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ABSTRACT

The construction industry is integrating robots into critical tasks at an accelerated pace, with the aim of
enhancing efficiency, safety, and productivity. However, construction tasks requiring dexterity remain a chal-
lenge due to the need for precise movements, accurate perception, real-time decision-making, and a compre-
hensive understanding of the environment. To address these challenges, the introduction of embodied artificial
intelligence (AI) represents a significant shift in robotic capabilities to enhance their alignment with the broader
spectrum of construction settings. Rooted in cognitive science, embodied AI emphasizes the integration of an
agent’s physical form into its computational intelligence processes. It resembles how humans develop motor
skills by interacting with physical world. This paper introduces DEXBOT, an exploratory framework for designing
construction robots capable of high dexterity using embodied Al principles that mimics human strategies in
complex tasks. The framework outlines six key perspectives for solving high-dexterity tasks with embodied Al
scene understanding, localization and motion planning, position-based control, force-based control, sequence
planning, and correction decision-making. By presenting preliminary test cases for each perspective, the paper
emphasizes the role of embodied Al in advancing dexterity level of construction robots. The DEXBOT framework
is expected to encourage interdisciplinary collaboration of designing capable construction robots in the future.

1. Introduction

The construction industry has witnessed an increasing adoption of
robots in a spectrum of tasks, with the goal of enhancing the efficiency,
safety, and productivity of construction operations [1], such as the
bricklaying robot [2], robotic welding [3], and UAV/UGYV for inspection
[4]. Despite the advancements, the need for sophisticated collaborative
robots becomes apparent in high-dexterity construction tasks i.e., tasks
requiring fine motor skills, precise manipulation, and adaptive re-
sponses to unpredictable environments, which continue to pose
considerable challenges for robotic applications, such as pipefitting,
instrument installation, and electrical wiring [5-7]. These tasks chal-
lenge conventional robot control methods by not only demanding
technical precision (accurate perception, real-time decision-making, and
semantic understanding [8]) but also an advanced understanding of
human behaviors and needs. The dynamic, uncertain nature of con-
struction sites, with varying materials, unforeseen obstacles, and un-
certain human actions [9], further highlights the importance of
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developing robotic systems that can effectively interact and collaborate
with human workers, adapting in real time to their actions and
decisions.

This paper proposes that one of the enablers for robotics to effec-
tively execute dexterous construction tasks is integrating embodied
artificial intelligence (AI) in the design of robots. Embodied Al repre-
sents a branch of AI methods that focus on modeling the complex in-
teractions between Al and the physical environment to enable a more
robust adaptation to the environment [10]. Rooted in the process of
humans developing motor skills, embodiment originally refers to the
role of the body of an agent (e.g., humans) in shaping intelligence, which
involves sensory perception, motor control, and adaptive learning from
physical interactions and experiences [11]. Embodied Al emphasizes
real-time sensory data incorporation, enabling agents to respond more
effectively to dynamic, unstructured environments and human presence.
[10]. This approach can enables robots to interact with the environment
and human workers in a more sophisticated and nuanced way, facili-
tating more effective reactions in dynamic and unstructured
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environments [12]. Recent advances in embodied AI hold great poten-
tial for significantly improving the capabilities of construction robots to
facilitate complex construction tasks.

Despite the potential of embodied AI for enabling dexterous con-
struction robots, a systematic framework that can guide the high-level
design and integration processes seems missing. The significance of
such a framework is twofold. One the one hand, a framework for robotic
embodied AI can establish design standards for robot sensing, motor
control, and learning mechanisms, essential for high-dexterity tasks. On
the other hand, a systematic framework can encourage collaboration,
accelerate research progress, and ensure that advances in embodied Al
can be effectively and safely transferred to real-world construction tasks
[13]. This is particularly crucial for enhancing the robotic applications
in construction, where the need for intuitive, responsive, and safe in-
teractions between humans and robots is paramount. The lack of such a
framework may attributed to challenges in bridging the gap between
existing robotics and Al methods and their challenges in the diverse and
dynamic construction environment. First, the field of embodied Al is still
in its infancy, and researchers are still exploring the best approaches for
integrating Al into any physical system including construction robots
[11]. Second, the construction tasks are complex and multifaceted,
presenting a significant challenge in developing a universal methodol-
ogy framework that can be applied across different types of construction
projects [14]. The dynamic nature of construction environments and
workers further aggravates this challenge, as robots need to adapt and
respond to changing conditions in real-time [15]. Consequently, studies
in construction automation tend to focus on very specific applications
and tasks. Finally, the integration of embodied AI in dexterity-capable
construction robots requires an interdisciplinary research approach, as
it involves the convergence of AI and robotics. However, these are
traditionally separate fields, and therefore the development of a sys-
tematic methodology framework for integrating embodied Al in con-
struction robots requires collaboration and knowledge-sharing between
experts in multiple disciplines.

To address this gap, this paper proposes an enhancement through the
DEXBOT framework based on the existing foundation. This enhance-
ment emphasizes the infusion of embodied Al principles into established
frameworks for the design of dexterity-capable construction robots.
Rather than introducing an entirely new paradigm, DEXBOT is designed
to augment existing models with capabilities that significantly elevate
the potential for sophisticated human-robot interactions, adaptability,
and precision in unstructured environments. It meticulously details the
roles embodied Al can play in various aspects of construction robotics,
including scene understanding, localization and motion planning,
position-based and force-based control, as well as sequence planning
and the crucial decision-making processes of correction, rework, or
discard. These steps serve as building blocks for the construction of
capable robots that are pivotal for robots to effectively work alongside
humans in unstructured environments. For each step, we will present
preliminary test cases to showcase the unique role of embodied Al By
demonstrating the potential benefits of embodied AI for construction
robotics, this paper aims to encourage further research and development
in this area, ultimately leading to more capable and efficient construc-
tion robots in performing high-dexterity tasks.

2. Literature review
2.1. HRI in construction

The construction industry is witnessing a transformative shift to-
wards HRI, moving from traditional, isolated human and robot roles to a
collaborative, integrated approach. This shift, driven by the industry’s
growing emphasis on efficiency, safety, and productivity, is redefining
the landscape of construction operations [16]. The evolution of HRI in
construction reflects both technological and cultural shifts. Robots are
increasingly seen as collaborative partners rather than mere tools, a
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change driven by the need for enhanced safety in hazardous construc-
tion environments [17]. Robots in roles like structural assembly or
material handling alleviate the risk to human workers, taking on tasks
that are either too dangerous or physically demanding [18]. The ad-
vancements facilitating this integration are multifaceted. Innovations in
sensor technology allow robots to have a heightened awareness of their
human counterparts, leading to safer and more efficient collaboration
[19].

Furthermore, developments in Al and machine learning equip robots
with the ability to predict human actions, thereby enhancing collabo-
rative efforts [20]. Deep Reinforcement Learning (DRL) and Deep
Imitation Learning [21] emerge as key methodologies, with DRL opti-
mizing decision-making through trial and error and DIL enhancing ro-
bots’ ability to learn from human actions directly [22]. This shift
underscores a strategic move towards integrating human expertise into
robotic systems, especially in complex construction tasks requiring high
levels of dexterity [23]. DIL methods, such as behavioral cloning and
generative adversarial imitation learning, have proven particularly
effective in narrowing the gap between robotic capabilities and human
skill, by enabling robots to replicate expert human behaviors quickly
[24]. This integration not only accelerates the learning curve but also
enriches robots’ operational versatility, making them more adept at
responding to the nuanced dynamics of construction sites [22]. By
emphasizing human demonstrations—from visual cues to force inter-
actions—as fundamental elements of robot training, we underscore the
growing importance of HRI in the construction industry [25,26]. This
approach not only streamlines the process of robot training but also
ensures that robots can work alongside humans more efficiently and
safely, embodying the nuanced demands of construction tasks through a
harmonious blend of human insight and robotic precision.

Despite these advancements, HRIs in construction face several
challenges. Communication barriers between humans and robots remain
a significant hurdle. Developing an intuitive, user-friendly framework
for human-robot interaction is crucial for maximizing the efficiency and
safety of these collaborations [27]. Ensuring the safety of human
workers in close proximity to robots is another critical area requiring
ongoing research and development [28]. The advancements and chal-
lenges in HRI underscore the need for a comprehensive framework that
not only enhances human-robot collaboration but also leverages the
latest technological innovations [29]. Embodied AI bridges the gap be-
tween advanced robotic capabilities and intuitive, efficient HRIs by
enabling robots to understand and respond to the physical world in a
more human-like manner [11].

2.2. Construction robot and design framework

In recent years, the construction literature has shown a growing in-
terest in robotic methods to support construction operations, aiming to
enhance efficiency, safety, and productivity [30]. The applications of
construction robotics, from material handling [31] and site preparation
[14] to search and rescue [32], structural assembly and installation
[33], painting and plastering [34] and robot-based inspection [35-37]1,
have not only improved operational efficiency but also facilitated novel
Human-Robot Interactions (HRIs) in construction scenarios. These
advanced applications demonstrate the potential for collaborative in-
teractions between humans and machines, ensuring safety and quality
control across various construction tasks.

Innovations in mechanical designs, dynamic control methods, and
human-robot collaboration have been specifically tailored to meet the
unique challenges and requirements of construction tasks. The explo-
ration of mobile manipulators for construction waste management [38]
and UAV-UGV collaboration for site inspection [39-42] highlights the
diversity in mechanical designs aimed at task-specific functionality.
Moreover, novel control methods and efforts to improve robots’ envi-
ronmental and scene understanding capabilities [43-45] reflect the push
towards increasing adaptability and precision within complex work
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environments.

Recent research also underscores the active roles of human agents in
robotics, with mixed reality for robot teleoperation [46] and the use of
haptic controllers for intuitive interactions [47-49] being explored.
However, meeting the dexterity and adaptivity requirements of con-
struction tasks remains challenging. Robots capable of performing a
range of simple manipulation actions encounter difficulties in contact-
rich interactions [15], highlighting the need for more effective force-
based controls and enhanced perception capabilities. The increasing
demand for a synergistic blend of human expertise and robotic efficiency
[50,51] underscores the imperative for advanced HRIs in construction
robotics.

Existing work in construction robotics has proposed systematic
frameworks addressing these challenges through innovations in design
and integration processes [52-56]. Yet, the inclusion of embodied Al
elements is increasingly recognized as essential to further enhance robot
dexterity and adaptability in unstructured environments. Studies have
emphasized embodied AI’s contribution to scene understanding, local-
ization, motion planning, and intuitive human-robot collaboration
[57-59], bridging the gap between robotic capabilities and the nuanced
demands of construction tasks. Furthermore, advancements in
embodied Al have led to the exploration of force-based control methods
and sequence planning tailored for construction robotics [57], enabling
robots to engage in more sophisticated interactions and decision-making
processes. The development of frameworks that integrate embodied Al
for high-dexterity tasks has become a focal point for recent research
[60], demonstrating its potential to significantly improve the capabil-
ities of construction robots [61,62].

In summary, while considerable progress has been made in con-
struction robotics, the integration of embodied Al elements into existing
frameworks emerges as a pivotal step towards overcoming challenges
related to dexterity and adaptability. This approach promises to revo-
lutionize construction robotics, enabling robots to effectively work
alongside humans in complex and dynamic environments, thus
addressing the evolving challenges of modern construction sites.

2.3. Embodied Al for robotics

The concept of embodied Al stems from the paradigm of embodied
cognition, which argues that cognitive processes are influenced by the
physical attributes of the body [63]. In robotics, embodied Al entails the
physical instantiation of an Al system in a robotic body that allows it to
interact with and learn from its environment [12]. The argument is that
an Al should not merely act as a separate entity (such as a decision unit
based on pre-fed training data); instead, it should be integrated with the
body to leverage sensory and motor systems that interact dynamically
with the environment in real-time [64]. By incorporating embodied Al
into robotics, robots can be equipped with advanced perception, plan-
ning, and control mechanisms, allowing them to perform complex tasks
in real-world environments [65]. Moreover, the incorporation of Al-
interpreted human intention emerges as a critical complement to these
capabilities [66]. By understanding and anticipating human intentions,
embodied Al can facilitate more intuitive and seamless human-robot
interactions, effectively bridging the gap between human operators
and robotic systems [67]. This nuanced interpretation of human intent
allows robots to adjust their actions proactively [68], aligning with the
operator’s goals and preferences [69], thereby optimizing collaboration
and efficiency in tasks requiring close human-robot cooperation. Re-
searchers have been exploring the potential of embodied Al in robotics
and have been developing novel techniques to enhance the capabilities
of robots [70,71].

To be noted, the literature has noticed multiple challenges in real-
izing a full-span embodied intelligent robot. One of these challenges
relates to robot perception and scene understanding abilities, which are
critical for robots to interact effectively with their surroundings [72].
Various methods have been proposed to enhance robot perception, such
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as deep learning techniques for object recognition [73], semantic seg-
mentation for scene understanding [74], and reinforcement learning for
human-inspired perception designs [75]. These advances have enabled
robots to better perceive and interpret their environment, paving the
way for more complex interactions and tasks. Another critical compo-
nent of embodied Al is the development of efficient and adaptive control
mechanisms for robots. Traditional controllers rely mainly on position-
based controls, where the goal is to achieve the desired positions [76].
Recently, the robotics literature has highlighted the importance of
exploring better force-based or touch-based control methods, where
robots can react to physical forces in a more direct way [77-79]. In a
recent review study [65], researchers found that the ability of robots to
sense and model force and contact information through tactile or other
force sensors would be critical to realize embodied intelligence in ro-
botics. Finally, researchers also noted that the fulfillment of embodied
Al would require intelligent agents to make spontaneous sequence de-
cisions based on the real-time feeding of physical features of the sur-
rounding environment. For example, Batra, et al. [78] found that a
challenge to be resolved for embodied intelligent robots should be the
ability to sense, understand and model the physical characteristics of the
scene and objects, and thus make an arrangement decision without
human intervention.

In summary, the literature on embodied Al for robotics has seen
considerable progress in recent years, with advances in perception,
planning, and control mechanisms, as well as high-level sequence
decision-making. There is an emergent need for a systematic framework
that categorizes the roles of embodied Al for dexterity-capable robots in
dynamic and unstructured environments such as construction, to
benchmark the progress and challenges in the area. Addressing this gap
in the literature can lead to the systematic development of more capable
and efficient construction robots, which can revolutionize the con-
struction industry by automating a wide range of dexterous assembly
tasks that are currently only performed by humans.

Our framework, grounded in embodied Al, is tailored to meet the
unique challenges of HRIs in construction. By focusing on key elements
of dexterity and adaptability, it comprehensively integrates steps
essential for embodied capabilities in robots. This includes advanced
perception, adaptive control, and sophisticated learning mechanisms,
ensuring effective and safe collaboration between robots and human
workers. Our approach revolutionizes the role of robots in construction,
moving towards a seamless integration of human expertise and robotic
efficiency. This paradigm shift, enabled by embodied Al, equips con-
struction robots with enhanced capabilities to perform complex tasks,
transforming the construction industry with innovative assembly tech-
niques and collaborative strategies.

3. Framework of dexterity-capable construction robot
3.1. Overadll architecture

We focus on three major types of construction tasks: structural as-
sembly, material handling, and quality inspection, which reflects con-
struction’s fundamental challenges, emphasizing the importance of
precision, efficiency, and safety. These tasks, integral to construction
success, illustrate our framework’s versatility and impact, aligning
closely with the industry’s diverse requirements. In structural assembly,
precision and safety are crucial due to the risk of structural failure [80].
Material handling’s efficiency and adaptability are key due to diverse
material characteristics, posing logistical and safety challenges [81]. For
quality assessment, ensuring accuracy and consistency in defect detec-
tion is crucial to uphold construction standards and avoid rework [82].
To address the concerns of the above tasks, we propose the framework
for using embodied AI to enable dexterity-capable robots for construc-
tion tasks, or the DEXBOT framework. Fig. 1 illustrates the framework of
DEXBOT.

To ensure robots interpret environments and navigate efficiently, we
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Fig. 1. Architecture of DEXBOT framework; critical steps rely on embodied Al that learns from the physical interactions with the environment.

propose the scene understanding and localization & motion planning to
provide a foundation for precision in assembly, material handling and
inspection in construction. The inclusion of scene understanding as a
foundational step is motivated by the necessity for robots to interpret
complex and dynamic environments accurately. This capability is cen-
tral to embodied AI, which emphasizes the importance of sensory data in
informing robotic perception and action [83]. For the scene under-
standing phase, embodied Al provides rich physical information and
semantics for the robot to interpret the environment, identify individual
objects, their dimensions, and positions, and more importantly, the
physical properties and relationships among the objects.

The localization and motion planning are derived from the essential
requirements for autonomous navigation and task execution in un-
structured construction environments. Embodied Al posits that effective
action is contingent upon an agent’s understanding of its position within
a space and its ability to plan movements that are coherent with the
physical laws and environmental constraints [84]. In this step, the robot
must accurately map its physical position within the workspace, identify
the location of assembly components, and chart a clear, efficient tra-
jectory to move from one point to another while avoiding any obstacles.
These first two steps resemble how a human worker estimates physical
properties of obstacles along the navigation path, not only including the
kinematics but also the potential interaction with the environment, such
as moving obstacles away and identifying potential hazards. Embodied
Al provides the foundation for perceiving the physical properties of the
environment.

To enable precise manipulation and interaction with various mate-
rials, we propose the position-based control and force-based control,
which is key for assembling construction components accurately,
handling materials safely and performing detailed inspections [85]. The
distinction between position-based and force-based control methods
reflects the nuanced requirements of construction tasks, which often
demand a combination of precision and adaptability. The theoretical
foundation for these control strategies is situated in the concept of
embodied interaction, where the robot must not only execute pre-
defined paths but also respond to real-time feedback and physical re-
sistances encountered during construction task execution [86]. Position-

based controls enable the robots to maneuver accurately in the task
space, pick up objects, and align them precisely for assembly, while also
adjusting to small deviations in real-time. As for a human worker, this
step requires understandings of objects’ physical properties, such as
texture, weight, material, and geometry, for the optimal selection of
objects and position control mauver strategies. Embodied Al could grant
robot the same level of understanding. Force-based control is needed for
the robot to sense the force interaction and apply the force corre-
spondingly for assembly tasks such as screwing, pressing, or fitting parts
together. Embodied imitation learning can be utilized to learn from
human workers involving the delicate balance, applying enough force to
accomplish the task without damaging the components or the robot
itself.

Based on the scene understanding results and constraints of the
force-based control, step 5, sequence decision, is needed for robots to
determine the optimal order of actions. The inclusion of sequence
planning acknowledges the complexity of construction tasks that require
the execution of multiple, interdependent actions. Embodied Al, with its
emphasis on adaptive behavior based on environmental feedback, pro-
vides a theoretical framework for understanding how robots can opti-
mize construction task sequences to enhance efficiency and effectiveness
in real-world scenarios [11]. This involves an understanding of de-
pendencies between actions, the constraints, and the potential for time
efficiencies in the order they are executed. Embodied Al can play a vital
role in verifying algorithm-based sequence decisions by examining the
physical constraints, such as the physical capabilities of assembly
components and the possible interactions with the environment.

Finally, after the robot exerts the actions in the real world, the
feedback is analyzed in step 6. This step addresses the critical need for
robots to not only perform tasks but also to evaluate the outcomes and
decide on subsequent actions. This capacity for self-assessment and
decision-making is a hallmark of advanced embodied AI systems,
drawing on theories of autonomous decision-making and machine
learning to enable robots to learn from their actions and improve task
performance over time [87,88]. Here, like an experienced human
worker, the robot evaluates the results of its actions, compares them to
the intended outcome, and decides if corrective actions are needed or if
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the task was completed successfully. If the construction task is success-
ful, the robot can move on to the next task or, if necessary, iterate the
current task with the revised parameters. Embodied Al can provide ro-
bots with the capability to learn from these feedback loops, enhancing
their adaptive responses over time. These second two steps enhance all
tasks by optimizing action sequences and adapting to feedback, crucial
for streamlining assembly processes, ensuring efficient material man-
agement, and maintaining high-quality standards.

In summary, embodied Al serves as a cornerstone in uniting the six
crucial stages of our framework. Initially, it processes sensory data for
scene understanding, laying the groundwork for accurate localization
and adaptive motion planning. This comprehensive environmental
awareness enables the robot to execute actions with precision, using
position-based and force-based control methods tailored to the task’s
specific requirements. Sequence planning then leverages this integrated
data, allowing the robot to execute a series of interconnected actions
aimed at achieving complex objectives. Crucially, embodied Al evalu-
ates the outcomes of these actions, enabling the robot to make informed
decisions about correction, rework, or alternative strategies as needed.
This iterative cycle of action, evaluation, and adaptation—rooted in the
robot’s sensory and motor systems—illustrates how embodied AI not
only interlinks these stages but also perpetuates continuous improve-
ment and learning, thereby optimizing the robot’s interaction with and
adaptation to its operational environment.

We propose that the integration of embodied design principles is
fundamental for realizing embodied intelligence in robotics for
dexterous tasks. This novel approach creates a holistic, adaptive system
capable of navigating complex physical environments, interpreting as-
sembly goals, executing precise movements, applying appropriate force,
efficiently deciding on task sequences, and learning from its actions.
Each step of our framework, from scene understanding to decision-
making, is interconnected and mutually enhanced by embodied
design, emphasizing its vital role in enhancing robot dexterity and
human-robot interaction in construction settings. The subsequent sec-
tions will delve into the technical details of each step, supported by case
studies that illustrate the practical applications and benefits of our in-
tegrated approach.

3.2. Scene understanding

Developing a robust ability for scene understanding is the first step
towards integrating embodied Al into construction robots. The con-
struction environment is highly dynamic and unorganized, presenting
unique challenges that demand effective perception and interpretation
capabilities [89]. These challenges have been addressed through various
existing methods that enhance a robot’s scene understanding. Computer
vision methods can help robots identify and understand the various
objects and structures within the construction site via object recognition
and semantic segmentation based on imagery data collected from sen-
sors like LiDAR and RGB-D cameras [90]. These systems are also attuned
to recognize and differentiate human workers, ensuring safe and intui-
tive human-robot collaboration. Semantic segmentation further aids in
this by providing detailed contextual information about the environ-
ment, enhancing the robot’s ability to interact appropriately with both
the physical site and human workers [91]. These techniques can provide
detailed information about the objects’ positions, orientations, and se-
mantic relationships, supporting more nuanced and safe interactions
between robots and construction personnel [92].

While the recent advances in scene understanding have substantially
promoted the quality of semantic outcomes, i.e., understanding the
categories, identities, and contextual meanings of objects [93], we argue
that granting robots the human-like ability to comprehend the physical
properties of identified objects is also critical to enhancing their capa-
bilities. Specifically, detected objects should be mapped with their
physical categorizations, thus enriching the semantic understanding
with a deeper, physical comprehension of the environment [94]. Such a
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mapping allows the robot to better understand the implications of
interacting with these objects physically, or what we call, embodied
sensing. Embodied Al offers tremendous potential for facilitating the
development of embodied sensing which is the foundation for better
maneuverability of construction robots [95].

Fig. 2 shows the workflow of how the proposed embodied sensing
can enhance the scene understanding capabilities of construction robots.
The case involves an intelligent agent (such as a construction robot or
the AI that controls it) identifying stacked pipes along with an estima-
tion of their key physical properties (such as weight and materials).
Embodied sensing utilizes recognized scenes and objects (based on point
cloud) with virtual objects (i.e., prefabs) in-game engine, and assigns
physics properties and interactions based on the elemental models
established by Universal Scene Description (USD) [96]. First, we utilized
an adaptive LiDAR scanning method developed by You, et al. [9] to
generate the augmented dense point cloud of the objects and environ-
ment. The scanned point cloud was fed to a density-based clustering for
object identification. Then, we employed 3D point cloud detection al-
gorithms, such as PointNet++ network [97] to detect the type of the
segmented point cloud and estimate the pose. Afterward, a shared pre-
fab library that contains objects in the working scene will be utilized. All
objects collected in the library are provided with IDs, classes (scenery
objects and dynamic objects), pose, quality, dimensions, and prefab
models. Preparatory works include the collection of dimensional pa-
rameters of main objects and virtual object modeling. Then, raw point
cloud data is replaced with corresponding physics prefabs. The object’s
key information (name, dimensions, pose) is subscribed from ROS. The
name and dimensions of the identified object are used as the search key
in the prefab library. Based on the mapping relationships between an
object and the prefab, a virtual object with all physical properties in the
library is generated via USD. A key decision point is what objects in the
working scene should be replaced with virtual models for enhanced
physics simulation at what time point. We define two classes for adap-
tive physics modeling, including scenery objects (such as environment
and stationary structures), and dynamic objects (such as payload objects
and other movable objects interacting with the robot). Scenery objects
will be replaced immediately at the early phase of the process, while
dynamic objects will be replaced based on their relevance to the task and
the accumulation of motion and kinematics data. The last step is to call
the physics USD schema to retrieve pre-established physics simulation
data for expedited physics modeling and simulation. To simplify the
physics simulation while still capturing representative physics processes
in heavy rigging, the rigid body primer is recommended [98]. In our
framework, a rigid body is described by its pose (position and orienta-
tion), as well as its mass distribution (center of mass position and an
inertia tensor). The body also has a velocity (linear and angular vectors).
Given the state, or the state history of the bodies at a specific time, we
compute the updated state of the bodies a moment in time later, with the
general desire being that the bodies’ movement while constrained by the
constraints obeys the laws of physics.

To illustrate the effectiveness of the proposed method, we tested our
method on stacked object detection which is a common scene in con-
struction site. Firstly, the robot would try to identify the location of each
single pipe based on the point cloud detection results. Secondly, it would
apply the PointNet++ detection network to classify the segmented
single pipe and predict its label which is associated with the prefab in
USD. Fig. 3 showed the segmentation results of the stacked pipe.
Different colors corresponding to different pipes. Table 1 listed the 3D
IoU results for each pipe and the overall evaluation. The visual results
and the IoU accuracies showed that all the items could be well identified
and segmented.

Additionally, we listed the classification results in Table 1 based on
the segmented pipe to map to the prefab ID. Note that the primary goal
was to ensure the detected pipe was accurately recognized as its specific
prefab category, rather than broadly categorizing it among various
prefabs. The emphasis was not on the overall classification accuracy of
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Fig. 2. Workflow of the embodied sensing for scene understanding including physical properties alignment.

Fig. 3. Pipe segmentation results with the original point cloud (left) and the segmented result (right).

Table 1

3D IoU for each pipe and classification results.
Pipe Number 1 2 3 4 5 6 7 8 9 10
3D IoU (%) 90.2 % 94.6 % 91.3 % 93.4 % 89.6 % 91,7% 88.9 % 85.6 % 88.9 % 90.6 %
Classified Label “pipe” “pipe” “pipe” “pipe” “pipe” “pipe” “pipe” “pipe” “pipe” “pipe”

the detection network across multiple object types but on its ability to
correctly map a segmented object to a particular type.

From the above case, we show that by developing a robust physics-
modeling ability for scene understanding, embodied AI can enable
construction robots to better comprehend their dynamic and unorga-
nized surroundings. The method for incorporating physical properties
into the objects of digital twin models should expedite the learning
process of the Al system with precise models of real-world physics. This
enhanced perception and interpretation capability is a critical step for
integrating embodied Al in construction robotics.

3.3. Localization and motion planning

Localization and motion planning that suit well for dynamic and
unorganized construction workplaces is another fundamental capability
for dexterity-capable construction robots. It includes the need for both
the navigation of the entire robotic platform and the manipulative mo-
tions to collaborate with human workers. Unlike robotic applications in
well-controlled environments where objects, tools, and resources are
placed at relatively fixed locations, construction robots often need to
accurately locate a dynamic entity and move it along a desired path
[99]. The need for effective localization and motion planning techniques
arises from the confined spaces of most construction workplaces due to
the unique geometries of built structures, irregular layouts, and the
presence of numerous workers [100]. These factors make it difficult for

robots to perform tasks that require precise object manipulation and
transportation. To address these challenges, control-based or learning-
based techniques have been developed and explored, such as Simulta-
neous Localization and Mapping (SLAM), advanced control methods,
heuristic search algorithms, and reinforcement learning methods
[101-103].

Despite the efficacy of the above methods, construction robotics
faces unique challenges including uncertainties in the environment (e.g.,
unexpected obstacles or changes in the terrain), uncertainties in the
robot’s sensory data (due to sensor noise or inaccuracies), uncertainties
in the robot’s actions (e.g., due to control errors or mechanical failures),
and especially the uncertainties related to human workers (e.g., un-
predictable human behaviors) [54]. These uncertainties also make it
difficult for robots to make accurate predictions about the consequences
of their actions and to plan their movements effectively. We propose that
embodied AI could offer potential solutions to the issues associated with
uncertainties in construction environments. Embodied Al allows agents
to interact within a simulated environment that accurately mirrors the
complexity and unpredictability of real-world conditions [104]. Using
embodied Al, robots can be trained in a simulated construction envi-
ronment that closely mimics the real world, encompassing a variety of
scenarios such as unexpected obstacles, changes in terrain, variable
lighting conditions, and the presence of dust or debris. Virtual training
allows robots to better adapt their understanding of the environment,
update path planning, and control strategies more efficiently, even in
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the face of inherent uncertainties [105]. Moreover, unpredictable
human behaviors can also be modeled in these simulators, enabling the
robots to continuously learn and adapt their behavior to minimize the
impact of these uncertainties on their performance. The simulated
environment also offers the advantage of allowing robots to make mis-
takes and learn from them without causing any real-world injury or
delay [106]. Robots trained in a diverse range of simulated scenarios
could better navigate complex environments and perform complex tasks
with high levels of autonomy and precision.

In the following test case, we show the comparison of path planning
results using the traditional visual-based SLAM method and embodied
reinforcement learning [98] method. As shown in Fig. 4, all objects are
assigned physical properties that enable them to provide similar-to-real
collision and force feedback when interacting with the mobile robot.
Some objects are relatively static (e.g., walls) and some objects are
movable (e.g., cardboard boxes). This environment simulates a close-to-
real-life navigation scenario in which objects can be interacted with at
different extents. For the visual-based method, the agent uses the LiDAR
sensor to capture the spatial information and uses the point cloud visual
SLAM method to build the map and find the path to the target (see
Fig. 5). The robot is required to use the visual inputs to avoid collision
with the obstacles and find the path to access the target. For the ERL
group, the agent uses the same sensors to explore the environment,
while being allowed to interact with objects. A proximal policy
optimization-based reinforcement learning kernel is applied to both
conditions to train the agent to find the target. Negative rewards are
given for hard colliding with static items, and positive rewards are given
for reaching the target. In addition, for every step the agent takes it
would get a negative reward so that it would be forced to find the fastest
path by either shifting the soft item or passing through the gap between
the obstacles and trying to avoid collision with hard item at the same
time.

Table 2 lists the collision counts with hard object, soft object and the
completion steps of the two groups. We conducted 100 inferences for
each group and calculated the averages and derivations. Our result in-
dicates the advantages of ERL over classic vSLAM in planning the
optimal path on this construction site. Specifically, with both methods,
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Fig. 5. Different Actions by vSLAM vs ERL.

the agent made numerous collisions at the beginning exploration stage,
but it gradually learned to avoid collision with hard items. The vSLAM
relies on avoidance algorithm to update the path, while ERL learns the
physical properties, especially the moveability of the objects, to decide
more proactive actions to the obstacles. According to Table 2, the
collision count with soft object of ERL was significantly higher than that
of vSLAM, indicating that the ERL agent learns to interact with the
moveable objects to clean a path. On average, the vSLAM agent took
more than 2,000 action frames to reach the target while the ERL agent

Wooden
Wall

Concrete
Wall

Fig. 4. Test environment of path planning.
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Table 2
Inference results of two groups.
Groups  Collision Collision Completion Steps Success
Soft Hard (number of frames) rate
(number of (number of
frames) frames)
vSLAM 11 19 2134 95.6 %
ERL 192 21 475 98.6 %

took an average of 475 frames to reach the target. Also, the collision
count with hard object of ERL was almost zero, meaning that the agent
could identify which object was dangerous and couldn’t be moved.

Without embodiment, the traditional vSLAM method could only find
a sub-optimal path that avoided all obstacles. On the contrary, robot
agents in the ERL group could learn to find the target through inter-
acting with the surrounding environment. Besides, the agent developed
the strategy to shift the soft item in the complex environment. The agent
finally learned to move the pallet to create a passable way from its start
point to the target within a short period of time. Therefore, compared
with the traditional vSLAM-based method, the ERL method could handle
the changeable environment and find the potential optimal solution
through exploration.

3.4. Position-based control

Position-based control is another critical capability for dexterous
construction robots, as it directly impacts their ability to perform com-
plex object manipulation tasks with high precision and accuracy. Con-
struction tasks such as bricklaying, pipefitting, and assembly often
require intricate object manipulation, hence the ability to accurately
pick and place objects, move objects, and align objects with their
intended positions is of utmost importance [14]. Position-based controls
can enable construction robots to effectively align objects in their op-
erations. Position-based control focuses on regulating the position and
orientation of the robot’s end-effector, ensuring that it accurately fol-
lows a desired trajectory [107]. By leveraging the latest advancements
in position-based control, construction robots can better manipulate
objects and align them even in the presence of uncertainties and dis-
turbances. Song, et al. [92] thoroughly examined the application areas
of position-based controls for robotic manipulation and found that any
application scenarios requiring motion compliance or delicate interac-
tion should consider impedance position-based control as a potential
solution. Khalil and Payeur [93] proposed a multisensory fusion method
for improving the accuracy of position-based controls for manipulation
tasks, even when the robot’s model or the environment was not perfectly
known. By improving these controls, construction robots become more
adept at working in close proximity to human workers, ensuring precise
and safe interactions during complex collaborative tasks.

Despite the advancements in position-based control methods, several
challenges remain in achieving effective object alignment in dexterous
construction robots. One such challenge is that there is an inherent
variability of construction materials in sizes, shapes, and even physical
properties. Different materials like concrete, steel, wood, or plastic may
require different handling techniques and alignment strategies. For
instance, aligning a steel beam for assembly requires different precision
compared to aligning a plastic pipe for installation in terms of maximum
speed, grabbing point, and safe overhead zones. Different materials can
also be affected by environmental conditions in unique ways, such as
how changing light conditions affect the reflection of materials, and
later, affect the ability of the robot to correctly detect and grab the
objects.

We propose that embodied Al provides a sound solution for refining
position-based control that adapts to the complexity of construction
scenes. Embodied Al in a virtual environment provides an opportunity
for Al systems to gain a more nuanced understanding of control systems.
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The AI system can learn from thousands of virtual experiments, with
precise reproduction of real-world environment conditions (e.g.,
texture, shapes, etc.), on how different parameters affect position-based
control under various conditions [108]. For instance, an embodied Al
system could sense the physical properties such as weight and texture
and estimate the environmental interactions to adjust its position-based
control strategy, such as speed and trajectory. Furthermore, embodied
Al can enhance the feasibility of position-based control methods in
manipulating deformable objects, which is considered nontrivial with
traditional control methods, but is common in construction such as cable
handling [109].

In the following test case, we show an embodied Al training archi-
tecture that uses a physics simulator with varying target object materials
[110]. We aim to design and examine an embodied robot teleoperation
system integrating a mixed reality simulator and a high-resolution
haptic feedback system. Fig. 6 shows the workflow of the proposed
structure. This simulator is built on a physical engine that can accurately
simulate the physical properties of objects and the environment. The
objective of the embodied Al is to control a robot arm to perform a pipe
installation task efficiently. There are three types of pipes which are
made of different materials and correspond to different weights and
textures as illustrated in Table 3. Each pipe type had distinctive prop-
erties in terms of mass and friction. The distinct weight and texture
require different position-control strategies such as gripping location,
motion speed, and trajectories (e.g., the number of turns). For example,
the PVC pipe, due to its lower mass, could be grasped with less pressure.
However, if excessive pressure was applied, the PVC pipe could deform.
The cast-iron pipe, on the other hand, was able to withstand a significant
amount of pressure without deforming but required more force to pick
up.

Fig. 7 showed the training setup of our experiments. We trained the
robot arm in the simulated embodied environment to learn to apply
proper grasping force and safely insert the pipe into the target outer
pipes using reinforcement learning. To emphasis the importance of
embodied learning, we designed two training group. For the control
group, the observation of the agent only included the 3D location of the
object and the target. The robot arm couldn’t feel the physical proper-
ties. For the experimental group, the robot arm was provided the den-
sity, friction, pick-up force and deformation force plus the locations of
object and target. To evaluate the performance of the trained agents, we
calculated the success rates for the two agents. Either dropping the ob-
ject or destroying the object with large grasping force would lead to
failure. Fig. 8 showed an example of the trajectories of the two groups
with the left figure standing for control and the right figure standing for
experimental group. It is obvious that the agent with embodied infor-
mation performed smoother and stabler trajectories compared with that
of the non-embodied agent.

Additionally, we counted the completing steps, location errors and
success rates for the two groups when handling different types of objects
as shown in Table 4. For the control group, the completion time of
different objects were almost the same. On the contrary, for the exper-
iment group, the completion time of heavier objects (Cast-Iron) were
larger while those of the lighter objects (PVC) were smaller. The simi-
larity of control group and the difference of experiment group showed
that embodied group could adjust the moving strategy according to the
change of object’s weight. Given that the distances of object shifting
were almost the same, the robot agent developed a stable trajectory with
slow speed for heavier object and a direct trajectory with fast speed for
lighter object. Also, the overall radius errors of insertion (the shift be-
tween the object pipe center to target outer pipe center) for embodied
group are lower than that of the non-embodied group. Consequently, the
agent with embodied information has a significant higher success rate,
indicating that the robot could leverage the additional embodied in-
formation to improve its performance.

This comparison showed that the robot agent could successfully
determine different object properties by feeling the weight, inertia, and
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bl interest in developing methods that enable construction robots to
Table 3 . . . exhibit versatile force control capabilities. These methods encompass a
Properties of different pipe materials. . . .
wide array of techniques, such as impedance control [113], force-torque
Objects Density  Color Friction  Pick-up  Deformation control [114], and haptic feedback mechanisms [115]. These methods
force force allow for flexible interaction with the environment, as the robot can
PVC pipe 1.4/ White Medium  Small Small adapt its movements based on the forces it encounters, making it highly
cm’3 rigid suitable for handling delicate materials or interacting with other objects
plastic le in a saf [116]. The literature has al ined
Aluminum 2.7 g/ Bronze Small Medium  Medium or people in a safe manner . The literature has also examine
pipe m’3 metallic hybrid force/position control, a method that controls both the position
Cast-iron 7.38/ Dull black  Large Large Large and the force exerted by the robot simultaneously. This is especially
pipe em'3 with a beneficial in tasks that require a specific force application along a
rough defined trajectory, like gluing or painting [117]. Additionally, the
integration of deep learning techniques with these control methods is
gaining attention, which enables robots to learn and adapt their force
control strategies based on their experiences, thereby enhancing their
performance in various manipulative tasks [118]. These methods allow
robots to adapt to physical interactions with both the environment and
= S human collaborators, ensuring safe and effective joint task execution.
PVC pipe Integrating such advanced force control capabilities in construction
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Fig. 7. Pipe operation training layout.

friction. Furthermore, it learned to adapt different position control
strategies accordingly.

3.5. Force-based control

Another unique ability needed for dexterity-capable construction
robots is the force-based control that enhances robots to perform
manipulative tasks with varying physical properties [111]. This precise
force application is especially important in scenarios where robots
collaborate with human workers, as it enhances safety and task effi-
ciency [112]. Given the importance of force control, there is a growing

robots significantly contributes to a more harmonious and productive
human-robot partnership in complex construction tasks.

A critical insight from our work with the DEXBOT framework is the
recognition that ERL particularly when it integrates force information
within a physics simulator, offers distinct advantages. Traditional rein-
forcement learning methodologies, while robust, often suffer from a lack
of contextual understanding, particularly when nuanced physical in-
teractions come into play. Incorporating force data into the learning
process within a physics simulator offers the reinforcement learning
agent a more comprehensive sensory palette [119]. This enriched data
environment helps the agent to develop more nuanced policies that
better account for real-world physical interactions. The agent, equipped
with this added layer of sensory information, can simulate and predict
outcomes with higher accuracy than when operating on visual or posi-
tional data alone [120].

The following case demonstrates our approach through a specific
construction task — pipe inserting as shown in Fig. 9. The objective of
the Al agent is to perform a dexterous pipe inserting task in an occluded
operation space (i.e., accurate visual capture of the contact surface is
infeasible to acquire) as shown in Fig. 9(a). We trained the Al agent with
traditional reinforcement learning and embodied reinforcement
learning. Only positional information from the visual sensor was pro-
vided to the traditional RL, while only force contact information was
provided to the embodied RL. We trained 5 trials for each group. Fig. 9
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Table 4
Testing results of the two groups.

Groups Pipe Material = Completion Radius Success
Types Time (s) Error (m) Rate (%)

Embodied PVC 16.57 0.0261 95.2 % (a) Data '/
Group Aluminum 17.21 0.0242 93.7 % . -
Cast-Iron 16.23 0.0196 96.3 % Collection

Non- PVC 14.34 0.0375 80.6 %
Embodied Aluminum 17.18 0.0212 74.2 %
Group Cast-Iron 21.86 0.0561 69.7 %

(b) and Fig. 9(c) show the training and testing results, respectively. The 16 = ———

y-axis in Fig. 9(c) denotes the steps to finish the task using the trained 14 =

models. According to the comparison, we noticed that the time step for 1.2 7 AR LI SSF A
force-based group was largely smaller than that of the visual group, 210 11/~

indicating that using force sensory data as embodied feedback could (b) Training §o‘8 1/
significantly shorten the task completion speed. Additionally, we listed Performance ¢ / force

the error and task success rate of the two groups in Table 5. The force 04 force base
visual

group performed better than the visual group according to both metrics, 02 o ase

which further verified the effectiveness of embodiment training. o 156 05 — 60
Our experiments have consistently shown that agents trained Training Steps

through ERL consistently outperform their counterparts trained using (c) Force vs Visual

traditional reinforcement learning methods. Not only do these agents 6000

achieve their objectives more effectively, but they also adapt more

swiftly to unanticipated challenges or changes in their environment,

underscoring the potential of embodied reinforcement learning as a (c) Testing

transformative tool in robotic manipulation and beyond. Moreover, we Performance £ 2000

also found that the learning speed and accuracy were significantly

improved while imitating human demonstration data. This result pro-

vides a fertile ground for future human-robot collaboration study and force vis force vis

embodied imitation learning. base base total total

4000

me Step

3.6. Sequence planni Fig. 9. Embodied AI for robot force control: an experiment comparing the
e g training results using visual inputs versus using force inputs.

Sequence planning also plays a vital role in the performance of
dexterity-capable construction robots. A construction task often consists
of a variety of interdependent steps that must be executed in a specific

10
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Table 5
Testing results of visual and force groups.

Groups Time Step Radius Error (m) Success Rate (%)
Visual 2799 0.0972 77.9 %
Force 953 0.0321 92.5 %

sequence order [121]. This process often demands real-time adjustments
due to changing conditions on the construction site, such as material
variability and evolving project requirements [122]. In the context of
HRI, effective sequence planning is essential not just for task execution
but also for ensuring smooth collaboration between robots and human
workers. The ability of robots to adapt their task sequence in response to
human decisions and onsite changes greatly reduces time-consuming
and error-prone manual planning, typically performed by construction
workers [123].

At present, sequence planning is largely addressed by the assembly
sequence planning [124] literature, which aims to identify the most
efficient and cost-effective sequence of operations to assemble a product
while considering various factors, such as resources, constraints, and
goals [125]. Classical approaches such as the AND/OR graph [126] and
the liaison graph [127] represent assembly operations as directed graphs
with nodes representing parts and edges representing assembly opera-
tions. Matrix-based methods, such as the design structure matrix (DSM)
[128] and the assembly incidence matrix (AIM) [129], use matrices to
represent relationships between parts and assembly operations. Addi-
tionally, mathematical methods like integer programming (IP) [130],
mixed-integer linear programming (MILP) [131], and constraint pro-
gramming (CP) [132] have been used to model and solve ASP problems
by formulating them as mathematical models with variables represent-
ing assembly operations and constraints representing precedence re-
lationships and resource limitations. Heuristic methods, such as greedy
algorithms [133], local search methods like simulated annealing [134],
tabu search [135], and variable neighborhood search [136] have been
employed to find good solutions efficiently by using heuristic rules to
navigate the complex solution space of ASP problems. In recent years,
approaches leveraging machine learning have emerged, such as genetic
algorithms [137], ant colony optimization [138], particle swarm opti-
mization [139], and artificial neural networks [140]. These methods are
used to explore a wide search space and generate optimal or near-
optimal solutions.

However, the traditional sequence planning paradigms often neglect
the intricacies of real-world physical dynamics, leading to theoretically
optimal sequences that may be unfeasible in a tangible environment.
Embodied Al underpinned by accurate physics engines, provides a
foundational shift in this perspective. The physics engine facilitates a
high-fidelity simulation environment, granting the ability to model, test,
and validate sequence decisions under rigorous physical constraints.
Within this environment, dynamic physics interactions can be accu-
rately replicated, enabling a meticulous analysis of potential force in-
teractions, torque requirements, and spatial constraints that a robot
might encounter during real task execution. These simulations enable
the identification and mitigation of potential pitfalls in a sequence.
Furthermore, by incorporating physics simulations into the planning
phase, we can transition from merely heuristic-based planning to a more
holistic, physics-informed decision-making process. This methodology
ensures that sequence decisions are not only algorithmically optimal but
are also validated under a spectrum of real-world physical scenarios. In
essence, embodied Al for sequence planning transcends the limitations
of conventional algorithms by grounding decisions in tangible physics.
This approach not only guarantees sequences that are computationally
efficient but also those that stand the test of real-world dynamism and
constraints, marking a significant stride in the evolution of robust ro-
botic operations.

In the following test case, we show the implementation of using
embodied simulation to solve sequential decision-making problems and

11
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control the robot arm to manipulate in a simulated platform with the
help of Large Language Models (LLMs) [141,142]. This test case is set up
as the pipeline installation which is a general task in the construction
site. The robot is required to use pipes of the same size to create a
pipeline from the given starting and ending points. We added three
obstacles midway randomly, simulating unexpected constraints from
real life, such as existing machines or faulty wall settings. The installa-
tion sequence was generated by fine-tuned LLMs [143-145]. With no
unexpected obstacles, the LLMs could generate correct action sequences.
However, when unexpected obstacles occurred, the LLMs could not
determine a correct solution. We then provided the LLMs with an
embodied environment that had contextual information such as the
occurrence of obstacles. Specifically, we developed a token-based rep-
resentation system that incorporated both symbolic and spatial infor-
mation to describe the arrangement and state of the embodied
environment. Each token consisted of a specific component, followed by
its spatial coordinates, denoted as (x, y, z). For instance, pipe sections
were represented as “PIPE (x,y,z)”, the starting and ending points of the
pipeline as “START (x,y,z)” and “END (x,y,z)”, respectively. Unforeseen
barriers, on the other hand, were denoted as “OBSTACLE_MACHINE (x,
y,z)” or “OBSTACLE WALLFAULT (x,y,z)” based on their type. Addi-
tionally, spatial relations were encoded using directional tokens like
“LEFT_OF”, “RIGHT_OF”, “ABOVE”, and “BELOW”. To offer a clearer
context, if a faulty wall setting was located at coordinates (3, 2, 1) and to
the left of the second pipe situated at (4, 2, 1), it would be encoded as
“OBSTACLE_WALLFAULT (3,2,1)”; LEFT_OF PIPE_2 (4,2,1)". Table 6
lists representative information used in our token system.

We presented these token sequences to the LLMs, giving them
structured input that melded both symbolic and spatial data as shown in
Fig. 10. With this enriched context, the LLMs planner was primed to
process the scene, reason about the potential issues arising from the
obstacles, and suggest alternative action sequences. These sequences
guided the robot arm in maneuvering around the obstructions, ensuring
the seamless installation of the pipeline.

3.7. Correction, rework or discard Decision-Making

The ability to make independent and spontaneous decisions towards
mistakes in an assembly process is also essential for dexterity-capable
robots in construction sites. We call it the correction, rework, or
discard (CRD) decision-making problem. For construction (and many
other industrial tasks), it is difficult to achieve a goal in a single attempt,
particularly in complex and dynamic assembly tasks. When a mistake
happens in the middle of an assembly operation, robots should be able to
decide whether a corrective action or rework is more proper, or just
simply discard the ongoing work. At present, most control methods
command a direct halting when an unexpected scenario (such as mis-
takes) happens [146]. To perform tasks effectively and economically,
robots need the capacity for self-correction, choosing between rework-
ing, restarting, or discarding an action. This decision-making process,
complex even for humans, involves considering technical, logistic,
economic, and safety factors. For example, manufacturing literature has
developed a level of repair analysis (LORA) framework that determines
whether an item should be repaired, replaced, or discarded, guided by
the considerations of cost and operational readiness requirements [147].
In the context of HRI, enhancing robots with CRD decision-making
abilities ensures smoother, more autonomous collaboration, reducing
reliance on human intervention for error.

After a comprehensive literature search, we could not find existing
studies that presented explicit methods for making CRD decisions.
Although the literature has explored machine learning approaches for
equipping robots with the ability of corrective actions (e.g., [148,149]),
these methods focus on how to better perform the corrective and rework
actions after a CRD has been made. Instead, what we highlight here is
the lack of a quantitative method or formulation for robots to make such
a CRD decision without human intervention. As a result, we propose the
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Table 6

Proposed token system for LLMs to understand physical conditions.

Token Type

Description

Example

Object Tokens: To inform LLMs the objects

PIPE

START

END

OBSTACLE_MACHINE

OBSTACLE_WALLFAULT

Represents a pipe
section.

Denotes the starting
point of the
pipeline.

Denotes the ending
point of the
pipeline.
Represents an
unexpected
machine-based
obstacle.
Represents an
unexpected wall
fault.

PIPE (5,2,1)

START (1,1,1)

END (10,1,1)

OBSTACLE_MACHINE (6,2,1)

OBSTACLE_WALLFAULT
(7,2,1)

Directional Tokens: Used to inform LLMs of current spatial conditions

LEFT_OF

RIGHT_OF

ABOVE

BELOW

Indicates one object
is to the left of
another.

Indicates one object
is to the right of
another.

Indicates one object
is above another.

Indicates one object
is below another.

OBSTACLE_MACHINE (6,2,1)
LEFT_OF PIPE (7,2,1)

PIPE(7,2,1) RIGHT OF
OBSTACLE_MACHINE(6,2,1)

PIPE(5,3,1) ABOVE
OBSTACLE_WALLFAULT
5,2,1)

PIPE(5,1,1) BELOW
OBSTACLE_WALLFAULT
5,2,1)

State Tokens: Used to inform LLMs the current system states

INSTALLED

UNINSTALLED

BLOCKED

Indicates a pipe
section has been
installed.

Indicates a pipe
section hasn’t been
installed yet.
Indicates a path or
position is blocked
by an obstacle.

PIPE(5,2,1) INSTALLED

PIPE(6,2,1) UNINSTALLED

PATH(6,2,1) BLOCKED

Action Tokens: Used for representing robot actions or decisions.

MOVE_TO

PICK_PIPE

INSTALL_PIPE

Indicates the robot
should move to a
specific position.
Indicates the robot
should pick up a
specific pipe.
Indicates the robot
should install a pipe
at a location.

MOVE_TO(5,2,1)

PICK _PIPE(5,2,1)

INSTALL_PIPE(6,2,1)

Star
Build the pipeline

Arrange the
first pipe

Initial state

Obstacle
collision
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use of embodied Al to provide a learning platform where robots can
explore strategies for spontaneous CRD decision-making. By training Al
within physically accurate simulators, these systems can learn from
countless virtual experiments, discovering how different CRD strategies
affect task outcomes under various conditions. Through reinforcement
learning, the Al system can learn to select the most effective action —
whether it is to correct, rework, or discard a task — in response to an
error. This could potentially facilitate the development of construction
robots that can respond adaptively and intelligently to unexpected
scenarios, enhancing their efficiency and effectiveness in complex, dy-
namic assembly tasks. Imitation learning is also an effective approach
for transferring human decision strategies to these systems, but the
variability of human actions and strategies should be considered to
generalize across different situations and workers. Given that this area of
research is still primitive, no cases can be presented in this paper. Future
research can explore methods for capturing and modeling the variability
in human error correction and rework strategies, as well as developing
algorithms that can learn from multiple demonstrations to achieve more
robust and adaptable decision-making capabilities.

4. Discussion

The scalable adoption of construction robots has shown the potential
to revolutionize the way motor-intensive construction assembly tasks
are performed, leading to increased efficiency, safety, and productivity.
One significant challenge relates to the development of dexterous ro-
bots, mainly manipulators, which can perform complex, high-precision
tasks that are traditionally labor-intensive and prone to human error.
This paper proposes a DEXBOT framework for designing dexterity-
capable construction robots based on the principles of embodied Al,
for better perception, planning, and control mechanisms to systemati-
cally improve robots’ abilities to interact and collaborate with human
workers effectively. Embodied Al combines AI with physics-based sim-
ulations, enabling robots to interact with human workers in a virtual yet
physically accurate environment. This combination can enhance robots’
ability to understand, learn from, and navigate complex real-world
conditions, significantly improving their performance, adaptability,
and decision-making capabilities which are crucial for sophisticated
tasks in construction sites. The six fundamental steps within this
framework include scene understanding, localization and motion plan-
ning, position-based control, force-based control, sequence planning,
and the decision-making process concerning correction, rework, or
discard. In each of these stages, embodied Al serves a pivotal role in
transforming the current state-of-the-art practices.

First, embodied AI can significantly improve scene understanding

Non-embodied solution:

Keep the  Ignore the  Finish the
current plan  obstacles  wrong plan

- -

A

-

Rcrctif'y the Find a new

Finish the

plan path rectified plan

Embodied solution

Fig. 10. The demonstration of the process by utilizing ChatGPT-4 to plan the pipeline and control the robot arm to perform the pipeline installation in the virtual

environment.
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(step 1) by integrating physics-based attributes into recognized objects
within the raw reality capture data. For instance, this could involve
leveraging machine learning techniques to classify and extract object
properties such as mass, dimensions, and material characteristics from
point clouds or other sensor data. The result is a richer, more compre-
hensive model of the environment that not only includes object identi-
fication but also physical properties, which can support more advanced
interaction planning and decision-making capabilities in construction
robots. Second, embodied Al has significant potential in enhancing robot
localization and motion planning (step 2), as well as position-based
control (step 3). It can provide a realistic simulation environment that
closely mirrors real-world conditions. For example, movable objects can
be identified to improve the proactivity of localization algorithms.
Advanced motion planning algorithms can be trained and validated in
this simulated environment, handling complex navigation tasks under
different site conditions and obstacles. Similarly, embodied Al can help
improve position-based controls, where the robot’s end-effector follows
a desired trajectory, by simulating different physical interactions and
disturbances. Third, embodied AI can significantly contribute to the
training and validation of robotic force-based controls (step 4). Physics
simulation can be employed to model the forces involved in manipu-
lating different objects, allowing the development, and testing of control
strategies in a safe, controlled environment. Furthermore, creating en-
vironments that mimic real-world construction sites allows for the
collection of meaningful human demonstration data, enabling the
implementation of effective imitation learning techniques. Last but not
least, embodied AI can also be utilized in the validation of sequence
planning (step 5) and spontaneous decisions when any assembly mistake
is observed (step 6). By providing a high-fidelity simulated environment,
embodied AI can support machine learning models in identifying
optimal assembly sequences and correcting courses when errors occur.
With the high complexity of construction assembly tasks, the use of a
simulated environment allows the sequence planner to be tested against
a variety of scenarios, improving its generalization and robustness.

Note that the pipe installation task was specifically chosen for its
embodiment of common construction challenges, including complex
Spatial requirements, variability and adaptability, integration with
existing systems and interaction with unstructured environments,
making it an ideal candidate to showcase the DEXBOT framework’s
capabilities. Firstly, pipe installation often necessitates working within
tightly constrained spaces and necessitates a high degree of spatial
awareness. Robots must navigate these spaces while avoiding existing
structures, which mirrors the spatial navigation challenges present in
many other construction tasks. Secondly, the task involves handling
materials with varying dimensions and specifications, requiring the
robot to adapt its approach for different pipe sizes and materials. This
variability demands a level of adaptability and decision-making that is
crucial across construction tasks, where no two scenarios are identical.
Thirdly, installing pipes involves integrating with existing systems (e.g.,
water, gas, HVAC), akin to how many construction tasks must consider
and accommodate pre-existing structures and utilities. This aspect tests
the robot’s ability to work within a predefined framework, enhancing its
applicability to diverse scenarios. In addition, unlike controlled envi-
ronments, construction sites are dynamic and unpredictable. The pipe
installation task, set within such an environment, challenges the robot to
perform under variable conditions, including changes in lighting,
weather, and the presence of unanticipated obstacles. Besides, the task
also allows for the simulation of real-world time constraints and effi-
ciency requirements, mirroring the pressures of actual construction
projects where time is often a critical factor. By detailing the application
of the DEXBOT framework to this specific scenario, we aim to highlight
its versatility and effectiveness in addressing a wide spectrum of con-
struction activities, underscoring the potential for scalable adoption of
robotics in the construction sector.

This paper also provides test cases for the key steps of the proposed
DEXBOT framework. Given these potentially transformative impacts, we
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encourage academic exploration of embodied AI’s applications in con-
struction, with more methodological and practical evidence. This allows
for the deployment of robotic systems across various construction tasks
and settings, making them more flexible assets for the industry.

Despite the promising advancements introduced by our novel con-
struction robot technology, its deployment in real-world construction
environments still has a thorough consideration of potential challenges
and areas for future development. Construction sites present a unique set
of conditions—ranging from harsh weather to highly variable and
cluttered workspaces—that can significantly impact the operational
effectiveness of robotic systems. The complexity of construction tasks,
coupled with specialized processes inherent to the industry, requires
robots to possess not only advanced dexterity and adaptability but also
an intricate understanding of construction workflows and the ability to
navigate them effectively. One of the principal challenges involves
ensuring the robot’s resilience to the diverse and often extreme condi-
tions found on construction sites. Factors such as dust, moisture, and
fluctuating temperatures can impede robotic sensors and machinery,
necessitating the development of robust designs that safeguard against
these environmental stresses. Moreover, the complexity and specificity
of construction tasks demand that robots are equipped with sophisti-
cated planning, decision-making, and execution capabilities. This in-
cludes the ability to adapt to unforeseen changes in the environment or
task requirements, a critical feature for maintaining efficiency and safety
on dynamic construction sites. Future research will focus on enhancing
the robot’s environmental robustness and its cognitive and mechanical
adaptability. Additionally, integrating these robots into existing con-
struction processes poses its own set of challenges. It is essential to
develop seamless human-robot collaboration mechanisms, ensuring that
robots can effectively collaborate with human counterparts without
disrupting established workflows, thereby enhancing overall produc-
tivity and safety.

5. Conclusion

Construction tasks present a significant opportunity for robotic ap-
plications, yet there are still substantial challenges to overcome the
limited dexterity capabilities of existing construction robotic methods.
This paper proposes that the adoption of embodied AI will lead to
transformative advancement for dexterity-capable construction robots
to support sophisticated construction tasks by enhancing their level of
intelligence and capabilities in multiple key areas of perception, plan-
ning, operations, and decision-making. The development of self-
adapting, scalable robotic systems allow for the broad deployment of
automation across a variety of construction scenarios.

While the development of embodied Al presents numerous oppor-
tunities for dexterity-capable construction robots, there are several
challenges that must be addressed. First, as the embodied Al algorithms
and control mechanisms for dexterity-capable construction robots grow
in complexity, the computational demands increase significantly. This
can lead to higher power consumption, slower processing times, and
increased costs. To address this challenge, future research should focus
on developing more efficient algorithms, leveraging edge computing,
and exploring specialized hardware optimized for AI computations.
Second, obtaining accurate and diverse training data is essential for
developing effective embodied AI models. However, collecting and
annotating large volumes of data can be both time-consuming and
expensive. To address this challenge, researchers are encouraged to
explore data augmentation and transfer learning techniques, which
allow models to leverage pre-trained components, reducing the amount
of data required for training. An industry-wide protocol for sharing data
is a feasible solution. Additionally, synthetic data generation through
simulations and procedural modeling can provide valuable training data
in a more controlled and cost-effective manner. This is a natural benefit
of embodied Al as existing literature in this area provides methods for
generating physically accurate data that can be used to train robots.
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Lastly, creating scalable and modular robotic systems that can adapt to
various tasks and environments is crucial for widespread adoption in the
construction industry. Possible solutions include soft, modular and
reconfigurable robotic systems that provide adaptable and versatile ro-
botic systems capable of interacting with diverse and unstructured
environments.

The future agenda should also focus on the translation of these ad-
vancements from theoretical constructs to real-world applications is
crucial. Field studies offer invaluable insights into how these strategies
operate under real-world constraints and circumstances, highlighting
practical challenges and limitations that may not be evident in
controlled or simulated environments. We therefore advocate for robust
field testing and data collection efforts, to allow us to iterate and
improve upon these AI models in a data-driven and evidence-based
manner. Moreover, bridging the gap between different academia and
industry is critical to ensure that these advancements in embodied Al
can be effectively adopted and deployed in real-world construction sites.
This involves fostering partnerships between researchers, industry
practitioners, and policy makers to align research directions with in-
dustry needs, address practical constraints and requirements, and
facilitate the transition of these technologies into the marketplace. As
dexterity-capable construction robots become more prevalent, ensuring
the safety of human workers is the top priority. Developing reliable
safety systems, such as real-time monitoring and collision avoidance,
can help mitigate potential risks. Fostering trust between human
workers and robots can be achieved through transparency in robot
decision-making, providing humans with an understanding of the ro-
bot’s intentions and actions, and allowing for more predictable and
reliable interactions. By exploring new methods and practical standards
for enabling dexterous robots for construction assembly tasks, we can
pave the way for more capable automation for a safer, more efficient,
and more productive construction industry.
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