same 
time. 

Table 2 lists the collision counts with hard object, soft object and the 
completion steps of the two groups. We conducted 100 inferences for 
each group and calculated the averages and derivations. Our result in
dicates the advantages of ERL over classic vSLAM in planning the 
optimal path on this construction site. Specifically, with both methods, 

the agent made numerous collisions at the beginning exploration stage, 
but it gradually learned to avoid collision with hard items. The vSLAM 
relies on avoidance algorithm to update the path, while ERL learns the 
physical properties, especially the moveability of the objects, to decide 
more proactive actions to the obstacles. According to Table 2, the 
collision count with soft object of ERL was significantly higher than that 
of vSLAM, indicating that the ERL agent learns to interact with the 
moveable objects to clean a path. On average, the vSLAM agent took 
more than 2,000 action frames to reach the target while the ERL agent 

Fig. 4. Test environment of path planning.  

Fig. 5. Different Actions by vSLAM vs ERL.  
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took an average of 475 frames to reach the target. Also, the collision 
count with hard object of ERL was almost zero, meaning that the agent 
could identify which object was dangerous and couldn’t be moved. 

Without embodiment, the traditional vSLAM method could only find 
a sub-optimal path that avoided all obstacles. On the contrary, robot 
agents in the ERL group could learn to find the target through inter
acting with the surrounding environment. Besides, the agent developed 
the strategy to shift the soft item in the complex environment. The agent 
finally learned to move the pallet to create a passable way from its start 
point to the target within a short period of time. Therefore, compared 
with the traditional vSLAM-based method, the ERL method could handle 
the changeable environment and find the potential optimal solution 
through exploration. 

3.4. Position-based control 

Position-based control is another critical capability for dexterous 
construction robots, as it directly impacts their ability to perform com
plex object manipulation tasks with high precision and accuracy. Con
struction tasks such as bricklaying, pipefitting, and assembly often 
require intricate object manipulation, hence the ability to accurately 
pick and place objects, move objects, and align objects with their 
intended positions is of utmost importance [14]. Position-based controls 
can enable construction robots to effectively align objects in their op
erations. Position-based control focuses on regulating the position and 
orientation of the robot’s end-effector, ensuring that it accurately fol
lows a desired trajectory [107]. By leveraging the latest advancements 
in position-based control, construction robots can better manipulate 
objects and align them even in the presence of uncertainties and dis
turbances. Song, et al. [92] thoroughly examined the application areas 
of position-based controls for robotic manipulation and found that any 
application scenarios requiring motion compliance or delicate interac
tion should consider impedance position-based control as a potential 
solution. Khalil and Payeur [93] proposed a multisensory fusion method 
for improving the accuracy of position-based controls for manipulation 
tasks, even when the robot’s model or the environment was not perfectly 
known. By improving these controls, construction robots become more 
adept at working in close proximity to human workers, ensuring precise 
and safe interactions during complex collaborative tasks. 

Despite the advancements in position-based control methods, several 
challenges remain in achieving effective object alignment in dexterous 
construction robots. One such challenge is that there is an inherent 
variability of construction materials in sizes, shapes, and even physical 
properties. Different materials like concrete, steel, wood, or plastic may 
require different handling techniques and alignment strategies. For 
instance, aligning a steel beam for assembly requires different precision 
compared to aligning a plastic pipe for installation in terms of maximum 
speed, grabbing point, and safe overhead zones. Different materials can 
also be affected by environmental conditions in unique ways, such as 
how changing light conditions affect the reflection of materials, and 
later, affect the ability of the robot to correctly detect and grab the 
objects. 

We propose that embodied AI provides a sound solution for refining 
position-based control that adapts to the complexity of construction 
scenes. Embodied AI in a virtual environment provides an opportunity 
for AI systems to gain a more nuanced understanding of control systems. 

The AI system can learn from thousands of virtual experiments, with 
precise reproduction of real-world environment conditions (e.g., 
texture, shapes, etc.), on how different parameters affect position-based 
control under various conditions [108]. For instance, an embodied AI 
system could sense the physical properties such as weight and texture 
and estimate the environmental interactions to adjust its position-based 
control strategy, such as speed and trajectory. Furthermore, embodied 
AI can enhance the feasibility of position-based control methods in 
manipulating deformable objects, which is considered nontrivial with 
traditional control methods, but is common in construction such as cable 
handling [109]. 

In the following test case, we show an embodied AI training archi
tecture that uses a physics simulator with varying target object materials 
[110]. We aim to design and examine an embodied robot teleoperation 
system integrating a mixed reality simulator and a high-resolution 
haptic feedback system. Fig. 6 shows the workflow of the proposed 
structure. This simulator is built on a physical engine that can accurately 
simulate the physical properties of objects and the environment. The 
objective of the embodied AI is to control a robot arm to perform a pipe 
installation task efficiently. There are three types of pipes which are 
made of different materials and correspond to different weights and 
textures as illustrated in Table 3. Each pipe type had distinctive prop
erties in terms of mass and friction. The distinct weight and texture 
require different position-control strategies such as gripping location, 
motion speed, and trajectories (e.g., the number of turns). For example, 
the PVC pipe, due to its lower mass, could be grasped with less pressure. 
However, if excessive pressure was applied, the PVC pipe could deform. 
The cast-iron pipe, on the other hand, was able to withstand a significant 
amount of pressure without deforming but required more force to pick 
up. 

Fig. 7 showed the training setup of our experiments. We trained the 
robot arm in the simulated embodied environment to learn to apply 
proper grasping force and safely insert the pipe into the target outer 
pipes using reinforcement learning. To emphasis the importance of 
embodied learning, we designed two training group. For the control 
group, the observation of the agent only included the 3D location of the 
object and the target. The robot arm couldn’t feel the physical proper
ties. For the experimental group, the robot arm was provided the den
sity, friction, pick-up force and deformation force plus the locations of 
object and target. To evaluate the performance of the trained agents, we 
calculated the success rates for the two agents. Either dropping the ob
ject or destroying the object with large grasping force would lead to 
failure. Fig. 8 showed an example of the trajectories of the two groups 
with the left figure standing for control and the right figure standing for 
experimental group. It is obvious that the agent with embodied infor
mation performed smoother and stabler trajectories compared with that 
of the non-embodied agent. 

Additionally, we counted the completing steps, location errors and 
success rates for the two groups when handling different types of objects 
as shown in Table 4. For the control group, the completion time of 
different objects were almost the same. On the contrary, for the exper
iment group, the completion time of heavier objects (Cast-Iron) were 
larger while those of the lighter objects (PVC) were smaller. The simi
larity of control group and the difference of experiment group showed 
that embodied group could adjust the moving strategy according to the 
change of object’s weight. Given that the distances of object shifting 
were almost the same, the robot agent developed a stable trajectory with 
slow speed for heavier object and a direct trajectory with fast speed for 
lighter object. Also, the overall radius errors of insertion (the shift be
tween the object pipe center to target outer pipe center) for embodied 
group are lower than that of the non-embodied group. Consequently, the 
agent with embodied information has a significant higher success rate, 
indicating that the robot could leverage the additional embodied in
formation to improve its performance. 

This comparison showed that the robot agent could successfully 
determine different object properties by feeling the weight, inertia, and 

Table 2 
Inference results of two groups.  

Groups Collision 
Soft 
(number of 
frames) 

Collision 
Hard 
(number of 
frames) 

Completion Steps 
(number of frames) 

Success 
rate 

vSLAM 11 19 2134  95.6 % 
ERL 192 21 475  98.6 %  
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friction. Furthermore, it learned to adapt different position control 
strategies accordingly. 

3.5. Force-based control 

Another unique ability needed for dexterity-capable construction 
robots is the force-based control that enhances robots to perform 
manipulative tasks with varying physical properties [111]. This precise 
force application is especially important in scenarios where robots 
collaborate with human workers, as it enhances safety and task effi
ciency [112]. Given the importance of force control, there is a growing 

interest in developing methods that enable construction robots to 
exhibit versatile force control capabilities. These methods encompass a 
wide array of techniques, such as impedance control [113], force-torque 
control [114], and haptic feedback mechanisms [115]. These methods 
allow for flexible interaction with the environment, as the robot can 
adapt its movements based on the forces it encounters, making it highly 
suitable for handling delicate materials or interacting with other objects 
or people in a safe manner [116]. The literature has also examined 
hybrid force/position control, a method that controls both the position 
and the force exerted by the robot simultaneously. This is especially 
beneficial in tasks that require a specific force application along a 
defined trajectory, like gluing or painting [117]. Additionally, the 
integration of deep learning techniques with these control methods is 
gaining attention, which enables robots to learn and adapt their force 
control strategies based on their experiences, thereby enhancing their 
performance in various manipulative tasks [118]. These methods allow 
robots to adapt to physical interactions with both the environment and 
human collaborators, ensuring safe and effective joint task execution. 
Integrating such advanced force control capabilities in construction 
robots significantly contributes to a more harmonious and productive 
human-robot partnership in complex construction tasks. 

A critical insight from our work with the DEXBOT framework is the 
recognition that ERL particularly when it integrates force information 
within a physics simulator, offers distinct advantages. Traditional rein
forcement learning methodologies, while robust, often suffer from a lack 
of contextual understanding, particularly when nuanced physical in
teractions come into play. Incorporating force data into the learning 
process within a physics simulator offers the reinforcement learning 
agent a more comprehensive sensory palette [119]. This enriched data 
environment helps the agent to develop more nuanced policies that 
better account for real-world physical interactions. The agent, equipped 
with this added layer of sensory information, can simulate and predict 
outcomes with higher accuracy than when operating on visual or posi
tional data alone [120]. 

The following case demonstrates our approach through a specific 
construction task − pipe inserting as shown in Fig. 9. The objective of 
the AI agent is to perform a dexterous pipe inserting task in an occluded 
operation space (i.e., accurate visual capture of the contact surface is 
infeasible to acquire) as shown in Fig. 9(a). We trained the AI agent with 
traditional reinforcement learning and embodied reinforcement 
learning. Only positional information from the visual sensor was pro
vided to the traditional RL, while only force contact information was 
provided to the embodied RL. We trained 5 trials for each group. Fig. 9 

Fig. 6. Robot Teleoperation in a pipe operation task.  

Table 3 
Properties of different pipe materials.  

Objects Density Color Friction Pick-up 
force 

Deformation 
force 

PVC pipe 1.4 g/ 
cm^3 

White 
rigid 
plastic 

Medium Small Small 

Aluminum 
pipe 

2.7 g/ 
cm^3 

Bronze 
metallic 

Small Medium Medium 

Cast-iron 
pipe 

7.3 g/ 
cm^3 

Dull black 
with a 
rough 

Large Large Large  

Fig. 7. Pipe operation training layout.  
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(b) and Fig. 9(c) show the training and testing results, respectively. The 
y-axis in Fig. 9(c) denotes the steps to finish the task using the trained 
models. According to the comparison, we noticed that the time step for 
force-based group was largely smaller than that of the visual group, 
indicating that using force sensory data as embodied feedback could 
significantly shorten the task completion speed. Additionally, we listed 
the error and task success rate of the two groups in Table 5. The force 
group performed better than the visual group according to both metrics, 
which further verified the effectiveness of embodiment training. 

Our experiments have consistently shown that agents trained 
through ERL consistently outperform their counterparts trained using 
traditional reinforcement learning methods. Not only do these agents 
achieve their objectives more effectively, but they also adapt more 
swiftly to unanticipated challenges or changes in their environment, 
underscoring the potential of embodied reinforcement learning as a 
transformative tool in robotic manipulation and beyond. Moreover, we 
also found that the learning speed and accuracy were significantly 
improved while imitating human demonstration data. This result pro
vides a fertile ground for future human-robot collaboration study and 
embodied imitation learning. 

3.6. Sequence planning 

Sequence planning also plays a vital role in the performance of 
dexterity-capable construction robots. A construction task often consists 
of a variety of interdependent steps that must be executed in a specific 

Fig. 8. Trajectories with embodied information (right) and without embodied information (left).  

Table 4 
Testing results of the two groups.  

Groups Pipe Material 
Types 

Completion 
Time (s) 

Radius 
Error (m) 

Success 
Rate (%) 

Embodied 
Group 

PVC  16.57  0.0261  95.2 % 
Aluminum  17.21  0.0242  93.7 % 
Cast-Iron  16.23  0.0196  96.3 % 

Non- 
Embodied 
Group 

PVC  14.34  0.0375  80.6 % 
Aluminum  17.18  0.0212  74.2 % 
Cast-Iron  21.86  0.0561  69.7 %  

Fig. 9. Embodied AI for robot force control: an experiment comparing the 
training results using visual inputs versus using force inputs. 
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sequence order [121]. This process often demands real-time adjustments 
due to changing conditions on the construction site, such as material 
variability and evolving project requirements [122]. In the context of 
HRI, effective sequence planning is essential not just for task execution 
but also for ensuring smooth collaboration between robots and human 
workers. The ability of robots to adapt their task sequence in response to 
human decisions and onsite changes greatly reduces time-consuming 
and error-prone manual planning, typically performed by construction 
workers [123]. 

At present, sequence planning is largely addressed by the assembly 
sequence planning [124] literature, which aims to identify the most 
efficient and cost-effective sequence of operations to assemble a product 
while considering various factors, such as resources, constraints, and 
goals [125]. Classical approaches such as the AND/OR graph [126] and 
the liaison graph [127] represent assembly operations as directed graphs 
with nodes representing parts and edges representing assembly opera
tions. Matrix-based methods, such as the design structure matrix (DSM) 
[128] and the assembly incidence matrix (AIM) [129], use matrices to 
represent relationships between parts and assembly operations. Addi
tionally, mathematical methods like integer programming (IP) [130], 
mixed-integer linear programming (MILP) [131], and constraint pro
gramming (CP) [132] have been used to model and solve ASP problems 
by formulating them as mathematical models with variables represent
ing assembly operations and constraints representing precedence re
lationships and resource limitations. Heuristic methods, such as greedy 
algorithms [133], local search methods like simulated annealing [134], 
tabu search [135], and variable neighborhood search [136] have been 
employed to find good solutions efficiently by using heuristic rules to 
navigate the complex solution space of ASP problems. In recent years, 
approaches leveraging machine learning have emerged, such as genetic 
algorithms [137], ant colony optimization [138], particle swarm opti
mization [139], and artificial neural networks [140]. These methods are 
used to explore a wide search space and generate optimal or near- 
optimal solutions. 

However, the traditional sequence planning paradigms often neglect 
the intricacies of real-world physical dynamics, leading to theoretically 
optimal sequences that may be unfeasible in a tangible environment. 
Embodied AI, underpinned by accurate physics engines, provides a 
foundational shift in this perspective. The physics engine facilitates a 
high-fidelity simulation environment, granting the ability to model, test, 
and validate sequence decisions under rigorous physical constraints. 
Within this environment, dynamic physics interactions can be accu
rately replicated, enabling a meticulous analysis of potential force in
teractions, torque requirements, and spatial constraints that a robot 
might encounter during real task execution. These simulations enable 
the identification and mitigation of potential pitfalls in a sequence. 
Furthermore, by incorporating physics simulations into the planning 
phase, we can transition from merely heuristic-based planning to a more 
holistic, physics-informed decision-making process. This methodology 
ensures that sequence decisions are not only algorithmically optimal but 
are also validated under a spectrum of real-world physical scenarios. In 
essence, embodied AI for sequence planning transcends the limitations 
of conventional algorithms by grounding decisions in tangible physics. 
This approach not only guarantees sequences that are computationally 
efficient but also those that stand the test of real-world dynamism and 
constraints, marking a significant stride in the evolution of robust ro
botic operations. 

In the following test case, we show the implementation of using 
embodied simulation to solve sequential decision-making problems and 

control the robot arm to manipulate in a simulated platform with the 
help of Large Language Models (LLMs) [141,142]. This test case is set up 
as the pipeline installation which is a general task in the construction 
site. The robot is required to use pipes of the same size to create a 
pipeline from the given starting and ending points. We added three 
obstacles midway randomly, simulating unexpected constraints from 
real life, such as existing machines or faulty wall settings. The installa
tion sequence was generated by fine-tuned LLMs [143–145]. With no 
unexpected obstacles, the LLMs could generate correct action sequences. 
However, when unexpected obstacles occurred, the LLMs could not 
determine a correct solution. We then provided the LLMs with an 
embodied environment that had contextual information such as the 
occurrence of obstacles. Specifically, we developed a token-based rep
resentation system that incorporated both symbolic and spatial infor
mation to describe the arrangement and state of the embodied 
environment. Each token consisted of a specific component, followed by 
its spatial coordinates, denoted as (x, y, z). For instance, pipe sections 
were represented as “PIPE (x,y,z)”, the starting and ending points of the 
pipeline as “START (x,y,z)” and “END (x,y,z)”, respectively. Unforeseen 
barriers, on the other hand, were denoted as “OBSTACLE_MACHINE (x, 
y,z)” or “OBSTACLE_WALLFAULT (x,y,z)” based on their type. Addi
tionally, spatial relations were encoded using directional tokens like 
“LEFT_OF”, “RIGHT_OF”, “ABOVE”, and “BELOW”. To offer a clearer 
context, if a faulty wall setting was located at coordinates (3, 2, 1) and to 
the left of the second pipe situated at (4, 2, 1), it would be encoded as 
“OBSTACLE_WALLFAULT (3,2,1)”; LEFT_OF PIPE_2 (4,2,1)”. Table 6 
lists representative information used in our token system. 

We presented these token sequences to the LLMs, giving them 
structured input that melded both symbolic and spatial data as shown in 
Fig. 10. With this enriched context, the LLMs planner was primed to 
process the scene, reason about the potential issues arising from the 
obstacles, and suggest alternative action sequences. These sequences 
guided the robot arm in maneuvering around the obstructions, ensuring 
the seamless installation of the pipeline. 

3.7. Correction, rework or discard Decision-Making 

The ability to make independent and spontaneous decisions towards 
mistakes in an assembly process is also essential for dexterity-capable 
robots in construction sites. We call it the correction, rework, or 
discard (CRD) decision-making problem. For construction (and many 
other industrial tasks), it is difficult to achieve a goal in a single attempt, 
particularly in complex and dynamic assembly tasks. When a mistake 
happens in the middle of an assembly operation, robots should be able to 
decide whether a corrective action or rework is more proper, or just 
simply discard the ongoing work. At present, most control methods 
command a direct halting when an unexpected scenario (such as mis
takes) happens [146]. To perform tasks effectively and economically, 
robots need the capacity for self-correction, choosing between rework
ing, restarting, or discarding an action. This decision-making process, 
complex even for humans, involves considering technical, logistic, 
economic, and safety factors. For example, manufacturing literature has 
developed a level of repair analysis (LORA) framework that determines 
whether an item should be repaired, replaced, or discarded, guided by 
the considerations of cost and operational readiness requirements [147]. 
In the context of HRI, enhancing robots with CRD decision-making 
abilities ensures smoother, more autonomous collaboration, reducing 
reliance on human intervention for error. 

After a comprehensive literature search, we could not find existing 
studies that presented explicit methods for making CRD decisions. 
Although the literature has explored machine learning approaches for 
equipping robots with the ability of corrective actions (e.g., [148,149]), 
these methods focus on how to better perform the corrective and rework 
actions after a CRD has been made. Instead, what we highlight here is 
the lack of a quantitative method or formulation for robots to make such 
a CRD decision without human intervention. As a result, we propose the 

Table 5 
Testing results of visual and force groups.  

Groups Time Step Radius Error (m) Success Rate (%) 

Visual 2799  0.0972  77.9 % 
Force 953  0.0321  92.5 %  
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use of embodied AI to provide a learning platform where robots can 
explore strategies for spontaneous CRD decision-making. By training AI 
within physically accurate simulators, these systems can learn from 
countless virtual experiments, discovering how different CRD strategies 
affect task outcomes under various conditions. Through reinforcement 
learning, the AI system can learn to select the most effective action −
whether it is to correct, rework, or discard a task − in response to an 
error. This could potentially facilitate the development of construction 
robots that can respond adaptively and intelligently to unexpected 
scenarios, enhancing their efficiency and effectiveness in complex, dy
namic assembly tasks. Imitation learning is also an effective approach 
for transferring human decision strategies to these systems, but the 
variability of human actions and strategies should be considered to 
generalize across different situations and workers. Given that this area of 
research is still primitive, no cases can be presented in this paper. Future 
research can explore methods for capturing and modeling the variability 
in human error correction and rework strategies, as well as developing 
algorithms that can learn from multiple demonstrations to achieve more 
robust and adaptable decision-making capabilities. 

4. Discussion 

The scalable adoption of construction robots has shown the potential 
to revolutionize the way motor-intensive construction assembly tasks 
are performed, leading to increased efficiency, safety, and productivity. 
One significant challenge relates to the development of dexterous ro
bots, mainly manipulators, which can perform complex, high-precision 
tasks that are traditionally labor-intensive and prone to human error. 
This paper proposes a DEXBOT framework for designing dexterity- 
capable construction robots based on the principles of embodied AI, 
for better perception, planning, and control mechanisms to systemati
cally improve robots’ abilities to interact and collaborate with human 
workers effectively. Embodied AI combines AI with physics-based sim
ulations, enabling robots to interact with human workers in a virtual yet 
physically accurate environment. This combination can enhance robots’ 
ability to understand, learn from, and navigate complex real-world 
conditions, significantly improving their performance, adaptability, 
and decision-making capabilities which are crucial for sophisticated 
tasks in construction sites. The six fundamental steps within this 
framework include scene understanding, localization and motion plan
ning, position-based control, force-based control, sequence planning, 
and the decision-making process concerning correction, rework, or 
discard. In each of these stages, embodied AI serves a pivotal role in 
transforming the current state-of-the-art practices. 

First, embodied AI can significantly improve scene understanding 

Table 6 
Proposed token system for LLMs to understand physical conditions.  

Token Type Description Example 

Object Tokens: To inform LLMs the objects 
PIPE Represents a pipe 

section. 
PIPE (5,2,1) 

START Denotes the starting 
point of the 
pipeline. 

START (1,1,1) 

END Denotes the ending 
point of the 
pipeline. 

END (10,1,1) 

OBSTACLE_MACHINE Represents an 
unexpected 
machine-based 
obstacle. 

OBSTACLE_MACHINE (6,2,1) 

OBSTACLE_WALLFAULT Represents an 
unexpected wall 
fault. 

OBSTACLE_WALLFAULT 
(7,2,1) 

Directional Tokens: Used to inform LLMs of current spatial conditions 
LEFT_OF Indicates one object 

is to the left of 
another. 

OBSTACLE_MACHINE (6,2,1) 
LEFT_OF PIPE (7,2,1) 

RIGHT_OF Indicates one object 
is to the right of 
another. 

PIPE(7,2,1) RIGHT_OF 
OBSTACLE_MACHINE(6,2,1) 

ABOVE Indicates one object 
is above another. 

PIPE(5,3,1) ABOVE 
OBSTACLE_WALLFAULT 
(5,2,1) 

BELOW Indicates one object 
is below another. 

PIPE(5,1,1) BELOW 
OBSTACLE_WALLFAULT 
(5,2,1) 

State Tokens: Used to inform LLMs the current system states 
INSTALLED Indicates a pipe 

section has been 
installed. 

PIPE(5,2,1) INSTALLED 

UNINSTALLED Indicates a pipe 
section hasn’t been 
installed yet. 

PIPE(6,2,1) UNINSTALLED 

BLOCKED Indicates a path or 
position is blocked 
by an obstacle. 

PATH(6,2,1) BLOCKED 

Action Tokens: Used for representing robot actions or decisions. 
MOVE_TO Indicates the robot 

should move to a 
specific position. 

MOVE_TO(5,2,1) 

PICK_PIPE Indicates the robot 
should pick up a 
specific pipe. 

PICK_PIPE(5,2,1) 

INSTALL_PIPE Indicates the robot 
should install a pipe 
at a location. 

INSTALL_PIPE(6,2,1)  

Fig. 10. The demonstration of the process by utilizing ChatGPT-4 to plan the pipeline and control the robot arm to perform the pipeline installation in the virtual 
environment. 
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(step 1) by integrating physics-based attributes into recognized objects 
within the raw reality capture data. For instance, this could involve 
leveraging machine learning techniques to classify and extract object 
properties such as mass, dimensions, and material characteristics from 
point clouds or other sensor data. The result is a richer, more compre
hensive model of the environment that not only includes object identi
fication but also physical properties, which can support more advanced 
interaction planning and decision-making capabilities in construction 
robots. Second, embodied AI has significant potential in enhancing robot 
localization and motion planning (step 2), as well as position-based 
control (step 3). It can provide a realistic simulation environment that 
closely mirrors real-world conditions. For example, movable objects can 
be identified to improve the proactivity of localization algorithms. 
Advanced motion planning algorithms can be trained and validated in 
this simulated environment, handling complex navigation tasks under 
different site conditions and obstacles. Similarly, embodied AI can help 
improve position-based controls, where the robot’s end-effector follows 
a desired trajectory, by simulating different physical interactions and 
disturbances. Third, embodied AI can significantly contribute to the 
training and validation of robotic force-based controls (step 4). Physics 
simulation can be employed to model the forces involved in manipu
lating different objects, allowing the development, and testing of control 
strategies in a safe, controlled environment. Furthermore, creating en
vironments that mimic real-world construction sites allows for the 
collection of meaningful human demonstration data, enabling the 
implementation of effective imitation learning techniques. Last but not 
least, embodied AI can also be utilized in the validation of sequence 
planning (step 5) and spontaneous decisions when any assembly mistake 
is observed (step 6). By providing a high-fidelity simulated environment, 
embodied AI can support machine learning models in identifying 
optimal assembly sequences and correcting courses when errors occur. 
With the high complexity of construction assembly tasks, the use of a 
simulated environment allows the sequence planner to be tested against 
a variety of scenarios, improving its generalization and robustness. 

Note that the pipe installation task was specifically chosen for its 
embodiment of common construction challenges, including complex 
Spatial requirements, variability and adaptability, integration with 
existing systems and interaction with unstructured environments, 
making it an ideal candidate to showcase the DEXBOT framework’s 
capabilities. Firstly, pipe installation often necessitates working within 
tightly constrained spaces and necessitates a high degree of spatial 
awareness. Robots must navigate these spaces while avoiding existing 
structures, which mirrors the spatial navigation challenges present in 
many other construction tasks. Secondly, the task involves handling 
materials with varying dimensions and specifications, requiring the 
robot to adapt its approach for different pipe sizes and materials. This 
variability demands a level of adaptability and decision-making that is 
crucial across construction tasks, where no two scenarios are identical. 
Thirdly, installing pipes involves integrating with existing systems (e.g., 
water, gas, HVAC), akin to how many construction tasks must consider 
and accommodate pre-existing structures and utilities. This aspect tests 
the robot’s ability to work within a predefined framework, enhancing its 
applicability to diverse scenarios. In addition, unlike controlled envi
ronments, construction sites are dynamic and unpredictable. The pipe 
installation task, set within such an environment, challenges the robot to 
perform under variable conditions, including changes in lighting, 
weather, and the presence of unanticipated obstacles. Besides, the task 
also allows for the simulation of real-world time constraints and effi
ciency requirements, mirroring the pressures of actual construction 
projects where time is often a critical factor. By detailing the application 
of the DEXBOT framework to this specific scenario, we aim to highlight 
its versatility and effectiveness in addressing a wide spectrum of con
struction activities, underscoring the potential for scalable adoption of 
robotics in the construction sector. 

This paper also provides test cases for the key steps of the proposed 
DEXBOT framework. Given these potentially transformative impacts, we 

encourage academic exploration of embodied AI’s applications in con
struction, with more methodological and practical evidence. This allows 
for the deployment of robotic systems across various construction tasks 
and settings, making them more flexible assets for the industry. 

Despite the promising advancements introduced by our novel con
struction robot technology, its deployment in real-world construction 
environments still has a thorough consideration of potential challenges 
and areas for future development. Construction sites present a unique set 
of conditions—ranging from harsh weather to highly variable and 
cluttered workspaces—that can significantly impact the operational 
effectiveness of robotic systems. The complexity of construction tasks, 
coupled with specialized processes inherent to the industry, requires 
robots to possess not only advanced dexterity and adaptability but also 
an intricate understanding of construction workflows and the ability to 
navigate them effectively. One of the principal challenges involves 
ensuring the robot’s resilience to the diverse and often extreme condi
tions found on construction sites. Factors such as dust, moisture, and 
fluctuating temperatures can impede robotic sensors and machinery, 
necessitating the development of robust designs that safeguard against 
these environmental stresses. Moreover, the complexity and specificity 
of construction tasks demand that robots are equipped with sophisti
cated planning, decision-making, and execution capabilities. This in
cludes the ability to adapt to unforeseen changes in the environment or 
task requirements, a critical feature for maintaining efficiency and safety 
on dynamic construction sites. Future research will focus on enhancing 
the robot’s environmental robustness and its cognitive and mechanical 
adaptability. Additionally, integrating these robots into existing con
struction processes poses its own set of challenges. It is essential to 
develop seamless human-robot collaboration mechanisms, ensuring that 
robots can effectively collaborate with human counterparts without 
disrupting established workflows, thereby enhancing overall produc
tivity and safety. 

5. Conclusion 

Construction tasks present a significant opportunity for robotic ap
plications, yet there are still substantial challenges to overcome the 
limited dexterity capabilities of existing construction robotic methods. 
This paper proposes that the adoption of embodied AI will lead to 
transformative advancement for dexterity-capable construction robots 
to support sophisticated construction tasks by enhancing their level of 
intelligence and capabilities in multiple key areas of perception, plan
ning, operations, and decision-making. The development of self- 
adapting, scalable robotic systems allow for the broad deployment of 
automation across a variety of construction scenarios. 

While the development of embodied AI presents numerous oppor
tunities for dexterity-capable construction robots, there are several 
challenges that must be addressed. First, as the embodied AI algorithms 
and control mechanisms for dexterity-capable construction robots grow 
in complexity, the computational demands increase significantly. This 
can lead to higher power consumption, slower processing times, and 
increased costs. To address this challenge, future research should focus 
on developing more efficient algorithms, leveraging edge computing, 
and exploring specialized hardware optimized for AI computations. 
Second, obtaining accurate and diverse training data is essential for 
developing effective embodied AI models. However, collecting and 
annotating large volumes of data can be both time-consuming and 
expensive. To address this challenge, researchers are encouraged to 
explore data augmentation and transfer learning techniques, which 
allow models to leverage pre-trained components, reducing the amount 
of data required for training. An industry-wide protocol for sharing data 
is a feasible solution. Additionally, synthetic data generation through 
simulations and procedural modeling can provide valuable training data 
in a more controlled and cost-effective manner. This is a natural benefit 
of embodied AI as existing literature in this area provides methods for 
generating physically accurate data that can be used to train robots. 
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Lastly, creating scalable and modular robotic systems that can adapt to 
various tasks and environments is crucial for widespread adoption in the 
construction industry. Possible solutions include soft, modular and 
reconfigurable robotic systems that provide adaptable and versatile ro
botic systems capable of interacting with diverse and unstructured 
environments. 

The future agenda should also focus on the translation of these ad
vancements from theoretical constructs to real-world applications is 
crucial. Field studies offer invaluable insights into how these strategies 
operate under real-world constraints and circumstances, highlighting 
practical challenges and limitations that may not be evident in 
controlled or simulated environments. We therefore advocate for robust 
field testing and data collection efforts, to allow us to iterate and 
improve upon these AI models in a data-driven and evidence-based 
manner. Moreover, bridging the gap between different academia and 
industry is critical to ensure that these advancements in embodied AI 
can be effectively adopted and deployed in real-world construction sites. 
This involves fostering partnerships between researchers, industry 
practitioners, and policy makers to align research directions with in
dustry needs, address practical constraints and requirements, and 
facilitate the transition of these technologies into the marketplace. As 
dexterity-capable construction robots become more prevalent, ensuring 
the safety of human workers is the top priority. Developing reliable 
safety systems, such as real-time monitoring and collision avoidance, 
can help mitigate potential risks. Fostering trust between human 
workers and robots can be achieved through transparency in robot 
decision-making, providing humans with an understanding of the ro
bot’s intentions and actions, and allowing for more predictable and 
reliable interactions. By exploring new methods and practical standards 
for enabling dexterous robots for construction assembly tasks, we can 
pave the way for more capable automation for a safer, more efficient, 
and more productive construction industry. 
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