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ABSTRACT ARTICLE HISTORY

A recent addition to the suite of techniques for local statistical Received 16 December 2022
modeling is the implementation of the multiscale geographically Accepted 18 August 2023
weighted regression (MGWR), a multiscale extension to geograph-
ically weighted regression (GWR). Using a back-fitting algorithm,
MGWR relaxes the restrictive assumption in GWR that all proc-
esses b'eing' modeled operate at the same spatial scale ant':l allows multiscale geographically
the estimation of a unique indicator of scale, the bandwlth,_ for weighted Poisson model;
each process. Hoyvever, the current MQWR fr.amework is Ilml'Fed COVID-19; local scoring
to use with continuous data making it unsuitable for modeling algorithm

data that do not typically exhibit a Gaussian distribution. This

study expands the application of the MGWR framework to scen-

arios involving discrete response outcomes (count data following

a Poisson’s distribution). Use of this new MGWR Poisson regres-

sion (MGWPR) model is demonstrated with a simulated data set

and then with COVID-19 case counts within New York City at the

zip code level. The results from the simulated data underscore

the superiority of the MGWPR model in effectively capturing spa-

tial processes that influence count data patterns, particularly

those operating across diverse spatial scales. For empirical data,

the results reveal significant spatial variations in relationships

between socio-ecological factors and COVID-19 cases - variations

often missed by traditional ‘global’ models.

KEYWORDS
Local Poisson regression;
spatial process scale;

1. Introduction

Regression modeling is a popular ensemble of tools employed to unearth plausible
explanations for the spatial and aspatial variations often inherent in observed phe-
nomena. Many formulations within the broader regression framework have been
developed to model the hypothesized relationships between a dependent variable (y)
and single or multiple independent variables (x). ‘Global’ models, a term often used to
refer to the traditional techniques that postulate spatially stationary processes, have
been extensively deployed in the analysis of observed phenomena within the natural,
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social and physical sciences. However, a perspective that is gaining considerable trac-
tion within spatial analysis is that conditioned relationships might vary across space,
suggesting geographical variations in how covariates influence the dependent variable
based on context (Fotheringham 2020, Fotheringham and Sachdeva 2021, 2022). For
example, although certain demographic variables might correlate with such preferen-
ces for certain types of music, an important determinant is that of cultural heritage, or
what geographers refer to as ‘spatial context’ (Hauser 1970, Relph 1976, Agnew 1996,
King 1996, Golledge 1997, Goodchild 2011, Agnew 2014). The contextual background
to many decisions is widely recognized but is exceedingly difficult to measure.
Sometimes, geographical interaction terms (indicator variables for example in spatial
regime models) are introduced into models as a quick fix to solve the contextual prob-
lem but the addition of such terms demands a priori knowledge of the regions in
which contextual effects occur. It also assumes that such contextual effects are uni-
form within these regions and change in a discontinuous manner at the boundaries of
these regions. Both assumptions are highly questionable in most applications. Local
models, such as multiscale geographically weighted regression (MGWR), provide a
more effective alternative of identifying the range and intensity of contextual effects
by allowing the intercept and the conditioned associations within a model to vary
across space. Local models often convincingly outperform their global counterparts, as
evident in the abundant empirical literature comparing the two frameworks (inter alia,
Zhang et al. 2004, Malczewski and Poetz 2005, Maroko et al. 2009, Cardozo et al. 2012,
Wang et al. 2018, Zhu et al. 2020).

The current implementation of the MGWR model assumes a Gaussian modeling
framework. Fotheringham et al. (2017) applied the Gaussian MGWR model to popula-
tion change data in Ireland from 1841 to 1851, the period of the Great Famine, and
found spatially varying associations operational at unique spatial scales. MGWR has
since been used in modeling house prices, air quality, obesity rates, voting behavior
and mortality rates among many other spatial phenomena and appears to provide
more accurate estimates of spatially varying associations than its uniscale counter-
part (Fotheringham et al. 2019, Oshan et al. 2020, Cupido et al. 2021, Fotheringham
et al. 2021, Sachdeva et al. 2022). While a Gaussian modeling framework is useful in
modeling observed phenomena that follow a normal distribution, many empirical
data, especially in epidemiology, transportation and ecological analyses, exist in the
form of integer counts, such as traffic crash incidents, and disease contraction
counts, which often follow a Poisson distribution. It is well-known that an implemen-
tation of a Gaussian model on data that follow a Poisson distribution can lead to
erroneous predictions and misspecification problems. A Poisson random variable is
often used to model counts with a minimum value of zero, a theoretically unbound
maximum value and assuming only integer values, unlike normal data that are con-
tinuous and have a theoretical unbounded maxima and minima. Moreover, the vari-
ance of a variable following a Poisson distribution is assumed to be equal to its
mean. If a Gaussian linear regression model is used to model data that are Poisson
distributed, the predictions could result in erroneous negative estimations and the
constant variance assumption for normal linear regression inference would be
violated.'
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Consequently, since Poisson regression provides a more appropriate framework to ana-
lyze discrete data (especially for low numbers) than conventional Gaussian regression, it
would be useful to extend the current Gaussian-based MGWR framework to incorporate
Poisson distributed data. Moreover, the predecessor model to MGWR, geographically
weighted regression (GWR), extends the Gaussian model to accommodate a Poisson distri-
bution for the dependent variable and this extension has been widely used in literature
(Nakaya et al. 2005).2 Here, we propose and develop a new statistical model, that of multi-
scale geographically weighted Poisson regression (MGWPR), to achieve this. This is not
straightforward because the existing MGWR framework, which employs a backfitting algo-
rithm used in the calibration of generalized additive models (GAMs) (Hastie and Tibshirani
1986, Buja et al. 1989, Everitt 2005), needs to be expanded and a general local scoring
algorithm (LSA) has to be employed to allow the definition of different distributions of y
(the response variable) and their associated link functions, before operationalizing the
backfitting algorithm. The definition of different distributions and their associated link
functions has further ramifications for the inference calculations for the model, which are
also developed and described in this paper. Finally, this model is tested using simulated
data and by expanding an existing COVID-19 study in New York City.

The remainder of this paper is organized as follows. In Section 2, we describe the
framework of MGWPR and its calibration procedure. The inference procedure for the
model is described in Section 3. A simulation experiment is constructed and tested in
Section 4 where comparisons between global Poisson regression (Poisson GLM;
Agresti 2002), GWPR and MGWPR are made. Finally, an empirical application of
MGWPR using COVID-19 positive case counts in New York City at the zipcode level is
described in Section 5, followed by conclusions and discussion in Section 6.

2. Specification of multiscale geographically weighted Poisson regression

Poisson regression falls within the umbrella of generalized linear models, a framework
which generalizes OLS regression to enable its use with different distributions of
response variables (e.g. binary, count, categorical, etc.). To do so, a transformation of
the response variable is first applied using a link function specific to the distribution
being modeled. This enables a linear estimation of the association between the
response and predictor variables. In a Poisson regression model, the link function is
the natural logarithm and the predicted response variable following the transform-
ation is measured in the natural logarithms of the original counts. Since the Poisson
distribution only allows discrete, non-negative integers, a Poisson regression model is
a common choice to model count data.

2.1. Poisson regression specification

A typical Poisson regression to model the expected count value of y; denoted by
E(yi|x¢.i) can be specified as follows:

K
E(y;|Xk,i) ~ Poisson lexp (Z kak’i>] 1)

k=0
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where x ; is the kth predictor covariate at location i, B is the parameter representing
the conditioned relationship between the response variable and predictor variable k
and Poisson [)] indicates a Poisson distribution with mean and variance = . This spe-
cification includes B,, the intercept, with xq; representing an array of all 1s. The specifi-
cation in Equation (1) represents a global model where a single parameter represents
the conditioned association between each covariate and the response variable across
the entire study region. A local equivalent of this model, from the geographically
weighted Poisson regression specification (Nakaya et al. 2005), can be expressed as
follows:

K
E(yilx,i) ~ Poisson [exp (Z Br iXk, ,)] )
k=0
where the response variable at each location i is modeled using weighted data from
neighboring locations to estimate covariate and location-specific parameter estimates,
Q,.. A spatial kernel is used to develop a weighting matrix (with weights in the range
0-1) that assigns larger weights to neighboring locations and smaller weights to more
distant locations following an optimized distance-decay function that is estimated
from the data. The amount of neighboring data used in a local model is governed by
either the number of locations used (adaptive bandwidth) or the radius used to select
the locations (fixed bandwidth). The bandwidth parameter has a maximum of n, the
number of data points (or a distance parameter), which represents a global relation-
ship, with fewer data points (or smaller distance radii) representing more local proc-
esses. The inherent assumption in, and drawback of, GWPR is that the bandwidth
parameter is the same for all relationships within a model, which could result in severe
misspecification since different associations may vary over different spatial scales. This
assumption is relaxed in the MGWPR model described below.

2.2. Multiscale geographically weighted Poisson regression

A multiscale version of the geographically weighted Poisson regression model is speci-
fied as follows:

K
E(yilx«,i) ~ Poisson [exp (Z Bbwk,k,%k,i)] 3)

k=0

where bwk as a subscript to the beta estimates represents the covariate (k)-specific band-
widths. Similar to the calibration procedure for MGWR, the challenge of estimating covari-
ate-specific bandwidths is solved in MGWPR by using a backfitting algorithm. To calibrate
the covariate-specific bandwidth, the term B, « ; X;« from Equation (3) is defined as the
kth additive term in a Gaussian additive model equivalent specification as follows:

K
k=0

Since such a backfitting algorithm fits only normal additive models, further transfor-
mations are required to estimate unique bandwidths using the backfitting algorithm
for a Poisson model. To do this, an adjusted response variable as described by
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McCullagh and Nelder (2019) is constructed and then used within the backfitting algo-
rithm. This calibration procedure for MGWPR draws from the LSA defined by Hastie
and Tibshirani (1986) from the GAM literature.

First, the additive terms foo, f1°, f2°, f30, fko are initialized. There are multiple
options for the initialization including GLM estimates, GWPR estimates or zeroes. As
Fotheringham et al. (2017) note, there is negligible difference in the results regardless
of which initialization option is used. We describe the calibration procedure here with
an initialization using GWPR estimates. Once a GWPR model is calibrated, a predictor
term n; (Equation (5)), weights w; (Equation (6)) and an adjusted dependent variable
z; (Equation (7)) are constructed. This is the first iteration of the LSA calibration loop
and hence a superscript ‘0’ is added as below.

K
% = Zk:o Bk (5)

where B,{kw) is estimated using GWPR for each covariate k. Next, predictions from the
estimated GWPR parameters are calculated as follows:

~ (0

O,'( ) =F x* el (6)

where E; is the expected count or the offset term in the model. Then, an adjusted
dependent variable is constructed as:

éi(o) @)

The predictions from the GWPR estimates in Equation (6) are also used to construct
a weighting matrix, as shown in Equation (8).

0,® 0 0 0
A = 0 5,© 0 0
% (8)
Fo©
0 o 5., 0
5 ©
0 0 0 0,

Finally, the adjusted dependent variable and the constructed weights (A;) are
used to fit the backfitting algorithm in a similar manner to that described by
Fotheringham et al. (2017). Within the backfitting algorithm, the weights from LSA
(A;) and the spatial weights from the bandwidth optimization are both used until
the convergence criterion is met. The overall weights in the backfitting algorithm
are:

W*;(O) _ W’.(O) * (Ai)<0) 9)
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Figure 1. LSA loop for multiscale geographically weighted Poisson regression.

After convergence is achieved within the backfitting loop, a second iteration of the
LSA loop starts after updating values from Equations (5)—(9). This continues until the
convergence criterion for the LSA loop is satisfied. The convergence criterion for the
mth iteration in LSA is defined as follows:

(m) (m—1)y\2
n K i — P
8" numerator = Zi:1 Zk:l (P Pi ) )

n
m n K m\2
0 denominator — Zi:l Zk:1 (Bik( )) )

m Sm numerator
) - — (10)

3™ i
denominator

We set the tolerance for 8™ at 10~2 by default.

The estimation procedure for MGWPR hence consists of two loops. This is further
clarified through Figure 1. The outer loop (in blue) is the LSA that transforms the
dependent variable using a link function and estimates weights. Inside each outer LSA
loop is a weighted backfitting inner loop (in red) that runs until convergence. The
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new estimates from the backfitting loop are then used to calculate a new adjusted
dependent variable and new weights, which are again run until convergence within
the backfitting loop. The LSA stops when the change in the parameter estimates is
below the tolerance. Because of the added complexity, the computational time
requirements to calibrate a MGWPR model are much greater than for GWPR and
Gaussian MGWR as we demonstrate below. As noted by Li et al. (2019), the time com-
plexity for a GWR model is O(kn?log n) where k is the number of covariates, and n
is the number of data points in a model. The time complexity for MGWR is given by
O(kdn*log n) where d is the number of iterations required for convergence in the
backfitting algorithm. The calibration of MGWPR requires an outer LSA loop that
increases the time complexity to O(mkdn?log n), where m is the number of iterations
of the LSA loop before convergence. Since the memory allocation for each LSA loop
remains constant across the m iterations, the memory complexity for MGWPR is
expected to be similar to that for MGWR O(kn) (Li and Fotheringham 2020). Similarly,
the time complexity for inference calculation in an MGWPR model is expected to
increase from O(kdn®) for MGWR, to O(mkdn®) owing to the m LSA iterations while
not affecting memory allocation requirements.

3. Inference for MGWPR

Calculations for MGWPR inference closely follow those for GWPR (Nakaya et al. 2005)
and MGWR (Yu et al. 2020). At convergence, the parameter estimates at each regres-
sion point are given in the following equation:

By = Cizi (11)
where
G = (XW; AX) % X Wi A (12)

The LSA weights and adjusted dependent variable z on the right-hand side of
Equation (11) are calculated based on the converged parameter estimates. The vari-
ance-covariance matrix of the estimated local parameter estimates is then given by:

cov (By) = GAT'C! (13)

and the standard error of the kth parameter estimate is given by:

SE(Bu) = y/cov (B (14)
where cov (B,)k is the kth diagonal element of the variance-covariance matrix defined
in Equation (14). Consequently, the local pseudo t statistic for the kth parameter at
location i is computed by:

(5) - SE%) 15

Given the assumption that the true regression parameter equals zero, the distribu-
tion of values as specified in Equation (15) will tend to follow a standard normal distri-
bution. The covariate-specific hat matrix S¢ and the model hat matrix S (S = Zfz'f Sk)
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can be calculated following the iterative process described in Yu et al. (2020) so that
the effective number of parameters can be obtained to calculate model goodness-of-
fit scores such as AlCc:

N [0 log (O(By) A vis(vi + 1)
AlCc = Z”<T + 0 —0B)| + 2xvi + 2% N_-v,—1

(16)

where v, = trace(S) is the model effective number of parameters.

4, A simulation experiment

To demonstrate the performance of MGWPR, and its superiority to GWPR and global
generalized linear models, a simulation experiment was designed to assess the follow-
ing five aspects of model performance:

Estimation of the scale across which processes vary;

Reproduction accuracy of the spatial heterogeneity of different processes;
Model performance (flexibility and goodness of fit);

Replication of the response variable; and

Computational overhead.

vk wnNn =

4.1. Simulation design

Three surfaces of parameters representing processes with varying degrees of spatial
heterogeneity were constructed. Local surfaces for , and B; were simulated using a
two-dimensional spatial random field (SRF) with a Gaussian covariance model on a 25
by 25 grid (n = 625). The Gaussian variogram employed to construct the processes is:

y(h) = o [1—e ] (17)

where length-scale (h), the distance parameter (A) controlling the range of spatial
autocorrelation and variance (c?) control the amount of spatial heterogeneity in the
surfaces with larger values of h corresponding to lower spatial heterogeneity and
higher values of 2 resulting in greater variation in the estimates. To construct the sur-
face of B, values, h = 5 and o2 = 2; for the surface of B;, h = 50 and c? = 1; and B,
is constant over space with magnitude = 0.5. The three simulated parameter surfaces
are shown in Figure 2.

The covariates x; and x, are drawn from random normal distributions with mean =
0 and standard deviation = 1. To ensure a Poisson distribution for the response vari-
able, an expected number of values, , is constructed using the following equation:

n o= e<50+ﬁ1XW+BZX2) (18)

and y is drawn at random from this distribution. The distribution and spatial variation
of the constructed response variable are shown in Figure 3. One thousand such data-
sets were constructed to ensure robustness of the results given the randomness in the
response variable.
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Original Beta Intercept Original Beta 1 Original Beta 2

Figure 2. Simulated parameter estimates for ,, B, and (3, (left to right).

25

20

0 10 20 30 40 50 60 70 80 ;
Response variable (y)

Figure 3. Simulated response variable distribution (left) and spatial distribution (right).

4.2. Simulation results

We now describe the results of calibrating MGWPR, GWPR and GLM models on the
constructed synthetic data described above. Within the LSA we use a tolerance of
1078 and GWPR estimates as the initialization values for the additive terms, for each
of the 1000 iterations of the data construction and model runs. For the simulation
experiments, we employ an adaptive kernel following a bisquare decay function,
which optimizes and returns the number of nearest neighbors employed in each local-
ized regression, also termed as the bandwidth parameter. We restrict the minimal
value for the bandwidth optimization search algorithm to 43, following the current
MGWR Gaussian implementation.

4.2.1. Bandwidth estimation

The estimated optimal bandwidth(s) from GWPR and MGWPR from each of the 1000
runs are shown in Figure 4, which demonstrates the sensitivity of the bandwidth
across the realizations. The distribution for the single bandwidth estimated in a GWPR
model ranges from 50 to 70. The bandwidth estimated for the local intercept using
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50 60 70 43 44 45 0 200 400 600 300 400 500 600
Bandwidth estimation - GWPR Bandwidth estimation - f0- MGWPR Bandwidth estimation - f1- MGWPR Bandwidth estimation - f2- MGWPR

Figure 4. Bandwidths estimated from GWPR (leftmost) and from MGWPR for B,, B; and B, (left
to right, respectively).

u =. i

‘
‘.
03 :
‘
g 40 4 '
' %02 T —
= s & 5%
PR 5 i)
B <03 N = |
2 2 = 2
06 01

©

02 '
o
— 01 00 I
Al

02
GWPR MGWPR GLM GWPR MGWPR GLM GWPR MGWPR GLM

Figure 5. RMSE, comparisons for GLM, GWPR and MGWPR.

MGWPR is almost always 43 (the most local bandwidth estimation possible). The band-
width for B; and B, ranges from about 100 to 400 (with a mean of 225) and from 400
to 624 (with a mean of 556), respectively. It is clear from these distributions in the
context of the constructed process surfaces in Figure 2 that MGWPR accurately esti-
mates the spatial scale at which the surfaces vary. GWPR, on the other hand, estimates
a rather local bandwidth representing all the three parameter surfaces despite the dif-
ferences in their degrees of spatial heterogeneity.

4.2.2. Local parameter estimation accuracy
The accuracy with which both MGWPR and GWPR replicate the three known param-

eter surfaces, B;o, B;; and B;,, for each of the 1000 simulations is measured in two
ways. First, the root mean squared error (RMSE) for each parameter estimate f§;, from
both MGWPR and GWPR is calculated as follows:

1 n =
RMSE; . = \/nzi1(ﬁi,k — i)’ (19)

Smaller values of RMSE represent better replication of the known parameter esti-
mates and the calculated values for GWPR and MGWPR are shown in Figure 5.
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Original Estimated using GWPR

Beta - Intercept

"
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|

Beta 2
Figure 6. Estimated local parameters from GWPR and MGWPR.

Second, the estimated parameter surfaces from both MGWPR and GWPR are averaged
across the 1000 simulations and mapped to visually inspect the local parameter esti-
mation accuracy.

In Figure 5, the overall lower values and tighter fit around the mean for MGWPR
indicate that the model is able to replicate the three parameter surfaces more accur-
ately than GWPR. This is supported by the visual inspection of the plotted surfaces
shown in Figure 6.

MGWPR closely replicates the local surfaces for all three parameters. While GWPR
does a good job in replicating the more local parameter surfaces (B, and f3,), it is not
able to replicate the global surface (B,) correctly.

4.2.3. Model performance (flexibility and goodness of fit)

Figure 7(a) shows the comparison of the AlICc values from the three models in each of
the 1000 iterations. GLM clearly, and as expected, is not able to accurately replicate
the data owing to the spatial nonstationarity in the simulated parameter surfaces.
Figure 7(b) highlights the superiority of MGWPR over GWPR by rescaling without the
GLM results.
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Figure 8. Average time taken to convergence for both the GWPR and MGWPR models.

4.2.4. Computational efficiency
MGWPR is a more complex model than GWPR and takes longer to reach convergence.
The external LSA loop has an internal backfitting loop which adds to the computa-
tional time. Figure 8 shows the time in minutes required to run the two models in
each of the 1000 data sets. For this data set (n = 625; k = 3), the calibration of
MGWPR takes around 10 minutes on average on a 10 core system® while GWPR takes
only 0.4 minutes on average.

In summary, in a controlled simulation experiment, MGWPR is better able to esti-
mate both parameter spatial heterogeneity and the spatial scale of this heterogeneity
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than GWPR, at the expense of additional computational time. We now examine the
use of MGWPR with real-world data on COVID-19 positive tests in New York City at
the zipcode level.

5. An empirical example of the use of MGWPR in analyzing the spatial
distribution of COVID-19 counts

This section contains an empirical example of the MGWPR model using COVID-19 posi-
tive cases data in the early phase of the pandemic in New York City at the Zip Code
Tabulation Area (ZCTA) level. In order to demonstrate the value of local modeling with
count data, this example expands an existing study undertaken by DiMaggio et al.
(2020) using a global Poisson model. Using similar data sources, model specification
and discussions from DiMaggio et al. (2020), we can test the MGWPR model and show-
case the importance of estimating covariate-specific indicators of scale of the spatial
heterogeneity of the different processes being modeled. It is worth noting that there
are two limitations of the data that restrict our findings from this analysis. First, the
data are collected for only 183 areal units, which is too few to properly showcase the
outputs from local models to the fullest extent but serves the purpose here of demon-
strating how the new local modeling framework works. Second, the temporal span for
which data are collected (from 3 April to 22 April 2020, representing the first phase of
the pandemic), is extremely narrow and is not expected to represent the true variation
in the phenomenon.

While a number of recent studies have investigated the ecological risk factors asso-
ciated with COVID-19 at the county level in the United States (Gao et al. 2020,
Khazanchi et al. 2020, Hughes et al. 2021), few studies have focused on the ZCTA or
more granular spatial scales (Liu et al. 2021, Kedron et al. 2022). DiMaggio et al. (2020)
provide an exception to this and make their data sources and code available.
Additionally, they use a Poisson Bayesian regression model with a spatially structured
term to analyze COVID-19 case counts. This presents an opportunity to analyze the
same data using MGWPR. While DiMaggio et al. (2020) implement and discuss various
univariate and multivariate models, we focus on the following model, using the nota-
tions in their paper:

Y ~ Pois(h; = E-0); log 6; = By + Bxz + vi + m; + (offset) (20)

where ; is the response variable measuring positive COVID-19 test cases, Bx; repre-
sents the various predictors employed in the model and their corresponding param-
eter estimates (note that these are global estimates with a single value estimated for
the covariate across the region), v; is a spatially unstructured random effects term and
7; is the spatially structured random effects term. The primary conclusion from the
calibration of this model in DiMaggio et al. (2020) is that areas with higher percen-
tages of African American population were at higher risk of contracting COVID-19. The
universe of predictors considered in their models and the source for those data are
presented in Table 1. Figure 9 presents the number of total COVID-19 tests and the
number of positive COVID-19 cases in NYC at the ZCTA level from 3 April 2020 to 22
April 2020. These closely match the data presented in DiMaggio et al. (2020).
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Table 1. The universe of all variables explored in DiMaggio et al. (2020) with data sources.

Variable

Source (DiMaggio et al.)

Source for this study

COVID-19 test result data

Total Population

Proportion of people older than
65 years

% of African American pop.

% pop. speaking one language
other than English

No. of people per sg. mile

No. of schools per sq. mile

No. of houses per sg. mile

% pop. receiving public assistance

Social fragmentation index
(Congdon)

NYC DOHMH Github page
US Census 2010
US Census 2010

US Census 2010
US Census 2010

US Census 2010

US Census 2010

US Census 2010

US Census 2010

Combination of 4 variables
calculated from US Census 2010

NYC DOHMH Github page
US Census 2010
US Census 2010

US Census 2010
US Census 2010

US Census 2010

US Census 2010

US Census 2010

US Census 2010

Combination of 4 variables
calculated from US Census 2010

% of people with heart disease or CDC 500 Cities data
congestive failure

% of people with chronic
obstructive pulmonary disease
(COPD)

Shapefiles of NYC ZCTAs

Simply Analytics (paid data)

Simply Analytics (paid data) CDC 500 Cities data

NYC Dept. of City Planning NYC Dept. of City Planning

0-250
251 - 600
601 -1,100
- 1,101 - 1,500
- 1,501 - 3,000

0-700
701 - 1,500
1,501 -2,000
2,001 - 3,000
. 3,001 - 4,600

COVID-19 Positive cases

COVID-19 Total tests

Figure 9. Total COVID-19 tests and positive cases in NYC at the ZCTA level (3 April-22 April 2020).

The multivariate model constructed and discussed by DiMaggio et al. (2020) con-
sists of the following predictors: % of people with chronic obstructive pulmonary dis-
ease (COPD); % of pop. with heart disease; % of African American pop.; housing
density; and % of pop. older than 65. Only two of these variables, % of African
American population and % of the population older than 65, had significant associa-
tions (both positive) with COVID-19 cases. However, after the extraction, transform-
ation and testing of the data employed by DiMaggio et al. (2020), we found
multicollinearity issues in their predictors as shown in Table 2. In Bayesian models,
unbiased estimates of the parameters can be obtained in the presence of multicolli-
nearity by using an informative prior and this may have been the case in DiMaggio
et al. (2020), but here we need to deviate from a direct reproduction of their model
because we use a frequentist model, which would be prone to bias because of the
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Table 2. Variance inflation factors for the predictors used by DiMaggio et al. (2020).

Variable VIF
% of people with COPD 14.46
% of people with heart disease or congestive failure 1533
% of African American pop. 1.35
No. of houses per sg. mile 1.07
Proportion of people older than 65 years 1.8

A value of VIF <10 is generally considered acceptable.

Table 3. Poisson GLM results.

Variable Est. SE t(Est/SE) p Value
Intercept —0.661 0.003 —203.9 .00
% African American 0.051 0.003 16.4 .00
% Pop. with heart disease 0.056 0.005 11.5 .00
Pop. density (pop/sq.mile) 0.157 0.013 121 .00
No. of schools per sg. mile —0.197 0.014 —14.1 .00
% Pop. receiving public asst. 0.015 0.005 3.2 .001
% Hispanic 0.057 0.004 14.8 .00

multicollinearity in the data. The covariates used in the model here are selected using
an optimization algorithm designed to select the set with the best model performance
based on AICc.* The model is shown in Equation (21), which follows the MGWPR
model described in Equation (3).

E (Positive cases) ~ Poisson|[Offset; (Total tests) exp (Bq ; pwo

+ Briowr (% Afr. American)

+ Bai,owz (POP density)+Bs ; pus (% heart)
+ PBaiowa (% Hispanic) + Ps;pus (% pub asst)
+ Pe,ibws (Schools per sq. mile))] (21)

5.1. Poisson GLM results

The global model estimated using a Poisson GLM has an explained deviance of 44.2%
and an AlCc value of 1660. All the predictors are significant at the 1% confidence level
and the estimated parameters and their standard errors are shown in Table 3. The
residuals from the model are mapped in Figure 10.

Except for the school density parameter, which is significantly negative, all the pre-
dictors affect the response variable in a significant positive manner. Since the link for
the Poisson regression model is the natural log, holding all other predictors constant,
an increase in one unit for x multiplies the rate of y by the exponent of B. Since the
predictors in this model are also standardized, the raw parameter estimates corres-
pond to a one standard deviation increase in x leading to y being increased or
decreased by a factor of eP. To simplify interpretation of coefficients hereafter, we
transform the parameter estimates as follows:
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Figure 10. Global model (Poisson GLM) residuals.

B — (") —1)x100 (22)

This transformation results in coefficient values that are interpreted as follows: a
one unit increase in x would affect y by * percentage.

As shown in Figure 10, the global residuals from the Poisson GLM are strongly posi-
tively spatially correlated with a Moran’s | value of 0.45 and p value of .0024. This sug-
gests the global model is severely misspecified and that a local model might be more
appropriate. Consequently, we calibrate the GWPR and MGWPR models using the pre-
dictors, response and offset variables as described in Equation (21).

5.2. GWPR and MGWPR results

The AlCc for the GWPR model is 511 and that for MGWPR is 480 (compared to 1600
for the GLM model). The deviance explained for the two models is 85.4% and 86.7%,
respectively (compared to 44.2% for the GLM model). While the difference in model
performance between GWPR and MGWPR is not large, the MGWPR model provides
more information by allowing the estimation of covariate-specific bandwidths, which
in turn should lead to superior prediction of the local parameters. The single
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Table 4. Bandwidths estimated using MGWPR with their 95% confidence intervals.

Variable Bandwidth Bandwidth Cl
Intercept 43 (43.0, 47.0)
% African American 92 (88.0, 96.0)
% Pop. with heart disease 45 (45.0, 75.0)
Pop. density (pop/sq.mile) 65 (63.0, 75.0)
No. of schools per sq. mile 49 (49.0, 63.0)
% Pop. receiving public asst. 11 (109.0, 129.0)
% Hispanic 80 (75.0, 96.0)

0.0-0.11
. 0.11-0.62

) - 0.62-1.08

N/ A BN 1.08-1.59
- 159-2.15

0.09-0.13
= 0.13-0.16
- 0.16-0.21
- 0.21-0.28
- 0.28-0.33

Local parameters - Population Density (per 10,000 people) Local parameters - % African American population
BW =65 BW =92

Figure 11. Local parameter estimates for population density and % of African American population
(calibrated using MGWPR).

bandwidth estimated for GWPR is 59 (given a total of 183 ZCTAs). The covariate-spe-
cific bandwidths (along with their 95% confidence intervals followed by Li et al. 2020)
estimated from MGWPR are shown in Table 4 and suggest a range of heterogeneity in
the processes being modeled. For example, the bandwidth for the local association
between % of the population receiving public assistance and the probability of testing
positive for COVID-19 is 111 (109-129) representing a fairly global process while the
local intercept represents a local process with an estimated bandwidth of 43. It bears
repeating that the temporal and spatial scale of analysis for this study is extremely
limited and hence the processes estimated using sophisticated regression models such
as MGWPR are not expected to reveal plausible insights into the actual operational
processes. For example, the most populous zip code in NYC has 108,661 residents
(ZCTA 11368 in Brooklyn; US Census 2010) and the average population for all the zip
codes is approximately 46,000. Additionally, the arbitrary and short timespan for which
the data are collected and analyzed are hardly representative of the true phenomena
and the factors associated with it in the city. For this reason, we describe only a lim-
ited number of local parameter maps resulting from MGWPR to showcase the imple-
mentation of MGWPR rather than to interpret the processes affecting the spread of
COVID-19 in NYC.

Figure 11 shows the significant (at the 95% confidence level accounting for mul-
tiple hypothesis testing®) local parameter estimates for the predictors representing
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Local parameters - % population receiving public assistance 3 Local parameters - % population with heart disease
BW =111 BW =45

Figure 12. Local parameter estimates for % of population with heart disease and % of population
receiving public assistance (calibrated using MGWPR).

population density and percentage of African American population. DiMaggio et al.
(2020) report a significant positive effect of population density on positive COVID-19
cases across NYC using a global model. The local estimates in Figure 11(a) from
MGWPR similarly suggest that holding all other covariates constant, an increase in
population density would lead to an increase in positive COVID-19 cases but this asso-
ciation is only significant in Queens and in some parts of Brooklyn. Figure 11(b) shows
the significant associations between the percentage of African American population
and the % of COVID-19 cases, ceteris paribus. This association was reported as signifi-
cantly positive across NYC by DiMaggio et al. (2020) but the local parameter estimates
suggest a large variability in this relationship across the city. A 1% increase in African
American population would lead to a 0.33% increase in COVID-19 positive cases in
neighborhoods in the Bronx and in parts of Upper Manhattan, while in some parts of
Queens this drop to just a 0.1% increase.

Figure 12 shows two other relationships with Covid cases estimated in this analysis,
that of the percentage of the population with heart disease and the percentage of the
population receiving any kind of public assistance. DiMaggio et al. (2020) note that in
their multivariate model where racial predictors were accounted for, predictors meas-
uring comorbidities such as heart disease or COPD were not significantly associated
with positive COVID-19 cases. It is possible to estimate significant local relationships
that might not be significant at the global level, as noted by Fotheringham and
Sachdeva (2022) and Sachdeva and Fotheringham (2023). Using MGWR, the predictor
measuring the association between heart disease and the probability of contracting
the virus is seen to be significant in some parts of the city. This suggests that holding
the racial predictors constant, not only the disease severity but also the acquisition of
the disease might be significantly associated with comorbidities in some parts of the
city. One explanation could be the more frequent hospital visits for patients suffering
some conditions such as heart disease that could potentially bring them into contact
with other infected patients. Finally, the association between the percentage of the
population receiving public assistance and the percentage of positive COVID-19 cases
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0.47 - 0.49
0.49 - 0.50
0.50 - 0.54
0.54 - 0.55
0.54 - 0.56

Figure 13. Local intercept estimated using MGWPR.

is positive and significant in areas mainly in the southern part of the city, especially in
Staten Island. Public assistance in this context refers to any kind of assistance or bene-
fits received in a household in either cash or in-kind from any governmental entity.
This predictor could thus be capturing low-income residents that are otherwise not
included in the model.

Finally, the local intercept estimated using MGWPR can be interpreted as the aver-
age probability of testing positive for COVID-19 in the areal unit of analysis (ZCTA in
this case), holding all other predictors at their mean values. This interpretation follows
from the transformation of the estimated B; values as below:

Positive cases (y;)
Total tests (offset;)

exp (Boi) * eXp(Zf:1 kai”‘) (23)

These values are mapped in Figure 13 where it can be seen that for most of
Manhattan and parts of the Bronx and Staten Island, a little less than half the total
tests conducted were expected to return positive for COVID-19, assuming average
population characteristics. In some parts of Queens and south Brooklyn, this probabil-
ity increases to more than half. The variability can be interpreted as the impact of
local effects not included in the model. Given the probable local nature of the
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mechanisms leading to the spread of COVID-19, the coarse spatial unit of analysis is
perhaps not appropriate to capture the actual variability of the COVID-19 spread.

6. Discussion and conclusions

Local regression models enable the estimation of spatially nonstationary processes by
allowing the parameter estimates to vary across space. Additionally, local models esti-
mate a bandwidth parameter that represents the spatial scale across which a process
exhibits heterogeneity. Generalized extensions of a rudimentary local model, GWR,
exist that allow the response variable to assume non-normal distributions such as
Poisson and Binomial. However, GWR is restricted in that it allows the estimation of
only a single bandwidth to represent the scale of all associations in a model. A multi-
scale extension of GWR, MGWR was recently developed that removes this restriction
and allows the estimation of process specific bandwidths. However, MGWR is restricted
to response variables following a normal distribution. The development and imple-
mentation of MGWPR as described here is thus a major advance allowing the MGWR
framework to handle count data. MGWPR is shown to accurately represent the unique
scales at which surface heterogeneity occurs in relationships using simulated and
empirical data. The estimated unique bandwidths from MGWPR provide more informa-
tion and valuable insights on the nature of the operational processes being estimated
when compared to GWPR. As such, it expands the tool-base within the non-Bayesian
regression modeling field by allowing the modeling of a spatial phenomenon follow-
ing a Poisson distribution.

The LSA, employed in the calibration of MGWPR, is a natural extension of GAMs.
Where GAMs are used to estimate unique functions between a predictor and response
variable in the covariate space, MGW(P)R estimates unique relationships between a
predictor and response variable in the geographical space. Through the use of
MGWPR, we can now estimate spatial associations varying at unique scales between
count data such as disease spread, traffic crash incidents, crime counts, etc. and their
associated socio-economic and ecological predictors. This new model provides an
alternative methodology to spatial scientists especially within the fields of epidemi-
ology and health studies. The availability of open source and intuitive local models
such as MGWPR that enable measurement of the unique scales at which behavioral,
ecological and environmental processes affect health outcomes opens up new possi-
bilities to understand the multiscale processes affecting such phenomena.
Additionally, the calibration algorithm demonstrated here can be used to extend
MGWR to a generalized multiscale geographically weighted framework. The LSA cali-
bration and inference procedure can easily scale to include other distributions of the
response variable such as binomial, negative-binomial, gamma distributions, etc., by
expanding the link function options. This will further increase the kinds of analysis
that could leverage the potential of local modeling tools and help remove further limi-
tations from the framework. Finally, these new forms of the MGWR model, with flex-
ible input data types, will be implemented in the open-source MGWR software® and
made available for use publicly.
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Notes

1. The constant variance assumption for a linear regression model states that the variance of
the errors/residuals is assumed to be constant (Poole and O’Farrell 1971).

2. An up-to-date bibliography of all the peer-reviewed journal articles applying the
geographically weighted regression framework and its extensions is available here: https://
sgsup.asu.edu/sparc/multiscale-gwr

3. We used cores of Intel Xeon Processor E5 v4 Family (E5-2680V4) on the high-performance
computing platform at ASU Core research facilities.

4. We used the commonly employed statistical variable selection techniques namely, best
subset selection and forward selection (Marhuenda et al. 2014), using the AICc as the
diagnostic criterion and both resulted in the same subset of variables as depicted in
Equation (21).

5. We follow da Silva and Fotheringham (2016)’s effective correction criterion to maintain the
expected family-wise error rate and to avoid false positives.

6. MGWR desktop software is available for open download at: https://sgsup.asu.edu/sparc/
multiscale-gwr; the open-source Python implementation of MGWR is embedded within
PySAL: https://github.com/pysal/mgwr
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