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Abstract—With the ever-increasing computing power of su-
percomputers and the growing scale of scientific applications,
the efficiency of MPI collective communications turns out to
be a critical bottleneck in large-scale distributed and parallel
processing. The large message size in MPI collectives is particu-
larly concerning because it can significantly degrade the overall
parallel performance. To address this issue, prior research simply
applies the off-the-shelf fix-rate lossy compressors in the MPI
collectives, leading to suboptimal performance, limited general-
izability, and unbounded errors. In this paper, we propose a
novel solution, called C-Coll, which leverages error-bounded lossy
compression to significantly reduce the message size, resulting in
a substantial reduction in communication cost. The key contribu-
tions are three-fold. (1) We develop two general, optimized lossy-
compression-based frameworks for both types of MPI collectives
(collective data movement as well as collective computation),
based on their particular characteristics. Our framework not only
reduces communication cost but also preserves data accuracy. (2)
We customize SZx, an ultra-fast error-bounded lossy compressor,
to meet the specific needs of collective communication. (3) We
integrate C-Coll into multiple collectives, such as MPI_Allreduce,
MPI_Scatter, and MPI_Bcast, and perform a comprehensive
evaluation based on real-world scientific datasets. Experiments
show that our solution outperforms the original MPI collectives
as well as multiple baselines and related efforts by 1.8-2.7x.

Index Terms—Lossy Compression, MPI Collective, Distributed
Systems, Scientific Datasets

I. INTRODUCTION

MPI collectives provide high-performance collective com-
munications in distributed systems, making a significant im-
pact on various research fields such as scientific applications,
distributed machine learning, and others [1], [2], [3], [4], [5],
[6]. With the advent of exascale computing and deep learning
applications, the demand for large-message MPI collectives
has increased. For example, in image classification tasks,
VGG19 [7] and ResNet-50 [8] have 143 million and 25 million
parameters, respectively, with communication overheads of
83% and 72% [6]. Therefore, optimizing MPI collectives for
large messages has become essential [9], [10], [11].

MPI collectives consist of both internode communication
and intranode communication, and the former is often the
major concern. The overall collective performance is usually
limited by the efficiency of internode communications because

of limited network bandwidth. Therefore, optimizing internode
collective communication is critical to improving the overall
performance of MPI collectives. This topic has been a focus of
research for decades, with state-of-the-art algorithms achieving
notable improvements. However, with the increasing demand
for large-message MPI collectives, further optimization re-
mains necessary [12], [13], [11]. Lossy compression [14],
[15], [16], [17] (rather than lossless compression [18], [19],
[20]) is a promising solution to mitigate this MPI collective
performance issue because of its ability to significantly reduce
the message size.

Although lossy compression has been widely used to resolve
many other scalability issues in high-performance computing,
such as reducing memory footprint [21], reducing storage
space [22], [23], and avoiding duplicated computation [24],
only a few studies have explored its use in this direction,
and all expose certain limitations. To elaborate, Zhou et
al. [25] proposed GPU-compression enhanced point-to-point
communication by integrating MPC [26] and 1D fixed-rate
ZFP [17] into MVAPICH?2 [27]. Their approach, referred to as
CPR-P2P, simply involved compressing the messages before
transmission and decompressing them after reception, leading
to significant performance overhead due to the non-negligible
time required for compression and decompression. Meanwhile,
Zhou et al. [28], [29], [30] proposed several additional ap-
proaches to improve multiple MPI collectives using 1D fixed-
rate ZFP [17] on GPUs. Their methods, however, focus on
fixed-rate compression!, introducing two major limitations:
(1) compression errors cannot be bounded, leading to an
uncontrolled accuracy, and (2) the compression quality is
considerably lower compared to the fixed-accuracy mode? in
ZFP, as demonstrated by prior research [31].

The aforementioned limitations of compression-enabled
MPI collective algorithms motivate us to develop a new
efficient MPI collective framework which leverages lossy
compression technique to significantly improve the MPI col-

IFixed-rate compression means that the lossy compression would be
performed based on a user-specified fixed compression ratio.

2Fixed-accuracy, also known as error-bounded lossy compression, com-
presses data based on a user-specified error bound.



lective performance. However, this brings in three direct
technical challenges. Devising a general framework that
can effectively hide the communication cost and choose an
appropriate timing to call lossy compression is non-trivial. e
The data loss nature of the lossy compression brings up a
critical concern on the accuracy of collective operations.
Existing lossy compressors are not designed for the collective
context, leading to suboptimal collective performance because
of unnecessary overheads when they are directly applied in
MPI collectives [14], [15], [32], [33], [17].

Our developed framework is named as compression-
facilitated MPI collective framework (C-Coll), which can
address the aforementioned limitations and challenges. To the
best of our knowledge, this is the first-ever framework that
provides a general high-performance solution for compression-
integrated MPI collectives. Moreover, this is the first accuracy-
aware design, which ensures the accelerated collective perfor-
mance with error-bounded lossy compression does not com-
promise data quality. To be more specific, our contributions
include:

o To address challenge e, we introduce two efficient
frameworks, which can significantly accelerate both types
of MPI collectives. Specifically, the first framework no-
tably diminishes the compression overhead in the col-
lective data movement operations (e.g., Scatter, Bcast
and All-gather), thereby achieving substantial perfor-
mance improvement. The second one hides communi-
cation inside of compression in collective computation
(e.g., Reduce-scatter), which in turn enhances the per-
formance of collective computation. Moreover, these two
frameworks can be combined together to speed up more
advanced MPI collective operations such as All-reduce.

o To address challenge , we devise several strategies
to effectively control the error propagation in the C-
Coll framework. On the one hand, we carefully select
the most suitable error-bounded lossy compressor based
on a comprehensive analysis of various state-of-the-art
lossy compression methods, considering multiple aspects
of their performance on MPI collectives. On the other
hand, we carefully regulate the number of compression
operations and also develop an efficient method to resolve
the imbalance in collective communication introduced by
the error-bounded lossy compression.

o To address challenge , we customize SZx to cater to
the specific needs of collective communication. Specif-
ically, we redesign the compression workflow of SZx
and implement a pipelined version of SZx to overlap
compression and communication. As a result, we signif-
icantly decrease the communication cost of our C-Coll
framework by up to 4.9x.

o To prove the error-bounded nature of the C-Coll frame-
work, we perform an in-depth mathematical analysis
to derive the limited impact of lossy compression on
error propagation. Theoretical analysis demonstrates that
the final error of collective data movement framework

of C-Coll can be well-bounded within the compression
error bound set by the user. For collective computation
framework, we can derive the final aggregated error is
bounded well with a high probability. For example, if
there are 100 nodes, the aggregated error is bounded in
the range of [—22€, 22€] with a probability of 95.44%,
where ¢ is the compression error bound.

« To demonstrate the generality of our design, we integrate
C-Coll into multiple collectives, such as MPI_Allreduce,
MPI_Scatter, and MPI_Bcast, and evaluate the perfor-
mance carefully with various scientific datasets generated
by real-world applications (such as Seismic Imaging
[34], Hurricane Simulation [35], and Climate Simula-
tion [36], [37]). Experiments with 128 Xeon Broadwell
compute nodes from a supercomputer show that other
related efforts or baselines exhibit undesired performance
degradation on MPI_Allreduce because of the significant
compression overhead. In comparison, our solution—
the lossy-compression-based Allreduce (we call it C-
Allreduce)—outperforms the original MPI_Allreduce by
2.1x. Moreover, our compression-based scatter and Bcast
operations (namely C-Scatter and C-Bcast) achieve up
to 1.8x and 2.7x performance improvements compared
with the original MPI_Scatter and MPI_Bcast. We also
use a real-world use-case (image stacking analysis) to
validate the practical effectiveness of C-Allreduce, which
shows up to 1.5 performance gain over MPI_Allreduce,
while preserving a high data integrity/accuracy during the
collective operations.

The rest of the paper is organized as follows: we introduce
background and related work in Section II and detail our
design and optimization in Section III. Evaluation results are
presented in Section IV followed by conclusion and future
work in Section V.

II. BACKGROUND AND RELATED WORK

In this section, we discuss the background and related work.
We first introduce MPI collective communication, followed by
a discussion on high-speed lossy compressors and their inte-
gration with MPI implementations. The focus of our study is
on lossy compression. This emphasis is due to the significantly
lower compression ratios observed with lossless methods when
applied to scientific datasets [14], [15].

A. MPI Collective Communication

There are many types of MPI collective operations, which
can be divided into two sub-categories — collective data
movement and collective computation according to their com-
munication patterns.

1) Collective data movement: Collective data movement
includes gather, allgather, scatter, all-to-all, and so on. The
gather operation collects the data from different processes and
stores the collected data into the root process. In comparison,
allgather stores the collected data to every participated process.
As an opposite of gather, the scatter operation divides the
data in the root process and sends the split data to all the



processes. The all-to-all operation acts as the “allscatter”,
which collectively scatters data on each process to each other.

2) Collective computation: Allreduce/reduce are two pop-
ular collective computation operations. We use MPI_SUM as
an example to explain the working principle as it is frequently
used. The reduce routine will sum up all the data entries
from all the processes in the same communicator and store
the sum into the root process. The Allreduce does the same
thing but keeps a copy of the sum on every process in that
communicator. Another widely-used operation is the reduce-
scatter, which acts like a combination of the reduce and scatter:
the reduced sum is scattered into all the processes.

B. High-speed Lossy Compressors

Compression developers and scientific researchers have
shown great interest in high-speed lossy compression due to its
ability to achieve a very high compression ratio. SZ [14], [15],
[32] is an example of a fast, error-bounded lossy compressor
that offers performance similar to other compressors, including
FPZIP [38] and SZauto [16]. Another compressor that is
known for its relatively high compression ratios and even
faster compression speed than SZ is ZFP [17]. However,
neither of these compressors can match the speed of SZx [33],
which achieves a compression throughput of 700-900 MB/s
on CPUs [33]. Additionally, our comprehensive experiments
and analysis, as discussed in Section III-C, demonstrate that
SZx is the most suitable lossy compressor for MPI collective
operations. As such, we developed our customized compressor
for MPI collectives based on SZx, which will be detailed in
Section III-C.

C. Lossy Compression-enabled MPI Implementations

Researchers have shown interest in using lossy compression
to improve MPI communication performance for years. Zhou
et al. proposed GPU-compression enhanced point-to-point
communication [25], and several optimized MPI collective
operations [28], [29], [30] using 1D fixed-rate ZFP [17] on
GPUs, but their solutions are either showcasing limited over-
lapping between compression and communication or subject
to the fixed-rate mode compression, leading to the substandard
compression quality, as will be demonstrated later in Section
IV-E. Conversely, our general framework can optimize the col-
lective performance of all MPI collectives while maintaining
controlled errors.

III. C-CoLL DESIGN AND OPTIMIZATION

Figure 1 presents the overall design architecture of C-Coll.
We highlight the newly designed modules as green boxes.
The primary contributions lie in the performance optimization
layer and the middleware layer. We carefully characterize the
performance of multiple state-of-the-art error-bounded lossy
compressors in the context of MPI collectives and select
the best-qualified compressor — SZx, which will be detailed
in Section III-C. We also propose a series of performance
optimization strategies specifically for both of the two col-
lective types (data movement and collective computation),

as indicated in the figure. The corresponding details will be
discussed in Sections III-A1, III-A2, and III-E2.

’ User Applications/Analysis (Image Stacking , etc.) ‘ Application

| C-Coll Interface (C-Scatter, C-Allreduce, etc.) | Interface
_ | Data Movement Framework | |Collective Comp. Framework
° Performance
Reduce . Overlap el
Q . (IMitigate Error : Pipelined T
" ||Compression h Compression and Optimization
© ngrhead Propagation Congmunication SZx P
’ MPI P2P ‘ | Compression Adapter | Middleware
’ Abstract Device Interface ‘ ’ SiBL ey ey ‘ Library

Compression

Fig. 1: Design architecture (yellow box: applications; green
box: new contributed modules; purple box: third-party).

A. Two Proposed Novel Frameworks for Compression-
enhanced Collectives

To integrate lossy compression into MPI collective com-
munications, at least two important aspects must be consid-
ered: performance and accuracy. In general, MPI collective
operations can be divided into two groups: collective data
movements, and collective computation. Instead of directly
using the CPR-P2P method, we propose two frameworks to
implement collective communications for each group, which
can maximize the collective operation performance.

1) Collective data movement framework: In this subsec-
tion, we detail our strategies for addressing the issues of
communication imbalance and compression overhead in our
optimized collective data movement framework. For collective
data movement operations, each process in the same commu-
nicator needs to communicate with each other to exchange
data. If we directly use the CPR-P2P method, the sender needs
to compress the data every time before sending it, and the
receiver is required to decompress the data upon the data
arrival. Most of the compression and decompression overheads
in CPR-P2P, actually, can be avoided by carefully setting the
timing of compression operations, as the original data have not
been modified during the intensive communications. Besides,
the CPR-P2P can cause unbalanced communications in that
input data on different processes have various compressed data
sizes. Such unbalanced communication will slow down the
overall collective performance, resulting in a sub-optimal per-
formance. With our framework, we can balance the communi-
cations with a fixed pipeline size as the compressed data sizes
are decided at the beginning of the intensive communications.
In the following text, we illustrate our idea with two examples:
a ring-based allgather algorithm and a binomial tree broadcast
algorithm. The same philosophy can be easily extended to
other collective algorithms in this category.

Figure 2 shows the high-level comparison of our proposed
framework versus the CPR-P2P in the ring-based allgather
algorithm. In this algorithm, N—1 rounds are required to
get the gathered results on every process, where N is the
number of processes in the communicator. In order to use lossy
compression to reduce communication cost in the ring-based
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Fig. 2: High-level design of our collective data movement
framework in the ring-based allgather algorithm to mitigate
compression error propagation. A means the original data and
A, means the compressed data. This rule applies to other data
chunks as well. This algorithm completes in N—1 rounds,
where [V is the number of processes.

algorithm, the straight-forward idea is performing compres-
sion and decompression at each round. Instead, our design
does not decompress the received data until the last round,
thus significantly decreasing the compression overhead from
(N=1)Tehunk to Tepunk, where Tepynk is the compression
cost of one chunk. When N is large, our novel framework
could have nearly N x better performance compared with
CPR-P2P in terms of compression. Note that the decompres-
sion cost remains the same.

Figure 3 presents a similar comparison in the binomial
tree broadcast algorithm. There are loga N rounds before the
completion, where N refers to the total process count. We
notice that our proposed framework could reduce the compres-
sion and decompression costs from logao N -(T¢omp+Taecom) tO
Teomp+Tdecom and the performance improvement is loga N X,
where 1.1, and Tiyecom are the compression time and de-
compression time of the data at the root process, respectively.

Besides the compression cost, the CPR-P2P method can
lead to an undesirable error propagation issue during collective
sends and receives, as the same data chunk undergoes multiple

rounds of compression and decompression. Our framework
also solves this issue by compressing the same data chunk
for only one time. Similar to the analysis of compression
overhead, for the absolute error bounded compression, our
proposed framework can decrease the worst case accuracy loss
by (N—1)x and (logaIN)x in the ring-based allgather and
binomial tree broadcast algorithm, respectively.

2) Collective computation framework: For collective com-
putation routines, the data entries from all processes in the
same communicator need to collectively compute with each
other. Unlike in the case of collective data movement, the data
transferred in this communication pattern can be updated. As
a result, the previous framework cannot be utilized here thus
we need to propose a new framework. Despite the updated
transferred data precluding us from diminishing compression,
we find an opportunity to hide communication inside the com-
pression and decompression. To clearly elaborate our proposed
design, we use the ring-based reduce_scatter algorithm as an
instance. Note that this framework can be easily extended to
other collective computation operations.

CPR-P2P Our Proposed Framework

After all communications,
perform decompression from
P1to P7

Log,P(CPR+DEC) versus CPR+DEC

= Compression (CPR)
= Decompression (DEC)

Fig. 3: High-level design of our collective data movement
framework in the binomial tree broadcast algorithm. It com-
pletes in loga N rounds, where N is the number of processes.

Our proposed framework for collective computation is de-
picted in Figure 4. It employs a ring-based reduce_scatter
algorithm, where each process is required to exchange message
chunks with its neighboring processes. For large datasets,
these chunk sizes become substantial as they are determined
by dividing the size of the input data by the number of
processes. In the initial CPR-P2P model, compression and
decompression occur before and after any communication,
respectively. Consequently, a single round incurs three types
of overhead: compression/decompression for one message
chunk, send/receive operations for the compressed message
chunk, and reduction operation for one message chunk. Typ-
ically, the compression-related overhead is more significant
than the send/receive overhead, as compressed data sizes are
considerably smaller than their original counterparts. In our
redesigned approach, we significantly mitigate the send/receive
overhead by actively pulling communication progress within
the compression and decompression phases. This substantially
reduces the overall communication time.

B. Theoretical Analysis of Error Propagation in C-Coll

In this section, we prove the error-bounding nature of our
C-Coll framework mathematically. In the following analysis,
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Fig. 4: High-level design of our collective computation frame-
work in the ring-based reduce-scatter algorithm.

we assume the lossy compression error e for data x follows a
normal distribution, without loss of generality. Specifically, the
normal distribution is represented as e ~ N (u, o) within the
range of [x—€, x+€], where € is the compression error bound.
This is exemplified in Figure 5, in which we compress climate,
weather, seismic wave datasets by SZ3 and ZFP. It clearly
shows the normal distribution curve generated by Maximum
Likelihood Estimation (MLE) fits the measured compression
error values very well for different application datasets.

—— Fitted normal distribution of MLE
= Probability of measured compr error
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Fig. 5: Exemplifying the normal distribution property of
compression errors.

For the collective communication primitive in MPI, the
data will be aggregated gradually from each node during the
communication process, which is shown in Fig. 2, Fig. 3 and
Fig. 4. With lossy compression integrated, the compression
error will also be aggregated in the data aggregation stage. In
the collective data movement framework of C-Coll, each data
chunk is compressed only once. Thus, the final error for each
data point is within €. Unlike the data movement framework,
the compression error is aggregated in the collective computa-
tion framework of C-Coll, and the aggregation function often
involves the Sum, Average, Max, Min operations for the float-
ing point data. We further illustrate the error propagation for

these operations. For the collective computation framework,
we assume there are n data that are collected from n nodes,
and the compression error for each of them is e;, which follows
the normal distribution e; ~ N (u;,02).

K3
Theorem 1. Based on the above analysis, the final aggregated
error for Sum operation falls into the interval [—2+/nc, 2,/no]
with the probability of 95.44%, where n is the number of
computing nodes in MPI and o is the variance of the error
bound of the lossy compressor.

Proof. The linear combination (e.g., Sum in MPI) of normally
distributed random variables also follows a normal distribution
that is shown in the formula (1), where a; denotes various
constants for n data.

Z;O ai€i ~ N(Zj:o aifhi, Zj:o azo?) )]

For the Sum operation in the collective computation frame-
work, the compression error will be involved gradually with
the aggregation chain, which is shown in the formula (2):

Tsum = ((((Il + 61) +IE2) + 62) + ...+ en)

2
=(x1+4+e1)+ (a+tea)+ ... + (xn +en) @

Where x; indicates the data collected from node ¢ and x4y,
represents the final aggregated data. We further demonstrate
that the compression error es remains to follow the normal
distribution after compression through Figure 6, which illus-
trates the probability of the measured compression error (es)
with the fitted MLE curve. The same property also holds for
subsequent compression errors in the aggregation chain such
as ez, e4, and so on.

—— Fitted normal distribution of MLE
== Probability of measured compr error

—— Fitted normal distribution of MLE
m== Probability of measured compr error

0 = 1.95¢-05
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() SZ3(e2)

Fig. 6: Exemplifying the normal distribution property of
compression error es.

From the formula (2), we can calculate the aggregated
compression error as €sym = » ., ¢;. The aggregated error
€sum follows the normal distribution as formula (3):

The formula (3) indicates that the variance o2 of the
aggregated error €, will be restricted well. When we utilize
the same compression error bound across various nodes, the
aggregated error conforms to a normal distribution represented
as €sum ~ IN(0,n0?). Therefore, the final aggregated error
falls within the interval [—2y/no, 24/no] with the probability
of 95.44% according to the properties of normal distribution.

O



Since the compression error is bounded by the error bound
e; and the error follows the norm distribution, we can assume
that €; ~ 30; (&; bounded to 30; with probability of 99.74%).

Corollary 1. Based on the above assumption, the final aggre-
gated error falls within the interval [—2\/ne, 2+/ne] with the
probability of 95.44%. For example, if there are 100 nodes,
the final aggregated error will be bounded within the range

[—22€, 22€] with a probability of 95.44%.

Corollary 2. Being similar to the Sum operation, the final
aggregated error for the Average operation in collective com-
putation framework follows the normal distribution €q,q ~
2

N (0, Z-). The final aggregated error will be reduced extremely
compared to the original error by n times.

Theorem 2. For the Max, Min operations, the final error fol-
lows the normal distribution €45 min ~ N (0, (2 — "2%2)02).

Proof. Since we need to compare the data from the neighbored
node gradually, there is a % probability that we can choose the
non-compressed data. Otherwise, the selected data will contain
an error within the error bound e. Therefore, the variance of the
final aggregated error can be calculated as following formula
)

1

2
27”0— + 271—1

n—+
27L

)o? (4)

1
(n—10%+ ..+ 502 =(2-
O

C. Identify Best-qualified High-speed Error-bounded Lossy
Compressor

In this section, we compare various lossy compressors
and select the most suitable one for MPI collectives. As
shown in the previous analysis, in addition to controlling the
data distortion by error bounds, the compression throughput
and compression ratio are two critical metrics to consider.
According to the prior literature [14], [16], [39], [32], [33],
ZFP and SZx exhibit much higher compression speed than
other compressors, including SZ2 [32], SZ3 [39], FPZIP [38],
and Auto-SZ [16]. Therefore, we focus on ZFP and SZx in
particular and select the best-qualified one for compression-
enabled collective communication.

In ZFP, users can set a fixed compression rate in the fixed-
rate (FXR) mode or a fixed absolute error bound in the fixed-
accuracy (ABS) mode. The two modes have their particular
pros and cons. The advantage of the FXR is that it brings up
substantial convenience in some use cases that require knowing
the compressed data size in advance. In comparison with FXR
mode, ZFP’s ABS mode features a much higher compression
quality on scientific datasets (i.e., higher compression ratio
with the same reconstructed data quality), as verified in [31].
We briefly analyze the key reason why ZFP’s ABS mode has
higher compression quality than its FXR mode in the following
text. ZFP divides the dataset into small data blocks during
the compression. Unlike ZFP(ABS) which allows variable
compressed size for each block, ZFP(FXR) strictly forces
each block to have the same compression ratio, which may
inevitably degrade the quality of reconstructed data in turn.

Moreover, the FXR mode cannot control the error bound,
which may cause fairly high compression errors on some data
points unexpectedly. Compared with ZFP, SZx is an ultra-fast
error-bounded compressor driven by the fixed-accuracy mode.
TABLE I: OVERALL COMPRESSION/DECOMPRESSION
THROUGHPUT (MB/S)

RTM \

[ Datasets | I Hurricane | CESM-ATM |

ABS | Com | Decom | Com | Decom | Com | Decom
Sz 1E-2 | 1742 3309 1687 3640 666 1251
X 1E-3 | 1479 2723 895 1659 533 918
1E-4 | 1288 2215 644 1168 526 822
ABS | Com | Decom | Com | Decom | Com | Decom
1E-2 | 1383 1444 492 634 240 273
ZFP(ABS) 1E-3 | 1082 1141 307 397 170 191
1E-4 783 811 170 209 128 136
FXR | Com | Decom | Com | Decom | Com | Decom
4 610 601 251 319 335 397
ZFP(FXR) 8 438 413 129 142 200 203
16 324 311 82 81 119 112

TABLE II: COMPRESSION RATIOS (ORIGINAL DATA
SIZE / COMPRESSED DATA SIZE)

[ Datasets | I RTM I Hurricane [ CESM-ATM ]
ABS | min avg max min avg max min | avg | max
SZ 1E-2 88 116.3 124.1 121 123.1 124.1 4.9 8.5 22.8
X 1E-3 | 26.1 49.4 115.1 14.9 17.4 29.1 33 5.1 13.1
1E-4 9.5 30.4 111.3 6.9 7.2 8.8 2.4 34 8
ABS | min avg max min avg max min | avg | max
1E-2 | 67.7 87.6 125.2 18.1 18.3 18.6 4.7 8.1 23.1
ZFP(ABS) 1E-3 | 30.6 58.4 1232 | 10.5 10.7 11 3.4 5.6 15
1E-4 | 134 38 120.1 54 535 58 24 | 38 9.7
FXR | min avg max min avg max min | avg | max
4 8 8 8 8 8 8 8 8 8
ZFP(FXR) —g 3 7 7 3 7 7 T4 4
16 2 2 2 2 2 2 2 2 2

TABLE III: COMPRESSION QUALITIES (PSNR)

[ Datasets | I RTM I Hurricane I CESM-ATM |
ABS min avg max min avg max min avg max
SZx 1E-2 312 373 61.5 252 262 | 268 46 50.6 559
1E-3 40.6 514 80.9 40.3 42 428 | 642 70.3 734
1E-4 60.2 T2 102.6 | 624 63.6 | 643 82.8 935 972
ABS min avg max min avg max min avg max
1E-2 36.6 45.7 71.8 33 34 343 52.6 56.8 61
ZFP(ABS) 1E-3 49.2 59.5 882 478 49 50 69.1 732 77.6
1E-4 69.3 80.1 111 68.5 69.7 | 704 ] 922 96.6 100.6
FXR min avg max min avg max min avg max
4 41.9 46.4 56.1 30.9 316 | 323 303 34 39.9
ZFP(FXR) 8 66.7 71.6 80.1 56 578 [ 649 | 388 60.5 62.9
16 113.8 | 1185 | 127.3 ] 103.7 | 1055 | 113 106.4 | 108.1 [ 110.6

In addition to the above analysis, we also compare
SZx, ZFP(ABS), and ZFP(FXR) regarding the compression
throughput, ratio, and quality, using different datasets with
various error bounds or rates, as shown in Table I, II, and III.
To ensure a fair evaluation, all compression and decompression
processes were executed using a single thread on an Intel Xeon
E5-2695v4 CPU. We adopt the 1D compression mode in that
the dimensional information will have to be skipped due to
the 1D chunk-wise design in most of the MPI collectives.
The information about the datasets we used here is detailed
in Table IV, which will be found in Section IV-A. Because
of the space limit, we use the QVAPORf and CLOUD fields
in the Hurricane and CESM-ATM dataset, respectively, in our
experiments, and other fields exhibit very similar results. We
observe that SZx is much faster than ZFP(ABS) by up to
4.1x in compression and 5.7 in decompression with similar
compression ratios and qualities. Additionally, with similar
compression qualities, ZFP(FXR) has the lowest compression
speed and compression ratio compared to both ZFP(ABS)
and SZx. Therefore, we develop our customized compressor
based on SZx in terms of the context of MPI collectives. For



the purpose of comparison, we also implement compression-
enabled point-to-point communication-based collectives based
on both ZFP(FXR) and ZFP(ABS), which serve as baselines.

D. Characterization of Performance Bottlenecks

We integrate SZx into point-to-point communication of the
ring-based allreduce algorithm, in order to understand the key
bottlenecks of the collective performance, which will be a
fundamental work to guide our optimization strategies. In this
characterization, we use ring-based allreduce which serves
as a very good example, because it consists of both col-
lective data movement (allgather) and collective computation
(reduce_scatter). Figure 7 presents the detailed performance
breakdown for direct integration of SZx under a series of
data sizes. Our analysis reveals that in the original ring-
based allreduce algorithm, the all-gather operation accounts for
approximately 60% of the overall execution time, as the com-
munications are not overlapped at all with each other, unlike
the reduce-scatter stage. The Wait operation is the second most
time-consuming one, which waits for the completion of non-
blocking send and receives before conducting the reduction
operation. The remaining operations in the original allreduce
algorithm include Memcpy (local data copies), Reduction
(Reduce operations), and Others (data allocations and other
calculations), which together constitute about 20% of the over-
all execution time. After integrating the SZx, the bottleneck
turns into the ComDecom (compression and decompression)
as the data needs to be compressed before being sent out and
needs to be decompressed every time the receiver receives
them. We also observe a reduction in Allgather and Wait times,
suggesting a decrease in transferred data, and both of the MPI-
related time can be further optimized. However, the Others
part also takes a significant amount, specifically 23% in the
278MB case. This is because the SZx requires users to free
compression-generated buffers after the compressor is called,
resulting in a significant overhead.
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Fig. 7: Compare the performance of AD(Original

MPI_Allreduce) and the DI(Direct Integration) of SZx
from 78MB to 678MB with a 200MB step.

E. Step-wise Optimizations

In this subsection, we detail our step-wise optimization
strategies, a principal contribution of this paper. To facili-
tate explanation, we present our implementation of a ring-
based allreduce algorithm that incorporates lossy compression.
These optimization strategies are applicable to other collective
operations as well. Notably, in the ring-based allreduce, the

data transfer required for each process is just 2(1\]7\,_1) “Dinput

where Dy, represents the input data size and N is the
number of processes. Thus, this design is highly efficient
for processing long messages. Furthermore, our integration
of lossy compression significantly enhances the efficiency of
collective communication involving long messages. We have
termed our lossy-compression-enabled MPI_Allreduce as C-
Allreduce, with ‘C’ denoting compression. Subsequently, we
will discuss the design and implementation specifics of C-
Allreduce in a structured, step-by-step approach.

1) Utilize our collective data movement framework:
To reduce the compression overhead and balance commu-
nications, we utilize the data movement framework that we
presented in Section III-A1l. At the beginning, every process
compresses its local data and stores the compressed data
size. Then, every process synchronizes with each other to
collect the compressed data sizes in a local integer array
compressed_sizes. As the compressed data size only has four
bytes, this step is very fast. After that, all processes get the
sum of all the compressed data sizes, noted as total_count.
Then, each process communicates with each other with a
fixed pipeline size until every process has sent to_send =
total_count — compressed_sizes[send_rank] and received
to_recv = total_count — compressed_sizes[sel f_rank]
from other processes in a ring communication pattern. After
all communications end, every process starts to decompress
all the received compressed data and store the decompressed
data in the receive buffer. Note that they do not need to
decompress the data that are compressed by themselves. After
this step, we can significantly decrease the time spent by
compression and allgather communications compared with
the direct integration of SZx. Besides, our solution can also
preserve the quality/accuracy of the data very well because of
the error-bounding feature, which will be demonstrated later
in Section IV-E.

2) Customize SZx to reduce communication overhead with
our collective computation framework: In order to use our
collective computation framework in the reduce-scatter stage
of the ring-based allreduce algorithm, we need to redesign the
compression workflow of SZx so that we can consistently poll
the progress of the Isend and Irecv inside of the compression
and decompression. Therefore, we design and implement the
PIPE-SZx (pipelined SZx) based on the original SZx. Instead
of compressing the original data as a whole, we divide the
compression process into small chunks, each of which handles
5120 data points. Between the compression of two adjacent
chunks, we actively poll the communication progress of the
non-blocking receive. However, the compressed data of each
chunk cannot be simply combined together, otherwise the
compressed data cannot be correctly decompressed because
each compressed chunk is of variable uncertain length. To
solve this problem, we decide to store the compressed data of
all chunks in the same output buffer and pre-allocate enough
memory space (four bytes per chunk, small memory consump-
tion) at the front of the buffer for storing the compressed data
sizes of those chunks together (essentially a kind of index), in-
stead of storing them along with the compressed data chunks.



Such a design is more cache-friendly, thus having lower
overhead. During the decompression, we maintain a chunk-
starting-location pointer based on the recorded compressed
chunk sizes to tell the algorithm where the decompression
operation should start for each chunk. We repeat this process
chunk by chunk and poll the progress of the non-blocking send
between decompression chunks. Through this optimization, we
can hide the communication in the reduce-scatter stage inside
of compression, which further improves the performance of
our C-Allreduce design.

IV. EXPERIMENTAL EVALUATION

In this section, we present and discuss the evaluation results.

A. Experimental Setup

Since inter-node communication is the major bottleneck for
collectives as discussed previously, we utilized a 128-node
cluster with one process per node in our experiments. Each
node is equipped with two Intel Xeon E5-2695v4 Broadwell
processors. Furthermore, each NUMA node contains 64 GB
of DDR4 memory, resulting in a total of 128 GB of memory
per node. The nodes are interconnected via Intel Omni-Path
Architecture (OPA), providing a maximum message rate of 97
million per second and a bandwidth of 100 Gbps.

TABLE IV: Information of The Scientific Datasets

[ Applications | #files | Dimensions | Descriptions |
RTM[34] 70 849849235 Seismic Wave
Hurricane[35] 48x13 | 100x500x500 | Weather Simulation
CESM-ATM[40] | 26x33 1800x 3600 Climate Simulation

MPI collectives are common operations used in the simula-
tion analysis. For instance, generating stacking images in RTM
(essentially an allreduce sum operation) is a typical real-world
example [41], which will be demonstrated at the end of this
section. We also utilize various datasets from a series of appli-
cations, including the reverse time migration (RTM) dataset,
Hurricane dataset, and CESM-ATM dataset, to evaluate our
solution. Table IV shows the detailed specifications of these
datasets. Our baselines consist of original MPI collectives in
MPICH 4.1.1, MPI collectives implemented by compression-
enabled point-to-point communications with SZx, fix-accuracy
ZFP, and fix-rate ZFP (version 0.5.5). For our experiments, we
adopt a two-stage approach, including a warm-up stage and an
execution stage. We conduct 10 runs for each stage and report
the average results to present the general performance.

B. Step-wise Optimizations to C-Allreduce with Performance
Analysis

In this section, we carry out optimizations to our C-
Allreduce (C-Coll enhanced Allreduce) integrated with SZx
step by step and show the performance on 16 Broadwell nodes.
The ring-based allreduce that we implement contains a reduce-
scatter stage and an allgather stage. Thus, we breakdown the
total execution time into several parts: ComDecom (i.e., the
time needed to compress and decompress data), Allgather
(i.e., the time required to transfer data in the allgather stage),

TABLE V: Step-wise Optimizations of C-Allreduce

[ Method (Abbr.)

Original MPI_Allreduce (AD)
Direct Integration (DI)

Novel Design (ND)

Overlapped Optimization (Overlap)

Description about the Allreduce impl tati |

No compression

Implemented with CPRP2P

Optimized by our collective data movement framework
Optimized by our collective computation framework

Memcpy (i.e., the time spent on coping data in the reduce-
scatter stage), Wait (i.e., the non-overlapped time spent on
transferring data in the reduce-scatter stage), Reduction (i.e.,
the time required to do reduction operation), and Others (i.e.,
the time needed to do other data allocation and calcula-
tions). We adopt the RTM dataset to demonstrate our step-
wise optimizations, which is the largest one among all three
representative scientific datasets we evaluate. All the variants
benchmarked in the following contexts are summarized in
Table V.

1) Evaluating our collective data movement framework:
Figure 8 shows the performance improvement achieved by
our novel design in the allgather stage for data sizes ranging
from 28MB to 678MB. This Novel Design (ND) leverages our
collective data movement framework, resulting in a consider-
able reduction in both compression and decompression time.
Notably, at the data size of 128MB, the ND achieves a speed-
up of up to 1.48x when compared to the Direct Integration
(DI) approach discussed in Section III-D. Additionally, our
balanced communication in Allgather using the ND is up
to 7.1x faster than the unbalanced communication in DI at
628MB. We analyze the key reason why our solution can
obtain a significant performance improvement as follows. In
fact, to overcome the compression bottleneck and balance
MPI communications, we utilize our collective data movement
framework that pre-compresses the data before transmission
and decompresses it after all communications, rather than
using expensive compression-enabled point-to-point commu-
nication (CPR-P2P) in collective routines. This novel design
can significantly reduce the amount of compression required
during collective communication. Using CPR-P2P also brings
unbalanced communications as the compressed data sizes may
vary, but we can balance the communications with a fixed
pipeline size in our new design because we do not need to
compress the data every time before we send it.

Note that using CPR-P2P may accumulate errors during
intensive collective communication, such as ring-based com-
munication, as the same data is repeatedly passed from one
process to another. Therefore, we have utilized our new
framework to ensure that errors in the final results are bounded,
which we discuss in the application evaluation section IV-E.

2) Evaluating reduced communication overhead with our
collective computation framework: We demonstrate the ef-
fectiveness of our collective computation framework in this
section. From Figure 9, it is evident that the carefully over-
lapped version (Overlap) leads to significantly less Wait time
compared with the previous version (ND), resulting in a
performance boost of up to 4.9x for the data size of 678MB.
The rationale for this performance improvement is shown
in the following text. To utilize our collective computation



DI) (DI) B ComDecom(ND) B Allgather(ND)

Iy
gl
-]

o

e
N
a

|

e
N
[

°
°
)

Normalized Execution Time
o
'
-]

28 78 128 178 228 278 328 378 428 478 528 578 628 678
Data Sizes(MB)

Fig. 8: Compare the performance of DI (Direct Integration)
and our ND (Novel Design) from 28MB to 678MB.

framework for hiding communication during compression, we
design and implement PIPE-SZx (pipelined SZx), which could
break the compression process into small chunks and allow
us to overlap the compression with communication in a fine-
grained pipelined manner. As a result, we can significantly
reduce MPI_Wait time in the reduce-scatter stage, which uses
non-blocking communications.
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Fig. 9: Compare the wait time of ND (Novel Design) and

Overlap (Overlap Optimization) from 28MB to 678MB with

a SOMB step.

3) Evaluating overall running time of different optimiza-
tions: In Figure 10, we compare the end-to-end execution
time of our compression-enabled Allreduce with step-wise
optimizations against the Original MPI_Allreduce (AD). We
can see that the end-to-end performance of our compression-
enabled Allreduce gradually increase with these optimizations
and it consistently beats the AD across various message sizes
with our Overlapped Optimization (Overlap). We call the fully
optimized variant as C-Allreduce and will thoroughly evaluate
both the performance and accuracy of it in the following

sections.
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Fig. 10: Compare the overall running time of different opti-
mizations from 28MB to 678MB with a SOMB step.

C. End-to-end Comparisons of C-Allreduce with Baselines

In this section, we compare the performance of our
C-Allreduce with four different baselines on various data

sizes, node numbers, and datasets. The baselines include
the original MPI_Allreduce without compression (Allre-
duce), MPI_Allreduce implemented by compression-enabled
point-to-point communication (CPR-P2P) with fixed-rate ZFP
(ZFP(FXR)), fixed-accuracy ZFP (ZFP(ABS)), and SZx. The
SZx and ZFP(ABS) have a fixed accuracy of 1E-3, and the
ZFP(FXR) has a rate of 4, if not specifically mentioned.
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Fig. 11: Compare the performance of our C-Allreduce and
multiple baselines from 28MB to 678MB with a 50MB step
on 128 nodes.

1) Evaluating with different data sizes on 128 nodes: In
this section, we present the performance of our C-Allreduce,
along with related baselines, using data sizes ranging from
28MB to 678MB on 128 Broadwell nodes. The RTM dataset is
adopted in these experiments. From Figure 11, we can observe
that the SZx-integrated baseline performs the best among the
three compression-integrated baselines, and ZFP(FXR) has
the worst performance. This is because SZx has a faster
compression speed compared to ZFP(FXR) and ZFP(ABS).
Additionally, ZFP(ABS) and SZx have better compression
ratios than ZFP(FXR) as we previously mentioned in III-C.
However, none of the three CPR-P2P baselines can outperform
the original Allreduce. By employing our novel framework
and step-wise optimizations, our C-Allreduce achieves signifi-
cantly higher performance than the original Allreduce with up
to 1.8 x performance improvement.
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Fig. 12: Compare the performance of our C-Allreduce and
multiple baselines from 2 to 128 nodes with 678MB message.

2) Evaluating with different node numbers with 678MB
data: To demonstrate the scalability of our approach, we
compare the normalized execution time of our C-Allreduce
and four different baselines using a fixed data size of 678MB
across 2 to 128 nodes. The RTM dataset is adopted in
these experiments. As shown in Figure 12, our C-Allreduce
outperforms all the baselines across various node numbers. It
can reach a performance boost of up to 1.8x compared to



the original Allreduce. Similar to our observation in Section
IV-C1, we found that all compressor-integrated baselines ex-
hibit performance degradation compared to Allreduce, with the
SZx-integrated baseline performing the fastest among them.

TABLE VI: Compression Ratios

[ Datasets | Hurricane [ CESM-ATM |
[ Fields | PRECIPT | QGRAUPF | CLOUDY | Q \
[ CPR | 338 | 583 | 399 [ BI |

3) Evaluating with different application datasets: In this
section, we evaluate the performance of our C-Allreduce
and related baselines on different datasets using the error
bound of 1E-4. Due to the page limitation, we only show
the SZx baseline here as it has the best performance among
compression-enabled baselines. The PRECIPf, QGRAUPT, and
CLOUD(f fields are from the Hurricane application dataset and
the Q field is originated from the CESM-ATM application
dataset. They have different data distributions and averaged
compression ratios as shown in Table VI. From Figure 13,
we can notice that our C-Allreduce has the best performance
among all the implementations. Specifically, 1.74x and 1.58x
speedups can be achieved in QGRAUPf and PRECIPf fields,
respectively. Such consistent high performance of C-Allreduce
across varied data fields highlights its efficiency and adaptabil-
ity. On the contrary, the fastest compression-enabled baseline
(8Zx) still has performance degradation compared with the
original Allreduce due to the limited performance of the CPR-
P2P in all cases.
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Fig. 13: Compare the performance of our C-Allreduce and
multiple baselines in different application datasets.

Apart from the performance, we also evaluate the ac-
curacy using visualization and numerical metrics including
the widely-used peak signal-to-noise ratio (PSNR) [42] and
normalized root mean squared error (NRMSE) [43]. Fig-
ure 14 represents the visual and numerical evaluation of
our C-Allreduce with the Hurricane application dataset. The
excellent image quality, along with the great PSNR(60.04)
and NRMSE(1E-3) demonstrate that our C-Allreduce delivers
a well-controlled accuracy. The same phenomenon can be
witnessed in the Figure 15, where we evaluate the accuracy of
C-Allreduce with the CESM-ATM application dataset. Thus,
we can conclude that the selected error bound is suitable for
other applications like Hurricane and CESM-ATM.

D. Generalizability Demonstration on Other MPI Collectives

We have demonstrated the high performance of our C-Allred
uce, consisting of C-Allgather and C-Reduce-scatter. To show-

10

(a) Allreduce w/o compression (b) C-Allreduce

Fig. 14: The visualization and numerical evaluation of the ac-
curacy of our C-Allreduce using Hurricane application dataset.
Here the PSNR and NRMSE of the sub-figure(b) are 60.04 and
1E-3, respectively.

(a) Allreduce w/o compression (b) C-Allreduce

Fig. 15: The visualization and numerical evaluation of the
accuracy of our C-Allreduce using CESM-ATM application
dataset. Here the PSNR and NRMSE of the sub-figure(b) are
59.19 and 1E-3, respectively.

case the generalizability of our frameworks and optimizations,
we also present C-Bcast and C-Scatter, which utilize the
ubiquitous binomial tree algorithm adopted by MPICH. We
conduct experiments on the RTM dataset ranging from 28MB
to 678MB using 16 Broadwell nodes. In Figure 16, we
present the speedups of our C-Scatter and C-Bcast, normalized
against the original MPI_Scatter and MPI_Bcast (Baseline),
respectively. We also compare our C-Scatter and C-Bcast with
the SZx-integrated CPR-P2P baselines (SZx). Our C-Scatter
is 1.8x faster than Baseline, while our C-Bcast has up to
2.7x speedup compared to Baseline. These performance im-
provements originated from the decreased data transfer volume
and diminished compression overheads from our proposed
frameworks. The speedups are even more significant compared
to our C-Allreduce because collective data movement benefits
more from our frameworks than collective computation. How-
ever, the SZx-integrated CPR-P2P baselines are much slower
than the baseline due to significant compression overheads.

E. Evaluation of Image Stacking Performance and Accuracy

Image stacking is a well-known technique used in various
scientific domains, including climate simulation and geology,
to generate high-quality images by combining different im-
ages. For example, MPI is used by researchers to sum the
individual images into final images [41]. In this experiment,
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Fig. 16: Generalizability demonstration of our proposed frame-
work and optimizations with MPI_Scatter and MPI_Bcast
from 28MB to 678MB with a S0MB step.

we conduct image stacking of the RTM dataset on 16 nodes.
As each snapshot has different value ranges, we use the fixed-
accuracy (ABS) mode to compress the data so that each
snapshot contributes a similar amount of errors rather than
letting the snapshots with large value ranges dominate the
errors. Three absolute error bounds (i.e., 1E-2, 1E-3, and 1E-4)
are selected to demonstrate the flexibility between the accuracy
and performance of our C-Allreduce. The same error bounds
are used for the baseline SZx and ZFP(ABS). For ZFP(FXR),
three fixed rates (4, 8, and 16) are selected and the related
compression ratios are 8, 4, and 2.
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Fig. 17: Compare the image stacking performance of our C-
Allreduce and multiple baselines in different error bounds for
SZx and ZFP(ABS) and rates for ZFP(FXR).

We show the performance results and validate the high qual-
ity of the stacked images generated under our compression-
integrated MPI collective framework, as shown in Figures
17 and 18, respectively. For our C-Allreduce, we could see
that, with the increase of error bounds, the performance
drops but the quality of the reconstructed image rises. The
highest speedup can be witnessed in the 1E-2 case, where
our C-Allreduce has 1.5x higher performance compared to
the original Allreduce. Nevertheless, the three compression-
integrated baselines (i.e., SZx, ZFP(ABS), and ZFP(FXR)) all
result in performance degradation compared with the original
Allreduce, regardless of the absolute error bounds or rates.
With an error bound of 1E-4, our C-Allreduce shows an
excellent reconstructed image quality, whereas the ZFP(ABS)
integrated baseline with the same error bound cannot achieve
the same quality. This is because that our proposed frame-
works can significantly decrease the error propagation of the
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reconstructed data, while the CPR-P2P cannot. Due to the page
limitation, we do not show the reconstructed image of the SZx
integrated baseline as it has even worse quality compared with
ZFP(ABS). Besides, the ZFP(FXR) baseline with a rate of 4
has the worst reconstructed quality and the stacked image is
completely different from the original one, as the fixed-rate
mode cannot ensure a bounded accuracy.

In addition to the visualization evaluation, we complement
our findings with numerical metrics to further demonstrate
the exceptional accuracy of our approach. For an error bound
of 1E-2, our C-Allreduce method achieves a Peak Signal-to-
Noise Ratio (PSNR) [42] of 42.86 and a Normalized Root
Mean Square Error (NRMSE) [43] of 7E-3, which illustrate
a suboptimal data quality. However, when the error bound is
tightened to 1E-3, we observe a notable increase in accuracy,
with the PSNR soaring to 57.97 and the NRMSE dropping to
1E-3, which represent a great data quality. Consistent with
the trends observed in image quality, the highest accuracy
is attained at the 1E-4 error bound. At this threshold, our
approach reaches a PSNR of 79.57 and maintains an NRMSE
of 1E-4. These numerical metrics further validate the well-
controlled accuracy of our method. In a nutshell, our C-
Allreduce integrated with C-Coll framework can remarkably
increase the performance of the original Allreduce and also
preserves the quality of the original datasets very well at the
error bound of 1E-3 and 1E-4 (see Figure 18 (e) and (f)).

(a) Original Data (b) ZFP(FXR)

(d) C-Allreduce(1E-2)

(e) C-Allreduce(1E-3) (f) C-Allreduce(1E-4)

Fig. 18: Compare the reconstructed image qualities of our C-
Allreduce with different ZFP-integrated baselines.



V. CONCLUSION AND FUTURE WORK

In this paper, we introduce C-Coll, a novel design for
lossy-compression-integrated MPI collectives that significantly
improves performance with bounded errors. Our two proposed
high-performance frameworks for compression-integrated MPI
collectives, together with customized pipe-lined SZx, enable
us to implement C-Allreduce, which outperforms the original
Allreduce by up to 2.1x while preserving high data qual-
ity. We demonstrate the generalizability of our approaches
through C-Scatter and C-Bcast, which outperform the original
MPI_Scatter and MPI_Bcast by up to 1.8 x and 2.7, respec-
tively. In summary, our research has addressed the issues of
sub-optimal performance, lack of generality, and unbounded
errors in lossy-compression-integrated MPI collectives, laying
the foundation for future research in this area. Moving for-
ward, we plan to expand our research by implementing more
C-Coll based collectives and deploying our design on other
hardware, such as GPUs and Al accelerators.
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