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Introduction: As robot teleoperation increasingly becomes integral in executing
tasks in distant, hazardous, or inaccessible environments, operational delays
remain a significant obstacle. These delays, inherent in signal transmission and
processing, adversely affect operator performance, particularly in tasks requiring
precision and timeliness. While current research has made strides in mitigating
these delays through advanced control strategies and training methods, a crucial
gap persists in understanding the neurofunctional impacts of these delays and
the efficacy of countermeasures from a cognitive perspective.

Methods: This study addresses the gap by leveraging functional Near-Infrared
Spectroscopy (fNIRS) to examine the neurofunctional implications of simulated
haptic feedback on cognitive activity and motor coordination under delayed
conditions. In a human-subject experiment (N = 41), sensory feedback was
manipulated to observe its influences on various brain regions of interest (ROIs)
during teleoperation tasks. The fNIRS data provided a detailed assessment of
cerebral activity, particularly in ROIs implicated in time perception and the
execution of precise movements.

Results: Our results reveal that the anchoring condition, which provided
immediate simulated haptic feedback with a delayed visual cue, significantly
optimized neural functions related to time perception and motor coordination.
This condition also improved motor performance compared to the
asynchronous condition, where visual and haptic feedback were misaligned.

Discussion: These findings provide empirical evidence about the
neurofunctional basis of the enhanced motor performance with simulated
synthetic force feedback in the presence of teleoperation delays. The study
highlights the potential for immediate haptic feedback to mitigate the adverse
effects of operational delays, thereby improving the efficacy of teleoperation in
critical applications.

KEYWORDS

robot teleoperation, functional Near-Infrared Spectroscopy (fNIRS), sensory feedback
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1 Introduction

Robot teleoperation enables human operators to command and control robots in
distant, hazardous, or inaccessible environments (Senft et al., 2021). This ability expands
the range of feasible applications, such as deep-sea exploration, space missions, and
hazardous material handling, allowing for complex tasks to be conducted beyond the
conventional spatial limitations imposed between the human operator and the robot (Zhou
et al., 2023). However, the potential of teleoperation is often undermined by operational
delays due to physical constraints like signal transmission distances and processing
limits, resulting in latency that affects situational awareness, control precision, and task
performance (Kluge et al., 2013; Wenhao et al., 2017; Payra et al., 2020). Such delays
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increase cognitive workload, error potential, and challenge the
efficiency and effectiveness of teleoperation (Orlosky et al., 2018;
Kim E. et al., 2021).

In order to mitigate the implications of inevitable delays
in robot teleoperation, literature has presented a variety of
technical or behavioral countermeasures (Farajiparvar et al., 2020).
Prominent among these countermeasures include supervisory
controls (Manoharan and Ponraj, 2019), predictive controls (Uddin
and Ryu, 2016), diversified of interaction modalities (Magrini et al.,
2020), and intensive trainings for developing adaptive manipulative
tactics such as the “move and wait” strategy (Hokayem and Spong,
2006). These countermeasures aim at optimizing the reactive
actions based on the predicted delay patterns (Zhu et al., 2023), or
improve human responses while repetitive training (Pervez et al.,
2019). Nevertheless, these existing methods are less effective when
delay patterns are less clear, or when training is limited such as
in emergent scenarios. To prepare for more extreme conditions of
delayed teleoperation, we have proposed an innovative approach
to sensory manipulation. By utilizing a physics engine, we simulate
synthetic force feedback in anticipation of the actual haptic signal
data (Du et al., 2023). This method creates a more intuitive and
responsive teleoperation experience, even when communication
delays change. The simulated feedback is designed to approximate
the real physical interactions that the robot would experience,
providing the operator with a preemptive sense of the forces
involved in the task. In our pilot test we have found that this sensory
manipulation method could significantly improve the operator’s
perception and control, thereby reducing the adverse effects of the
inherent delays in robot teleoperation.

However, we noticed a knowledge gap in terms of the
neurofunctional underpinnings of sensory manipulation or other
similar approaches as countermeasures to teleportation delays.
While existing studies have examined the implications of
teleoperation delays and corresponding mitigation strategies on
motor performance, or self-assessment of perception and cognitive
status, there remains a significant gap in understanding how these
strategies affect neural functions, particularly those related to time
perception and motor coordination. The existing literature largely
neglects the neural underpinnings that could play a crucial role in
determining the efficacy of teleoperated manipulations. Specifically,
there is a scarcity of evidence on how synthetic, simulated
haptic feedback influences these neural processes. This omission
is critical as understanding the neurofunctional impacts of sensory
manipulation could provide deeper insights into the mechanisms
through which these strategies improve teleoperation performance.

In addressing the challenges posed by teleoperation delays,
its crucial to understand their impact on neural functions and
motor coordination, which are essential for precise task execution.
Research highlights that the basal ganglia and supplementary
motor areas play pivotal roles in timing and motor coordination,
directly influencing teleoperated task performance under latency
conditions (Halsband et al., 1993; Merchant et al., 2013). Moreover,
advancements in neuroimaging techniques, particularly functional
Near-Infrared Spectroscopy (fNIRS), have provided insights into
how these delays impact the prefrontal and motor cortices, areas
crucial for decision-making and movement execution (Sanes and
Donoghue, 2000; Zimeo Morais et al., 2018). Our study leverages
fNIRS technology to enhance teleoperation system design and
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training, aiming to improve operator performance and mitigate the
challenges of delayed feedback.

In designing the conditions for this study, we focused on
realistic teleoperation scenarios characterized by long-distance
communication where visual and haptic data transmission times
differ significantly. Visual data, often large in size such as a frame of
1080p video, tends to incur longer transmission delays compared
to haptic data, which typically consists of smaller packets (e.g.,
six floats data for force and torque). This difference is caused by
inherent differences in data size and transmission requirements,
leading us to hypothesize that visual delays would generally be
greater than haptic delays in real-world teleoperation applications.
Our study aimed to explore how these common delay scenarios
affect both neurofunctional responses and task performance in
teleoperation, providing insights that could guide the optimization
of teleoperation systems, particularly in fields requiring high
precision and rapid feedback.

The objective of this paper is to address this knowledge gap
by exploring the neurofunctional implications of synthetic haptic
feedback in delayed robot teleoperation. To this end, we have
conducted a human-subject experiment (N = 41), utilizing fNIRS
to monitor neural activity. Our study concentrated on analyzing
data from several key brain regions relevant to robot teleoperation:
the anterior prefrontal cortex (APFC), left and right dorsolateral
prefrontal cortex (LDLPFC and RDLPFC), left and right premotor
cortex (LM1 and RM1), and left and right primary motor cortex
(LPM and RPM) as illustrated in Figure 1. The specific channels
designated for each ROI are below:

APFC (8): S5-D3, S5-D6, S5-D4, S3-D4, S6-D4, S4-D4, S4-
D2, S4-D5.

LDLPEC (6): S2-D3, S2-D1, S1-D1, S1-D2, S3-D3, S3-D2.

RDLPEC (6): S8-D6, S8-D7, S7-D7, S7-D5, S6-D6, S6-D5.

LPM (5): S16-D16, S16-D14, S15-D14, S13-D14, S13-D13.

RPM (5): S9-D9, §9-D10, S10-D10, S11-D10, S11-D12.

LM1 (5): S15-D16, S15-D15, S15-D13, S14-D15, S14-D13.

RM1 (5): S10-D9, S10-D11, S10-D12, S12-D11, S12-D12.

Each selected region plays a crucial role in teleoperation: the
APFC is involved in executive functions and complex problem-
solving (Euston et al, 2012; Carlén, 2017), the LDLPFC and
RDLPFC in working memory and decision-making processes
(Philiastides et al., 2011; Kim K. et al., 2021; Martin et al., 2024),
the LM1 and RM1 in movement planning (Hoshi and Tanji, 2000;
Garbarini et al., 2019; Gale et al., 2021), and the LPM and RPM
are involved in the execution of movements (Schnitzler et al., 1997;
Solopchuk et al., 2016). Notably, the APFC, LDLPFC, and RDLPFC
also contribute to the perception of time, a cognitive function that
becomes especially important in the context of feedback delays
where the brain must reconcile the discrepancy between expected
and actual sensory inputs (Wei-Cong et al., 2015; Coull et al., 2016).

This study primarily aims to provide empirical evidence
on how adjustments to force feedback timing influence neural
functions related to time perception and motor coordination,
thereby offering a neuroscientific perspective on the effectiveness of
sensory manipulation in enhancing teleoperated task performance.
While we also consider the role of visual feedback, our focus is
on filling the knowledge gap regarding force feedback’s unique
and interactive effects with visual cues. This approach enables us
to explore how both types of feedback jointly influence human
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FIGURE 1
fNIRS layout setting. (A) Wearing of real fNIRS; (B) region of interest (ROI).
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performance and brain activity in teleoperation, particularly under
conditions of latency. The remainder of the paper introduces the
relevant body of literature, details the design of our experiment, and
discusses the key findings, emphasizing the impact of optimized
force feedback in complex teleoperation scenarios.

2 Literature review

2.1 Neural functions in temporal motor
tasks in teleoperation

Understanding how teleoperation delays impact neural
functions, particularly time perception and motor coordination, is
crucial for addressing the challenges in robot teleoperation. The
principles of optimality in sensorimotor control, which suggest
that the brain minimizes costs like effort or error despite feedback
delays, are crucial for navigating teleoperation complexities (Li
et al., 2022; Ijspeert and Daley, 2023). Understanding how these
optimization strategies are employed can provide deeper insights
into the adaptive mechanisms in teleoperation. The first noticeable
function is the time perception ability. The role of time perception
in tasks requiring precise timing, such as in surgical procedures
or precision engineering, is critical. The integration of optimal
feedback control (OFC) mechanisms is vital for maintaining
precision in teleoperated tasks, particularly where time perception
and motor synchronization are challenged by latency (Sheng
et al.,, 2023). OFC principles can explain how individuals adapt
their sensorimotor behaviors to maintain efficiency and accuracy,
even when the timing of feedback is altered (Razavian et al,
2023). Studies like Block and Zakay (1996) have explored the
subjective nature of time perception, indicating its susceptibility
to various factors, including task complexity and attentional
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resources. Ivry and Spencer (2004) further emphasize the intrinsic
link between time perception and motor functions, particularly
in tasks requiring synchronization and rhythm. In teleoperation,
particularly in precision-demanding tasks like surgical operations
or complex machinery control, the synchronization of motor
responses with perceived time is critical. Altered time perception
due to latency, as demonstrated in studies such as Merchant
et al. (2013), can significantly impact the accuracy of these tasks.
This highlights a crucial area for teleoperation systems design:
minimizing latency effects to improve time perception accuracy
and thus task performance.

Research has identified that the basal ganglia are central to
timing and time perception, crucial for teleoperation tasks that
require millisecond to second precision (Merchant et al., 2013;
McElvain et al, 2021; Baladron et al, 2023). Additionally, the
supplementary motor area (SMA) and pre-SMA are involved in
integrating temporal and motor information, essential for planning
and timing movements (Halsband et al, 1993; Mondok and
Wiener, 2023). Furthermore, the dorsolateral prefrontal cortex
(DLPFC) is implicated in the cognitive aspects of time perception
(Wei-Cong et al., 2015). Studies by Yin et al. (2019) and Onoe et al.
(2001) suggest the DLPFC’s role in temporal discrimination and the
cognitive control of time estimation, crucial for adjusting to delays
in teleoperation. In the context of teleoperation, where operators
need to integrate temporal judgments with motor coordination
and decision-making, the role of the DLPFC could be significant.
It may contribute to how operators perceive and adjust to delays,
particularly in tasks that require them to maintain and manipulate
temporal information over short periods.

Motor coordination, crucial for executing complex teleoperated
tasks, depends significantly on the quality and timeliness of
sensory feedback, with studies emphasizing the critical role of
accurate haptic feedback (Ankarali et al., 2014). Further, research
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by Tin and Poon (2005) on internal models in sensorimotor
integration suggests that delays in feedback can disrupt these
internal models, leading to a misalignment between intended
and executed actions. The impact of this misalignment in high-
precision tasks, as highlighted in the work of Jones and Kandathil
(2018), underscores the necessity for real-time or predictive
sensory inputs in teleoperation. Literature has provided solid
evidence about the neurofunctional ROIs related to the motor
coordination. For example, the primary motor cortex, as shown
by Hari et al. (1998) and Seghezzi and Zapparoli (2020), is
pivotal not only in movement execution but also in motor
planning, adapting strategies in dynamic environments typical of
teleoperation. Scott (2012) and Albert and Shadmehr (2016) further
illustrate its role in encoding movement parameters and adapting
motor plans in response to feedback, crucial under teleoperation
delays. Complementing this, the cerebellum, highlighted in studies
by Fautrelle et al. (2011) and Johnson et al. (2019), plays an
essential role in fine-tuning movements and error correction,
ensuring smooth and coordinated motor output. Its involvement
in predictive motor control, as noted by Witney et al. (1999)
and Zhu et al. (2023), is particularly relevant for anticipating
and compensating for communication delays in teleoperation. The
synergy between the primary motor cortex and the cerebellum, as
discussed by Galea et al. (2011), is fundamental in maintaining
precision and control, adapting, and compensating for the delayed
feedback inherent in teleoperated tasks.

Following this discussion, it is crucial to incorporate recent
insights into the optimality principles of sensorimotor control,
which emphasize the role of OFC in achieving efficient and
accurate motor responses. The OFC framework suggests that the
central nervous system optimally integrates sensory feedback with
predictions of future states to minimize the variance of movement
errors (Todorov and Jordan, 2002). This principle is particularly
significant in teleoperation, where feedback delays can disrupt the
sensory-motor loop. Incorporating OFC principles can lead to the
development of teleoperated systems that better compensate for
these delays by adjusting the control algorithms to anticipate and
mitigate the impact of latency on motor accuracy (Mitrovic et al.,
2010; Zhu et al., 2023). Studies such as Franklin and Wolpert (2011)
have demonstrated that applying OFC in robotic systems enables
more adaptive and resilient responses to unexpected changes or
errors in movement execution, enhancing the overall effectiveness
of teleoperated tasks (Zhang et al., 2023).

It is also noted that investigating how simulated feedback
influences specific brain regions can provide critical insights into
the neural mechanisms that could mitigate the adverse effects of
teleoperation delays. The concept of predictive coding suggests
that the brain is not a passive recipient of sensory signals but
actively generates predictions about incoming sensory information,
updating these predictions as new data arrives (Kilner et al,
2007). This model has profound implications for understanding
how simulated feedback might be integrated into neural processes
to counteract the disorienting effects of delayed teleoperation.
Research by Shadmehr et al. (2010) builds on the predictive coding
framework, proposing that the brain’s predictive mechanisms allow
for smoother motor control by anticipating sensory events. This
is particularly relevant when considering the DLPFC and its
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role in cognitive functions, including the integration of sensory
information with motor planning (Abe and Hanakawa, 2009).
Simulated feedback, when designed effectively, could harness these
predictive mechanisms, potentially reducing the cognitive load and
improving motor execution in teleoperation scenarios. The SMA
and pre-SMA, regions involved in the initiation and temporal
organization of movements (Shima and Tanji, 1998; Zhang et al,,
2023), may also benefit from simulated feedback. By providing
early sensory cues, simulated feedback could help in “pre-setting”
these regions, allowing for more accurate timing predictions and
motor responses despite delays (Kilavik et al., 2014). This study
mainly relies on fNIRS data for capturing the key neurofunctional
characteristics, which will be introduced in the next section.

2.2 fNIRS methods in exploring
neurodynamic in teleoperation

fNIRS utilizes near-infrared light to monitor brain activity.
It operates on the principle that oxygenated and deoxygenated
hemoglobin in the brain have distinct absorption spectra in the
near-infrared range. When neurons are active, they consume more
oxygen, altering the balance between oxygenated and deoxygenated
hemoglobin (Zimeo Morais et al., 2018). fNIRS detects these
changes, providing an indirect measure of neural activity. This
method is advantageous for its non-invasiveness, portability,
and relative insensitivity to motion artifacts compared to other
neuroimaging techniques, making it suitable for use in diverse
settings, including those that simulate real-world teleoperation
environments (Tak and Ye, 2014).

Compared to other neuroimaging tools like functional
Magnetic Resonance Imaging (fMRI), Electroencephalography
(EEG), and Positron Emission Tomography (PET), fNIRS offers
unique advantages in the context of teleoperation studies (Abtahi
et al,, 2020). fMRI, while offering high spatial resolution, is limited
by its need for a highly controlled, immobile environment, making
it less suitable for dynamic tasks (Ma et al., 2022). EEG, with its
excellent temporal resolution, is sensitive to electrical noise and
requires complex setups (Parvizi and Kastner, 2018). PET, though
powerful in metabolic studies, involves exposure to radioactive
tracers, limiting its practicality (Slough et al., 2016). In contrast,
fNIRS is more adaptable to naturalistic settings, relatively motion-
tolerant, and does not require a strictly controlled environment.
This makes fNIRS a more feasible option for teleoperation
research compared to these other methods (Balardin et al., 2017).
Furthermore, when compared to subjective self-report measures
like the NASA Task Load Index (NASA-TLX; Hart and Staveland,
1988), fNIRS provides a more direct, objective measure of brain
activity. While questionnaires can capture an operator’s self-
perceived workload and stress, they are limited by subjective biases
and post-task rationalization. fNIRS, on the other hand, allows
for the investigation of real-time neural processes underlying task
performance (Maior et al., 2014).

fNIRS has proven crucial for uncovering neural functions
critical to teleoperation. It effectively measures activity in key
areas like the prefrontal cortex, important for executive functions
and decision-making, and the primary motor cortex, involved in

frontiersin.org


https://doi.org/10.3389/fnhum.2024.1338453
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org

Zhou et al.

executing movement commands. These capabilities are essential
for understanding how operators manage the complexities and
dynamic demands of teleoperation (Sanes and Donoghue, 2000;
Euston et al., 2012). Additionally, fNIRS can be used to examine
regions associated with sensory integration and processing, such as
the prefrontal cortex. This area is crucial in how operators combine
visual, auditory, and haptic information during teleoperation. This
capability provides deeper insights into the neural mechanisms
of multisensory integration, which is essential for managing the
complexities of teleoperated environments (Zheng et al., 2023).
fNIRS also plays a pivotal role in providing direct insights into the
neural mechanisms underpinning operator’s motor performance.
In the dynamic and often demanding context of teleoperation,
where operators must continually adapt to feedback delays and
complex control tasks, fNIRS offers a unique observational
perspective on cerebral processes. This includes monitoring of
changes in cortical blood flow related to cognitive and motor
functions, specifically within brain areas like the prefrontal cortex
and motor cortex. Such insights are crucial for understanding how
operators manage and compensate for sensory feedback delays,
enhancing our ability to design more effective teleoperated systems
(Zhu et al., 2021). By continuously monitoring brain activity during
task performance, fNIRS enables post-hoc analysis that allows
researchers to observe how variations in teleoperation conditions,
such as feedback delays, influence specific brain regions. This
analysis is crucial for identifying which aspects of teleoperation
are most cognitively demanding and determining how different
sensory manipulations can effectively mitigate these challenges.
fNIRS technology is crucial for identifying how different
feedback modalities affect operator brain activity. This insight
guides the development of user-centered interfaces and training
programs, which are tailored to the cognitive demands of
teleoperation tasks, enhancing both efficiency and performance.

3 fNIRS-based analytical pipeline
3.1 fNIRS system

We utilized the NIRx fNIRS device with 16 sources and
15 detectors, plus an additional reference detector at the right
pre-auricular point, to filter out extracerebral signals. Operating
at a standard 10Hz sample rate, the device emits near-
infrared wavelengths of 760 and 850 nm, enabling differentiation
between oxygenated and deoxygenated hemoglobin. Our study
concentrated on analyzing data from several key brain regions
relevant to robot teleoperation as illustrated in Figure 1.

3.2 fNIRS data analysis

We processed raw fNIRS data using MNE-python, effectively
removing noise like electronic interference and motion artifacts.
This conversion to changes in hemoglobin concentrations (AHbR)
allows us to measure the brain’s response to teleoperation delays,
assessing cognitive load and decision-making efficiency (Gramfort
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et al,, 2013). The pipeline for fNIRS data analysis is illustrated in
Figure 2.

Upon importing the raw fNIRS data, it was converted into
optical density (AOD), a measure reflecting changes in light
absorption due to variations in chromophore concentration in the
brain tissue (Tak and Ye, 2014). An essential step in ensuring data
quality involved the evaluation of the Scalp Coupling Index (SCI),
an objective metric quantifying the quality of the optode-scalp
connection (Pollonini et al., 2016). The SCI is critical in fNIRS
data analysis as it reflects the signal strength and integrity; values
<0.5 typically indicate poor data quality, possibly due to motion
artifacts or insufficient contact between the optodes and the scalp.
Channels with SCI values below this threshold were excluded from
subsequent analysis to maintain the integrity of our dataset.

Following the quality assessment, the optical density data from
the fNIRS device underwent a critical filtering process to isolate
the neural signals related to cognitive activity from extraneous
physiological noise. We employed a finite impulse response (FIR)
method, utilizing a bandpass filter within the frequency range of
0.04-0.15 Hz to target various types of noise (Khan et al., 2020; Pinti
et al,, 2020): Cardiac Cycles: Typically, cardiac-related fluctuations
occur at frequencies around 1.0-1.5Hz; Respiration: Respiratory
patterns generally manifest in the fNIRS signal at frequencies
around 0.3 Hz; Very Low-Frequency Drifts: Low-frequency drifts
in fNIRS data, typically below 0.01 Hz, can arise from slow shifts
in sensor positioning or gradual changes in baseline physiological
states. The transition band width was set to 0.1 and 0.02 Hz at the
high and low cut-off frequencies to ensure a smooth transition
between the passband and the stopband, preventing the abrupt
cutoff of relevant signals. The high cut-off frequency was designed
to exclude high-frequency noise, such as electronic interference or
rapid motion artifacts, while the low cut-off frequency was adjusted
to remove the slower physiological oscillations without affecting the
integrity of the cognitive-related hemodynamic signals.

To measure hemoglobin concentration changes, we utilized the
Beer-Lambert Law (Swinehart, 1962). This principle posits that the
concentration of a light-absorbing substance within a medium is
directly proportional to the length of the light’s path through that
medium. By applying this law in the context of fNIRS, we estimate
changes in oxygenated (HbO) and deoxygenated hemoglobin
(Hb) based on the absorption properties of blood, incorporating
adjustments for light scattering with a partial pathlength factor.
We prioritized HbO as our primary measure due to its enhanced
sensitivity to changes in cerebral blood flow, particularly significant
in tasks that involve motor execution. This decision is supported by
literature indicating HbO’s reliable reflection of the brain’s response
to motor-related demands, as it more directly captures the increase
in blood oxygenation following neuronal activation (Obrig and
Villringer, 2003; Pereira et al., 2023). These characteristics make
HbO a particularly useful indicator in studies focused on motor
activities, where accurate measurement of regional brain activation
is critical.

In this study, we utilized an event-related analytical approach,
focusing on crucial teleoperation tasks such as object pick-up and
drop-down. We segmented the fNIRS data into epochs extending
from 10s before to 30s after each event. This 40-s window was
strategically chosen to not only capture the preparatory phase,
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_ i Optical Density (OD) i Hemoglobin Concentration
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]
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fNIRS Data Signal |
38 Channels, 10 Hz i v
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(Scalp Coupling Index > 0.5) before and 30 seconds after
each event)
v
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(38 Channels > 7ROI)
\ 4 v
Band-pass Filter Hemoglobin Concentration
(0.04-0.15 Hz) 3 Changes Based on Events
FIGURE 2
Analytical pipeline for fNIRS data, detailing the sequential steps in the data processing workflow. Signal acquisition: involves collecting raw fNIRS
signals under controlled conditions to ensure data integrity and reliability. Preprocessing: entails filtering, correcting, and normalizing the data to
remove noise and artifacts, enhancing signal quality for analysis. Processing: consists of applying statistical and computational techniques to extract
meaningful patterns and metrics from the preprocessed data, leading to the identification and interpretation of cerebral hemodynamic responses.

where participants are actively engaging with the controls to
accurately target and maneuver the object, but also to include
the post-event period. This approach ensures that we account
for significant brain activity initiated by both visual and haptic
feedback delays during task execution, which is critical for a
comprehensive understanding of cognitive and motor adjustments.

The selected time window also accommodates the inherent
delay in hemodynamic responses, commonly referred to as the
time-to-peak, which ranges from 2 to 8s following the stimulus
onset (Huppert et al, 2006). Furthermore, the hemodynamic
response does not immediately return to baseline after peaking but
rather declines gradually over an extended period. This gradual
decline can last significantly beyond the peak, necessitating an
extended observation window to accurately capture the entire
hemodynamic curve (Lindquist et al., 2009; Amiri et al., 2014;
Duarte et al., 2023). Baseline levels were established during a
separate 5-min measurement phase prior to task engagement,
ensuring that the NIRS data collected during tasks are accurately
reflective of changes due to task-specific brain activity.

To maintain data integrity, a thorough cleaning process
was implemented to remove physiological interferences, such as
those caused by heartbeats and respiration (Pinti et al.,, 2020).
This meticulous approach to data preparation ensures that our
analysis remains focused on the brain activity directly linked to
each task performance. Averaging data across all phases of the
experiment could potentially obscure these detailed event-specific
hemodynamic patterns, particularly given the longer periods of
lower neural activity that occur between the task events.

For our primary measure, we calculated the mean change in
oxygenated hemoglobin (delta HbO) within this 40-s window for
each event, thus providing a detailed view of the brain’s response
to each specific task action. This approach was chosen to capture
the hemodynamic responses associated with the specific tasks or
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stimuli in our experiment, providing a direct measure of the
cerebral blood flow changes over time. This averaging is intended
to stabilize the signal against short-term fluctuations and highlight
more sustained changes in brain activity that are directly relevant
to task performance.

While this method the
hemodynamic pattern related to specific events, we acknowledge

effectively  captures overall
that it averages out finer temporal details within these windows.
Some of the finer temporal dynamics, particularly those within
shorter time intervals, are not distinctly represented. Future studies
might benefit from incorporating more granular time-series
analyses, such as General Linear Model (GLM) approaches, which
could provide additional insights into the precise timing and
magnitude of neural responses. Such analyses would complement
our current findings by offering a detailed temporal resolution of
neural activity patterns, enhancing our understanding of the neural
underpinnings in teleoperation tasks.

4 Materials and methods

4.1 Overview

The study was approved by the Institutional Review Board
(IRB) of the University of Florida, Gainesville, FL, USA (No.
IRB202100257). Written informed consents were obtained from
all participants in full accordance with the ethical principles of
the relevant IRB guidelines and regulations. All methods were
carried out in accordance with relevant guidelines and regulations.
The following inclusion criteria were applied: (1) age > 18 years;
(2) no known physical or mental disabilities; (3) no known
musculoskeletal disorders.
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FIGURE 3

The layout of the object manipulation task in human-subject experiments. (A) 3D perspective of the experimental scene; (B) Objects and targets
setup; (C) First person view of the participants; (D) Participants completed the experiment using haptic feedback device.
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4.2 Experiment design

The main task in the human-subject experiment was an object
manipulation task. The experiment was designed as a within-
participant experiment, i.e., each participating subject experienced
four conditions. To avoid learning effects, the sequence order
was shuffled for each subject. The performance data (time and
accuracy), motion data (moving trajectory), eye tracking data (gaze
focus and pupillary size), and neurofunctional data (measured by
fNIRS) were collected. Participating subjects were also requested
to report their perceived delays, to compare them with the actual
delays. Before the experiment, each participant was required to fill
out a form of demographic survey, and the consent form approved
by UFs IRB office. Then they would take a training session, to
familiarize themselves with the use of VR. Afterwards, participants
were required to take a break by sitting quietly with all sensors on.
This break session was for collecting baseline data (e.g., pupillary
diameter and fNIRS baseline), and to remove possible impacts of
the training session. After each experiment trail, participants were
promoted to fill out questionnaires related to NASA TLX and trust.

Participants needed to interact with four colored cubes: gray,
green, blue, and purple. Each cube aligned with a target with
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the same color, requiring participants to accurately move these
cubes following a predefined sequence: gray, green, blue, and
then purple. The sequenced tasks were systematically structured
to gradually increase in complexity and challenge. In this setting,
each cube’s path to its corresponding target was blocked by various
obstacles, which carefully integrated into the task environment.
These obstacles vary in size and position, adding to the complexity
of the task and representing different locomotor challenges that
participants had to contend with as illustrated in Figure 3. In
total, each participant needs to complete 10 trails (as illustrated in
Table 1) and each trail has four blocks needed to move.

To minimize the effects of fatigue, our experimental session
was structured to be ~1h per participant, including all preparation
and breaks. Device Setup and Training (10min): Participants
spent around 10min wearing the fNIRS device and getting
familiarized to the virtual reality (VR) environment to ensure
comfort and reduce anxiety or fatigue during the experiment.
Baseline Measurement (5min): A 5-min break was provided to
establish a fNIRS baseline, allowing participants to rest before
engaging in the tasks. Task Conditions (average 3 min each):
Each experimental condition was designed to last an average
of 3min. These short, manageable intervals helped maintain

frontiersin.org


https://doi.org/10.3389/fnhum.2024.1338453
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org

Zhou et al.

TABLE 1 Feedback delays correspond to each condition.

Condition Visual delay (sec)

Standard 0 0
Anchoring 0.25 0
Anchoring 0.5 0
Anchoring 0.75 0
Synchronous 0.25 0.25
Synchronous 0.5 0.5
Synchronous 0.75 0.75
Asynchronous 0.5 0.25
Asynchronous 0.75 0.25
Asynchronous 1.0 0.25

participant focus and energy. Rest Periods: Regular 1-min breaks
were incorporated between conditions to provide participants with
time to relax and minimize fatigue.

Additionally, to address potential order effects and ensure that
fatigue did not disproportionately affect any single condition, we
employed a counterbalancing approach by shuffling the sequence
of conditions for each participant. This approach was aimed at
distributing any potential fatigue effects evenly across all conditions
and ensuring that no specific task was consistently encountered at
the end of the session.

When dissecting the delay, it is categorized into haptic feedback
delay (Apgpric), and visual feedback delay (A, qq1)- As illustrated in
Table 1, our experiment was based on four sensory manipulation
conditions as follows:

Condition 1: Standard condition: Apgpric = Ayisyal> resulting
in instantaneous haptic and visual feedback. In this real-time
interaction scenario, the operator receives immediate multisensory
feedback post-action initiation.

Condition 2: Anchoring. Apgpic = 0 while A4 changes.
Due to the intrinsic delays in visual feedback, real-time haptic
responses are generated post-action initiation based on the
simulated force feedback (e.g., inertia, resistance, and vibration) at
the local workstation.

Condition 3: Synchronous. Both Apgpric and Agq are
intentionally subjected to a synchronized delay in order to promote
multisensory alignment and enhance the coherence of perceptual
experiences through the alignment of sensory modalities.

Condition 4: Asynchronous. This condition embodies variable
delays in sensory feedbacks, presenting a realistic and challenging
scenario in which perceptible delays influence the initiation and
reception of haptic and visual feedbacks.

The standard condition is intended to serve as the ground
truth or baseline for comparison with other experimental
conditions. Specifically, this condition is conducted under
optimal conditions where there are no visual or haptic delays,
providing an unaltered scenario that represents the ideal state of
teleoperation performance.
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4.3 Experiment platform

Building upon our detailed system design presented in Du et al.
(2023), this section offers a concise overview of the key components
of our teleoperation system, focusing on the VR system, its
integration with various elements, and the implementation of delay
coding functions.

Central to our teleoperation system is an advanced Virtual
Reality (VR) setup, providing a fully immersive simulation
environment developed in Unity. This platform replicates the
physical dynamics and robot interactions with high fidelity,
ensuring a realistic teleoperation experience. Another critical
element in our system is the seamless integration between
the Robot Operating System (ROS) and the Unity-based VR
environment, facilitated by ROS#. This connection allows for real-
time synchronization between the virtual environment and the
physical robot, ensuring that any action taken in the VR space is
instantly mirrored in the robot’s movements.

To enhance the realism and interactivity of the VR
environment, we incorporated the Touch X haptic controller. This
device provides haptic feedback, replicating the physical sensations
of manipulating objects or encountering resistance, crucial for
tasks requiring fine motor control. The haptic feedback system is
intricately coded to respond to both the operator’s actions and the
simulated physics of the VR environment, creating a cohesive and
immersive experience. Finally, recognizing the impact of feedback
delays on teleoperation, our system architecture includes specially
developed coding functions to simulate various delay scenarios.
Both visual and haptic feedback can be intentionally delayed,
allowing us to study the operator’s adaptability and performance
under different sensory delay conditions.

While our VR task provides valuable insights into the
neurofunctional and motor control challenges in teleoperation, it
is distinct from surgical teleoperation, which involves additional
complexities such as biological variability and higher stakes in
terms of patient safety. Our findings contribute to a broader
understanding of teleoperation in non-medical contexts, offering
implications for the design and training of teleoperated systems
in industrial and rescue operations. Future research could
explore how these insights might translate to the more nuanced
requirements of surgical environments.

4.4 Data collection methods

Optimal data collection quality for fNIRS requires careful
preparation. Participants were advised to ensure their hair was
clean and free from products that could obstruct the fNIRS sensors,
and to avoid hairstyles or accessories that might disrupt the
cap’s placement. This preparation stage was critical for enhancing
sensor-skin contact and the fidelity of the collected data, enabling
a more accurate assessment of the cortical activity associated with
the cognitive demands of the task. The stability of the experimental
conditions, including controlled lighting and the participant’s
stationary posture while operating the haptic device, ensured that
data integrity was maintained.

frontiersin.org


https://doi.org/10.3389/fnhum.2024.1338453
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org

Zhou et al.

In the beginning, participants were asked to sign an informed
consent form and fill out a background questionnaire about their
age, gender, and VR experience. The experimental scene and
content of each phase were the same. The sequence of tasks under
different conditions was shuffled to eliminate the learning effects.
The training session was designed to familiarize participants with
the VR system and interactions within the virtual environment.
Each participant was instructed to be acquainted with the devices
(VR headset and haptic controller) and the virtual environment.
Then, participants were given instructions about how to use the
haptic controller to pick up and place the objects. After the training
session, participants were asked to perform the pick-up and place
task based on the virtual pipe skid system. After each phase,
participants provided feedback through NASA TLX questionnaires.

During the experiment, participants were required to precisely
control the robot gripper to stably grasp the cubes without
knocking them away. Once successfully grasped, they should
control the robot gripper past the obstacles and accurately place
them on the corresponding target plate. The accuracy of the cube’s
positioning on the target is crucial, as it is a key metric for
evaluating participants’ operational performance. The use of visual
and haptic feedback delays in the experimental design was critical
for simulating the temporal challenges inherent in teleoperation
tasks. These delays required the participants to rely on their
cognitive adaptability, a phenomenon that conventional behavioral
metric might not fully capture. Employing fNIRS allowed us to
measure the operator’s brain activities in response to sensory
feedback delays, providing objective data on the neural correlates
of delay adaptation in teleoperation. This technique helped us to
elucidate the fundamental neurological mechanisms impacted by
delays and the cognitive strategies employed by operators during
task performance.

To ensure robust statistical analysis, we initially assessed the
distribution of each variable for normality. Variables not normally
distributed were transformed using a logarithmic transformation
to achieve normality. We then verified that normally distributed
variables had homogeneous variances. For variables meeting these
assumptions, we employed repeated measures Analysis of Variance
(ANOVA) to analyze parametric study measures. For data that
did not meet parametric assumptions, we conducted Signed Rank
Wilcoxon tests to identify significant differences.

Prior to the main study, we conducted a pilot with five
participants to refine our experimental procedures and perform
an initial power analysis. This analysis, conducted using the
open-source library Pingouin (Vallat, 2018), was based on Vallat’s
recommendations, considering the condition as the between-group
factor and placement error and time on task as dependent variables.
The power analysis indicated effect sizes of 0.50 for placement error
and 0.31 for time on task, determining minimum sample sizes of 4
and 8, respectively, to achieve a power of 0.8 with a Type I error
probability of 0.05. To enhance the reliability of our findings, we
expanded our sample to 41 healthy subjects. A subsequent power
analysis incorporating all participants demonstrated a statistical
power of 0.997, indicating a very high likelihood of detecting
significant differences among the conditions in our ANOVA tests.
This robust sample size greatly increases our confidence in the
statistical validity and reliability of our results.

Frontiersin Human Neuroscience

10.3389/fnhum.2024.1338453

TABLE 2 Demographic information of the participants.

Number Percentage

Gender Male 26 63.41%
Female 15 36.59%
Age group 18-24 14 34.15%
25-30 24 58.53%
31 and older 3 7.31%
Major Engineering (civil, 18 43.90%
coastal, construction,
mechanical, and related)
Non-engineering 23 56.10%
VR Experience with VR 12 29.27%
experience
Non-experience with VR 29 70.73%
5 Results

5.1 Participants

We recruited a total of 41 subjects for this experiment.
The demographic information includes the gender, age group,
major, and VR experience of participants are illustrated in
Table 2. All participants reported that they were right-handed
and did not have any known motor disorders or a history of
neurological abnormalities.

5.2 Performance results

In our previous study Du et al. (2023), we investigated
various performance metrics to determine the influence of delayed
feedback in teleoperation. The placement error, time on task, and
cognitive load during pick-up and drop-off phases were evaluated
using pupil size as a physiological indicator. Subjective assessments
were also employed through the NASA-TLX questionnaire to
measure the perceived workload and stress levels of participants.
Figures 4-7, 10-13 is the comparison analysis results among
four conditions: Standard (Apgpric = Ayiguar), Anchoring
(Apaptic = 0 while A4 changes), Synchronous (Both Ajpgpyic and
Ayisual are intentionally subjected to a synchronized delay), and
Asynchronous (variable delays in sensory feedbacks). *Indicates
statistically significant change (n.s., no significant difference, *p <
0.05, **p < 0.01, **p < 0.001, ****p < 0.0001). The boxplot shows
the distribution of the data being analyzed. The bottom and top of
the box represent the 25 and 75th percentiles, respectively, while
the line inside the box denotes the median (50th percentile). The
whiskers extend to the 1.5 IQR (interquartile range), and the error
bars indicate the 95% confidence intervals (CI = 95%), providing a
statistical measure of the precision of the sample mean. Outliers
are represented as solid circles. The black horizontal line in the
box plots below represents the median of the data and the red line
represents the mean of the data.
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Statistical analysis results of (A) placement error and (B) time on task comparison. “Indicates statistically significant change (n.s., no significant
difference, “p < 0.05, p < 0.01, ™ p < 0.001, "*p < 0.0001).

For placement error, we measured it as the Euclidean distance
between the actual placement of the cube and the center of the
target location. As illustrated in Figure 4, the results indicate that
for the placement error, the standard condition is significantly
better than asynchronous condition (p = 0.007) as well as
synchronous condition (p = 0.004); the anchoring condition is
significantly better than the asynchronous condition (p = 0.043)
and the synchronous condition (p = 0.032). There is no significant
difference between the standard and anchoring (p = 0.168), the
asynchronous and synchronous condition (p = 0.892). Time on
Task is the difference between the end time and the start time of
the task. The results also indicate significant differences between
the standard and anchoring condition (p = 0.009), asynchronous
condition (p < 0.001), synchronous condition (p < 0.001); and
between anchoring and asynchronous condition (p = 0.018) as well
as the synchronous condition (p = 0.049). There is no significant
difference between the asynchronous and synchronous condition
(p=0.741).

About time perception, we focused on examining three time
perception metrics: visual perception difference, haptic perception
difference, and visuomotor gap perception difference.

Perceived visual delay: This is the delay that participants
perceive between initiating an action and seeing the result visually.

Frontiersin Human Neuroscience

It is measured by asking participants to estimate the visual delay
they experience during each phase of the experiment.

Actual visual delay: This is the delay objectively introduced
in the visual feedback within the teleoperation system. It is a
controlled variable set by the experiment to simulate different
conditions of teleoperation latency.

Perceived haptic delay: Similar to perceived visual delay, this
is the delay that participants report feeling between initiating an
action and receiving haptic feedback. This is measured through
participant self-report after each experimental phase.

Actual haptic delay: This is the objectively measured delay
between the initiation of an action and when the haptic feedback
is provided by the system. Like the actual visual delay, this is
a predefined variable controlled throughout the experiment to
simulate various feedback scenarios.

Perceived visuomotor gap: This refers to the gap that
participants perceive between the visual and haptic delays. It is
calculated as the difference between perceived visual delay and
perceived haptic delay.

Actual visuomotor gap: This is the actual difference between
the visual and haptic delays as programmed into the teleoperation
system. It is calculated as the difference between the actual visual
delay and the actual haptic delay.
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Statistical analysis results of perception performance. (A) Visual perception difference; (B) haptic perception difference; (C) visuomotor gap
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Visual perception difference (Equation 1) is defined by the
difference between the perceived visual delay (Delay,,) and the
actual visual delay (Delay,,) in a phase, i.e.,

Ay, = Delay,, — Delayy, (1)

Haptic perception difference (Equation 2) is defined by the
difference between the perceived haptic delay (Delayy,) and the
actual haptic delay (Delayy,) in a phase, i.e.,

Ay, = Delayyy, — Delayy, (2)

Note there were cases when there was a gap between the
visual delay and the haptic delay, which we call visuomotor
gap. We are also interested in the perception of the visuomotor
gaps in different conditions. Visuomotor perception difference
(Equation 3) is defined by the difference between the perceived
visuomotor gap (Gap,) and the actual visuomotor gap (Gap,) in
a phase, i.e.,

Agap = Gap, — Gap, (3)

The results show that for visual perception difference, the
standard is significantly lower than asynchronous condition (p
< 0.001) and synchronous condition (p < 0.001); anchoring
condition is significantly lower than the asynchronous condition
(p =0.003) as well as the synchronous condition (p < 0.001). There
is no significant difference between the standard and anchoring
(p = 0.448), the asynchronous and synchronous condition (p =
0.506). For the haptic perception difference, the results indicate
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that synchronous condition is significantly lower than anchoring
condition (p = 0.003) as well as asynchronous condition (p =
0.001). There is no significant difference between the standard
and anchoring condition (p = 0.091), asynchronous condition (p
= 0.090), synchronous condition (p = 0.052); between anchoring
and asynchronous condition (p = 0.098). For the visuomotor
gap perception difference, synchronous condition is significantly
larger than standard condition (p < 0.001), anchoring condition
(p < 0.001), asynchronous condition (p < 0.001); anchoring
condition is lower than asynchronous condition (p = 0.024).
There is no significant difference between standard and anchoring
condition (p = 0.237) and asynchronous condition (p = 0.534).
In the synchronous condition, where both visual and haptic
feedbacks were delayed identically, we observed a surprisingly large
visuomotor perception gap. This could be attributed to several
interrelated factors:

Integration and expectation of sensory inputs: Participants in
synchronous conditions might process aligned sensory delays with
heightened sensitivity, leading to an exaggerated perception of
discrepancies. This sensitivity is potentially compounded by precise
expectations of temporal alignment, where any minor deviation in
synchronization between seen and felt stimuli could be perceived as
a significantly larger gap.

Lack of adaptive calibration: Unlike asynchronous conditions
where participants might gradually adapt to staggered sensory
delays, the synchronous setting does not encourage such adaptive
strategies. Without the need to adjust to differing times of sensory
inputs, the brain may not calibrate as effectively to the delays,
maintaining a consistent perception of a larger gap. This lack of
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FIGURE 6
Statistical analysis results of cognitive load changes in (A) object pickup and (B) drop-off stages. "Indicates statistically significant change (n.s., no
significant difference, "p < 0.05, “p < 0.01, ""p < 0.001, ""*p < 0.0001).

adaptation could result in a more pronounced discrepancy between  synchronous condition (p = 0.012); the anchoring condition has
expected and actual sensory feedback, accentuating the perceived  lower cognitive load than asynchronous condition (p = 0.048) and
visuomotor gap. the synchronous condition (p = 0.045). There is no significant
These insights into the cognitive processing of synchronized  difference between the standard and anchoring condition (p =
sensory feedback highlight the complexity of human perception  0.178), between the asynchronous and synchronous condition
under controlled delay conditions. Further research is warranted  (p = 0.983).
to delineate the specific neural and cognitive mechanisms that The NASA-TLX results shown in Figure 7. The results indicate
contribute to these perceptions, potentially using more nuanced  that for total score, standard condition have the lowest cognitive
psychophysical tests or neuroimaging to track how the brain  load compared to anchoring condition (p = 0.021), asynchronous
integrates and responds to synchronous vs. asynchronous stimuli. condition (p = 0.006), synchronous condition (p = 0.024); There
For cognitive load, we developed a novel approach to evaluate  is no significant difference between anchoring and asynchronous
participants’ real-time cognitive load based on their pupillary  condition (p = 0.470) as well as the synchronous condition (p =
diameter data (mm) collected by eye trackers. We divided the data  0.843); between the asynchronous and synchronous condition (p =
of each trail into object pick-up stage and object drop-off stage. As  0.632). For confidence level, standard condition also shows highest
illustrated in Figure 6, for the pick-up stage, the standard condition  confidence level compared to anchoring condition (p = 0.007),
has lower cognitive load than anchoring condition (p = 0.032),  asynchronous condition (p < 0.001), synchronous condition
asynchronous condition (p = 0.003), synchronous condition (p  (p < 0.001); anchoring condition is significantly higher than
< 0.001); anchoring condition have lower cognitive load than  asynchronous condition (p = 0.024) as well as the synchronous
synchronous condition (p = 0.004). There is no significant  condition (p = 0.019). There is no significant difference between
difference between anchoring and asynchronous condition (p =  the asynchronous and synchronous condition (p = 0.829). For
0.086), between asynchronous and asynchronous condition (p  frustration level, standard condition still better than anchoring
= 0.276). For the drop-off stage, the results indicate that the  condition (p = 0.004), asynchronous condition (p < 0.001),
standard also better than asynchronous condition (p = 0.006) and  synchronous condition (p < 0.001); anchoring shows lower
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frustration level than asynchronous condition (p = 0.033). There
is no significant difference between anchoring and synchronous
condition (p = 0.110), between asynchronous and synchronous
condition (p = 0.694).

Participants in the standard condition reported higher levels of
self-confidence and lower levels of frustration compared to other
conditions, with anchoring also outperformed the synchronous and
asynchronous conditions. The results from these metrics provided
an initial understanding of the operational performance and
cognitive states of operators under different feedback conditions.

Building upon this foundation, the present study delves deeper
into the cognitive activities in different brain areas. By using fNIRS,
we aim to demonstrate the specific brain regions engaged during
teleoperation tasks, thereby providing a more refined perspective
on the neural correlates of performance and brain activation. This
approach allows us to pinpoint the hemodynamic responses in
areas critical for decision-making, sensorimotor coordination, and
time perception, factors that are critical to managing the challenges
posed by feedback delays in teleoperation.

5.3 fNIRS results

Figure 8A illustrated the raw OD data as initially recorded
during the teleoperation tasks and Figure 8B illustrated the filtered
OD data. The SCI was used to identify and exclude channels
with insufficient signal quality, which show as lighter lines in
filtered data. The remaining channels were then subjected to a
bandpass filter, carefully designed to remove physiological noise
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such as cardiac and respiratory influences while preserving the
signals pertinent to cognitive activity. These filtered OD values
were then further processed to derive the concentration changes of
oxyhemoglobin based on Beer-Lambert Law.

To analyze the brain activities to task events in teleoperation,
we segmented the processed fNIRS data into specific epochs. Each
epoch ranges from 10 s before to 30 s after the events of object pick-
up and drop-off. Figure 9 presents an example of this segmentation,
showcasing data from participant #11 during a pick-up event.
The figure visualizes the changes in oxyhemoglobin concentration,
reflecting the brain’s hemodynamic response during this critical
phase of the task.

To comprehensively evaluate the impact of different
teleoperation conditions on brain activity, we conducted a
statistical analysis of the oxyhemoglobin concentration across
various brain areas. We employed the Kruskal-Wallis test, a
non-parametric method used to determine if there are statistically
significant differences between the groups. It is especially useful
when our data does not follow a normal distribution, which is often
the case in real-world data. The test essentially assesses whether
one group is stochastically larger than the other and provides a
p-value that we can use to test our hypothesis.

5.3.1 Anterior prefrontal cortex results

As illustrated in Figure 10, in the anterior prefrontal cortex,
known for its role in executive functions and decision-making,
the anchoring condition showed lower brain activation compared
to the asynchronous (p = 0.005) and synchronous conditions (p
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FIGURE 8

fNIRS signal preprocessing example of participant #11: (A) raw optical density signals; (B) filtered optical density signals.

= 0.006). There is no significant difference between standard and
anchoring conditions (p = 0.126), asynchronous conditions (p =
0.062), synchronous conditions (p = 0.063); between asynchronous
and synchronous conditions (p = 0.883). This could suggest that
immediate haptic feedback, even when visual feedback is delayed,
may help reduce the cognitive demands associated with integrating
sensory information and making decisions. This reduction in brain
activation could facilitate more efficient task performance, as the
operator may rely more on the sense of touch, which is less affected
by the delays.

5.3.2 Dorsolateral prefrontal cortex results

As illustrated in Figure 11, in the dorsolateral prefrontal
cortex, associated with motor planning, working memory, and
the cognitive aspects of time perception, exhibited a pattern of
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reduced brain activation in the anchoring condition. The left
dorsolateral prefrontal cortex displayed a lower brain activation
in both the standard (p = 0.006) and anchoring (p = 0.017)
conditions than in the synchronous condition. There is no
significant difference between standard and anchoring conditions
(p = 0.993) as well as asynchronous conditions (p = 0.073);
0.095);
and between asynchronous and synchronous conditions (p =
0.392). The right dorsolateral prefrontal cortex exhibited a lower
brain activation in the anchoring condition compared to both the
asynchronous (p = 0.002) and synchronous (p = 0.003) conditions.
There is no significant difference between standard and anchoring
conditions (p = 0.113), asynchronous conditions (p = 0.551),
synchronous conditions (p = 0.462); between asynchronous and
synchronous conditions (p = 0.749). This observation suggests
that synchronized delays in feedback may hinder the operators’

between anchoring and asynchronous conditions (p

frontiersin.org


https://doi.org/10.3389/fnhum.2024.1338453
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org

Zhou et al. 10.3389/fnhum.2024.1338453
Oxyhemoglobin (29 channels)
-10.000 s-5.000s 0.000s 5.000s 10.000 s 15.000 s 20.000 s 25.000 s 08
A £ ) oy Y ; o
i R HON 3 KRy s 2 0.4
N @ @D v i
os,
M 04
0.6
0.50
0.25
2 o000 A
-0.25
-0.50
-10 -5 0 5 10 15 20 25 30
Time (s)
FIGURE 9
Oxyhemoglobin concentration changes of the pick-up event for participant #11.

ability to effectively plan motor actions and manage time-based
decision-making, consequently increasing brain activation. The
anchoring condition, which provided immediate haptic feedback,
appeared to promote a more efficient cognitive process, possibly
by aiding in the temporal synchronization of motor actions and
mitigating the disorienting effects of delayed visual feedback. It
also highlights how the integration of haptic cues can support the
cognitive processes involved in time perception, helping operators
to maintain a coherent sense of timing despite the inherent delays
in teleoperation.

5.3.3 Primary motor cortex results

As illustrated in Figure 12, in the primary motor cortex,
responsible for the execution of movements, anchoring condition
demonstrated better performance compared to the asynchronous
condition. The left primary motor cortex displayed a lower
brain activation in the anchoring condition compared to the
asynchronous condition (p = 0.037). There is no significant
difference between standard and anchoring conditions (p = 0.539),
asynchronous conditions (p = 0.180), synchronous conditions (p =
0.993); between anchoring condition and synchronous condition
(p = 0.312); between asynchronous and synchronous conditions
(p = 0.113). The right primary motor cortex also exhibited a
lower brain activation in the anchoring condition compared to
the asynchronous condition (p = 0.040). There is no significant
difference between standard and anchoring conditions (p = 0.952),
asynchronous conditions (p = 0.243), synchronous conditions (p =
0.517); between anchoring condition and synchronous condition
(p = 0.204); between asynchronous and synchronous conditions
(p = 0.243). This suggests that the stabilizing effect of immediate
haptic feedback extends beyond planning and preparation, directly
facilitating the actual motor execution. The reduction in brain
activation observed in this region further supports the idea that
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the immediate feedback in the anchoring condition mitigates the
challenges brought on by delayed visual feedback, enhancing motor
execution efficiency.

5.3.4 Premotor cortex results

As illustrated in Figure 13, in the premotor cortex, focused
on the organization and planning of movements, anchoring
condition also showed better performance compared to the
asynchronous condition. The left premotor cortex displayed a
lower brain activation in the anchoring condition compared to
the asynchronous condition (p = 0.039), suggesting that the
immediate haptic feedback provided by the anchoring condition
enhances the brain’s ability to plan and prepare for movements.
There is no significant difference between standard and anchoring
conditions (p = 0.431), asynchronous conditions (p = 0.198),
synchronous conditions (p = 0.462); between anchoring condition
and synchronous condition (p = 0.058); between asynchronous
and synchronous conditions (p = 0.550). For right premotor
cortex, there is no significant difference between standard and
anchoring conditions (p = 0.723), asynchronous conditions (p =
0.076), synchronous conditions (p = 0.634); between anchoring
condition and asynchronous condition (p = 0.186) as well as
synchronous condition (p = 0.452); between asynchronous and
synchronous conditions (p = 0.257). This finding indicates that
even in the presence of visual feedback delays, immediate haptic
feedback can effectively support the cognitive processes involved in
organizing motor actions, leading to more efficient motor planning
and reduced brain activation.

Interestingly, despite the standard condition demonstrating
better task performance, it was associated with a larger brain
activity mean value across several cortical areas, including the
prefrontal, right dorsolateral prefrontal cortex, and motor cortices.
One possible explanation for this phenomenon is that: in the
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standard condition, without feedback delay, operators may adopt
a strategy that emphasizes speed and accuracy, taking advantage
of the immediacy of the system’s responses. This could result in
the utilization of more “cognitive energy” to maintain a high level
of performance. The term “cognitive energy” here refers to the
engagement and allocation of cognitive resources, such as attention,
working memory, and executive functions, that are necessary to
perform a task effectively.

Consequently, the fNIRS data indicated increased activity in the
relevant brain regions, which might reflect this intensive cognitive
engagement. This high level of activation could be interpreted
positively as an indicator of the operators active and focused state,
enabling them to perform efficiently without delays. Conversely,
in the anchoring condition and even more so in the asynchronous
and synchronous conditions, the presence of feedback delays may
require a shift in strategy. Operators had to first compensate for
the “disruption” introduced by the delay, which could involve a
more cautious approach, increased error-checking, or a reliance
on alternative sensory feedback (like haptic cues in the anchoring
condition). This shift could lead to a different pattern of brain
activation, possibly a less intense one, as operators may spread
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their cognitive resources over a longer period due to the delay
in feedback.

Therefore, the reduced activation in the anchoring condition
compared to the standard condition might be due to a more
distributed brain activation over time, rather than a concentrated
burst of cognitive activity to immediately respond to feedback.
This interpretation suggests that the high activation in the standard
condition aimed at optimizing performance, whereas in the delayed
conditions, cognitive efforts might be partly directed toward
mitigating the negative impacts of delay.

Its important to note that these assumptions about the
nature of cognitive activation are based on the observed data
patterns and theoretical understanding of task demands. However,
without direct evidence of the operators™ strategies or subjective
experiences, these interpretations remain speculative. Further
research, perhaps incorporating qualitative data on operator
strategies or additional quantitative measures, would be necessary
to substantiate these hypotheses.

6 Discussion

Our human-subject experiment was designed to understand
the neurofunctional implications of sensory manipulation in
delayed robot teleoperation, yielded several insightful findings.
Initially, when considering the neural data averaged across
all phases of the experiment (pick-up, movement, and drop-
off), no significant differences were observed among the four
conditions: standard, anchoring, synchronous, and asynchronous.
Nevertheless, a focused analysis on the pick-up phase (40s)
indicated differences among the four conditions. It suggests that
the neurofunctional changes may have been event driven. And the
pick-up phase represented a more difficult motor action, because
the participants needed to move the robotic gripper to the center
of the object, align well with the edge, and then grab the object,
it did require more nuanced controls. While in contrast, the
movement and the drop-off of the object on the target platform
were comparably easier. As a result, we focused on the analysis of
the pick-up phase.

In this phase, our initial hypothesis posited that the standard
condition, characterized by simultaneous and delay-free visual and
haptic feedback, would exhibit lower cognitive strain compared to
conditions with delayed feedback. Contrary to our expectations,
however, our findings did not reveal a significant reduction in
cognitive strain in the standard condition relative to the anchoring
condition. This observation suggests that even in the absence of
sensory delays, the cognitive load required to manage multiple
synchronous sensory inputs remains substantial.

One possible explanation for this phenomenon, as suggested
by studies in the field of cognitive neuroscience, is that the
higher activation observed in the standard condition may
represent positive engagement with the task (Jansma et al., 2000).
Engaging actively with multiple sensory channels might stimulate
more extensive neural networks, reflecting a more involved
and potentially enjoyable task experience. However, this higher
activation could also signify cognitive strain. The need to constantly
switch between visual and haptic feedback, as theorized by
Alport et al. (1994), might place additional demands on cognitive
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resources, thereby increasing cortical activation. This scenario is
consistent with the dual-task interference model, which suggests
that managing multiple streams of sensory information can elevate
cognitive load (Pashler, 1994).

Despite the cognitive demands being comparable across
standard and anchoring conditions, the standard condition
exhibited the best performance in terms of placement accuracy
and time on task. This indicates that effective integration of
synchronous sensory feedback, even at higher cognitive costs, may
enhance performance. In contrast, in the anchoring condition, as
visual feedback delay increases, participants may rely more heavily
on haptic feedback and lessen their reliance on visual cues. This
reduced sensory switching could lead to lower cortical activation
but also results in poorer performance compared to the standard
condition, where sensory integration is more balanced.

For anchoring, synchronous, and asynchronous conditions,
the anchoring condition (immediate simulated haptic feedback
with delayed visual cue) not only demonstrated improved motor
performance but also showed a lower activation level in the
anterior prefrontal cortex compared to both the synchronous and
asynchronous conditions. This suggests a reduction in cognitive
load. This aligns with the theory of cognitive load proposed
by Sweller (1988), which posits that tasks with lower intrinsic
cognitive demand result in lower cortical activation. By providing
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consistent haptic feedback, the anchoring condition may streamline
the cognitive process, reducing the need for continuous cross-
modal integration and error-checking that is more pronounced
in conditions with asynchronous or no feedback. This reduction
in cross-modal processing, as discussed in the multisensory
integration literature (Stein and Stanford, 2008), may lead to a more
efficient cognitive process with less prefrontal engagement.
Additionally, activation in the dorsolateral prefrontal cortex
was similarly lower in the anchoring condition compared to
both the synchronous and asynchronous conditions, reflecting a
reduction in the cognitive demands of task management. This
observation aligns with findings from Dockree et al. (2004), who
noted that lower DLPFC activation correlates with reduced task-
switching costs and more streamlined decision-making processes.
Similarly, research by Paus (2001) suggests that decreased DLPFC
activation during task performance could indicate more efficient
cognitive control, particularly when participants become adept
at utilizing consistent feedback to anticipate and adapt to
task requirements. Such efficiency could explain the improved
performance in motor tasks observed in the anchoring condition,
as consistent haptic feedback may reduce the necessity for constant
vigilance and adjustment prompted by varying sensory delays.
Furthermore, the anchoring condition led to reduced activation
in the motor cortex compared to the asynchronous condition.
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The reduced activation in the motor cortex under the anchoring
condition, significantly lower than in the asynchronous condition,
reflects a more streamlined and efficient motor response. According
to studies like Fitts and Posner (1967), as motor skills become more
automated, the reliance on cognitive processes decreases, leading
to reduced cortical activation. In the anchoring condition, the
immediate haptic feedback might facilitate quicker motor learning
and automation, thereby reducing the need for active motor
planning and decision-making processes, typically associated with
higher cortical activation. This efficiency could be attributed to
a form of “sensorimotor tuning,” where the brain quickly adapts
to the reliable haptic cues, optimizing motor outputs with less
cognitive intervention (Wolpert et al., 2011).

However, it is important to note that there is no significant
difference in motor cortex activation when comparing the
anchoring condition with the standard and synchronous
conditions. This observation suggests that the anchoring
condition, while offering advantages over the asynchronous
condition in terms of reduced motor cortex activation, exhibits
similar activation levels to the standard condition. This similarity
could be due to the consistent haptic feedback provided in both
the anchoring and standard conditions, which may stabilize motor
cortex activation despite variations in visual feedback delay. For
the synchronous conditions, although both visual and haptic
feedbacks are delayed, their simultaneous delay at equivalent levels
could maintain a balance in sensory input, potentially preventing
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an increase in motor cortex activation. This synchronization might
help preserve motor efficiency by ensuring that the discrepancies
between sensory modalities do not exaggerate cognitive processing
demands, thereby maintaining motor cortex activation at levels
comparable to the standard and anchoring conditions.

These findings underscore the complex interplay between
sensory feedback, motor coordination, and cognitive processing
in teleoperation. They highlight that while reducing cognitive
load through fewer sensory switches might decrease cortical
activation, it does not necessarily translate to improved task
performance. Future research should aim to disentangle these
aspects further, possibly using subjective measures of task
engagement and cognitive strain in conjunction with neuroimaging
data. Additionally, exploring variations in task complexity and
sensory feedback modalities could provide deeper insights into
optimizing teleoperated systems for both performance efficiency
and user experience.

7 Conclusions

This research is driven by the motivation to understand
the neurofunctional implications of sensory manipulation in
delayed robot teleoperation, a field that, despite its technological
advancements, still hindered by the challenges of communication
delays. The primary goal of this research is to fill a critical
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knowledge gap: the lack of neurofunctional evidence regarding
the impact of simulated, synthetic haptic feedback on neural
functions, especially those related to time perception and motor
coordination. Delays in teleoperation can significantly affect
performance, but the underlying neural dynamics, particularly
in the context of sensory augmentation, remained largely
unexplored. By focusing on these aspects, our study aims
to provide insights that could lead to more intuitive and
effective teleoperated systems, especially in applications demanding
precision and timeliness.

Our human-subject experiment, involving different conditions
of sensory feedback in teleoperation, revealed that the anchoring
condition, with immediate simulated haptic feedback, not only
improved motor performance but also regulated the activation
levels of key brain regions such as the DLPFC and the APFC. This
finding is significant as it suggests that providing real-time synthetic
force feedback can reduce the cognitive and motor challenges posed
by delayed teleoperation, particularly in the more demanding pick-
up phase of the task. The reduction in DLPFC and APFC activation
under the anchoring condition points toward a potential decrease
in cognitive load and enhanced motor coordination. These results
contribute to the understanding of how synthetic sensory feedback
can be optimized to improve teleoperated task performance,
providing a foundation for future technological developments in
this area.

Frontiersin Human Neuroscience 19

While our findings are promising, they are not without
limitations. The studys scope was confined to a controlled
experimental setting, which might not fully capture the
complexities of real-world teleoperation scenarios. Additionally,
the focus on specific brain regions, though insightful, does not
encompass the entire spectrum of neural processes involved in
teleoperation. Future research should aim to replicate these findings
in more varied and dynamic settings to verify their applicability
in real-world applications. Furthermore, exploring other forms of
sensory manipulation and their neurofunctional impacts, as well
as investigating the long-term effects of such interventions on skill
acquisition and adaptation in teleoperation, would be beneficial.
These future agenda items could provide deeper insights into
the neural mechanisms underlying teleoperated systems, guiding
the development of more responsive, efficient, and user-friendly
teleoperation technologies.
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