
An Optimized Error-controlled MPI Collective

Framework Integrated with Lossy Compression

Jiajun Huang,∗ Sheng Di,† Xiaodong Yu,‡ Yujia Zhai,∗ Zhaorui Zhang,§ Jinyang Liu,∗ Xiaoyi Lu,¶

Ken Raffenetti† Hui Zhou† Kai Zhao∥ Zizhong Chen∗ Franck Cappello† Yanfei Guo† Rajeev Thakur†

∗University of California, Riverside
†Argonne National Laboratory

‡Stevens Institute of Technology
§The Hong Kong Polytechnic University

¶University of California, Merced
∥Florida State University

AbstractÐWith the ever-increasing computing power of su-
percomputers and the growing scale of scientific applications,
the efficiency of MPI collective communications turns out to
be a critical bottleneck in large-scale distributed and parallel
processing. The large message size in MPI collectives is particu-
larly concerning because it can significantly degrade the overall
parallel performance. To address this issue, prior research simply
applies the off-the-shelf fix-rate lossy compressors in the MPI
collectives, leading to suboptimal performance, limited general-
izability, and unbounded errors. In this paper, we propose a
novel solution, called C-Coll, which leverages error-bounded lossy
compression to significantly reduce the message size, resulting in
a substantial reduction in communication cost. The key contribu-
tions are three-fold. (1) We develop two general, optimized lossy-
compression-based frameworks for both types of MPI collectives
(collective data movement as well as collective computation),
based on their particular characteristics. Our framework not only
reduces communication cost but also preserves data accuracy. (2)
We customize SZx, an ultra-fast error-bounded lossy compressor,
to meet the specific needs of collective communication. (3) We
integrate C-Coll into multiple collectives, such as MPI Allreduce,
MPI Scatter, and MPI Bcast, and perform a comprehensive
evaluation based on real-world scientific datasets. Experiments
show that our solution outperforms the original MPI collectives
as well as multiple baselines and related efforts by 1.8±2.7×.

Index TermsÐLossy Compression, MPI Collective, Distributed
Systems, Scientific Datasets

I. INTRODUCTION

MPI collectives provide high-performance collective com-

munications in distributed systems, making a significant im-

pact on various research fields such as scientific applications,

distributed machine learning, and others [1], [2], [3], [4], [5],

[6]. With the advent of exascale computing and deep learning

applications, the demand for large-message MPI collectives

has increased. For example, in image classification tasks,

VGG19 [7] and ResNet-50 [8] have 143 million and 25 million

parameters, respectively, with communication overheads of

83% and 72% [6]. Therefore, optimizing MPI collectives for

large messages has become essential [9], [10], [11].

MPI collectives consist of both internode communication

and intranode communication, and the former is often the

major concern. The overall collective performance is usually

limited by the efficiency of internode communications because

of limited network bandwidth. Therefore, optimizing internode

collective communication is critical to improving the overall

performance of MPI collectives. This topic has been a focus of

research for decades, with state-of-the-art algorithms achieving

notable improvements. However, with the increasing demand

for large-message MPI collectives, further optimization re-

mains necessary [12], [13], [11]. Lossy compression [14],

[15], [16], [17] (rather than lossless compression [18], [19],

[20]) is a promising solution to mitigate this MPI collective

performance issue because of its ability to significantly reduce

the message size.

Although lossy compression has been widely used to resolve

many other scalability issues in high-performance computing,

such as reducing memory footprint [21], reducing storage

space [22], [23], and avoiding duplicated computation [24],

only a few studies have explored its use in this direction,

and all expose certain limitations. To elaborate, Zhou et

al. [25] proposed GPU-compression enhanced point-to-point

communication by integrating MPC [26] and 1D fixed-rate

ZFP [17] into MVAPICH2 [27]. Their approach, referred to as

CPR-P2P, simply involved compressing the messages before

transmission and decompressing them after reception, leading

to significant performance overhead due to the non-negligible

time required for compression and decompression. Meanwhile,

Zhou et al. [28], [29], [30] proposed several additional ap-

proaches to improve multiple MPI collectives using 1D fixed-

rate ZFP [17] on GPUs. Their methods, however, focus on

fixed-rate compression1, introducing two major limitations:

(1) compression errors cannot be bounded, leading to an

uncontrolled accuracy, and (2) the compression quality is

considerably lower compared to the fixed-accuracy mode2 in

ZFP, as demonstrated by prior research [31].

The aforementioned limitations of compression-enabled

MPI collective algorithms motivate us to develop a new

efficient MPI collective framework which leverages lossy

compression technique to significantly improve the MPI col-

1Fixed-rate compression means that the lossy compression would be
performed based on a user-specified fixed compression ratio.

2Fixed-accuracy, also known as error-bounded lossy compression, com-
presses data based on a user-specified error bound.

1

a
rX

iv
:2

3
0
4
.0

3
8
9
0
v
3

[c

s.
D

C
]

 1
7
 J

a
n
 2

0
2
4

lective performance. However, this brings in three direct

technical challenges. A Devising a general framework that

can effectively hide the communication cost and choose an

appropriate timing to call lossy compression is non-trivial. B

The data loss nature of the lossy compression brings up a

critical concern on the accuracy of collective operations. C

Existing lossy compressors are not designed for the collective

context, leading to suboptimal collective performance because

of unnecessary overheads when they are directly applied in

MPI collectives [14], [15], [32], [33], [17].

Our developed framework is named as compression-

facilitated MPI collective framework (C-Coll), which can

address the aforementioned limitations and challenges. To the

best of our knowledge, this is the first-ever framework that

provides a general high-performance solution for compression-

integrated MPI collectives. Moreover, this is the first accuracy-

aware design, which ensures the accelerated collective perfor-

mance with error-bounded lossy compression does not com-

promise data quality. To be more specific, our contributions

include:

• To address challenge A , we introduce two efficient

frameworks, which can significantly accelerate both types

of MPI collectives. Specifically, the first framework no-

tably diminishes the compression overhead in the col-

lective data movement operations (e.g., Scatter, Bcast

and All-gather), thereby achieving substantial perfor-

mance improvement. The second one hides communi-

cation inside of compression in collective computation

(e.g., Reduce-scatter), which in turn enhances the per-

formance of collective computation. Moreover, these two

frameworks can be combined together to speed up more

advanced MPI collective operations such as All-reduce.

• To address challenge B , we devise several strategies

to effectively control the error propagation in the C-

Coll framework. On the one hand, we carefully select

the most suitable error-bounded lossy compressor based

on a comprehensive analysis of various state-of-the-art

lossy compression methods, considering multiple aspects

of their performance on MPI collectives. On the other

hand, we carefully regulate the number of compression

operations and also develop an efficient method to resolve

the imbalance in collective communication introduced by

the error-bounded lossy compression.

• To address challenge C , we customize SZx to cater to

the specific needs of collective communication. Specif-

ically, we redesign the compression workflow of SZx

and implement a pipelined version of SZx to overlap

compression and communication. As a result, we signif-

icantly decrease the communication cost of our C-Coll

framework by up to 4.9×.

• To prove the error-bounded nature of the C-Coll frame-

work, we perform an in-depth mathematical analysis

to derive the limited impact of lossy compression on

error propagation. Theoretical analysis demonstrates that

the final error of collective data movement framework

of C-Coll can be well-bounded within the compression

error bound set by the user. For collective computation

framework, we can derive the final aggregated error is

bounded well with a high probability. For example, if

there are 100 nodes, the aggregated error is bounded in

the range of [− 20
3 ê, 20

3 ê] with a probability of 95.44%,

where ê is the compression error bound.

• To demonstrate the generality of our design, we integrate

C-Coll into multiple collectives, such as MPI Allreduce,

MPI Scatter, and MPI Bcast, and evaluate the perfor-

mance carefully with various scientific datasets generated

by real-world applications (such as Seismic Imaging

[34], Hurricane Simulation [35], and Climate Simula-

tion [36], [37]). Experiments with 128 Xeon Broadwell

compute nodes from a supercomputer show that other

related efforts or baselines exhibit undesired performance

degradation on MPI Allreduce because of the significant

compression overhead. In comparison, our solutionÐ

the lossy-compression-based Allreduce (we call it C-

Allreduce)Ðoutperforms the original MPI Allreduce by

2.1×. Moreover, our compression-based scatter and Bcast

operations (namely C-Scatter and C-Bcast) achieve up

to 1.8× and 2.7× performance improvements compared

with the original MPI Scatter and MPI Bcast. We also

use a real-world use-case (image stacking analysis) to

validate the practical effectiveness of C-Allreduce, which

shows up to 1.5× performance gain over MPI Allreduce,

while preserving a high data integrity/accuracy during the

collective operations.

The rest of the paper is organized as follows: we introduce

background and related work in Section II and detail our

design and optimization in Section III. Evaluation results are

presented in Section IV followed by conclusion and future

work in Section V.

II. BACKGROUND AND RELATED WORK

In this section, we discuss the background and related work.

We first introduce MPI collective communication, followed by

a discussion on high-speed lossy compressors and their inte-

gration with MPI implementations. The focus of our study is

on lossy compression. This emphasis is due to the significantly

lower compression ratios observed with lossless methods when

applied to scientific datasets [14], [15].

A. MPI Collective Communication

There are many types of MPI collective operations, which

can be divided into two sub-categories Ð collective data

movement and collective computation according to their com-

munication patterns.

1) Collective data movement: Collective data movement

includes gather, allgather, scatter, all-to-all, and so on. The

gather operation collects the data from different processes and

stores the collected data into the root process. In comparison,

allgather stores the collected data to every participated process.

As an opposite of gather, the scatter operation divides the

data in the root process and sends the split data to all the

2

processes. The all-to-all operation acts as the ªallscatterº,

which collectively scatters data on each process to each other.

2) Collective computation: Allreduce/reduce are two pop-

ular collective computation operations. We use MPI SUM as

an example to explain the working principle as it is frequently

used. The reduce routine will sum up all the data entries

from all the processes in the same communicator and store

the sum into the root process. The Allreduce does the same

thing but keeps a copy of the sum on every process in that

communicator. Another widely-used operation is the reduce-

scatter, which acts like a combination of the reduce and scatter:

the reduced sum is scattered into all the processes.

B. High-speed Lossy Compressors

Compression developers and scientific researchers have

shown great interest in high-speed lossy compression due to its

ability to achieve a very high compression ratio. SZ [14], [15],

[32] is an example of a fast, error-bounded lossy compressor

that offers performance similar to other compressors, including

FPZIP [38] and SZauto [16]. Another compressor that is

known for its relatively high compression ratios and even

faster compression speed than SZ is ZFP [17]. However,

neither of these compressors can match the speed of SZx [33],

which achieves a compression throughput of 700-900 MB/s

on CPUs [33]. Additionally, our comprehensive experiments

and analysis, as discussed in Section III-C, demonstrate that

SZx is the most suitable lossy compressor for MPI collective

operations. As such, we developed our customized compressor

for MPI collectives based on SZx, which will be detailed in

Section III-C.

C. Lossy Compression-enabled MPI Implementations

Researchers have shown interest in using lossy compression

to improve MPI communication performance for years. Zhou

et al. proposed GPU-compression enhanced point-to-point

communication [25], and several optimized MPI collective

operations [28], [29], [30] using 1D fixed-rate ZFP [17] on

GPUs, but their solutions are either showcasing limited over-

lapping between compression and communication or subject

to the fixed-rate mode compression, leading to the substandard

compression quality, as will be demonstrated later in Section

IV-E. Conversely, our general framework can optimize the col-

lective performance of all MPI collectives while maintaining

controlled errors.

III. C-COLL DESIGN AND OPTIMIZATION

Figure 1 presents the overall design architecture of C-Coll.

We highlight the newly designed modules as green boxes.

The primary contributions lie in the performance optimization

layer and the middleware layer. We carefully characterize the

performance of multiple state-of-the-art error-bounded lossy

compressors in the context of MPI collectives and select

the best-qualified compressor ± SZx, which will be detailed

in Section III-C. We also propose a series of performance

optimization strategies specifically for both of the two col-

lective types (data movement and collective computation),

as indicated in the figure. The corresponding details will be

discussed in Sections III-A1, III-A2, and III-E2.

User Applications/Analysis (Image Stacking , etc.)

C-Coll Interface (C-Scatter, C-Allreduce, etc.)

Data Movement Framework Collective Comp. Framework

Compression Adapter

Error-bounded Lossy
Compression

Application

Interface

MPI P2P Middleware

Abstract Device Interface Library

Performance

Optimization
Reduce

Compression
Overhead

Mitigate Error
Propagation

Overlap
Compression and
Communication

Pipelined
SZxC

-C
o
ll

Fig. 1: Design architecture (yellow box: applications; green

box: new contributed modules; purple box: third-party).

A. Two Proposed Novel Frameworks for Compression-

enhanced Collectives

To integrate lossy compression into MPI collective com-

munications, at least two important aspects must be consid-

ered: performance and accuracy. In general, MPI collective

operations can be divided into two groups: collective data

movements, and collective computation. Instead of directly

using the CPR-P2P method, we propose two frameworks to

implement collective communications for each group, which

can maximize the collective operation performance.

1) Collective data movement framework: In this subsec-

tion, we detail our strategies for addressing the issues of

communication imbalance and compression overhead in our

optimized collective data movement framework. For collective

data movement operations, each process in the same commu-

nicator needs to communicate with each other to exchange

data. If we directly use the CPR-P2P method, the sender needs

to compress the data every time before sending it, and the

receiver is required to decompress the data upon the data

arrival. Most of the compression and decompression overheads

in CPR-P2P, actually, can be avoided by carefully setting the

timing of compression operations, as the original data have not

been modified during the intensive communications. Besides,

the CPR-P2P can cause unbalanced communications in that

input data on different processes have various compressed data

sizes. Such unbalanced communication will slow down the

overall collective performance, resulting in a sub-optimal per-

formance. With our framework, we can balance the communi-

cations with a fixed pipeline size as the compressed data sizes

are decided at the beginning of the intensive communications.

In the following text, we illustrate our idea with two examples:

a ring-based allgather algorithm and a binomial tree broadcast

algorithm. The same philosophy can be easily extended to

other collective algorithms in this category.

Figure 2 shows the high-level comparison of our proposed

framework versus the CPR-P2P in the ring-based allgather

algorithm. In this algorithm, N−1 rounds are required to

get the gathered results on every process, where N is the

number of processes in the communicator. In order to use lossy

compression to reduce communication cost in the ring-based

3

A

B

C

D

E

Node 0

Node 1

Node 2

Node 3

Node 4

Ring-based All-gather:
Round 1

A E

A B

B C

C D

D E

Node 0

Node 1

Node 2

Node 3

Node 4

Ring-based All-gather:
Round 2

A C D E

A B D E

A B C E

A B C D

B C D E

Node 0

Node 1

Node 2

Node 3

Node 4

Ring-based All-gather:
Round N-1

A

B

C

D

E

Node 0

Node 1

Node 2

Node 3

Node 4

Ring-based All-gather:
Round 1

A Cc Dc Ec

Ac B Dc Ec

Ac Bc C Ec

Ac Bc Cc D

Bc Cc Dc E

Node 0

Node 1

Node 2

Node 3

Node 4

Ring-based All-gather:
Round N-1

A Ec

Ac B

Bc C

Cc D

Dc E

Node 0

Node 1

Node 2

Node 3

Node 4

Ring-based All-gather:
Round 2

…… ……

Compression-enabled Point-
to-Point Communication

Our Proposed
Framework

1 CPR 1 DEC VS 1 CPR 0 DEC

Compression (CPR) Decompression (DEC)Transfer data

1 CPR 1 DEC VS 0 CPR 0 DEC

1 CPR 1 DEC VS 0 CPR N-1 DEC

P
e
rf

o
rm

 R
in

g
-b

a
s
e

d
 A

ll-
g

a
th

e
r

b
y
 N

-1
 R

o
u

n
d

s

Fig. 2: High-level design of our collective data movement

framework in the ring-based allgather algorithm to mitigate

compression error propagation. A means the original data and

Ac means the compressed data. This rule applies to other data

chunks as well. This algorithm completes in N−1 rounds,

where N is the number of processes.

algorithm, the straight-forward idea is performing compres-

sion and decompression at each round. Instead, our design

does not decompress the received data until the last round,

thus significantly decreasing the compression overhead from

(N−1)·Tchunk to Tchunk, where Tchunk is the compression

cost of one chunk. When N is large, our novel framework

could have nearly N× better performance compared with

CPR-P2P in terms of compression. Note that the decompres-

sion cost remains the same.

Figure 3 presents a similar comparison in the binomial

tree broadcast algorithm. There are log2N rounds before the

completion, where N refers to the total process count. We

notice that our proposed framework could reduce the compres-

sion and decompression costs from log2N ·(Tcomp+Tdecom) to

Tcomp+Tdecom and the performance improvement is log2N×,

where Tcomp and Tdecom are the compression time and de-

compression time of the data at the root process, respectively.

Besides the compression cost, the CPR-P2P method can

lead to an undesirable error propagation issue during collective

sends and receives, as the same data chunk undergoes multiple

rounds of compression and decompression. Our framework

also solves this issue by compressing the same data chunk

for only one time. Similar to the analysis of compression

overhead, for the absolute error bounded compression, our

proposed framework can decrease the worst case accuracy loss

by (N−1)× and (log2N)× in the ring-based allgather and

binomial tree broadcast algorithm, respectively.

2) Collective computation framework: For collective com-

putation routines, the data entries from all processes in the

same communicator need to collectively compute with each

other. Unlike in the case of collective data movement, the data

transferred in this communication pattern can be updated. As

a result, the previous framework cannot be utilized here thus

we need to propose a new framework. Despite the updated

transferred data precluding us from diminishing compression,

we find an opportunity to hide communication inside the com-

pression and decompression. To clearly elaborate our proposed

design, we use the ring-based reduce scatter algorithm as an

instance. Note that this framework can be easily extended to

other collective computation operations.

0

1

23

7 5 6 4

Compression (CPR)

Decompression (DEC)

Round 1

Round 2

Round 3

1

23

7 5 6 4

After all communications,
perform decompression from
P1 to P7

Round 1

Round 2

Round 3

CPR-P2P Our Proposed Framework

Log2P(CPR+DEC) versus CPR+DEC

0

Fig. 3: High-level design of our collective data movement

framework in the binomial tree broadcast algorithm. It com-

pletes in log2N rounds, where N is the number of processes.

Our proposed framework for collective computation is de-

picted in Figure 4. It employs a ring-based reduce scatter

algorithm, where each process is required to exchange message

chunks with its neighboring processes. For large datasets,

these chunk sizes become substantial as they are determined

by dividing the size of the input data by the number of

processes. In the initial CPR-P2P model, compression and

decompression occur before and after any communication,

respectively. Consequently, a single round incurs three types

of overhead: compression/decompression for one message

chunk, send/receive operations for the compressed message

chunk, and reduction operation for one message chunk. Typ-

ically, the compression-related overhead is more significant

than the send/receive overhead, as compressed data sizes are

considerably smaller than their original counterparts. In our

redesigned approach, we significantly mitigate the send/receive

overhead by actively pulling communication progress within

the compression and decompression phases. This substantially

reduces the overall communication time.

B. Theoretical Analysis of Error Propagation in C-Coll

In this section, we prove the error-bounding nature of our

C-Coll framework mathematically. In the following analysis,

4

Since the compression error is bounded by the error bound

êi and the error follows the norm distribution, we can assume

that êi ≈ 3σi (êi bounded to 3σi with probability of 99.74%).

Corollary 1. Based on the above assumption, the final aggre-

gated error falls within the interval [− 2
3

√
nê, 2

3

√
nê] with the

probability of 95.44%. For example, if there are 100 nodes,

the final aggregated error will be bounded within the range

[− 20
3 ê, 20

3 ê] with a probability of 95.44%.

Corollary 2. Being similar to the Sum operation, the final

aggregated error for the Average operation in collective com-

putation framework follows the normal distribution êavg ∼

N(0, σ2

n
). The final aggregated error will be reduced extremely

compared to the original error by n times.

Theorem 2. For the Max, Min operations, the final error fol-

lows the normal distribution ẽmax,min ∼ N(0, (2− n+2
2n)σ2).

Proof. Since we need to compare the data from the neighbored

node gradually, there is a 1
2 probability that we can choose the

non-compressed data. Otherwise, the selected data will contain

an error within the error bound ê. Therefore, the variance of the

final aggregated error can be calculated as following formula

(4):

1

2n
nσ2 +

1

2n−1
(n− 1)σ2 + ...+

1

2
σ2 = (2−

n+ 2

2n
)σ2 (4)

C. Identify Best-qualified High-speed Error-bounded Lossy

Compressor

In this section, we compare various lossy compressors

and select the most suitable one for MPI collectives. As

shown in the previous analysis, in addition to controlling the

data distortion by error bounds, the compression throughput

and compression ratio are two critical metrics to consider.

According to the prior literature [14], [16], [39], [32], [33],

ZFP and SZx exhibit much higher compression speed than

other compressors, including SZ2 [32], SZ3 [39], FPZIP [38],

and Auto-SZ [16]. Therefore, we focus on ZFP and SZx in

particular and select the best-qualified one for compression-

enabled collective communication.

In ZFP, users can set a fixed compression rate in the fixed-

rate (FXR) mode or a fixed absolute error bound in the fixed-

accuracy (ABS) mode. The two modes have their particular

pros and cons. The advantage of the FXR is that it brings up

substantial convenience in some use cases that require knowing

the compressed data size in advance. In comparison with FXR

mode, ZFP’s ABS mode features a much higher compression

quality on scientific datasets (i.e., higher compression ratio

with the same reconstructed data quality), as verified in [31].

We briefly analyze the key reason why ZFP’s ABS mode has

higher compression quality than its FXR mode in the following

text. ZFP divides the dataset into small data blocks during

the compression. Unlike ZFP(ABS) which allows variable

compressed size for each block, ZFP(FXR) strictly forces

each block to have the same compression ratio, which may

inevitably degrade the quality of reconstructed data in turn.

Moreover, the FXR mode cannot control the error bound,

which may cause fairly high compression errors on some data

points unexpectedly. Compared with ZFP, SZx is an ultra-fast

error-bounded compressor driven by the fixed-accuracy mode.

TABLE I: OVERALL COMPRESSION/DECOMPRESSION

THROUGHPUT (MB/S)

Datasets RTM Hurricane CESM-ATM

SZx

ABS Com Decom Com Decom Com Decom
1E-2 1742 3309 1687 3640 666 1251
1E-3 1479 2723 895 1659 533 918
1E-4 1288 2215 644 1168 526 822

ZFP(ABS)

ABS Com Decom Com Decom Com Decom
1E-2 1383 1444 492 634 240 273
1E-3 1082 1141 307 397 170 191
1E-4 783 811 170 209 128 136

ZFP(FXR)

FXR Com Decom Com Decom Com Decom
4 610 601 251 319 335 397
8 438 413 129 142 200 203

16 324 311 82 81 119 112

TABLE II: COMPRESSION RATIOS (ORIGINAL DATA

SIZE / COMPRESSED DATA SIZE)

Datasets RTM Hurricane CESM-ATM

SZx

ABS min avg max min avg max min avg max
1E-2 88 116.3 124.1 121 123.1 124.1 4.9 8.5 22.8
1E-3 26.1 49.4 115.1 14.9 17.4 29.1 3.3 5.1 13.1
1E-4 9.5 30.4 111.3 6.9 7.2 8.8 2.4 3.4 8

ZFP(ABS)

ABS min avg max min avg max min avg max
1E-2 67.7 87.6 125.2 18.1 18.3 18.6 4.7 8.1 23.1
1E-3 30.6 58.4 123.2 10.5 10.7 11 3.4 5.6 15
1E-4 13.4 38 120.1 5.4 5.5 5.8 2.4 3.8 9.7

ZFP(FXR)

FXR min avg max min avg max min avg max
4 8 8 8 8 8 8 8 8 8
8 4 4 4 4 4 4 4 4 4
16 2 2 2 2 2 2 2 2 2

TABLE III: COMPRESSION QUALITIES (PSNR)

Datasets RTM Hurricane CESM-ATM

SZx

ABS min avg max min avg max min avg max
1E-2 31.2 37.3 61.5 25.2 26.2 26.8 46 50.6 55.9
1E-3 40.6 51.4 80.9 40.3 42 42.8 64.2 70.3 73.4
1E-4 60.2 72 102.6 62.4 63.6 64.3 82.8 93.5 97.2

ZFP(ABS)

ABS min avg max min avg max min avg max
1E-2 36.6 45.7 71.8 33 34 34.3 52.6 56.8 61
1E-3 49.2 59.5 88.2 47.8 49 50 69.1 73.2 77.6
1E-4 69.3 80.1 111 68.5 69.7 70.4 92.2 96.6 100.6

ZFP(FXR)

FXR min avg max min avg max min avg max
4 41.9 46.4 56.1 30.9 31.6 32.3 30.3 34 39.9
8 66.7 71.6 80.1 56 57.8 64.9 58.8 60.5 62.9

16 113.8 118.5 127.3 103.7 105.5 113 106.4 108.1 110.6

In addition to the above analysis, we also compare

SZx, ZFP(ABS), and ZFP(FXR) regarding the compression

throughput, ratio, and quality, using different datasets with

various error bounds or rates, as shown in Table I, II, and III.

To ensure a fair evaluation, all compression and decompression

processes were executed using a single thread on an Intel Xeon

E5-2695v4 CPU. We adopt the 1D compression mode in that

the dimensional information will have to be skipped due to

the 1D chunk-wise design in most of the MPI collectives.

The information about the datasets we used here is detailed

in Table IV, which will be found in Section IV-A. Because

of the space limit, we use the QVAPORf and CLOUD fields

in the Hurricane and CESM-ATM dataset, respectively, in our

experiments, and other fields exhibit very similar results. We

observe that SZx is much faster than ZFP(ABS) by up to

4.1× in compression and 5.7× in decompression with similar

compression ratios and qualities. Additionally, with similar

compression qualities, ZFP(FXR) has the lowest compression

speed and compression ratio compared to both ZFP(ABS)

and SZx. Therefore, we develop our customized compressor

based on SZx in terms of the context of MPI collectives. For

6

the purpose of comparison, we also implement compression-

enabled point-to-point communication-based collectives based

on both ZFP(FXR) and ZFP(ABS), which serve as baselines.

D. Characterization of Performance Bottlenecks

We integrate SZx into point-to-point communication of the

ring-based allreduce algorithm, in order to understand the key

bottlenecks of the collective performance, which will be a

fundamental work to guide our optimization strategies. In this

characterization, we use ring-based allreduce which serves

as a very good example, because it consists of both col-

lective data movement (allgather) and collective computation

(reduce scatter). Figure 7 presents the detailed performance

breakdown for direct integration of SZx under a series of

data sizes. Our analysis reveals that in the original ring-

based allreduce algorithm, the all-gather operation accounts for

approximately 60% of the overall execution time, as the com-

munications are not overlapped at all with each other, unlike

the reduce-scatter stage. The Wait operation is the second most

time-consuming one, which waits for the completion of non-

blocking send and receives before conducting the reduction

operation. The remaining operations in the original allreduce

algorithm include Memcpy (local data copies), Reduction

(Reduce operations), and Others (data allocations and other

calculations), which together constitute about 20% of the over-

all execution time. After integrating the SZx, the bottleneck

turns into the ComDecom (compression and decompression)

as the data needs to be compressed before being sent out and

needs to be decompressed every time the receiver receives

them. We also observe a reduction in Allgather and Wait times,

suggesting a decrease in transferred data, and both of the MPI-

related time can be further optimized. However, the Others

part also takes a significant amount, specifically 23% in the

278MB case. This is because the SZx requires users to free

compression-generated buffers after the compressor is called,

resulting in a significant overhead.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2

A
D D
I

A
D D
I

A
D D
I

A
D D
I

N
o

rm
a

li
ze

d
 E

xe
cu

ti
o

n
 T

im
e ComDecom Allgather Memcpy

Wait Reduction Others

78MB 278MB 478MB 678MB

Fig. 7: Compare the performance of AD(Original

MPI Allreduce) and the DI(Direct Integration) of SZx

from 78MB to 678MB with a 200MB step.

E. Step-wise Optimizations

In this subsection, we detail our step-wise optimization

strategies, a principal contribution of this paper. To facili-

tate explanation, we present our implementation of a ring-

based allreduce algorithm that incorporates lossy compression.

These optimization strategies are applicable to other collective

operations as well. Notably, in the ring-based allreduce, the

data transfer required for each process is just
2(N−1)

N
·Dinput,

where Dinput represents the input data size and N is the

number of processes. Thus, this design is highly efficient

for processing long messages. Furthermore, our integration

of lossy compression significantly enhances the efficiency of

collective communication involving long messages. We have

termed our lossy-compression-enabled MPI Allreduce as C-

Allreduce, with ‘C’ denoting compression. Subsequently, we

will discuss the design and implementation specifics of C-

Allreduce in a structured, step-by-step approach.

1) Utilize our collective data movement framework:

To reduce the compression overhead and balance commu-

nications, we utilize the data movement framework that we

presented in Section III-A1. At the beginning, every process

compresses its local data and stores the compressed data

size. Then, every process synchronizes with each other to

collect the compressed data sizes in a local integer array

compressed sizes. As the compressed data size only has four

bytes, this step is very fast. After that, all processes get the

sum of all the compressed data sizes, noted as total count.

Then, each process communicates with each other with a

fixed pipeline size until every process has sent to send =
total count − compressed sizes[send rank] and received

to recv = total count − compressed sizes[self rank]
from other processes in a ring communication pattern. After

all communications end, every process starts to decompress

all the received compressed data and store the decompressed

data in the receive buffer. Note that they do not need to

decompress the data that are compressed by themselves. After

this step, we can significantly decrease the time spent by

compression and allgather communications compared with

the direct integration of SZx. Besides, our solution can also

preserve the quality/accuracy of the data very well because of

the error-bounding feature, which will be demonstrated later

in Section IV-E.

2) Customize SZx to reduce communication overhead with

our collective computation framework: In order to use our

collective computation framework in the reduce-scatter stage

of the ring-based allreduce algorithm, we need to redesign the

compression workflow of SZx so that we can consistently poll

the progress of the Isend and Irecv inside of the compression

and decompression. Therefore, we design and implement the

PIPE-SZx (pipelined SZx) based on the original SZx. Instead

of compressing the original data as a whole, we divide the

compression process into small chunks, each of which handles

5120 data points. Between the compression of two adjacent

chunks, we actively poll the communication progress of the

non-blocking receive. However, the compressed data of each

chunk cannot be simply combined together, otherwise the

compressed data cannot be correctly decompressed because

each compressed chunk is of variable uncertain length. To

solve this problem, we decide to store the compressed data of

all chunks in the same output buffer and pre-allocate enough

memory space (four bytes per chunk, small memory consump-

tion) at the front of the buffer for storing the compressed data

sizes of those chunks together (essentially a kind of index), in-

stead of storing them along with the compressed data chunks.

7

Such a design is more cache-friendly, thus having lower

overhead. During the decompression, we maintain a chunk-

starting-location pointer based on the recorded compressed

chunk sizes to tell the algorithm where the decompression

operation should start for each chunk. We repeat this process

chunk by chunk and poll the progress of the non-blocking send

between decompression chunks. Through this optimization, we

can hide the communication in the reduce-scatter stage inside

of compression, which further improves the performance of

our C-Allreduce design.

IV. EXPERIMENTAL EVALUATION

In this section, we present and discuss the evaluation results.

A. Experimental Setup

Since inter-node communication is the major bottleneck for

collectives as discussed previously, we utilized a 128-node

cluster with one process per node in our experiments. Each

node is equipped with two Intel Xeon E5-2695v4 Broadwell

processors. Furthermore, each NUMA node contains 64 GB

of DDR4 memory, resulting in a total of 128 GB of memory

per node. The nodes are interconnected via Intel Omni-Path

Architecture (OPA), providing a maximum message rate of 97

million per second and a bandwidth of 100 Gbps.

TABLE IV: Information of The Scientific Datasets

Applications # files Dimensions Descriptions

RTM[34] 70 849×849×235 Seismic Wave

Hurricane[35] 48×13 100×500×500 Weather Simulation

CESM-ATM[40] 26×33 1800×3600 Climate Simulation

MPI collectives are common operations used in the simula-

tion analysis. For instance, generating stacking images in RTM

(essentially an allreduce sum operation) is a typical real-world

example [41], which will be demonstrated at the end of this

section. We also utilize various datasets from a series of appli-

cations, including the reverse time migration (RTM) dataset,

Hurricane dataset, and CESM-ATM dataset, to evaluate our

solution. Table IV shows the detailed specifications of these

datasets. Our baselines consist of original MPI collectives in

MPICH 4.1.1, MPI collectives implemented by compression-

enabled point-to-point communications with SZx, fix-accuracy

ZFP, and fix-rate ZFP (version 0.5.5). For our experiments, we

adopt a two-stage approach, including a warm-up stage and an

execution stage. We conduct 10 runs for each stage and report

the average results to present the general performance.

B. Step-wise Optimizations to C-Allreduce with Performance

Analysis

In this section, we carry out optimizations to our C-

Allreduce (C-Coll enhanced Allreduce) integrated with SZx

step by step and show the performance on 16 Broadwell nodes.

The ring-based allreduce that we implement contains a reduce-

scatter stage and an allgather stage. Thus, we breakdown the

total execution time into several parts: ComDecom (i.e., the

time needed to compress and decompress data), Allgather

(i.e., the time required to transfer data in the allgather stage),

TABLE V: Step-wise Optimizations of C-Allreduce

Method (Abbr.) Description about the Allreduce implementation

Original MPI Allreduce (AD) No compression

Direct Integration (DI) Implemented with CPRP2P

Novel Design (ND) Optimized by our collective data movement framework

Overlapped Optimization (Overlap) Optimized by our collective computation framework

Memcpy (i.e., the time spent on coping data in the reduce-

scatter stage), Wait (i.e., the non-overlapped time spent on

transferring data in the reduce-scatter stage), Reduction (i.e.,

the time required to do reduction operation), and Others (i.e.,

the time needed to do other data allocation and calcula-

tions). We adopt the RTM dataset to demonstrate our step-

wise optimizations, which is the largest one among all three

representative scientific datasets we evaluate. All the variants

benchmarked in the following contexts are summarized in

Table V.

1) Evaluating our collective data movement framework:

Figure 8 shows the performance improvement achieved by

our novel design in the allgather stage for data sizes ranging

from 28MB to 678MB. This Novel Design (ND) leverages our

collective data movement framework, resulting in a consider-

able reduction in both compression and decompression time.

Notably, at the data size of 128MB, the ND achieves a speed-

up of up to 1.48× when compared to the Direct Integration

(DI) approach discussed in Section III-D. Additionally, our

balanced communication in Allgather using the ND is up

to 7.1× faster than the unbalanced communication in DI at

628MB. We analyze the key reason why our solution can

obtain a significant performance improvement as follows. In

fact, to overcome the compression bottleneck and balance

MPI communications, we utilize our collective data movement

framework that pre-compresses the data before transmission

and decompresses it after all communications, rather than

using expensive compression-enabled point-to-point commu-

nication (CPR-P2P) in collective routines. This novel design

can significantly reduce the amount of compression required

during collective communication. Using CPR-P2P also brings

unbalanced communications as the compressed data sizes may

vary, but we can balance the communications with a fixed

pipeline size in our new design because we do not need to

compress the data every time before we send it.

Note that using CPR-P2P may accumulate errors during

intensive collective communication, such as ring-based com-

munication, as the same data is repeatedly passed from one

process to another. Therefore, we have utilized our new

framework to ensure that errors in the final results are bounded,

which we discuss in the application evaluation section IV-E.

2) Evaluating reduced communication overhead with our

collective computation framework: We demonstrate the ef-

fectiveness of our collective computation framework in this

section. From Figure 9, it is evident that the carefully over-

lapped version (Overlap) leads to significantly less Wait time

compared with the previous version (ND), resulting in a

performance boost of up to 4.9× for the data size of 678MB.

The rationale for this performance improvement is shown

in the following text. To utilize our collective computation

8

the original Allreduce. Similar to our observation in Section

IV-C1, we found that all compressor-integrated baselines ex-

hibit performance degradation compared to Allreduce, with the

SZx-integrated baseline performing the fastest among them.

TABLE VI: Compression Ratios

Datasets Hurricane CESM-ATM

Fields PRECIPf QGRAUPf CLOUDf Q

CPR 33.8 58.3 39.9 79.1

3) Evaluating with different application datasets: In this

section, we evaluate the performance of our C-Allreduce

and related baselines on different datasets using the error

bound of 1E-4. Due to the page limitation, we only show

the SZx baseline here as it has the best performance among

compression-enabled baselines. The PRECIPf, QGRAUPf, and

CLOUDf fields are from the Hurricane application dataset and

the Q field is originated from the CESM-ATM application

dataset. They have different data distributions and averaged

compression ratios as shown in Table VI. From Figure 13,

we can notice that our C-Allreduce has the best performance

among all the implementations. Specifically, 1.74× and 1.58×
speedups can be achieved in QGRAUPf and PRECIPf fields,

respectively. Such consistent high performance of C-Allreduce

across varied data fields highlights its efficiency and adaptabil-

ity. On the contrary, the fastest compression-enabled baseline

(SZx) still has performance degradation compared with the

original Allreduce due to the limited performance of the CPR-

P2P in all cases.

1.76
1.85 2.08

1.71

0.79 0.79 0.86
0.72

Fig. 13: Compare the performance of our C-Allreduce and

multiple baselines in different application datasets.

Apart from the performance, we also evaluate the ac-

curacy using visualization and numerical metrics including

the widely-used peak signal-to-noise ratio (PSNR) [42] and

normalized root mean squared error (NRMSE) [43]. Fig-

ure 14 represents the visual and numerical evaluation of

our C-Allreduce with the Hurricane application dataset. The

excellent image quality, along with the great PSNR(60.04)

and NRMSE(1E-3) demonstrate that our C-Allreduce delivers

a well-controlled accuracy. The same phenomenon can be

witnessed in the Figure 15, where we evaluate the accuracy of

C-Allreduce with the CESM-ATM application dataset. Thus,

we can conclude that the selected error bound is suitable for

other applications like Hurricane and CESM-ATM.

D. Generalizability Demonstration on Other MPI Collectives

We have demonstrated the high performance of our C-Allred

uce, consisting of C-Allgather and C-Reduce-scatter. To show-

(a) Allreduce w/o compression (b) C-Allreduce

Fig. 14: The visualization and numerical evaluation of the ac-

curacy of our C-Allreduce using Hurricane application dataset.

Here the PSNR and NRMSE of the sub-figure(b) are 60.04 and

1E-3, respectively.

(a) Allreduce w/o compression (b) C-Allreduce

Fig. 15: The visualization and numerical evaluation of the

accuracy of our C-Allreduce using CESM-ATM application

dataset. Here the PSNR and NRMSE of the sub-figure(b) are

59.19 and 1E-3, respectively.

case the generalizability of our frameworks and optimizations,

we also present C-Bcast and C-Scatter, which utilize the

ubiquitous binomial tree algorithm adopted by MPICH. We

conduct experiments on the RTM dataset ranging from 28MB

to 678MB using 16 Broadwell nodes. In Figure 16, we

present the speedups of our C-Scatter and C-Bcast, normalized

against the original MPI Scatter and MPI Bcast (Baseline),

respectively. We also compare our C-Scatter and C-Bcast with

the SZx-integrated CPR-P2P baselines (SZx). Our C-Scatter

is 1.8× faster than Baseline, while our C-Bcast has up to

2.7× speedup compared to Baseline. These performance im-

provements originated from the decreased data transfer volume

and diminished compression overheads from our proposed

frameworks. The speedups are even more significant compared

to our C-Allreduce because collective data movement benefits

more from our frameworks than collective computation. How-

ever, the SZx-integrated CPR-P2P baselines are much slower

than the baseline due to significant compression overheads.

E. Evaluation of Image Stacking Performance and Accuracy

Image stacking is a well-known technique used in various

scientific domains, including climate simulation and geology,

to generate high-quality images by combining different im-

ages. For example, MPI is used by researchers to sum the

individual images into final images [41]. In this experiment,

10

1.8X speedup 1.7X speedup

2.7X speedup

Fig. 16: Generalizability demonstration of our proposed frame-

work and optimizations with MPI Scatter and MPI Bcast

from 28MB to 678MB with a 50MB step.

we conduct image stacking of the RTM dataset on 16 nodes.

As each snapshot has different value ranges, we use the fixed-

accuracy (ABS) mode to compress the data so that each

snapshot contributes a similar amount of errors rather than

letting the snapshots with large value ranges dominate the

errors. Three absolute error bounds (i.e., 1E-2, 1E-3, and 1E-4)

are selected to demonstrate the flexibility between the accuracy

and performance of our C-Allreduce. The same error bounds

are used for the baseline SZx and ZFP(ABS). For ZFP(FXR),

three fixed rates (4, 8, and 16) are selected and the related

compression ratios are 8, 4, and 2.

1.47

1.32 1.24

0.68

0.53 0.49

Fig. 17: Compare the image stacking performance of our C-

Allreduce and multiple baselines in different error bounds for

SZx and ZFP(ABS) and rates for ZFP(FXR).

We show the performance results and validate the high qual-

ity of the stacked images generated under our compression-

integrated MPI collective framework, as shown in Figures

17 and 18, respectively. For our C-Allreduce, we could see

that, with the increase of error bounds, the performance

drops but the quality of the reconstructed image rises. The

highest speedup can be witnessed in the 1E-2 case, where

our C-Allreduce has 1.5× higher performance compared to

the original Allreduce. Nevertheless, the three compression-

integrated baselines (i.e., SZx, ZFP(ABS), and ZFP(FXR)) all

result in performance degradation compared with the original

Allreduce, regardless of the absolute error bounds or rates.

With an error bound of 1E-4, our C-Allreduce shows an

excellent reconstructed image quality, whereas the ZFP(ABS)

integrated baseline with the same error bound cannot achieve

the same quality. This is because that our proposed frame-

works can significantly decrease the error propagation of the

reconstructed data, while the CPR-P2P cannot. Due to the page

limitation, we do not show the reconstructed image of the SZx

integrated baseline as it has even worse quality compared with

ZFP(ABS). Besides, the ZFP(FXR) baseline with a rate of 4

has the worst reconstructed quality and the stacked image is

completely different from the original one, as the fixed-rate

mode cannot ensure a bounded accuracy.

In addition to the visualization evaluation, we complement

our findings with numerical metrics to further demonstrate

the exceptional accuracy of our approach. For an error bound

of 1E-2, our C-Allreduce method achieves a Peak Signal-to-

Noise Ratio (PSNR) [42] of 42.86 and a Normalized Root

Mean Square Error (NRMSE) [43] of 7E-3, which illustrate

a suboptimal data quality. However, when the error bound is

tightened to 1E-3, we observe a notable increase in accuracy,

with the PSNR soaring to 57.97 and the NRMSE dropping to

1E-3, which represent a great data quality. Consistent with

the trends observed in image quality, the highest accuracy

is attained at the 1E-4 error bound. At this threshold, our

approach reaches a PSNR of 79.57 and maintains an NRMSE

of 1E-4. These numerical metrics further validate the well-

controlled accuracy of our method. In a nutshell, our C-

Allreduce integrated with C-Coll framework can remarkably

increase the performance of the original Allreduce and also

preserves the quality of the original datasets very well at the

error bound of 1E-3 and 1E-4 (see Figure 18 (e) and (f)).

(a) Original Data (b) ZFP(FXR)

(c) ZFP(ABS) (d) C-Allreduce(1E-2)

(e) C-Allreduce(1E-3) (f) C-Allreduce(1E-4)

Fig. 18: Compare the reconstructed image qualities of our C-

Allreduce with different ZFP-integrated baselines.

11

V. CONCLUSION AND FUTURE WORK

In this paper, we introduce C-Coll, a novel design for

lossy-compression-integrated MPI collectives that significantly

improves performance with bounded errors. Our two proposed

high-performance frameworks for compression-integrated MPI

collectives, together with customized pipe-lined SZx, enable

us to implement C-Allreduce, which outperforms the original

Allreduce by up to 2.1× while preserving high data qual-

ity. We demonstrate the generalizability of our approaches

through C-Scatter and C-Bcast, which outperform the original

MPI Scatter and MPI Bcast by up to 1.8× and 2.7×, respec-

tively. In summary, our research has addressed the issues of

sub-optimal performance, lack of generality, and unbounded

errors in lossy-compression-integrated MPI collectives, laying

the foundation for future research in this area. Moving for-

ward, we plan to expand our research by implementing more

C-Coll based collectives and deploying our design on other

hardware, such as GPUs and AI accelerators.

ACKNOWLEDGMENT

This research was supported by the Exascale Computing

Project (ECP), Project Number: 17-SC-20-SC, a collaborative

effort of two DOE organizations ± the Office of Science and

the National Nuclear Security Administration, responsible for

the planning and preparation of a capable exascale ecosystem,

including software, applications, hardware, advanced system

engineering and early testbed platforms, to support the nation’s

exascale computing imperative. The material was supported by

the U.S. Department of Energy, Office of Science, Advanced

Scientific Computing Research (ASCR), under contract DE-

AC02-06CH11357, and supported by the National Science

Foundation under Grant OAC-2003709, OAC-2104023, and

OAC-2311875. The experimental resource for this paper was

provided by the Laboratory Computing Resource Center on

the Bebop cluster at Argonne National Laboratory.

REFERENCES

[1] A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda, ªS-
caffe: Co-designing mpi runtimes and caffe for scalable deep learning
on modern gpu clusters,º in Proceedings of the 22nd ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, 2017,
pp. 193±205.

[2] Y. Wang and M. Borland, ªPelegant: A parallel accelerator simula-
tion code for electron generation and tracking,º in AIP Conference
Proceedings, vol. 877, no. 1. American Institute of Physics, 2006,
pp. 241±247.

[3] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., ªTensorflow: A system for large-
scale machine learning,º in 12th {USENIX} symposium on operating
systems design and implementation ({OSDI} 16), 2016, pp. 265±283.

[4] A. Ayala, S. Tomov, X. Luo, H. Shaeik, A. Haidar, G. Bosilca, and
J. Dongarra, ªImpacts of multi-gpu mpi collective communications on
large fft computation,º in 2019 IEEE/ACM Workshop on Exascale MPI
(ExaMPI). IEEE, 2019, pp. 12±18.

[5] A. Jain, A. A. Awan, H. Subramoni, and D. K. Panda, ªScaling
tensorflow, pytorch, and mxnet using mvapich2 for high-performance
deep learning on frontera,º in 2019 IEEE/ACM Third Workshop on
Deep Learning on Supercomputers (DLS). IEEE, 2019, pp. 76±83.

[6] A. M. Abdelmoniem, A. Elzanaty, M.-S. Alouini, and M. Canini, ªAn
efficient statistical-based gradient compression technique for distributed
training systems,º 2021.

[7] K. Simonyan and A. Zisserman, ªVery deep convolutional networks for
large-scale image recognition,º arXiv preprint arXiv:1409.1556, 2015.

[8] K. He, X. Zhang, S. Ren, and J. Sun, ªDeep residual learning for image
recognition,º Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770±778, 2016.

[9] S. Chunduri, S. Parker, P. Balaji, K. Harms, and K. Kumaran, ªChar-
acterization of mpi usage on a production supercomputer,º in SC18:
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2018, pp. 386±400.

[10] M. Bayatpour and M. A. Hashmi, ªSalar: Scalable and adaptive designs
for large message reduction collectives,º in 2018 IEEE International
Conference on Cluster Computing (CLUSTER), 2018, pp. 1±10.

[11] P. Patarasuk and X. Yuan, ªBandwidth optimal all-reduce algorithms for
clusters of workstations,º Journal of Parallel and Distributed Computing,
vol. 69, no. 2, pp. 117±124, 2009.

[12] G. AlmÂasi, P. Heidelberger, C. J. Archer, X. Martorell, C. C. Erway, J. E.
Moreira, B. Steinmacher-Burow, and Y. Zheng, ªOptimization of mpi
collective communication on bluegene/l systems,º in Proceedings of the
19th Annual International Conference on Supercomputing, ser. ICS ’05.
New York, NY, USA: Association for Computing Machinery, 2005, p.
253±262. [Online]. Available: https://doi.org/10.1145/1088149.1088183

[13] R. Thakur, R. Rabenseifner, and W. Gropp, ªOptimization of collective
communication operations in mpich,º The International Journal of High
Performance Computing Applications, vol. 19, no. 1, pp. 49±66, 2005.

[14] S. Di and F. Cappello, ªFast error-bounded lossy hpc data compression
with sz,º in 2016 ieee international parallel and distributed processing
symposium (ipdps). IEEE, 2016, pp. 730±739.

[15] D. Tao, S. Di, and F. Cappello, ªSignificantly improving lossy compres-
sion for scientific data sets based on multidimensional prediction and
error-controlled quantization,º 06 2017.

[16] K. Zhao, S. Di, X. Liang, S. Li, D. Tao, Z. Chen, and F. Cappello, ªSig-
nificantly improving lossy compression for hpc datasets with second-
order prediction and parameter optimization,º in Proceedings of the 29th
International Symposium on High-Performance Parallel and Distributed
Computing, 2020, pp. 89±100.

[17] P. Lindstrom, ªFixed-rate compressed floating-point arrays,º IEEE
Transactions on Visualization and Computer Graphics, vol. 20, pp.
2674±2683, 2014.

[18] L. P. Deutsch, ªGzip file format specification version 4.3,º https :
//datatracker.ietf.org/doc/draft-deutsch-gzip-spec/03/, 1996.

[19] J. loup Gailly and M. Adler, ªzlib,º https://www.zlib.net/.

[20] Y. Collet, ªZstandard ± real-time data compression algorithm,º http:
//facebook.github.io/zstd/, 2015.

[21] X.-C. Wu, S. Di, E. M. Dasgupta, F. Cappello, H. Finkel, Y. Alexeev,
and F. T. Chong, ªFull-state quantum circuit simulation by using data
compression,º in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’19. New York, NY, USA: Association for Computing Machinery,
2019. [Online]. Available: https://doi.org/10.1145/3295500.3356155

[22] S. Li, S. Di, X. Liang, Z. Chen, and F. Cappello, ªOptimizing lossy
compression with adjacent snapshots for n-body simulation data,º in
2018 IEEE International Conference on Big Data (Big Data), 2018, pp.
428±437.

[23] K. Zhao, S. Di, D. Perez, X. Liang, Z. Chen, and F. Cappello, ªMdz:
An efficient error-bounded lossy compressor for molecular dynamics,º in
2022 IEEE 38th International Conference on Data Engineering (ICDE),
2022, pp. 27±40.

[24] A. M. Gok, S. Di, Y. Alexeev, D. Tao, V. Mironov, X. Liang, and
F. Cappello, ªPastri: Error-bounded lossy compression for two-electron
integrals in quantum chemistry,º in 2018 IEEE International Conference
on Cluster Computing (CLUSTER), 2018, pp. 1±11.

[25] Q. Zhou, C. Chu, N. S. Kumar, P. Kousha, S. M. Ghazimirsaeed,
H. Subramoni, and D. K. Panda, ªDesigning high-performance mpi
libraries with on-the-fly compression for modern gpu clusters,º in
2021 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2021, pp. 444±453.

[26] A. Yang, H. Mukka, F. Hesaaraki, and M. Burtscher, ªMpc: A massively
parallel compression algorithm for scientific data,º 2015.

[27] M. TEAM. (2020) MVAPICH2-X 2.3 User Guide. [Online].
Available: https://mvapich.cse.ohio-state.edu/static/media/mvapich/
mvapich2-x-userguide.pdf

[28] Q. Zhou, P. Kousha, Q. Anthony, K. Shafie Khorassani, A. Shafi,
H. Subramoni, and D. K. Panda, ªAccelerating mpi all-to-all
communication with online compression on modern gpu clusters,º

12

in High Performance Computing: 37th International Conference, ISC
High Performance 2022, Hamburg, Germany, May 29 ± June 2, 2022,
Proceedings. Berlin, Heidelberg: Springer-Verlag, 2022, p. 3±25.
[Online]. Available: https://doi.org/10.1007/978-3-031-07312-0 1

[29] Q. Zhou, Q. Anthony, L. Xu, A. Shafi, M. Abduljabbar, H. Subramoni,
and D. K. D. Panda, ªAccelerating distributed deep learning training with
compression assisted allgather and reduce-scatter communication,º in
2023 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2023, pp. 134±144.

[30] Q. Zhou, Q. Anthony, A. Shafi, H. Subramoni, and D. K. D. Panda,
ªAccelerating broadcast communication with gpu compression for deep
learning workloads,º in 2022 IEEE 29th International Conference on
High Performance Computing, Data, and Analytics (HiPC), 2022, pp.
22±31.

[31] R. Underwood, S. Di, J. C. Calhoun, and F. Cappello, ªFraz:
A generic high-fidelity fixed-ratio lossy compression framework for
scientific floating-point data,º in 2020 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). Los Alamitos, CA, USA:
IEEE Computer Society, may 2020, pp. 567±577. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/IPDPS47924.2020.00065

[32] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, and F. Cappello, ªError-
controlled lossy compression optimized for high compression ratios of
scientific datasets,º 12 2018, pp. 438±447.

[33] X. Yu, S. Di, K. Zhao, J. Tian, D. Tao, X. Liang, and F. Cappello,
ªUltrafast error-bounded lossy compression for scientific datasets,º in
Proceedings of the 31st International Symposium on High-Performance
Parallel and Distributed Computing, ser. HPDC ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 159±171.
[Online]. Available: https://doi.org/10.1145/3502181.3531473

[34] S. Kayum et al., ªGeoDRIVE ± a high performance computing flexible
platform for seismic applications,º First Break, vol. 38, no. 2, pp. 97±
100, 2020.

[35] Hurricane ISABEL simulation data, http : / / vis . computer . org /
vis2004contest/data.html, 2004, online.

[36] J. E. Kay and et al., ªThe Community Earth System Model (CESM) large
ensemble project: A community resource for studying climate change
in the presence of internal climate variability,º Bulletin of the American
Meteorological Society, vol. 96, no. 8, pp. 1333±1349, 2015.

[37] J. W. Hurrell, M. M. Holland, P. R. Gent, S. Ghan, J. E. Kay, P. J.
Kushner, J.-F. Lamarque, W. G. Large, D. Lawrence, K. Lindsay et al.,
ªThe community earth system model: a framework for collaborative
research,º Bulletin of the American Meteorological Society, vol. 94,
no. 9, pp. 1339±1360, 2013.

[38] P. Lindstrom and M. Isenburg, ªFast and efficient compression of
floating-point data,º IEEE Transactions on Visualization and Computer
Graphics, vol. 12, no. 5, p. 1245±1250, sep 2006. [Online]. Available:
https://doi.org/10.1109/TVCG.2006.143

[39] K. Zhao, S. Di, M. Dmitriev, T.-L. D. Tonellot, Z. Chen, and F. Cappello,
ªOptimizing error-bounded lossy compression for scientific data by dy-
namic spline interpolation,º in 2021 IEEE 37th International Conference
on Data Engineering (ICDE), 2021, pp. 1643±1654.

[40] K. Zhao, S. Di, X. Lian, S. Li, D. Tao, J. Bessac, Z. Chen, and
F. Cappello, ªSDRBench: Scientific data reduction benchmark for lossy
compressors,º in 2020 IEEE International Conference on Big Data (Big
Data), 2020, pp. 2716±2724.

[41] J. Gurhem, H. Calandra, and S. G. Petiton, ªParallel and distributed task-
based kirchhoff seismic pre-stack depth migration application,º in 2021
20th International Symposium on Parallel and Distributed Computing
(ISPDC), 2021, pp. 65±72.

[42] S. S., R. Ganesan, and R. Isaac, ªExperimental analysis of compacted
satellite image quality using different compression methods,º Advanced
Science, vol. 7, 03 2015.

[43] M. V. Shcherbakov, A. Brebels, N. L. Shcherbakova, A. P. Tyukov, T. A.
Janovsky, V. A. Kamaev et al., ªA survey of forecast error measures,º
World applied sciences journal, vol. 24, no. 24, pp. 171±176, 2013.

13

	Introduction
	Background and Related Work
	MPI Collective Communication
	Collective data movement
	Collective computation

	High-speed Lossy Compressors
	Lossy Compression-enabled MPI Implementations

	C-Coll Design and Optimization
	Two Proposed Novel Frameworks for Compression-enhanced Collectives
	Collective data movement framework
	Collective computation framework

	Theoretical Analysis of Error Propagation in C-Coll
	Identify Best-qualified High-speed Error-bounded Lossy Compressor
	Characterization of Performance Bottlenecks
	Step-wise Optimizations
	Utilize our collective data movement framework
	Customize SZx to reduce communication overhead with our collective computation framework

	Experimental Evaluation
	Experimental Setup
	Step-wise Optimizations to C-Allreduce with Performance Analysis
	Evaluating our collective data movement framework
	Evaluating reduced communication overhead with our collective computation framework
	Evaluating overall running time of different optimizations

	End-to-end Comparisons of C-Allreduce with Baselines
	Evaluating with different data sizes on 128 nodes
	Evaluating with different node numbers with 678MB data
	Evaluating with different application datasets

	Generalizability Demonstration on Other MPI Collectives
	Evaluation of Image Stacking Performance and Accuracy

	Conclusion and Future Work
	References

