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ABSTRACT

Government agencies have utilized Web Geographic Information Systems (GIS) dashboards to
collect and disseminate spatial information on COVID-19. However, not all maps on these
dashboards adhere to established cartographic principles. This article explores the extent of
the cartographic issues by surveying state governments’ official COVID-19 websites in the
United States on February 11, 2021. The results indicate that out of the fifty states, thirty-
one (62.0%) incorrectly used unnormalized data in choropleth maps, sixteen (32.0%) used
normalized data, and three (6.0%) did not employ choropleth maps. Among states using
normalized data correctly, we identified other cartographic problems, including
inappropriate data class divisions and suboptimal enumeration units. As dashboards serve
as authoritative sources for health information, issues in map creation can influence public
perception of the health crisis. These findings underscore the need for map standards to
ensure the accuracy and reliability of health information in the Web GIS era.
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1. Introduction

The coronavirus disease 2019 (COVID-19) pandemic

has disrupted nearly every aspect of our society and is

responsible for an unprecedented public health cala-

mity in the United States (Centers for Disease Control

and Prevention, 2021). Since the disease information

is organized spatially, governments have employed

geospatial information technology to monitor and

respond to the virus spread in close to real-time

(Kamel Boulos & Geraghty, 2020). With Web Geo-

graphic Information Systems (GIS) that automate

map creation and distribution, public users and auth-

orities can quickly develop, share, and update health

information using web maps quickly enough to make

actionable decisions (Richards, 1999; Zhang et al.,

2015; Zhang & Li, 2005). One of the most widely used

tools to host web maps is the dashboard, a hosted web

service that facilitates interactive visualization of spatial

and non-spatial data (Dong et al., 2020; Griffin, 2020).

After the initialization of the COVID-19 dashboard by

Johns Hopkins University (Dong et al., 2020), all fifty

United States state governments created their own

dashboards to enhance pandemic surveillance and

facilitate health communication. Dashboards became

the default method for communicating relevant infor-

mation involving the pandemic with the general public,

and each state made different design decisions

(Geraghty & Artz, 2022).

Although the COVID-19 dashboard is considered

‘the most striking cultural artifact’ of the pandemic

(Everts, 2020), considerable issues arise as they do

not always follow cartographic principles (Adams

et al., 2020). In this study, we observed that the domi-

nant map type used in dashboards is the choropleth

map, which is a thematic map type using the intensity

of colors to correspond to data values within spatial

enumeration units (Dent, 1990; Tobler, 1973). Choro-

pleth maps are one of the most popular thematic map

types, and some cartographic principles have been well

established to ensure their proper use, such as data

normalization and map symbology principles (Brewer

& Pickle, 2002; Harrower & Brewer, 2003; Jenks, 1963;

Jenks & Caspall, 1971). However, dashboard develo-

pers, including those employed by an authoritative

agency, may not have the essential training to comply

with these principles (Harrower & Brewer, 2003; Juer-

gens, 2020; Lan et al., 2021; Plewe, 2007).

One prevailing cartographic issue in choropleth-

based dashboards is the failure to use normalized data

for mapping – that is, using a relative value (e.g. infec-

tion rates) rather than an absolute value (e.g. cases of

infection) (Adams et al., 2020; Engel et al., 2022;
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Kronenfelda & Yoo, 2020). Violating this principlemay

disguise spatial patterns due to comparing absolute

values in different sizes of enumeration units (Dent,

1990; Krygier & Wood, 2005; Monmonier, 2018; Rezk

& Hendawy, 2023). In the case of the COVID-19 pan-

demic, research has shown that choropleth maps that

show only totals may change people’s perception of

the pandemic (Engel et al., 2022). Therefore, it is rec-

ommended not to use totals in a choropleth map

(Adams et al., 2020). If totals need to be depicted,

other map symbolizations, such as proportional sym-

bols, area cartograms, or dot density, may be used

(Brewer, 2016; Dent, 1990; Zhang, 2020). While it is

possible to find examples in the literature where a chor-

opleth map showing totals is appropriate, that same lit-

erature recommends considering graduated symbols in

these cases (Krygier & Wood, 2005).

Figure 1, created from available data on the Centers

for Disease Control and Prevention (CDC)’s COVID-

19website onMay 28, 2022, demonstrateswhy thismat-

ters with two choroplethmaps displaying the same case

data (Centers for Disease Control and Prevention,

2022). Figure 1(a) shows the total cases of infection by

state, and Figure 1(b) shows infection rates per

100,000 population. As shown in Figure 1(a), Califor-

nia, Florida, New York, and Texas, all have the most

overall cases. There is no coincidence that these four

states also have the largest population in the US, and

Figure 1(a) reflects this pattern (Census Bureau,

2022). Figure 1(b) shows the infection rate per

100,000 people, which better facilitates comparisons

among states with small and large populations. Thus,

using an unnormalized map may mislead the public

or decision-makers about the severity of the pandemic;

for example, North Dakota’s high infection rate is only

unveiled in the normalized map (Figure 1(b)).

While this cartographic bias has been documented

in the literature, it has not been well recognized by

most public health professionals and map readers.

For example, while the CDC has switched to publish-

ing normalized case data, it still uses choropleth maps

to show total cases well into the COVID-19 pandemic

(Centers for Disease Control and Prevention, 2021,

2022). While other reviews of dashboards have looked

at the issue and others, including visualizations

besides maps and the frequency of updates (Clarkson,

2023; Fareed et al., 2021; Kronenfelda & Yoo, 2020),

they may not contain data for the entire duration of

the pandemic due to the dynamic nature of web maps.

To this end, this paper aims to articulate the carto-

graphic issues in the COVID-19 dashboards published

by all fifty state governments in the United States.

Specifically, on February 11, 2021, we examined

whether state governments employed a choropleth

map or another map form for publishing COVID-19

case data. Then, we identified if these official web

maps followed fundamental cartographic principles,

including data normalization, number of classes, color

schemes, and enumeration unit selection. On April 8,

2023, following the United States Senate vote to end

the pandemic, we returned to each Uniform Resource

Locator (URL) to determine the number of states still

hosted the COVID-19 dashboards. This review can

serve as a partial record of how the state governments

of the United States portrayed spatial data during the

COVID-19 pandemic for future researchers. Even-

tually, we hope efforts can bemade to improve the con-

sistency and accuracy of health information delivery.

2. Methods and results

To evaluate the extent of the cartographic issues in

COVID-19 maps, we identified all fifty states’ official

websites where case data were published in terms of

a dashboard or other types of web maps (Table 2).

We excluded Puerto Rico, Guam, Washington D.C.,

Figure 1. (a) Total infections by state and (b) infection rates in terms of cases per 100,000 people by state. Case data were derived
from the CDC as of May 28, 2022. Class breaks were created using Jenks natural breaks in ArcMap, and labels are rounded to two
significant digits for simplicity.
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and other parts of the United States not within state

boundaries to limit the study to comparable adminis-

trative units. We then recorded the types of thematic

maps used on the websites, mainly choropleth maps

and proportional symbol maps (i.e. maps using differ-

ent sizes of circles). If a choropleth map was used, we

checked if the cartographers employed normalized

data (e.g. infection rates) or inappropriately used

unnormalized data (e.g. total cases). We recorded

dashboard URLs along with the data collection,

which took place on February 11, 2021.

As Table 1 illustrates, all states employed certain

forms of COVID-19 dashboards to visualize case

data. Forty-seven states (94.0%) used choropleth

maps, while two states (4.0%), Texas and Wyoming,

used proportional symbol maps. The state of Nebraska

had a general reference map but lacked any form of

thematic map related to COVID-19 cases, with its

website indicating that a map was under production.

Colorado was the only state employing both choro-

pleth and proportional symbol maps.

Figure 2 visualizes the findings by state. We found

that thirty-one states (62.0%) used unnormalized data

in their choropleth maps in at least one map on their

dashboard, sixteen states (32.0%) rigorously stuck to

normalized data in their choropleth maps, and three

states (6.0%) did not employ choropleth maps. We

observed that at least eleven states, including Alaska,

Alabama, Arizona, Hawaii, Indiana, Michigan,

Mississippi, North Carolina, North Dakota, West Vir-

ginia, and Wisconsin, employed choropleth maps

showing both normalized and unnormalized cases,

which we recorded as using unnormalized choropleth

maps. We also found that the CDC had both normal-

ized and unnormalized data on its web maps (Centers

for Disease Control and Prevention, 2021). We

acknowledge that as dashboards often have multiple

visualizations, we may have missed a map that was

either normalized or unnormalized. Such an omission

would increase the number of states using both but

not decrease the scale of the normalization issue.

These findings demonstrate that the problem of mis-

using choropleth maps to visualize total COVID-19

cases was widespread.

To investigate further, we separately evaluated the

three categories of normalized choropleth, not choro-

pleth, and unnormalized choropleth. For the sixteen

states that mapped normalized data only, we further

examined their normalization methods. This follow-

up evaluation identified if other cartographic prin-

ciples regarding map symbology in a thematic map

were followed, such as the number of classes, color

schemes, and enumeration units. Table 2 shows the

results: (1) the most popular normalization method

was a ratio of cases in an enumeration unit (n = 14,

87.5%); only two states (12.5%) employed different

normalization methods: California was based on a 7-

day risk level, and South Dakota was based on the

Figure 2. Data normalization status on state COVID-19 dashboards by state.
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Table 1. Thematic map types and data normalization status on state COVID-19 dashboards.

State Map type
Using unnormalized
choropleth maps Variable(s)

Number of
classes

Color schemes
(low to high) Enumeration unit

Alabamaa Choropleth Yes Total cases 7 Blue County
Alaskaa Choropleth Yes Total cases Continuous Red Borough/Census

Area
Arizonaa Choropleth Yes Total cases No data Red County
Arkansas Choropleth Yes Total Cases Continuous Blue County
California Choropleth No Risk level (based on 7-day

positivity rate)
4 Yellow to purple County

Colorado Choropleth/
Proportional
symbol

No Cases per 100,000 population Continuous Blue County

Connecticut Choropleth No Cases per 100,000 population 2 Grey to red Town
Delaware Choropleth No 7-day cases per 100,000

population
6 Blue Zip Code

Florida Choropleth Yes Total cases No data Yellow to Blue County
Georgia Choropleth No 14-day cases per 100,000

population
Continuous Yellow to Red County

Hawaiia Choropleth Yes 14-day total cases 5 White to orange.
One no-data
class

Zip Code

Idaho Choropleth Yes Total cases No data White to orange County
Illinois Choropleth Yes Total cases No data Blue Zip code
Indianaa Choropleth Yes Total cases No data White to orange County
Iowa Choropleth No 14-day cases per 100,000

population / 7-day cases per
100,000 population

5 Blue County

Kansas Choropleth Yes Total cases No data Blue County
Kentuckya Choropleth No 7-day cases per 100,000

population
4 Green to red County

Louisiana Choropleth Yes Total cases 4 Blue Census Tract
Maine Choropleth Yes Total cases 4 Pink Zip Code
Maryland Choropleth Yes Total cases 3 Blue County
Massachusetts Choropleth Yes Total cases 5 Blue County
Michigana Choropleth Yes Total cases 5 Blue County
Minnesota Choropleth Yes Total cases 7 Blue County
Mississippia Choropleth Yes 7-day cases per 100,000

population
5 Blue County

Missouri Choropleth No Cases per 100,000/7-day cases
per 100,000 population

Continuous Red to orange Jurisdiction
(Appears to be
county)

Montana Choropleth Yes Total active cases 4 Blue County
Nebraska Reference map N/A N/A N/A N/A County
Nevada Choropleth No Cases per 100,000 population 6 Blue County
New
Hampshire

Choropleth Yes Total cases 6 Red to orange.
One no-data
class

Town

New Jersey Choropleth Yes New daily cases 7 Blue County
New Mexico Choropleth Yes Total cases Continuous Green County
New York Choropleth Yes Total cases 7 Orange County
North
Carolinaa

Choropleth Yes Total cases 5 Blue County and Zip
Code

North Dakotaa Choropleth Yes Total cases No data Red County
Ohio Choropleth Yes Total cases No data Blue County
Oklahoma Choropleth Yes Total cases/total deaths/total

recovered
Continuous Yellow Red

Green
County

Oregon Choropleth No Cumulative cases divided by
population

5 Blue County

Pennsylvania Choropleth No Cases per 100,000 population 5 Red County
Rhode Island Choropleth No Cases per 100,000 population 6 Yellow to blue Geographic Area or

municipalities
South Carolina Choropleth No Cases per 100,000 population 5 Blue County
South Dakota Choropleth No Community spread (totals) 3 Blue County
Tennessee Choropleth No Positive tests per 100,000

population
Continuous Blue and red County

Texas Proportional
symbol

N/A Total Cases Continuous N/A County

Utah Choropleth No 14-day case rate per 100,000
population

7 Yellow to red County

Vermont Choropleth Yes Total cases in the past 14 days No Data blue County
Virginia Choropleth Yes Total cases 6 blue County
Washington Choropleth Yes Total cases 6 Blue County
West Virginiaa Choropleth Yes Total cases in past 7 days No data Blue County
Wisconsina Choropleth Yes Total cases 4 Grey County
Wyoming Proportional

symbol
NA Total cases Continuous N/A County

aIndicates a state where we observed both normalized and unnormalized choropleth maps.
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community spread rates (2) We found that the

majority of states with normalized choropleths on

their dashboards (n = 12, 75.0%) employed discrete

class breaks, while four of these states (25.0%) used a

continuous color scheme. Choosing map symbology

is more flexible than the need for data normalization

but still demands scrutiny from a cartographic per-

spective (Monmonier, 2018). Generally, the literature

suggests using discrete class breaks over continuous

color schemes for making a thematic map, as it is

easier to discern the difference between data values

(Brewer & Pickle, 2002; Dobson, 1973; Krygier &

Wood, 2005). (3) When mapping with discrete class

breaks, a general rule is to have no less than three

and no more than seven classes best to distinguish

classified data values (Harrower & Brewer, 2003).

This rule was followed by ten (91.7%) of the eleven

states mapping only normalized data and discrete

class breaks, with most maps having five classes. (4)

In terms of color hues, seven of the states mapping

only normalized data (43.8%) employed a cold color

hue (e.g. green, blue, and purple), five (31.3%)

employed a warm color hue (e.g. red, orange, yellow),

and four (25.0%) had a mixed use of cold and warm

colors. (5) For enumeration units, twelve (75.0%)

used county, Delaware used ZIP codes, Connecticut

and Rhode Island used local enumeration units such

as town or municipality, and Missouri used ‘Jurisdic-

tions,’ which upon inspection appeared to correspond

to the county boundaries.

The choice of enumeration unit is critical. Due to

the modifiable aerial unit problem (MAUP), different

ways of subdividing an area can influence the final

aggregate values (Chen et al., 2022). Counties in

many states are administrative units where policy is

made. In some smaller states, like Connecticut and

Rhode Island, counties are often ignored in favor of

smaller administrative units, such as towns (Chen

et al., 2021). These smaller units allow for finer-scale

analysis. ZIP codes, like towns, are also generally smal-

ler than counties; however, their use in epidemiological

mapping is controversial (Chen et al., 2022). ZIP codes

are often discontinued or modified, do not cover the

entire United States, and their representation as poly-

gons is often not representative of what they cover

(Grubesic & Matisziw, 2006). Therefore, ZIP codes

for the analysis of health data should be avoided, if

possible in favor of census tracts or another more

meaningful enumeration unit, and used cautiously in

consideration of their limits only when unavoidable

(Chen et al., 2022; Grubesic & Matisziw, 2006).

Next, we reviewed the unnormalized maps of the

thirty-one states mapping totals in choropleths to see

if the state dashboards followed other cartographic

principles regarding map symbology. Below are our

findings: (1) the most mapped variable was cumulative

cases per enumeration unit (n = 25, 80.6%), two states

(6.5%) mapped total cases in 7-day windows, and two

states mapped total cases in 14-day windows. New Jer-

sey mapped total daily cases, and Montana mapped

‘total active cases.’ (2) We found that the majority of

states with unnormalized choropleths on their dash-

boards (n = 17, 54.0%) employed discrete class breaks.

In comparison, four states (12.9%) used a continuous

color scheme. As previously stated, the general consen-

sus is that a discrete color scheme may be more easily

understood than a continuous one. We have no data

on class breaks for ten (32.3%) of these states due to

missing legends. (3) All seventeen states employing dis-

crete class breaks used between three and seven classes,

with most maps using five class breaks, all aligning with

the categorizing pricinple of using 3–7 classes. (4) In

terms of color hues, twenty states (64.5%) employed a

cold color hue (e.g. green, blue, and grey), ten states

(32.2%) employed a warm color hue (e.g. red, orange,

yellow), and one state (3.2%) had a mixed use of cold

and warm colors. (5) As for enumeration units, twenty

(80.6%) used county, three (9.6%) used ZIP codes, New

Hampshire used local enumeration units of town, and

Alaska used the local unit of ‘Borough/Census Area.’

North Carolina had both county and ZIP codes avail-

able as options for users to map the case data; however,

as the county was the default visualization, we counted

as using them. One state, Louisiana, used census

tracts in their published maps. As census tracts are

smaller than counties, used throughout the United

States, and created with consideration of human popu-

lations, this choice is highly in line with recommen-

dations in the literature. Surprisingly, among all 50

states, only Louisiana created maps using census tracts

at this point in the pandemic.

For the three states that did not use choropleth

maps on their dashboards (i.e. Nebraska, Texas, and

Wyoming), all mapped using counties. Texas and

Wyoming employed continuous class breaks for

their proportional symbols, which were blue circles.

Nebraska’s map did not show COVID-19-related

data at the time of the survey.

On April 8, 2023, nine days after the United States

Senate voted to end the COVID-19 emergency

declaration, we reviewed the list of URLs and dash-

boards we used in this study. First, we confirmed

that the CDC and Prevention COVID-19 data tracker

we based Figure 1 on still allowed users to view chor-

opleth maps displaying total cases; however, a normal-

ized option still exists, as previously observed (Centers

for Disease Control and Prevention, 2021). Next, we

found that thirteen (26%) of previously identified

state dashboard URLs no longer led to a publicly

facing dashboard (Table 2). Five enforced a sign-in

procedure for map viewing, while the others were una-

vailable. It is likely that as time progresses, more of

these links will no longer function, contiributing to a

phenomenon known as link rot (Klein et al., 2014).

JOURNAL OF MAPS 5



3. Discussion and conclusion

Since the outbreak of the COVID-19 pandemic, Web

GIS technologies, particularly dashboards, have pro-

vided unprecedented opportunities for sharing health

information. Choropleth maps are overwhelmingly

favored to visualize COVID-19 case data in these dash-

boards (Mooney & Juhász, 2020). Unfortunately, our

findings reveal that more than half of the states did not

rigorously follow fundamental cartographic principles,

such as data normalization, to create thematic maps.

Even among those states that mapped with appropriate

data, we identified other cartographic issues, such as

less-than-ideal numbers of classes, color schemes, and

inappropriate choice of enumeration units. These

findings raise serious concerns regarding Web

mapping as they serve as an authoritative outlet for

delivering health information. The lack of adherence

Table 2. Availability of the URLs for state COVID-19 dashboards.

State
URL at the time of the survey

(February 11th, 2021)
URL availability on follow-up

(April 8, 2023)

Alabama https://alpublichealth.maps.arcgis.com/apps/opsdashboard/index.html#/
6d2771faa9da4a2786a509d82c8cf0f7

Yes

Alaska https://alaska-coronavirus-vaccine-outreach-alaska-dhss.hub.arcgis.com/app/
6a5932d709ef4ab1b868188a4c757b4f

Noa

Arizona https://www.azdhs.gov/preparedness/epidemiology-disease-control/infectious-disease-
epidemiology/covid-19/dashboards/index.php

Yes

Arkansas https://experience.arcgis.com/experience/c2ef4a4fcbe5458fbf2e48a21e4fece9 Noa

California https://covid19.ca.gov/state-dashboard/ Yes
Colorado https://covid19.colorado.gov/data Yes
Connecticut https://portal.ct.gov/Coronavirus/COVID-19-Data-Tracker Yes
Delaware https://coronavirus.delaware.gov/ Yes
Florida https://experience.arcgis.com/experience/96dd742462124fa0b38ddedb9b25e429 Noa

Georgia https://dph.georgia.gov/covid-19-daily-status-report Yes
Hawaii https://health.hawaii.gov/coronavirusdisease2019/what-you-should-know/current-situation-in-

hawaii/#cases
Yes

Idaho https://public.tableau.com/profile/idaho.division.of.public.health#!/vizhome/DPHIdahoCOVID-
19Dashboard/Home

Yes

Illinois https://www.dph.illinois.gov/covid19/covid19-statistics No
Indiana https://www.coronavirus.in.gov/2393.htm Yes
Iowa https://coronavirus.iowa.gov/pages/case-counts No
Kansas https://www.coronavirus.kdheks.gov/160/COVID-19-in-Kansas Yes
Kentucky https://kygeonet.maps.arcgis.com/apps/opsdashboard/index.html#/

543ac64bc40445918cf8bc34dc40e334
Yes

Louisiana https://ldh.la.gov/Coronavirus/ Yes
Maine https://www.maine.gov/dhhs/mecdc/infectious-disease/epi/airborne/coronavirus/data.shtml Yes
Maryland https://coronavirus.maryland.gov/ Yes
Massachusetts https://www.mass.gov/info-details/community-level-covid-19-data-reporting Yes
Michigan https://www.michigan.gov/coronavirus/ Yes
Minnesota https://www.health.state.mn.us/diseases/coronavirus/situation.html Yes
Mississippi https://msdh.ms.gov/msdhsite/_static/14,21882,420,873.html No
Missouri https://showmestrong.mo.gov/public-health-county/ Yes
Montana https://montana.maps.arcgis.com/apps/MapSeries/index.html?appid=

7c34f3412536439491adcc2103421d4b
Yes

Nebraska https://experience.arcgis.com/experience/ece0db09da4d4ca68252c3967aa1e9dd/page/page_0/ Noa

Nevada https://nvhealthresponse.nv.gov/ Yes
New
Hampshire

https://www.nh.gov/covid19/dashboard/case-summary.htm Yes

New Jersey https://www.nj.gov/health/cd/topics/covid2019_dashboard.shtml Yes
New Mexico https://cvprovider.nmhealth.org/public-dashboard.html Yes
New York https://covid19tracker.health.ny.gov/views/NYS-COVID19-Tracker/NYSDOHCOVID-19Tracker-Map?%

3Aembed=yes&%3Atoolbar=no&%3Atabs=n
No

North Carolina https://covid19.ncdhhs.gov/dashboard Yes
North Dakota https://www.health.nd.gov/diseases-conditions/coronavirus/north-dakota-coronavirus-cases Yes
Ohio https://coronavirus.ohio.gov/wps/portal/gov/covid-19/dashboards/overview Yes
Oklahoma https://looker-dashboards.ok.gov/embed/dashboards/44 No
Oregon https://experience.arcgis.com/experience/fff9f83827c5461583cd014fdf4587de Noa

Pennsylvania https://www.health.pa.gov/topics/disease/coronavirus/Pages/Cases.aspx Yes
Rhode Island https://ri-department-of-health-covid-19-data-rihealth.hub.arcgis.com/ Yes
South Carolina https://scdhec.gov/covid19/sc-testing-data-projections-covid-19 No
South Dakota https://doh.sd.gov/COVID/Dashboard.aspx Yes
Tennessee https://www.tn.gov/health/cedep/ncov/data/maps.html Yes
Texas https://txdshs.maps.arcgis.com/apps/opsdashboard/index.html#/

ed483ecd702b4298ab01e8b9cafc8b83
No

Utah https://coronavirus.utah.gov/case-counts/ Yes
Vermont https://www.healthvermont.gov/covid-19/current-activity/vermont-dashboard Yes
Virginia https://www.vdh.virginia.gov/coronavirus/coronavirus/covid-19-in-virginia-cases/ Yes
Washington https://www.doh.wa.gov/Emergencies/COVID19/DataDashboard#dashboard Yes
West Virginia https://dhhr.wv.gov/COVID-19/Pages/default.aspx Yes
Wisconsin https://www.dhs.wisconsin.gov/covid-19/data.htm Yes
Wyoming https://health.wyo.gov/publichealth/infectious-disease-epidemiology-unit/disease/novel-

coronavirus/covid-19-map-and-statistics/
No

aIndicates a dashboard URL now points to an ArcGIS Online sign-in page, and thus may still exist there but be unavailable.
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to cartographic principles in map creation could unex-

pectedly mislead public perception of the pandemic’s

impact (Engel et al., 2022; Geyer & Lengerich, 2023). If

these dashboards were used to assist policymakers,

there is a possibility that a biased epidemiological pat-

tern arising from the maps could have a lasting policy

impact. This review helps to showcase the extent of

these problems as part of the infodemic surrounding

COVID-19.

On the other hand, we see positive changes in the

creation of dashboards. For instance, while mapping

totals, the Florida dashboard included a note to the

user that ‘comparison of counties is not possible

because case data are not adjusted by population’

(Florida Department of Public Health, 2021). Simi-

larly, Connecticut initially used unnormalized data

in its dashboard but later switched to normalized

data in its latest version (Adams et al., 2020).

Beyond normalizing data in choropleth maps,

many other methods could be employed to improve

the interpretation of epidemiological data, such as

the cartogram, to show the severity of a health out-

come, where the areal unit is altered proportionally

to the population density affected (Roth et al., 2010;

Tobler, 2004; Zhang, 2020). A complementary

approach when using dynamic web maps is to incor-

porate additional information (such as total cases

and total population) in a pop-up window to present

a more comprehensive view of the health data when

a user clicks on an enumeration unit (Thomas et al.,

2022). Similarly, other visualization methods, such as

dot density maps, hot spot maps based on Getis Ord

Gi* statistic, and relative risk cluster maps created

using Poisson space–time scan statistic, can also be

employed (Dent, 1990; Desjardins et al., 2020; Getis

& Ord, 1992). These visualization and statistical tech-

niques can open new avenues to displaying epidemio-

logical data from multifaceted perspectives without

using a choropleth to display absolute values.

This article focuses on observing choropleth maps

and whether they adhere to established cartographic

conventions on United States State government

official dashboards. Our findings are consistent with

other studies that have identified widespread misuse

of choropleths throughout the pandemic (Adams

et al., 2020; Engel et al., 2022; Everts, 2020; Kronen-

felda & Yoo, 2020). With this article, we hope that

public health agencies may take the necessary steps

to monitor how data are collected (Tao et al., 2020),

comply with map-making principles, and integrate

other important demographic metrics, such as age

and sex, when making maps (Kontis et al., 2020).

Importantly, we suggest that health professionals, pol-

icymakers, and cartographers should be included in

the discussion when constructing these public-facing

web maps (Plewe, 2007; Rushton et al., 2000). These

combined efforts may help improve health

communication in future health crises as we are nor-

malizing life with this pandemic.

Software

All figures were produced using ESRI ArcMap 10.7.1.
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