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Measuring the Unmeasurable: Models
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The issue of whether place significantly affects spatial behavior has long created both a philosophical and
an operational schism within geography. Here we show how these schisms can be bridged by identifying
how place and behavior can be linked through recognizing and incorporating what we term intrinsic and
behavioral contextual effects into models of spatial behavior. We argue that spatial modeling frameworks
that attempt to relate spatial behavior to aspects of people and places might be seriously misspecified if they
do not incorporate both types of contextual effects. We compare three popular statistical modeling
frameworks that encompass placed-based contextual effects: spatial error models, multilevel models, and
multiscale geographically weighted regression (MGWR). Based on Monte Carlo simulation and empirical
analysis, we demonstrate the reassuring similarity of the results from the three frameworks but also the
superiority of MGWR. The inclusion of essentially unmeasurable effects within a nomothetic framework
provides an important bridge between two previously distinct philosophies within geography and acts as a
binding force within the discipline. Key Words: behavioral context, intrinsic context, MGWR, place-based

geography, scale.

ating back to at least the Hartshorne—

Schaefer debate, geographers have long con-

templated and debated whether, and in what
circumstances, we might expect geographic processes
to remain stable, thereby allowing the study of those
processes to be replicable (Hartshorne 1939a, 1939b,
1955; Schaefer 1953). A schism arose, which persists
to this day, with adherents of a “place-based,” largely
humanistic, idiographic geography on one side and
those who believe that regularities across space can
be reliably identified and measured through generally
quantitative, nomothetic approaches on the other.
For the former, place is seen as an important, yet
largely unmeasurable, factor affecting people’s behav-
ior; hence, trying to identify regularities across space
in such behavior is prone to misspecification. For
the latter, although there is frequently noise and
randomness involved in decision-making, this is seen
as either relatively minor compared to the signals
that can be identified from quantitative modeling
and spatial analytics, or is spread relatively evenly
across space and therefore has little impact on the
development and interpretation of models of spa-
tially varying behavior. Both points of view have

© 2023 The Author(s). Published with license by Taylor & Francis Group, LLC.

merit: It seems highly plausible that at least some of
our values, norms, and preferences might be a prod-
uct of where we live and with whom we interact;
but equally, it would be very limiting to our under-
standing of spatial processes if we could not model
regularities to identify the key determinants of
behavior for optimal resource allocation and predic-
tion. What is needed is a model form that incorpo-
rates the largely unseen and often unknown impacts
of place on behavior within a nomothetic framework
so that these effects can be separated from the more
obvious impacts of various sociodemographic deter-
minants of behavior, allowing the latter to be mea-
sured more accurately. In essence, we need a model
form that accounts for the unmeasurable. In fact,
three such frameworks already exist: multiscale geo-
graphically weighted regression (MGWR), spatial
error models (SEMs), and multilevel
(MLMs). First, though, we consider how place might
affect behavior and identify two distinct aspects of
place that need to be modeled. We refer to these as

models

intrinsic context and behavioral context.
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The Role of Geographical Context

The raison d’etre of place-based geographies is that
there is something about location that affects deci-
sion-making, leading to spatially varying behavior
that is independent of the identifiable factors that
describe both a location and its inhabitants. There is
a substantial amount of empirical evidence that sup-
ports the notion that many processes related to
human behavior do vary over space and there is a
vast literature, both theoretical and empirical, that
suggests that place matters and that context can
have a major impact on people’s beliefs, preferences,
and actions (Hartshorne 1939a, 1939b; Relph 1976;
Tuan 1979; Pred 1984; Sayer 1985; Duncan and
Savage 1989; Gould 1991; Golledge 1997; Thomae
1999; Harvey and Wardenga 2006; Winter, Kuhn,
and Kruger 2009; Goodchild 2011; Winter and
Freksa 2012; Agnew 2014)." As Enos (2017) stated,
“Context—or, more precisely, social geography—can
directly affect our behavior and is therefore tremen-
dously important” (78).

Consequently, it is pertinent to ask how and why
location might affect behavior. One obvious answer
is that a link between place and behavior can arise
if a person’s actions or beliefs are influenced by the
people that person talks to on a regular basis, or by
the local media, or by long-term conditions that are
peculiar to certain locales and shape a person’s out-
look on certain issues. Evidence supporting such a
linkage can be seen in large-scale geographic varia-
tions in preferences for certain types of foods, music,
house styles, political parties, and so on (Agnew
1996; Escobar 2001; Shortridge 2003; S. T.
Anderson and West 2006; Hudson 2006; Walker
and Li 2007; Braha and de Aguiar 2017; Enos 2017;
Fotheringham, Li, and Wolf 2021).

On a more local scale, there are a number of rea-
sons for suspecting that location could have an influ-
ence on behavior. For instance, traditions, persistent
adverse or beneficial conditions, customs, lifestyles,
and psychological profiles common to an area can
affect social norms, which in turn affect individual
behavior. Several studies, for example, have com-
mented on personality differences across regions and
how these can explain behavioral differences. Krug
and Kulhavy (1973), for example, stated, regarding
the United States, “It is clear that practically signifi-
cant personality differences do exist across the coun-
try in a measurable and quantifiable way” (73).

Similarly, Rentfrow, Jokela, and Lamb (2015)
stated, “Recent investigations indicate that personal-
ity traits are unevenly distributed geographically ...
(these) are associated with a range of important
political, economic, social and health outcomes” (1).
In a separate study, Rentfrow et al. (2013) reported
that “Characterizations of regions based on the psy-
chological characteristics of the people who live in
them are appealing because psychological factors are
likely to be the driving forces behind the individual-
level behaviors that eventually get expressed
in terms of macrolevel social and economic
indicators” (996).

The argument in each of these studies is that
there is something inherent in the psychological pro-
files of residents of different locations that leads
them to react differently to similar stimuli. For
instance, many people in the U.S. Upper Midwest
can trace their ancestry back to Scandinavia, where
an ethos of private deprivation for the public good is
more likely to be observed than in other parts of the
country, where a feeling of self-reliance and self-gov-
ernance is more common. These traits, which tran-
scend individual demographic characteristics, can
manifest themselves in a variety of ways, such as
how people feel about taxation, how they vote, and
the lifestyles they lead.

A second way in which geographical contextual
effects could arise is through local media and selec-
tive news representation. Several commentators
have noted the influence of the news media on the
behavior of individuals (Beck et al. 2002;
DellaVigna and Kaplan 2007; Hollanders and
Vliegenthart 2011; Garz 2018). Increasingly few peo-
ple read neutral media and the slanted view they
receive can have a strong influence on both what
they believe and how they behave, leading to spatial
variations in behavior that are independent of per-
sonal characteristics. This phenomenon is growing,
and Bishop (2009) claimed we live in “gated media
communities” (74) insofar as we only engage with
media that support our views. This leads to a situa-
tion where objectivity is diminished, and people
rarely change their views. Indeed, initial views often
become hardened over time: Even when people hear
debates, they tend to only listen to the arguments
that support their existing views, especially when
they are in the company of like-minded individuals,
a trait known as confirmation bias. The massive
expansion of information outlets through social
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media and the Internet in general has only served to
further separate people and harden views, which, in
some cases, can become extreme.

Perhaps the most obvious way in which geograph-
ical context can affect behavior is through the influ-
ence of friends, family, and local organizations, often
referred to as social imitation, or the desire to fit in
with people around us. That is, who we talk to regu-
larly, either at home, at work, at social gatherings,
or in the street, can sway our opinions and values,
leading to shared behavioral traits linked to location
(Huckfeldt et al. 1995; Huckfeldt and Sprague 1995;
Beck et al. 2002). This is amplified by what social
psychologists refer to as group polarization: Over time,
groups become more extreme in the direction of the
average opinion of individual group members. This
can occur for several reasons, such as individuals not
wanting to stand out from the group, hearing the
same ideas on a frequent basis increasing the belief
that they are correct and hence they are less likely
to be questioned, being more extreme in one’s opin-
ions brings approbation from the group, and individ-
uals with minority opinions become less likely to air
such views, so that debate and contradictory opin-
ions become rare.

Finally, and most controversially, is the potential
role of environmental conditions in behavior.
Although many authors have discussed the link
between environment and behavior (Zelinsky 1973;
Gastil 1975; C. A. Anderson 1987), and both human
and nonhuman populations have clearly adapted to
living in different environments, such a linkage
would appear to be limited to explanations of large-
scale variations in behavior. It is difficult to see how
such generally large-scale features could account for
smaller scale contextual effects on behavior.

Whatever combination of factors is responsible for
people’s values and actions being influenced by
where they live, this is amplified by selective migra-
tion and the tendency of people to seek out like-
minded individuals (homophily) or avoid people
with dissimilar views (xenophobia), concepts that
have been well documented and researched (Sakoda
1971; Schelling 1971; Borchert 1972; Zelinsky 1973;
Bishop 2009). This is seen very clearly by the para-
dox in U.S. presidential elections, where the overall
vote is often evenly split between Republicans and
Democrats, but where the majority of people live in
neighborhoods where the split in the vote is very
uneven.

Despite a wealth of evidence that place matters
and that location can help shape preferences and
actions, it could be argued that what is referred to as
context is merely a catch-all term for those covari-
ates not included in the model either because they
have not been conceived of having importance or
because they are difficult to measure (Hauser 1970;
McAllister 1987; King 1996). Even though many
sociological and psychological studies have pointed
to the relevance of context (Krug and Kulhavy
1973; Beck et al. 2002; Plaut, Markus, and Lachman
2002; Oreg and Katz-Gerro 2006; Rentfrow, Jokela,
and Lamb 2015; Enos 2017) and a great number of
studies have espoused the role of location in affect-
ing behavior from a theoretical viewpoint (Books
and Prysby 1988; Carsey 1995; Blake 2001; Rousseau
and Fried 2001; Chandola et al. 2005; Snedker,
Herting, and Walton 2009), it could be claimed that
whatever the effects of location are, they could, the-
oretically, be measured and incorporated into the
model. There are two counterarguments to such a
claim, however.

The first is that this claim relates to a theoretical
construct and in practice, we never have the luxury
of both knowing and being able to measure all the
relevant variables that affect a person’s behavior.
Whether context is a real effect or simply a catch-all
for variables that cannot be or have not been mea-
sured will remain elusive and is arguably somewhat
irrelevant. Whatever its source, the ability to capture
a context effect within a model is better than not
accounting for it at all. By ignoring the potential
role of geographical context in shaping human
behavior, we risk omitting one or more important
explanatory features of behavior that will create mis-
specification bias in the parameter estimates associ-
ated with any covariate that has some degree of
covariance with the omitted features (for an example
of this, and the calculation of the explicit degree of
misspecification bias caused by an omitted variable,
see Fotheringham 1983, 1984).

The second argument (see Figure 1) is that spatial
context can influence behavior in two ways and that
much of the debate regarding the role of context has
arisen because there has either been confusion over
these two roles or ignorance of one of them.
Suppose we construct a model that relates some
aspect of human behavior to a set of attributes we
think might influence this behavior. These influen-
ces can be divided into those effects we have
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Unmeasured
Exogenous Effects

Measurable Unmeasurable

: Behavioral : Intrinsic
i Contextual Effects | i Contextual Effects |

Measured
Exogenous Effects

Global Impact Spatially Varying
Impact

Figure 1. On the roles of context in determining behavior.

measured and included in our model and those we
have not. Unmeasured effects are those we have not
included in our model for one of two reasons: We
have not thought to include them (the measurable
unmeasured effects) or we cannot measure them (the
unmeasurable unmeasured effects). Ideally, we want
to minimize (set to zero) the measurable unmeasured
effects and we should strive to do this by giving a
great deal of thought to model construction and var-
iable selection. We recognize, however, that in
many situations there are some effects that we can-
not possibly measure. In models of spatial processes,
these represent the intangible influences of location
and what we call here intrinsic contextual effects.
These are the contextual effects that King (1996)
and others claimed that we should strive to elimi-
nate as scientists, a goal that is both admirable and
often unattainable. What we can do is to try to
remove as many of the unmeasured, measurable
effects in our models as possible, but, inevitably,
some effects will remain unmeasurable.

There is, however, a second type of contextual
effect, termed here behavioral contextual effects, which
relates to the influence of location on how the mea-
sured effects in the model affect behavior. Measured
exogenous effects can be of two types: (1) those that
have a global (i.e., spatially uniform) impact, and
(2) those with an impact that is spatially varying.
Behavioral contextual effects affect the way a covari-
ate, x, affects the dependent variable y so that for
some locations the effect of a change in x on y will
be greater than in other locations. In extreme situa-
tions, a change in x could lead to an increase in y in
some locations but a decrease in others. The impli-
cation of this is that even if we were to include in
our model all possible influences on a certain type of
behavior, and hence eliminate intrinsic contextual

effects, behavioral contextual effects could still play
a role in determining behavior by varying the way in
which each measured attribute influences behavior
across locations. For instance, such behavioral con-
textual effects would occur if young voters had a
greater preference for a particular political party in
one part of a country than in another, ceteris paribus.
Beck et al. (2002) commented on this view of con-
text in U.S. voting behavior:

American voters do not operate in the social vacuum
that much of the contemporary voting literature seems
Rather, enduring  personal
characteristics interact with the messages they are
receiving from the established social context in which
they operate. This context cannot be ignored in trying
to understand voting and electoral outcomes in any
election. (69)

to  assume. voters’

The distinction we make here in the two ways con-
text can influence behavior is important for what
follows because models that claim to incorporate
contextual effects should be able to capture both
intrinsic and behavioral contextual effects. To clarify
the difference between intrinsic and behavioral con-
textual effects, a set of hypothetical scenarios for
each is presented in Table 1.

Despite the common acceptance that context can
and often does affect people’s behavior and that the
effects of context will vary by location, there remain
several questions about its role in determining
behavior. As Enos (2017) stated, “Nobody doubts
that context can affect behavior and careful studies
of ‘neighborhood effects’ have strongly suggested it
can. However, the exact nature of contextual
effects—how much they really matter—is elusive to
researchers” (120). This sentiment was echoed by
O’Loughlin (2018), “But if context has remained a
mantra in political geography, how do we measure
its importance?” (148). Braha and de Aguiar (2017)
concurred, “The question of how to separate and
measure the effect of social influence is therefore a
major challenge for understanding collective human
behavior” (1).

It is also clear from the preceding discussion that
the potential causes of a contextual effect on behav-
ior might relate to different spatial scales, from the
very local (talking to neighbors) to the regional
(general psychological ethos). Places are also embed-
ded in networks of varying spatial extent and linked
to each other via flows of people and goods (Chetty
et al. 2022). Consequently, any modeling of context
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Table 1. Hypothetical exemplars of intrinsic and behavioral contextual effects

Scenario

Intrinsic contextual effect

Behavioral contextual effect

Preference for country & western music®

Preference for the Democratic Party in
presidential elections® ceteris paribus

Treatment of prostate enlargement by
surgery as opposed to nonsurgical
procedures®

West Coast

Greater in Austin, Texas, than in San
Francisco, California, ceteris paribus

Greater in Oregon than in Alabama,

Greater in the Midwest than on the

Positive relationship with young age cohort
across Tennessee; negative relationship
across Texas, ceteris paribus

Positive relationship with age in Florida;
negative relationship with age in Texas,
ceteris paribus

Stronger positive relationship with age of
physician in northern England compared
to southern England, ceteris paribus

“See, for example, Mellander et al. (2018).

PSee, for example, Fotheringham, Li, and Wolf (2021) and Li and Fotheringham (2022).
“There is substantial evidence, dating back to at least 1938, of spatial variations in the way doctors practice medicine, a term referred to as practice

pattern variation (Glover 1938; Wennberg 2011).

needs to allow for such variations and for the possi-
bility that contextual effects could have different
spatial domains for different processes. We now
examine three popular statistical modeling frame-
works that incorporate geographical context to vary-
ing degrees.

Models That Incorporate Geographical
Context

Multiscale Geographically Weighted Regression

Consider a traditional ordinary least squares
(OLS) regression model of the form shown in
Equation 1:

yi=Po + Pixui + Poxu +--F Pixa + &
(1)

where vy; is the variable of interest measured at loca-
tion i, x1;, X2, ..., X4 are covariates, again measured
at location i, ff, is the intercept, f8;, f;, ..., fj are
slope parameters, and ¢ is a random error term.
Each of the slope parameters represents the condi-
tional effect of a change in the respective covariate
on y and hence is an indicator of a specific process
operating to contribute to the value of y observed at
each location. Consequently, it is from the estimates
of these parameters obtained in the calibration of
the model that we make inferences about each of
the processes that together create the observed dis-
tribution of y.

A fundamental assumption of the model repre-
sented in Equation 1 is that the processes being
inferred through the parameters of the model are sta-
tionary over space. Such an assumption allows us to

collect data from various spatial locations and use all
these data to calibrate the model to produce a single
estimate of each parameter. Processes involving the
beliefs, preferences, and actions of human beings
could well vary according to location. Indeed, a
huge literature exists supporting this idea (Diez-Roux
1998, 2001; Escobar 2001; Plaut, Markus, and
Lachman 2002; Darmofal 2008; Chetty and Hendren
2018; Sampson 2019). To accommodate possible
spatial process heterogeneity, various modeling para-
digms have been developed by geographers and sta-
tisticians that overcome the limitation of global
models by allowing the parameters in a model to
vary over space, as typified by Equation 2:
yi=Po + Puxi + Puxa +-+ Puxi + &
(2)
where x;; is an observation of the kth explanatory
variable at location i, f§}; is the kth parameter esti-
mate that is now specific to location i, and ¢ is a
random error term. In this representation of the
world, spatial process variation is accommodated by
the flexibility of allowing each parameter to vary
over space. Here we calibrate a model of the type
shown in Equation 2 by MGWR because informa-
tion on both intrinsic and behavioral contextual
effects can be obtained through estimates of the
local intercept and local slope parameters, respec-
tively (Fotheringham, Yang, and Kang 2017).

Spatial Error Models

Another class of models that incorporate spatial
contextual effects are spatial econometric models,
the most common of which are the spatial lag model
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(SLM) and the SEM (Anselin 1988; Anselin and
Bera 1998; Pace and LeSage 2010). These models
are primarily used to remove spatial autocorrelation
in the residuals by using a spatial autoregressive pro-
cess on either the outcomes (SLM) or on the errors
(SEM). The SLM cannot be directly compared with
MGWR because the spatial interaction effects
between observations in the SLM model are not
explicitly included in the MGWR model. Recent
studies, however, have proposed hybrid models that
combine MGWR with SLM (e.g., Chen et al.
2022). The SEM, however, can be considered as a
special case of MGWR where the filtered autoregres-
sive residuals have a similar effect to the local inter-
cept in MGWR, capturing locational influences that
are omitted or misspecified in the model. The SEM
model, however, only includes global parameter esti-
mates, so the effects associated with covariates are
not allowed to wvary spatially. Consequently,
although an SEM can capture intrinsic contextual
effects, it cannot capture behavioral contextual
effects (see Figure 1). Furthermore, the SEM is con-
ditioned on the spatial weight matrix specification,
which is often arbitrary, and it does not allow for
inference on the intrinsic contextual facts.

The spatial error model explicitly accounts for
any spatial dependence in the errors by spatially fil-
tering the error term using a spatial autoregressive
component (Anselin 1988). The SEM is formulated

as

y=Xp+u (3)
u=,Wu-+e (4)

where u is the unfiltered error term, A is the parame-
ter for the spatial autoregressive term, W is an n by
n spatial weights matrix, and & is the remaining ran-
dom error. The parameter A measures the sign and
the magnitude of the spatial dependency in the error
term. When /1 is zero, the regression function
reduces to OLS. The weight matrix W can be speci-
fied a priori in many different ways, which adds an
element of subjectivity to the model calibration (see
Yu and Fotheringham [2022] for examples of the
dependency of measures of spatial dependency on
the definition of the spatial weights matrix).
Common examples of a priori definitions include
those based on Queen or Rook contiguities, k near-
est neighbors, and a fixed distance band with or
without a decay function. Alternatively, the spatial
weights matrix can be selected using a data-driven

process to find the appropriate specification that
optimizes a model selection criterion such as
Akaike’s information criterion (AIC) or Bayesian
information criterion (BIC; Chi and Zhu 2019).
Consequently, the term AWu is the spatial autore-
gressive error term centered at zero and exhibiting a
certain spatial pattern conditional on the strength of
the error autocorrelation and the spatial weights
matrix. By combining Equations 3 and 4, we can see
in Equation 5 that AWu + f, serves a similar role to
the local intercept vector B, in an MGWR model,
which can be interpreted as an intrinsic contextual
effect that is independent of the compositional
effect. SEM, however, is not able to capture behav-
ioral contextual effects because the rest of the equa-
tion remains the same for all locations.

y = (AWu + Bo) + XB.o + ¢ (5)

Multilevel Models

Another framework that can capture contextual
effects, which is not strictly spatial but has been
widely applied to geographic data, is that of MLM
(also known as mixed modeling or hierarchical lin-
ear modeling). Geographic data are often multilevel:
Examples include children within school districts,
houses within neighborhoods, and counties within
states. MLMs acknowledge that there might be het-
erogeneity in relationships between levels of the
hierarchy that can be modeled by so-called random
effects. Examples of MLM applications in geographi-
cal studies include modeling the health outcomes of
individuals exposed to environmental effects
(Duncan, Jones, and Moon 1998; Zahnd and
McLafferty 2017; Ma et al. 2018), measuring neigh-
borhood effects of house prices (Orford 2000; Dong
et al. 2015), and estimating small area statistics by
combining aggregated and survey data (Twigg,
Moon, and Jones 2000; Park, Gelman, and Bafumi
2004). MLMs are not able to capture intrinsic and
behavioral contextual effects at the individual level
but can model these effects at an aggregated or
higher level. The aggregated level needs to be
defined a priori, however, which is not always possi-
ble, and might be subject to the modifiable area unit
problem (MAUP) if the underlying processes operate
at different spatial scales to those defined a priori.
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MLMs are appropriate for hierarchically structured
data, a data type quite commonly found in geograph-
ical analysis. For simplicity, we present a two-level
model, with individuals and groups and with only
two covariates, but more complex MLMs can be
constructed in similar ways with many nested hierar-
chical levels. The Level 1 (individuals) regression
model is

Yip = Bop + BrpXtip + BapXaip + &ip (6)

where y;, is the dependent variable for observation i
that belongs to a second level group p, B, is the
intercept term for group p, xip and x; are the
covariate values for observation i in group p, By,
and f,, are the slopes for group p, and &, is the ran-
dom error. The intercept and slope parameters can
vary across the second-level groups which are shown
as:

Bop = Bo+ Koy (7)
By =B+ my (8)
By =B+ 1y 9)

where fy is the overall global intercept parameter
and g, is the random effect measuring the deviation
of the intercept of group p from the overall inter-
cept. Similarly, f/; and f, are the overall global
slope parameters and j;, and pi,, are their deviations
from the overall effects. In a standard MLM, each of
the three random effects (i, ftyp, #ty,) follows a
normal distribution with a mean of zero and an
unknown variance, and the estimated variance indi-
cates the magnitude of the between-group heteroge-
neity. Consequently, spatial contextual effects are

represented in the model by variations in the param-
eter estimates across the groups. There are three
types of MLMs. When both p;, =0 and 1, =0,
this is termed a varying intercepts model and it can
only account for intrinsic contextual effects. When
only ug, = 0, this is a varying slopes model, which
allows slopes to vary across the groups, thus captur-
ing behavioral contextual effects. When all the ran-
dom effects are nonzero, this is a varying intercepts
and slopes model, which is the most flexible specifi-
cation that can account for both intrinsic and
behavioral contextual effects. Of course, the degree
to which contextual effects can be described is con-
strained by the a priori definition of the groups.
When all the random effects are zero, the MLM

reduces to a linear regression model.

Summary of the Mechanisms to Encompass

Context Effect in Models

Table 2 summarizes different modeling approaches
to incorporate intrinsic and behavioral contextual
effects. MGWR estimates spatially varying local
intercept and slopes, which measure intrinsic and
behavioral contextual effects, respectively. SEM uses
a spatial autoregressive error to represent intrinsic
contextual effects but being a global model, it can-
not capture any behavioral contextual effects. MLM,
with its estimates of varying intercepts and slopes, is
able to capture both intrinsic and behavioral contex-
tual effects, but these can only be measured at a pre-
defined aggregated level. The spatial regimes in
which the intrinsic and behavioral contextual effects
operate are constrained to be the same, whereas in

Table 2. Comparison of model approaches to incorporate contextual effects

Intrinsic contextual effects

Behavioral contextual effects

Local slopes

(B10)
The spatial regimes of each behavioral contextual
effect can vary and are data-driven

N/A

Global slopes + group-level varying slopes

MGWR Local intercept

(Bo)

The spatial regimes of the intrinsic contextual effects
are data-driven

SEM Spatial autoregressive error + global intercept

(Bo + AWu)

The spatial regimes of the intrinsic contextual effects
are determined by an a priori spatial weights
matrix

MLM Global intercept + group-level varying intercept

(Bo + mo)

The spatial regimes of the intrinsic contextual effects

are determined a priori

(Bao+ mi)
The spatial regimes of each behavioral contextual
effect are identical and determined a priori

Note: MGWR = multiscale geographically weighted regression; SEM = spatial error model; MLM = multilevel model.
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practice different contextual effects might operate
over very different spatial extents. In the next sec-
tions, we demonstrate and compare the behaviors of
all three modeling approaches using both simulated
and empirical data sets. The data and code used in
this study are available in the public repository at
https://anonymous.4open.science/r/context_model_
comparison-3F53/.

Comparisons between Models Using
Simulated Data

Monte Carlo Simulation Design

To compare the behavior of MGWR, SEM, and
MLM models in terms of their ability to capture spa-
tial contextual effects, three spatially varying pro-
cesses, Bo, B, B, operating at different spatial
scales, were simulated across a 40 x 40 grid yielding
a total of 1,600 observations. Processes fi; and f; are
Gaussian random fields GRF (2, 2) with mean of 2
and covariance of €, which is defined as:

2(h) = exp(-0.5+(d/h)’) (10)

where d is an n X n matrix containing pairwise dis-
tances for all locations, and h is a scale parameter
indicating the amount of distance decay in the
covariance function. Process f, is generated with
h=6 and operates at a local scale. Process f; is sim-
ulated with h=12 yielding regional spatial variation,
and process B, is constant with mean 2 and no spa-
tial variation, representing a global process. The
GRF surfaces were constructed using the gstools
Python package (Muller et al. 2022) and are shown
in Figure 2.

True Bo

True B;

4.0
35
3.0
2.5
2.0
1.5
1.0
0.5
0.0

A model is then specified as:
y=PB+BXi +5X:+e (11)

where spatial variation in f; would indicate intrinsic
contextual effects and spatial variation in f; and B,
would indicate behavioral contextual effects. Both
covariates and the errors were drawn from a standard
normal distribution N (0, 1). For the Monte Carlo
simulation, 1,000 realizations of the error terms were
generated and for each realization the dependent
variable was reconstructed according to the model in
Equation 11. An MGWR model and an SEM were
calibrated based on the simulated data sets using the
mgwr and spreg Python packages, respectively (Rey
and Anselin 2010; Oshan et al. 2019). The default
setting for MGWR is used with an adaptive bisquare
kernel. For the SEM, we adopted two approaches to
specify the spatial weights matrix: (1) a Queen con-
tiguity-based (SEM Queen), and (2) an AIC-based
model selection procedure to select the number of
nearest neighbors (SEM AIC-KNN). To calibrate an
MLM, a second-level framework is needed, and we
designed two aggregated levels, one consisting of a
4 x 4 matrix with each cell containing 100 individu-
als, and the other consisting of an 8 x 8 matrix with
each cell containing 25 individuals, as depicted in
Figure 3. The MLMs were calibrated using the Ime4
R package (Bates et al. 2015).

Comparison of Parameter Estimation Accuracy and
Sensitivity

The parameter estimates from all three models
averaged across the 1,000 realizations are visualized
in Figure 4. Compared to the true data generating
processes, MGWR produces estimates of all three
parameters that are smooth and highly accurate. The
results of calibrating the two SEM models indicate

True B;

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

Figure 2. Three true data generating processes used in the Monte Carlo simulation.
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4X4 8X8

Figure 3. Two second-level units used in the multilevel model.

that although the spatially autoregressive error com-
ponent shows a similar pattern to the local intercept
Po, it cannot pick up any behavioral contextual
effects in B;. In addition, using a Queen-based spa-
tial weight matrix, which only considers first-order
neighbor contiguity, the model is not able to capture
accurately the intrinsic context effect that varies
more regionally. In comparison, the data-driven k
nearest neighbors (KNN)-based weight matrix selects
nearest neighbors in the range of twenty to sixty,
which better reflects the scale of the spatial depen-
dency in the intrinsic contextual effect. For MLM, it
is clear that for the spatially varying processes, B
and B, such models can approximate the spatial
heterogeneity operating at the aggregated level but
only crudely, and this is limited by the definition of
the upper level geographic divisions. Obviously, the
finer the divisions available at the upper level, the
better the representation of the spatial varying pro-
cess will be, but this is a clear limitation of the
MLM framework.

Next, we calculate several quantitative measures
to evaluate the accuracy and sensitivity of the
parameter estimates across the three models for the
1,000 Monte Carlo realizations. First, the root mean
squared error (RMSE) for the parameter estimates of
covariate k is expressed as:

RMSE},, = \/%Z (Bikm — Ba)’ (12)
P

where f;,, is the parameter estimate for covariate k
at location i€ {l,..,n} from the mth realization
(m e {1,...,1000}) in the Monte Carlo simulation,
and f; is the true parameter. RMSE measures the
overall accuracy of how parameter estimates replicate
each true spatially varying process. Figure 5 describes
five sets of box plots of RMSE values for each of the

three parameter estimates of B, f;, B, obtained
from the following models calibrated with the
Monte-Carlo simulated data:

1. SEM (with queen-based contiguity)
2. SEM (with KNN-based contiguity)
3. MLM (with a 4 x 4 upper level division of the

hierarchy)

4. MLM (with an 8 x 8 upper level division of the
hierarchy)

5. MGWR

In terms of modeling the local process f,, MGWR
is most accurate, followed by the SEM with a KNN
spatial weight matrix, then the MLM with a finer
spatial upper division (8 x 8) and then the SEM
with Queen spatial weight matrix. The MLM with a
coarse geographic division (4 x 4) is considerably
poorer in replicating the spatially varying intercept
than the other four models. Regarding the modeling
of process B;, the MGWR results are again the most
accurate. The two SEMs only produce global esti-
mates, so the RMSEs are 1; that is, the global vari-
ance of B;. The MLM with a finer division is more
accurate than the one with a coarse division. For
the global process f,, the RMSE for all five models
is low, close to zero.

Next, we calculated the average bias of the esti-
mators obtained from the Monte Carlo simulation
across all the locations as an indicator of how each
of the five models measures the global trend in the
process, which is given by:

n_ 1000

. 1 »
Bias), = m; ; (ﬂikm - ﬁik) (13)

where Bias), is the average bias for estimator ﬁk of
covariate k. The results for all five models are shown
in Table 3.

Overall, all five models have a small average bias,
meaning that the global mean level of the spatially
varying process (which is 2, as specified in the GRF)
is estimated accurately. It is worth noting that
MGWR and MLM can capture both intrinsic and
behavioral effects, so these models have a relatively
lower bias than the SEMs, which can only capture
the intrinsic contextual effect. It is well known that
the global estimators are unbiased if the true data
generating process follows the specification of SEM

(Anselin 1988), but when there are behavioral
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Figure 4. Averaged parameter estimates from multiscale geographically weighted regression (MGWR), spatial error model (SEM), and

multilevel models (MLMs) in the Monte Carlo simulation.
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Figure 5. Box plots of the root mean square error (RMSE) for the parameter estimates obtained from each model in the Monte Carlo
simulation. Note: SEM = spatial error model; KNN = k nearest neighbors; MLM = multilevel model; MGWR = multiscale geographically

weighted regression.

Table 3. Average bias of parameter estimates from MGWR, SEM and MLM models

MGWR SEM (Queen) SEM (KNN) MIM (4 x 4) MLM (8 x 8)
Biasg 0.006 —0.070 —0.073 0.002 —0.018
Bias; —0.005 —0.057 —0.047 0.015 —0.012
Bias; 0.000 0.048 0.053 0.015 0.005

Note: MGWR =multiscale geographically weighted regression; SEM =spatial error model; KNN = k nearest neighbors;

MLM = multilevel model.

context effects present, this assumption is violated,
and it will introduce a small bias to the estimators
even when estimating the global mean level.

Comparison of Model Residual Spatial
Autocorrelation

We compare the remaining spatial autocorrelation
in the residuals of all five models to check the
assumption of spatial independence. Moran’s I values
(based on Queen contiguity spatial weight matrix)
were calculated for each realization of the Monte
Carlo simulations and the box plots of these values
are shown in Figure 6, with the spatial and density
distribution of the residuals for a single realization
shown in Figure 7. Residuals from MGWR, SEM,
and MLM with a relatively finer geographic division
(8 x 8) have Moran’s I values closer to zero, indicat-
ing the spatial effects are accounted for in the mod-
els and the residuals are spatially random. MLM
with a coarse geographic division (4 x 4) still has a

0.4

0.31
0.21

0.1

°°$%’ """"""""" _I_

_01 E
_02 o
-0.3 T T T T T
SEM SEM MLM MLM MGWR
(Queen) (KNN) (4X4) (8X8)

Figure 6. Box plots of Moran’s I value of the model residuals in
the Monte Carlo simulation. Note: SEM = spatial error model;
KNN = k nearest neighbors; MLM =multilevel model;
MGWR = multiscale geographically weighted regression.
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Figure 7. Spatial and density distribution of residuals obtained from one realization of the simulation for all models. The dashed line in
each density plot marks the mean of residuals. Note: SEM = spatial error model; KNN = k nearest neighbors; MLM = multilevel model;

MGWR = multiscale geographically weighted regression.

substantial amount of spatial effect that is not cap-
tured by the model resulting in spatial autocorrela-
tion in the residuals with Moran’s I close to 0.3.
This is further evidenced in Figure 7, where a clear
spatial clustered pattern can be observed in the
residuals from the MLM (4 x 4). The residuals of all
other models exhibit a random spatial pattern,
among which the MGWR residuals have the lowest
magnitude of residuals and the narrowest density
distribution.

Comparisons between Models Based on
Empirical Data

In this section, we applied MGWR, MLM, and
SEM to a county-level 2020U.S. presidential elec-
tion model previously employed by Fotheringham,

Li, and Wolf (2021) and Li and Fotheringham
(2022). Data were originally obtained from the MIT
Election Lab and the American Community Survey
2015-2019. The dependent variable used is the per-
centage of people who voted for the Democratic
Party in a two-party fight between Republicans and
Democrats in the 2020 presidential election. There
are fourteen county-level covariates in the model
including sex ratio, percentage of population aged
eighteen to twenty-nine, percentage of population
aged sixty-five and over, percentage of African
Americans, percentage of Hispanics, median house-
hold income, percentage of population with a bache-
lor’s degree, percentage of population employed in
the manufacturing industry, percentage of foreign
born, percentage of health-insured population, natu-
ral logarithm of population density, percentage of
third-party vote, Gini index, and the voter turnout.
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For the MLM, we fitted a varying intercept and
slope model that allows for random effects to operate
at the state level. For the SEM, we fitted models
with both a Queen-based and KNN (optimal k= 14)
based spatial weights matrix. For a general compari-
son of goodness of fit, the R? values are 0.95 for
MGWR, 0.93 for MLM, 0.89 for SEM-Queen and
0.88 for SEM-KNN.

Figure 8 shows a comparison between the local
intercept for MGWR, the state-level random inter-
cept for MLM, and the spatial autoregressive error
for SEM (KNN and Queen). We find strong similar-
ities between these four sets of estimates of intrinsic
contextual effects with contextual effects in counties
in the Southern states leading to a reduced vote for
the Democratic Party and contextual effects in coun-
ties in the Pacific West, Upper Midwest and
Northeast leading to an increased vote for the
Democratic Party. Figure 9 compares the behavioral
contextual effects associated with the covariates. As
SEM only produces global estimates, here we
excluded it from the comparison and focus on
MGWR and MLM. Again, the spatial heterogeneity
appears to be similar, although MLM operates at the

(A) MGWR local intercept
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state level, whereas MGWR has county-level esti-
mates. Also, the degree of spatial heterogeneity in
the behavioral contextual effects from MLM is cons-
tant across all the covariates, whereas through the
estimation of covariate-specific bandwidth parame-
ters, it is allowed to vary. It is worth noting that spa-
tial structure and associated effects can be
introduced into MLMs, as in the work of and Dong
et al. (2015) and Wolf et al. (2021).

Summary

Does location influence behavior? If it does, to
what extent does it affect behavior!? These are both
hugely important questions for the modeling of geo-
graphic processes. If behavior is influenced by loca-
tion to a significant degree, then models of human
behavior must incorporate some mechanism to cap-
ture the influence of place, otherwise the results of
calibrating such models might be seriously mislead-
ing. Here we identify two types of spatial contextual
effects, the ignorance of which might create serious
misspecification biases in spatial models. Intrinsic
contextual effects describe the omission from a

(B) MLM state-level varying intercept
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Figure 8. Estimates for MGWR local intercept, MLM state-level varying intercept, and SEM spatial autoregressive error. Note:
MGWR = multiscale geographically weighted regression; MLM = multilevel model; SEM =spatial error model; KNN = k nearest

neighbors.
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Figure 9. Comparison between multiscale geographically weighted regression (MGWR) local parameter estimates and multilevel model

(MLM) state-level varying effects.

model of the often unmeasurable facets of place that
can affect behavior. Behavioral contextual effects
exist if the conditioned relationship of a covariate x
on the variable of interest y varies by location. We
then examine three models, MGWR, SEM and
MLM, which can account for place-based effects.

Using Monte Carlo simulations and an empirical
data set on voting in the 2020 U.S. presidential elec-
tion, we show that the three modeling techniques
reassuringly produce similar estimated spatial pat-
terns of intrinsic contextual effects, with MGWR
having the best accuracy. The accuracy of MLM is
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limited by the a priori definition of the upper hierar-
chical level(s) and the accuracy of the estimates in
SEM are a function of an a priori definition of the
spatial weights matrix between locations. Only
MGWR and MLM can account for behavioral con-
textual effects, as SEM is a global modeling frame-
work. Again, the estimates from MGWR and MLM
are similar, with the spatial resolution of the esti-
mates from MGWR being greater because there is
no need in this framework to define an aggregated
set of spatial units. The spatial variation in behav-
ioral contextual effects across covariates is also
allowed to vary in MGWR but is a constant in
MLM. MGWR is shown to be able to account for
both intrinsic and behavioral contextual effects, does
not depend on any a priori definitions of spatial
units or spatial contiguity measures, produces stan-
dard errors for the estimates of both intrinsic and
behavioral contextual effects, generates the most
accurate estimates of contextual effects, and creates
the greatest reduction in residual spatial dependency.
For these reasons, if the goal is to account for and
measure place-based influences on behavior, MGWR
would appear to represent the best practice.

Not accounting for the influence of place on
behavior has several potentially severe consequences
for the analysis of spatial behavior, the most obvious
being the incorrect estimation of the effects on y of
marginal changes in the covariates. If any covariate
has a nonzero covariance with the influence of place
on behavior, the estimated coefficient for that covar-
iate will contain a misspecification bias that could
render its interpretation meaningless. This could, in
turn, lead to incorrect guidance on the most effec-
tive ways to bring about changes in y. Also, if mod-
els are employed that do not adequately account for
the effects of place on behavior, it is likely that the
residuals from such models will exhibit significant
positive dependency, thereby invalidating standard
inferential results. Again, this results in a situation
where variables that appear to be significant drivers
of levels of y are actually inconsequential. Both of
these potential problems could result in the recog-
nized issue that the results of calibrating spatial mod-
els are rarely, if ever, reproducible over space (Niist
et al. 2018; Kedron, Frazier, Goodchild, et al. 2021;
Kedron, Frazier, Trgovac, et al. 2021). That is, when
we calibrate the same spatial model with data from
different geographic frameworks, the results are
rarely compatible and could, indeed, be

contradictory. A possible reason for this is that if
place affects behavior but is not included in a model,
misspecification bias in the parameter estimates from
that model might be sufficiently severe as to make
comparison of them across space meaningless.
Calibrating models that take into account the influ-
ence of place should result in parameter estimates
that are more stable over space.

Finally, by recognizing that place could affect
behavior significantly through mechanisms that can-
not be modeled directly but yet can still be modeled
and quantified, has allowed the development of ana-
lytical frameworks that bridge the increasing gap
between those who model and those who do not.
Local models such as MGWR turn the spotlight on
place differences in behavior and provide the oppor-
tunity to seriously link quantitative and qualitative
research. Such models recognize that ephemeral rela-
tionships between place and behavior exist and
should not be ignored. In so doing, they are able to
quantify the strength of such relationships and
describe their spatial distribution, leading to much
more focused interrogations of their possible causes
and consequences. Local models hence bridge the
nomothetic—idiographic divide and focus concentra-
tion on a geography of spatial processes rather than
spatial data.

Note

1. It is not just in human behavior that contextual
effects appear to be important; evidence of
contextual influences have been reported for fish,
animal, and bird populations (Endler and Houde
1995; Foster and Endler 1999).
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