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Abstract: Robot teleoperation, a control method allowing human operators to manipulate robotic systems remotely, has become increasingly
popular in construction applications. A significant challenge is the disconnection between the robot sensor data and the human operator’s
sensory processes, creating a sensorimotor mismatch in motor-intensive activities. This disconnection is particularly challenging in motor-
intensive activities that require accurate perception and response. Researchers have started investigating haptic interactions to enhance the
control feedback loop, including simulating contacts, motions, and tactile input. However, although current methodologies have advanced the
field, they often focused on certain aspects and could be further expanded to provide a more comprehensive simulation of the physical
interaction that occurs in typical construction operations. This study designs and tests a comprehensive high-fidelity embodied teleoperation
method that simulates complete real-world physical processes via the physics engine. The proposed method captures all categories of physical
interaction in typical motor-intensive construction tasks, including weight, texture, inertia, impact, balance, rotation, and spring. A human-
subject experiment shows that the proposed method substantially improves performance and human functions in a teleoperated pipe-fitting
task. The results indicate that the proposed multisensory augmentation method significantly enhances performance and user experience,
offering valuable insights for designing innovative robot teleoperation systems for future construction applications. DOI: 10.1061/
JCEMD4.COENG-13916. © 2023 American Society of Civil Engineers.
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Introduction

In recent years, the exploration of human-robot collaboration (HRC)
in various construction operations has surged, with a common
belief that combining the strengths of robotic systems and human
decision-making skills can address productivity and safety concerns
in the industry (Davila Delgado et al. 2019; Liu and Wang 2018).
One promising solution, robot teleoperation, has proven effective
in reducing work-related injuries and enhancing labor utilization
in various tasks (Hokayem and Spong 2006), including construc-
tion assembly (Brizzi et al. 2017), site inspections (Pouliot and
Montambault 2008), and maintenance (Yew et al. 2017). Although
the COVID-19 pandemic has greatly expedited the shift toward tele-
working technologies, particularly in fields with labor-intensive
tasks (Yang et al. 2020), it is important to note that this trend is
also driven by several other factors. These include the increasing

need for operational flexibility, reducing environmental impacts,
and enhancing worker safety across various industries. As men-
tioned previously, one key area of such technologies is robot tele-
operation, which holds great promise for a wide array of tasks in the
construction industry. This includes motor-intensive activities such
as lifting heavy materials, precision drilling, and tasks in hazardous
environments. However, its effectiveness and applicability can vary,
necessitating further research and development to fully realize its
potential (Kazanzides et al. 2021; Weber et al. 2019). With these
advancements, teleoperation can pave the way for the future of con-
struction work and potentially other labor-intensive industries.

Although robot teleoperation is promising, the challenge is still
overwhelming, particularly the design of human-robot interaction
(HRI) that enables shared perception in between human agents and
remote robotic systems in motor-intensive tasks (Lee Pazuchanics
2006; Pittman and LaViola 2014). Some HRI methods rely on visual
feedback, suggesting that there is room for integrating additional sen-
sory feedback for a more holistic approach (Lee Pazuchanics 2006;
Pittman and LaViola 2014). This is not adequate in situations that
require strong situational awareness (Görsch et al. 2020), sophisti-
cated sensorimotor coordination in complex movements (Roja et al.
2016), and intensive motor activities (Paquet et al. 2005). These sce-
narios are commonly found in construction operations, including
large-scale operations such as crane operations and small-scale tasks
such as pipe maintenance. The pipe maintenance task required the
participants to (1) correctly identify the materials and types of the
pipes; (2) apply appropriate grabbing forces to pick up the pipe;
(3) move the pipes along a path to avoid potential collisions; and
(4) insert the pipe into another structure with the correct level of in-
sertion force. This design of the task required the participants to pos-
sess a strong understanding and awareness of the space, to coordinate
their motor actions in a safe and effective manner, and to sense the
construction materials. In such scenarios, visual cues can hardly help
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restore a real sense of physical interaction between the robot and the
remote environment, especially for complex construction scenes
(open environment, changing targets, moving objects, and so on).
The disconnection between the robotic perception and the human
operator’s sensory processes can cause a sensorimotor mismatch
in motor-intensive activities (Kimura et al. 2018).

The exploration of haptic feedback as a solution to these chal-
lenges has proven to be arduous. Technical issues related to the ac-
curate replication of force feedback or the lack of adequate simulation
of complex physical processes are common (Liu et al. 2015). Addi-
tionally, there are knowledge gaps regarding how operators perceive
and respond to different forms of haptic feedback in a construction
teleoperation context (Gong et al. 2023). Furthermore, most existing
haptic feedbacks are simplified for one specific operation, and given
the diversity and variability of construction tasks, it is difficult to
achieve a one-size-fits-all haptics-based solution for construction tele-
operation (Bolopion et al. 2013; Talhan and Jeon 2017).

To address the identified gaps in the field, our research introdu-
ces an “embodied” robot teleoperation system, which uses a mixed
reality (MR) simulator and a high-resolution haptic feedback sys-
tem. This system aims to provide an accurate simulation of the
interactions encountered during remote robot operations, fostering
an immersive sense of telepresence. It combines visual and haptic
feedback to simulate various physical interactions present in labor-
intensive construction tasks.

The paper is structured as follows: the “Literature Review” sec-
tion explores related work and identifies gaps; the “System Design”
section describes the design of the embodied robot teleoperation
system; the “Human-Subject Experiment and Test” section details
the human-subject experiment conducted to test the system’s effi-
cacy; the “Results” section analyzes the experiment’s data and
present findings; the “Discussion” and “Conclusion” sections dem-
onstrate the system’s advantages, summarize the key findings, and
propose the limitations and directions for future research.

Literature Review

Robot Teleoperation in Dexterous Tasks

Robot teleoperation, i.e., human workers manipulating remote ro-
botic systems in complex tasks at a distance (Darvish et al. 2023), is
a promising approach to converging advantages of both robotic sys-
tems and human agents in complex operations (Hokayem and
Spong 2006). As for construction applications, robot teleoperation
has received increasing interest in all kinds of human-robot col-
laboration methods. For example, it has been verified a great
improvement in inspection task completion time for drone control
by integrating augmented reality virtual surrogates with robot
teleoperation (Walker et al. 2019). Nagano et al. (2020) examined
utilizing tactile feedback to support the delicate teleoperation of
construction robots by transmitting delivering contact information
(collision vibrations) to human operators, which indicates an im-
provement in maneuverability. In order to avoid human physical
interaction with dangerous or risky places, Caiza et al. (2020) gen-
erated an easily scalable teleoperation solution using distributed
control schemes to remotely manipulate a KUKA mobile manipu-
lator. Robot teleoperation has also shown potential in dexterous
tasks that require sophisticated motor coordination, such as con-
struction assembly, repair and replacement, and material handling
(Hartmann et al. 2021; Riaz et al. 2020; Yin et al. 2021). These
dexterous tasks are often framed as pick-and-place operations serv-
ing as the building blocks in robot manipulation to accomplish a
variety of industrial applications (Tsai et al. 2014).

Performing dexterous tasks via robot teleoperation presents
unique challenges that include maintaining precise control, under-
standing the task environment, and responding adaptively to dy-
namic conditions (Handa et al. 2020). These challenges become
even more pronounced when such operations need to be carried
out in complex environments, such as construction sites. A growing
body of literature has focused on enabling robots to accomplish
dexterous tasks effectively. For example, brain-computer interfaces
(BCIs) have been explored to enable direct control of a robot using
signals from the operator’s brain (Liu et al. 2021); motion planning
methods use algorithms to determine the optimal movement path
for a robot, reducing the need for direct user control (Gao et al.
2022). Flexible robot teleoperation systems for intelligent oil
fields inspection, assessment, and maintenance (Caiza et al. 2020).
Robot-assisted glovebox teleoperation for nuclear industry material
handling tasks (Tokatli et al. 2021), and augmented visual feedback
systems for assisting manipulation and grasping in robot teleoper-
ation (Arevalo Arboleda et al. 2021).

Without losing the generality, the presented methods can be gen-
erally categorized into geometry planning and sensor-based dy-
namic control methods (Braganza et al. 2006). The geometry
planning method focuses on defining efficient, optimized paths
for robot movement. These methods excel in static or controlled
environments but may struggle when faced with unpredictability
or changes in the task environment. Sensor-based dynamic control
methods rely on real-time feedback from sensors to adapt the ro-
bot’s actions to the current situation. This approach offers the ad-
vantage of being more adaptable to changes and more capable of
handling dynamic or unpredictable conditions, characteristics that
are highly beneficial in a construction setting (Braganza et al.
2006).

Despite the advances in the existing literature to add high-
fidelity visual and physical feedback in human-robot interactions,
many of the efforts have been providing evidence for specific
modalities of feedback, such as tactless for system status changes,
or visuals for main hazard identification. In our research, we con-
centrate on extending sensor-based dynamic control methods by
integrating multisensory feedback, specifically both visual and a
wide spectrum of haptic feedback, into a single teleoperation sys-
tem of robots. This approach enhances the existing body of work by
improving the generalizability and adaptability of robot teleopera-
tion in executing dexterous tasks. The cruciality of integrating
multiple sensory feedback mechanisms in robot teleoperation stems
from the innate multisensory nature of human perception. Relying
on visual feedback alone, as is often the case in current methods,
might not fully exploit the human operator’s ability to comprehend
and interact with their surroundings.

Vision-based sensors are usually used to collect extensive visual
information about the target object to cope with posture uncertainty
(Zhang et al. 2009). These vision-based sensors rely on object-of-
interest extraction (foreground/background segmentation), object
detection, and object identification (Ayachi et al. 2021; Bozkir et al.
2021). Then, vision-based grasp planning is performed, which in-
cludes object position estimate, grasp point determination, and
gripper motion planning (Ichnowski et al. 2020; Jiang et al. 2020;
Kokic et al. 2019). There have also been efforts examining the
vision-based pick-and-place control using visual servo control
methods (Tsai et al. 2014).

However, the quality of visual feedback from vision-based sen-
sors in robot teleoperation is restricted by factors such as faulty
calibration and occlusions. Small inaccuracies in object posture
are thus prevalent, even for well-known objects, and may result
in gripping failures (Pinto and Gupta 2016). Typically, it is impos-
sible to avoid these errors during the grip execution phase if the end

© ASCE 04023129-2 J. Constr. Eng. Manage.

 J. Constr. Eng. Manage., 2023, 149(12): 04023129 

 D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 O

f F
lo

rid
a 

on
 0

9/
06

/2
4.

 C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.

 



effector of the robot arm is not equipped with sensors (Bekiroglu
et al. 2011). The use of haptic and finger force sensors may resolve
issues such as these inaccuracies and gripping failures by providing
additional information about the object’s position and the force
being applied (Higashimori et al. 2005; Shimojo et al. 2010).
Nevertheless, the current haptic feedback solutions remain limited
in effectiveness due to the simplified and domain-specific designs,
which are often incapable of reproducing high-resolution physical
properties such as cutaneous and kinesthetic features (El Rassi and
El Rassi 2020). More details of the state of the art of haptic control
methods are discussed in the following section.

Haptic-Based Human-Robot Interaction

Robot teleoperation requires constant and effective communication
between robots and humans, or HRI (Goodrich and Schultz 2008).
HRI refers to the methods and systems concerning the feedback and
control mechanisms that facilitate seamless integration between hu-
man intentions and robotic responsiveness (Al-Mouhamed et al.
2008; Burdea and Zhuang 1991; Hirche and Buss 2012). The suc-
cessful robot teleoperation builds on the effective design of HRI
methods perception, including the feedback stimulation and the
control of remote systems (Al-Mouhamed et al. 2008; Burdea and
Zhuang 1991; Hirche and Buss 2012). Specifically, human sensa-
tion and perception of robotic workspace highly rely on created
sensations via HRI. As well, shared perception assists in robots’
comprehension of human commands (Drury et al. 2003).

Recent advances in interfaces inspired the focus on enhanced
HRI with trustworthy, safe, and efficient human-robot perception
(Bonci et al. 2021). Advanced sensor technologies improved robot
capabilities to perceive environment information, monitor human
behaviors, and plan appropriate responses (Ishida et al. 2018;
Peternel et al. 2017). Furthermore, the literature has identified that
a variety of perceptual modalities of humans, such as visual, audi-
tory, and haptic feedback, contribute to generating a proper percep-
tion of the workspace and eventually affect the teleoperated task
performance (Boessenkool et al. 2013; Chen et al. 2007; Sallnäs
et al. 2000). Especially, haptics plays an important role in shared
perception due to its physical interactions with the environment and
natural feedback to humans (Biswas and Visell 2021).

Haptic feedback for teleoperation refers to the sensory informa-
tion derived from mechanoreceptors embedded in the skin (cutane-
ous input), muscles, tendons, and joints (kinesthetic inputs) provided
to the human operator (Lederman and Klatzky 2009). Cutaneous
stimuli enable humans to recognize the local properties of objects
such as shapes, edges, and textures, which relies on measures of the
location, intensity, direction, and timing of contact forces on the fin-
gertips (Birznieks et al. 2001; Johnson 2001). Kinesthetic stimuli can
provide the position, velocity, force, and torque of objects by means
of receptors in muscles and joints (Edin and Johansson 1995;
Hayward et al. 2004). Haptic feedback with both cutaneous and
kinesthetic stimuli has been proven to play an important role in
enhancing the performance of robot teleoperation including micro-
assembly (Pacchierotti et al. 2017, 2016), palpation (Gwilliam et al.
2009; Pacchierotti et al. 2015b), and pipe inspection (Zhu et al.
2022b). The performance in terms of completion time, accuracy,
and peak and mean exerted force (Bimbo et al. 2017; Moody
et al. 2002; Pacchierotti et al. 2015a) can be improved based on
the haptic feedback.

Recently, the literature has shown a great interest in testing the
control of robotic arms through haptic feedback. For example, Fang
et al. (2017) used 18 inertial measurement units (IMUs) to track the
arm and finger movements of the operator to control the robot.
However, the experiment requires the users to keep their bodies

stationary, which can limit the freedom of the control of the robotic
arm. Haptic gloves, such as the Robotics and Mechatronics Lab
(RML) glove (Zhou and Ben-Tzvi 2014), ExoPhalanx (Fujimoto
et al. 2013), and other haptic gloves (Li et al. 2019; Pacchierotti
et al. 2015b) can control the robotic arm with a higher degree
of freedom. Besides IMUs and gloves, force feedback systems have
also been utilized in robot-assisted systems for medical (Pierrot
et al. 1999), diseases (Kaminski et al. 2020), and robot cooperation
(Qian et al. 2020). Haptic feedback is used to bridge the gap of
physical sense between the operator and the remote robot for
teleoperation tasks (Pinskier et al. 2016). Compared with other
feedback modalities, haptics plays a more essential role because
it allows the human operator to feel and interact with remote
environments physically, rather than passively observe them
(Biswas and Visell 2021).

Despite the well-recognized benefits of using haptic feedback in
robot teleoperation, two major problems are still present. First,
most existing haptic simulation methods are simplified in the sense
that only one or a few specific physical interactions can be simu-
lated. Most haptic feedback focuses on indicating binary changes of
surface contact (Horie et al. 2021), pressure change (Li et al. 2019),
and collision (Singh et al. 2020). Few efforts have been made to
simulate the combined stimuli of cutaneous and kinesthetic as well
as the physical properties of gravity, inertia, impact, friction, and so
on. This limitation may be due to the complexity of reproducing
complete physical processes given specially purposed devices,
as well as the domain-specific focus (Sheridan 2016).

Second, although current systems have made significant progress,
there still remains a challenge in accurately simulating the com-
plex physical processes of a remote workplace and matching the
variety and complexity of motor-intensive operations (Lelevé
et al. 2020). The development of methods for effectively and ef-
ficiently simulating physical interactions in robot teleoperation
remains an active area of research. Other limitations of existing
haptic feedback systems may include the accessibility to smaller
workspaces, restricted operator’s mobility, and system stability and
performance (Dangxiao et al. 2019; Ishida et al. 2018). In addition,
although some successful works have been made in examining the
integration of multisensory processes via visual and haptic simu-
lators, there are further opportunities to enhance this integration,
leading to more comprehensive and realistic teleoperation experien-
ces. A combination of visuomotor and haptomotor has the potential
to improve the situation awareness of the HRI (Camponogara and
Volcic 2019).

System Design

System Architecture

The proposed embodied teleoperation system, named Haptobot,
consists of four main modules, including digital twinning module
(DT), simulation augmentation module (including visual and haptic
augmentations) (SA), human interface (HI), and robotic control
(RC). The DT module reproduces and simulates remote workplaces
including both the geometries and the complete real-world physical
processes via game engines. Based on the streaming data from the
DT module, the SA module optimizes the feedback data and gen-
erates high-resolution renderings of the remote scene and stimuli of
cutaneous and kinesthetic feedback via a haptic device. This is due
to the fact that captured sensor data from remote robots may be
subject to sparsity issues, meaning that the data can be incomplete
or have gaps due to various reasons such as sensor limitations or
environmental interference. The SA module helps to fill these gaps,
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enhancing the fidelity of the haptic feedback by providing a more
complete and detailed representation of the remote environment.

Our HI module integrates a virtual reality (VR) headset with
TouchX haptic devices (3D Systems, Rock Hill, South Carolina),
advancing from the three-degrees-of-freedom Novint Falcon de-
vice (Novint Technologies, Albuquerque, New Mexico) used in
the pioneering study by Martin and Hillier (2009). The TouchX
device was adopted because the device allows six degrees of free-
dom tactile interaction including rotation, bringing us closer to
simulating real physical interactions in robotic teleoperation, fur-
ther increasing the intuitive of teleoperation methods in the con-
struction industry. Based on the feedback information, human
operators can use the haptic device to control the robot to finish
the pick and place task. Fig. 1 shows the architecture of the
system.

As illustrated in Fig. 1, for the DT module, the robotic specifi-
cations and unified robot description format (URDF) are used to
build a virtual robot that replicates the same states of the real robot.
The locomotion and manipulation of the grabber are controlled by
the human operator. The poses of robot joints are calculated based on
the inverse kinematics (IK) algorithm introduced by Aristidou et al.
(2018), and the pressure force of the grabber can be adjusted by the
pressure sensor. The physics interactions between the robot and the
objects are monitored by collision detection and contact generation
functions. All physics interactions are based on Newton’s laws of
motion. Newton’s laws of motion are three basic laws of classical
mechanics that describe the relationship between the motion of
an object and the forces acting on it (White 1984).

The SA module provides both augmented visual feedback
[mesh, texture, and three-dimensional (3D) modeling information of
the object] and physical feedback (seven haptic feedbacks) to the HI
module. The human operator can wear an HTC VR headset (HTC
Corporation, New Taipei City, Taiwan) to display the first-person
view (FPV) from the remote robot, feel haptic feedback based on
the TouchX haptic device, and use controllers to send commands
for the gripper’s pressure force as well as the robotic end-effector’s
target pose to control the state of the robot, as shown in Fig. 2.

Augmented Haptic Simulation

In order to realistically simulate haptic feedback in the system in
the embodied way, we designed seven physical force modes, in-
cluding weight, texture, inertia, impact, balance, rotation, and
spring. When the human operator controls the robot, basic proper-
ties of objects such as mass, velocity, and acceleration will be col-
lected to calculate the force feedback. The realistic force feedback
will be generated based on the Newton’s laws of motion. However,
these equations are not directly taken from Newton’s laws. Instead,
we have adapted these laws to suit our teleoperation system and
haptic device. To accommodate the haptic device’s force output,
the input force will be converted to a range of zero to one based
on the tanh function. This approach of customizing fundamental
physical principles to our specific use case is commonly used in
the field of haptic feedback and teleoperation system design. The
details about how the seven modes are realized and modeled are
described in the following subsections.

Weight
Weight models the gravity applied to the object, which should be
generated in the system when an object is lifted and moved by the
operator. The direction of this force feedback should always be to-
ward the ground. In Unity version 2020.1.9f1, volume and material
(with density) properties were set for each object, and the value of
weight force will be calculated as Eq. (1)

Fweight ¼
eρ ·V=50 − 1

eρ ·V=50 þ 1
ð1Þ

where ρ = density of the object; and V = volume of the object. A
tanh function is applied in this equation to adapt the force output to
a range of zero to one.

Texture
Texture models the force resisting the relative motion of solid sur-
faces, fluid layers, and material elements sliding against each other.
In our design, texture forces are created when an operator contacts
an object and causes relative motion on the contact surface.

Fig. 1. Architecture of the embodied teleoperation system. (Images by authors.)
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Essentially, it is a representation of kinetic friction, which is influ-
enced by the contact surface properties and forces exerted on the
surface. In Unity, we configured the kinetic friction coefficient as
the object material property and reduced the applied force to a con-
stant valve to emphasize the properties of the object. The force
should be in the opposite direction of the motion, and its magnitude
is determined by a mathematical formula Eq. (2)

Ftexture ¼
e2·μk − 1

e2·μk þ 1
ð2Þ

where μk = kinetic friction coefficient of the surface.

Inertia
Inertia models the inertial effect when the operator is moving an
object, which is the resistance of any physical object to a change
in its velocity. Therefore, the inertia force should always be oppo-
site to the acceleration, and the value should be equal to the product
of acceleration and mass of the body. In Unity, inertial forces are
created when an operator grabs and moves an object. In our system,
the inertial force was converted to a value between zero and one
using Eq. (3)

Finertia ¼
em·a=50 − 1

em·a=50 þ 1
ð3Þ

wherem ¼ ρV is the mass of the object; and a = acceleration of the
object.

Impact
Impact is a momentary force generated during a collision. It is es-
sentially the impulse of force divided by the collision time, which
indicates the momentum change within a limited time. It should
be generated simultaneously and then disappears shortly. In Unity,
impact forces are created when an operator grabs an object and
impacts it with another object, or when the operator collides with
an object. In our system, we set the collision timeΔt ¼ 0.1 s for all
the collisions. The impulse of force for the object being collided is
calculated as the impact force according to Newton’s third law of
motion, as illustrated in Eq. (4)

Fimpact ¼
em·Δv

Δt=500 − 1

em·Δv
Δt=500 þ 1

ð4Þ

where m = mass of the object being collided; Δv = velocity
change of the object during the collision; and Δtð¼ 0.1 sÞ = colli-
sion time.

Balance
Balance models how far an object deviates from the balance point.
It is a force type specially designed for tasks with balance require-
ments, such as tower crane antisway control developed by Zhu et al.
(2022a). We used the moment as the measurement of the deviation,
which is the product of mass and distance. In our design, two haptic
devices are connected with a 3D-printed bar. The operator can hold
the center and sense the deviation of the center of gravity. In Unity,
the operator can control two haptic devices to grab two sides of an
object, and the force feedback from the two devices indicates the
balance state of the object. The balance force is calculated as per
Eq. (5)

Fbalance ¼
em·L=25 − 1

em·L=25 þ 1
ð5Þ

where m = mass of the content objects; and L = distance from the
center of gravity to the balance point.

Rotation
Rotation models another force type specially designed for specific
tasks, such as valve operation. To rotate a valve, operators should
apply sufficient force tangential to the valve until a necessary
torque M is reached. There should be less force needed to rotate
the valve when the operator applies the force further away from the
axis of rotation. We realistically reproduced this process in the
system by the function indicated in Eq. (6)

Frotation ¼
eðM=LÞ=25 − 1

eðM=LÞ=25 þ 1
ð6Þ

whereM = torque required to rotate a valve; and L = distance from
the operator force point to the valve’s axis of rotation.

Spring Force
Finally, spring force models the force needed to extend or compress
a spring by some distance scales linearly with respect to that
distance. In Unity, the spring force will only take effect when
the operator interacts with the object with the spring component.

Fig. 2. Experiment field and device setup.
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In this system, the spring force was converted to a value between
zero and one using Eq. (7)

Fspring ¼
ek·x=25 − 1

ek·x=25 þ 1
ð7Þ

where k = constant factor characteristic of the spring; and x =
deformation of the spring.

In our system, we directly implemented the mentioned equa-
tions to program the force feedback in the haptic device using
the Robot Operating System (ROS) version 1and Unity software.
ROS, a flexible framework for writing robot software, provided
crucial services such as hardware abstraction, low-level device con-
trol, and implementation of commonly used functionality, allowing
for smooth communications between our high-level control soft-
ware in Unity and the physical robot hardware. Unity, on the other
hand, is a powerful and commonly used platform equipped with a
robust physics engine. In our study, it managed the physics simula-
tions, created the 3D virtual environment, and controlled the interac-
tion logic for the robot teleoperation system. This integration ensured
the haptic device provides the operator with realistic tactile feedback
corresponding to the different physical forces being simulated.

Moreover, the motion of the haptic device is used to control the
end-effector of the robot. This control is rooted in inverse kinemat-
ics, enabling the translation of the haptic device’s movement into
appropriate movements of the robot’s end-effector. As such, the
operator can intuitively use the haptic device to control the robot
while simultaneously receiving accurate force feedback, ensuring
the immersive and realistic user experience that is pivotal to the
success of our research.

Robotic Control

To finish the pick and place task, the operator needs to simultane-
ously control the pose of the robot end-effector and the switch state
of the robot grabber, which are controlled separately by the pose of
the haptic device and the pressure force of the human finger. Due to
the varying densities and coefficients of friction of objects made
of different materials, the grabbing pressure varies accordingly.
Operators need to respond differently based on the visual and hap-
tic feedback they receive.

However, existing haptic devices have greatly enhanced our
ability to interact with virtual environments. However, a device
capable of simultaneously receiving force feedback and transmit-
ting pose as well as pressure data could further advance our inter-
action capabilities, creating new opportunities for more immersive
and effective teleoperation. In order to create this two-way commu-
nication device, we combined the Touch X haptic device (Martin
and Hillier 2009) and the Arduino pressure sensor (Arduino LLC,
Ivrea, Italy) as shown in Fig. 3. The Touch X haptic device was

utilized to reproduce the sensed force (weight, texture, inertia, im-
pact, balance, rotation, and spring) from the real robot, and control
the joint poses of the remote robot. The Arduino pressure sensor
was used to sense the human operator’s grasping force to control
the gripper of the robot. Fig. 3(b) shows the connection of the wires,
and Fig. 3(a) illustrates the component of the pressure sensor. In
order for the pressure sensor to work effectively and reliably, we
first used moldable silicone to fix a flat platform on the TouchX
haptic device. Second, we added a hard plastic board for the force
surface of the pressure sensor. Then, we used the FSR402 (Interlink
Electronics, Camarillo, California) as the pressure sensor. Finally,
due to the fact that each individual’s finger shape and force appli-
cation technique are unique, we added two layers of mounting tape
to filter the force on the pressure sensor and make our system stable.

Human-Subject Experiment and Test

Overview

To further test the effectiveness of the proposed embodied teleop-
eration system in construction robot teleoperation, we performed a
human-subject experiment using the proposed system. We selected
a pipe skid facility replacement and repair (R&R) task as the test
case. The objective of this task was to control a remote industrial
robot to pick up the target pipes and install them in the target po-
sitions. The pipe skid was chosen because of its high appearance in
particularly confined workspaces. During the process, the operator
was required to apply the appropriate amount of pressure force to
grab the object without deforming it. When installing pipes, the
operator needed to avoid collision with other pipes and maximize
the installation accuracy (error from the center of target pipes)
as well as insertion depth accuracy (error from the target depth).
We modeled a 7-degrees of freedom (DOF) Emika Panda robot
(Franka Emika, Munich, Germany) mounted on a base for
maintenance tasks and recorded the occurrence of all 3D regions
containing collisions in an immersive virtual environment.

Fig. 4 illustrates the scenario for the human-subject experiment.
A total of six pipes needed to be installed in the target pipes of the
same color, with the top three pipes installed in the top row and the
bottom three pipes installed in the bottom row. The pressure indi-
cator displays the operator’s applied pressure force to the pipes in
real-time. To pick up the pipe, the operator needed to control the
robot end-effector to touch the pipe and apply sufficient force; in-
sufficient forces would not be enough to grab the pipes, and bigger
grabbing forces would cause deformation of the pipes. To put the
pipes down, the operator needed to release the pressure. Then the
operator would move the pipes to the target pipe and insert them.
The desired insertion depth is three-quarters of the pipe (i.e., three-
quarters are inserted and one-quarter stays outside the pipe), and the

Fig. 3. Arduino pressure sensor mounted on the Touch X haptic device: (a) component of pressure sensor; and (b) wires connection.
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target installation position is the center of the target pipe. During
the insertion operation, the operator could feel the collision (via the
impact feedback) and friction (via the texture feedback).

To evaluate the performance of the participants, unwanted col-
lision events between the robot and the pipe needed to be recorded.
We recognized and agreed that the control mechanism, once estab-
lished, would require validation of real-world data before it could
be deployed in real-world circumstances. However, a collision be-
tween a real robot and a real pipe can be hazardous and potentially
cause robot damage. Therefore, a simulated environment with an
immersive virtual robot and pipes was built to replicate the real-
world task. To ensure identical poses between the simulated and
real robots, we utilized URDF to construct a virtual robot and trans-
ferred the joint_states data to VR. The VR environment was de-
signed to elicit similar behavioral responses to those observed in
real-world work contexts, and hence was suitable for pipe skid
maintenance tasks. Given the ease of data collection and experi-
ment manipulation, the use of VR for human behavioral data gath-
ering has gained favor in the literature (Kinateder et al. 2014).

Participants

To ensure the validity of our study, a power analysis was conducted.
A power analysis is a statistical method used to determine the mini-
mum sample size required for the study. It helps researchers ascer-
tain the smallest sample size that would be sufficient to detect an
effect of a given size at a desired level of confidence, hence helping
to prevent Type II errors (failing to reject the null hypothesis when
it is false). Given the within-subjects design of our experiment,
each participant served as their own control. In our power analysis,
we used a significance level (p-value) of 0.05. We also considered
factors such as the expected effect size and the desired statistical
power. The result of the power analysis suggested a sample size of
24 participants. To ensure the robustness of our results, we decided
to recruit a few additional participants, which resulted in a final
sample size of 31.

We recruited a total of 31 subjects for this experiment. The dem-
ographic information includes the gender, age group, and major of
participants are illustrated in Table 1. The selection of participants
for this study was deliberately made to be multidisciplinary,

encompassing students majoring in engineering, computer science,
and biology. This selection was designed to assess the system’s
usability across a spectrum of users with varying degrees of famili-
arity with technology and robotics. Engineering students, often
familiar with mechanical and robotic systems, were included to
evaluate the system’s intuitiveness for users with direct domain
knowledge. Computer science students, generally comfortable with
technology interfaces, provided insights into the system’s usability
for tech-savvy individuals lacking specific domain knowledge.
Biology students, who may have little prior experience with similar
technologies, offered a perspective on the system’s approachability
for users without a strong technical background. This diverse par-
ticipant pool aimed to create a comprehensive understanding of the
system’s user-friendliness across different user profiles.

Most of the participants had few experiences with VR and 3D
gaming, as well as insufficient prior experience with pipe inserting
tasks. All participants reported that they were right-handed and did
not have any known motor disorders or a history of neurological
abnormalities.

Demographic data such as age and gender were collected as
standard practice in human-subject experiments. Although the
main focus of this study did not hinge on differences based on age
or gender, we collected this information to enable potential explor-
atory analyses in future. For instance, different age groups or

Fig. 4. Pipe skid and robot for the human-subject experiment.

Table 1. Demographic information of the participants

Category Number Percentage

Gender
Male 19 61.29
Female 12 38.70

Age group
18–24 8 25.80
25–30 22 70.97
31 and older 1 3.23

Major
Engineering (civil, coastal,
construction, and related)

16 51.61

Computer science 10 32.26
Biology 5 16.13
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genders might display varied performance in the task due to factors
like physical strength, cognitive abilities, or previous experience
with similar tasks. Thus, this data could provide valuable insight
for subgroup analyses and offer a broader understanding of the
applicability of our results to different populations.

The study was approved by the ethical approval of the ethics
committee at the University of Florida (IRB202202606). All sub-
jects were required to give their written informed consent before
attending the experiment.

Experiment

To comprehensively evaluate the performance of the integration of
the proposed system, we set up a robotic pick-and-place task for
evaluation. The experiment followed a within-subject experimental
design (Charness et al. 2012) with four conditions, which were two-
dimensional (2D) perspective, three-dimensional (3D) perspective,
2D perspective with haptics, and 3D perspective with haptics. These
conditions can be described as follows:
• 2D perspective condition: the entire trial was conducted with

only real-time red green blue (RGB) camera (2D image) views
and no further haptic or visual assistance.

• 3D perspective condition: participants received visual feedback
in the form of 3D virtual modeling (VR).

• 2D perspective with haptics condition: the entire trial was
conducted utilizing the proposed embodied haptic simulation
system and 2D camera view.

• 3D perspective with haptics condition: both haptic and aug-
mented visual guidance were provided.
The experiment consisted of nine sessions, as detailed in

Table 2.

In the beginning, participants were asked to sign an informed
consent form and fill out a background questionnaire about their
age, gender, and VR experience. The experimental scene and con-
tent of each trial were the same. The sequence of tasks under differ-
ent conditions was shuffled to eliminate the learning effects. A
training session was provided in a virtual scenario. The training
session was designed to familiarize participants with the VR system
and interactions within the virtual environment. Each participant
was instructed to be acquainted with the devices (VR headset and
haptic controller) and the virtual environment. Then, participants
were given instructions about how to use the haptic controller
and pressure sensor to pick up and place the objects. After the train-
ing session, participants were asked to perform the pick up and
place task based on one model in the virtual pipe skid system.

After completing each session, participants were given ques-
tionnaires to provide comments and feedback. Then participants
were asked to perform the task based on the remaining three user
interface (UI) models out of the four conditions (2D perspective,
3D perspective, 2D perspective with haptics, and 3D perspective
with haptics) and provide feedback based on questionnaires. In order
to further eliminate the learning effect, we shuffled the sequence
order of the conditions in all sessions. The entire experiment took
approximately 30 min for each participant. Participants were incen-
tivized with a $15.00 gift card to finish the experiment.

Fig. 5 shows the 2D perspective and 3D perspective of the ex-
periment. For the 2D perspective condition, the subjects could only
control the robot through three 2D displays mounted on the wall of
a virtual control room to complete the task. In the 3D condition, the
subjects were able to control the robot through the embodied VR
perspective.

In the experiment, before the subjects picked up a pipe, they
were able to experience the sensation of the pipe’s friction and
texture through the haptic feedback system, simulating the tactile
feedback as if they were touching the surface of a real pipe. The
sensation of texture and friction was not conveyed through the use
of haptic gloves. Instead, these sensations were simulated through
the handheld haptic device that the participants were controlling.
Specifically, when the virtual robot in our system interacted with
an object—for instance, touching the surface of a pipe—the haptic
device simulated the corresponding resistance. When the user
moved over the surface of the virtual object, the friction was man-
ifested as the resistance of the haptic device. Moving on a surface of
smooth objects (such as aluminum), it would be felt more slippery,
and moving on a rougher surface (such as cast-iron), the feeling
was rougher.

Table 2. Procedure of nine sessions

Session Activity

1 Training
2 Pick and place task under Shuffled condition 1
3 Questionnaires about Shuffled condition 1
4 Pick and place task under Shuffled condition 2
5 Questionnaires about Shuffled condition 2
6 Pick and place task under Shuffled condition 3
7 Questionnaires about Shuffled condition 3
8 Pick and place task under Shuffled condition 4
9 Questionnaires about Shuffled condition 4

Fig. 5. (a) 2D perspective condition; and (b) 3D perspective condition of the experiment.
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The device was programmed to provide force feedback to the
user, thereby allowing the user to feel the texture and friction of
the pipe, despite the interaction happening within a virtual environ-
ment. The subjects could also feel the weight of the pipe when they
picked it up, as well as the inertia as they were moving the pipe. The
heavier pipes and greater accelerations would result in a stronger
inertial feeling. For impact, if a pipe collided with another object,
the subject could feel the impact force (sudden halt and bouncing
back of the haptic controller).

There were three types of pipes in the task that needed to be
picked and placed, including a PVC pipe (1.4 g=cm3, white rigid
plastic), a cast-iron pipe (7.3 g=cm3, dull black with a rough tex-
ture), and an aluminum pipe (2.7 g=cm3, silver-gray). Each pipe
type had distinctive properties in terms of mass and friction.
The cast-iron pipes were the heaviest, followed by the aluminum
pipes, and the PVC pipes were the lightest. The friction on the sur-
face of the cast-iron pipes was the greatest, followed by PVC pipes,
and the aluminum pipes exhibited the least friction.

Additionally, different pipes had different responses to applied
pressure, as shown in Fig. 6. For example, the PVC pipe, due to its
lower mass, could be grasped with less pressure. However, if ex-
cessive pressure was applied, the PVC pipe could deform. The cast-
iron pipe, on the other hand, was able to withstand a significant
amount of pressure without deforming, but required more force
to pick up. The current study focuses primarily on a teleoperation
system that displays the motion and force control signals from a
human operator. The amount of pressure needed to lift the pipe was
determined and exerted by the human operator depending on the
material and mass. In our experiments, we designed the pipes with
certain masses that could be lifted with a specific amount of pres-
sure. During the teleoperation process, the participants needed to
regulate the pressure within the suitable range for each material
to avoid dropping or deforming the objects, and to prevent colli-
sions as they transported the pipe to the designated location.

Fig. 7 illustrates the events happening during the experiment.
Figs. 7(a and b) show the pick-up for different pipes, where the

Fig. 6. Response of different objects to pressure levels.

Fig. 7. Pipe skid maintenance task: (a) pick up PVC pipe; (b) cast-iron pipe; (c) successful installation; (d) pipe deformation; (e) pipe collision; and
(f) pipe falling.
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pressure force of the PVC pipe was smaller than that of the cast-iron
pipe. Fig. 7(c) demonstrates the successful installation of the PVC
pipe. Fig. 7(d) depicts the situation in which excessive pressure
produces pipe deformation. Fig. 7(e) shows the case where the pipe
is deformed by the collision. Fig. 7(f) depicts the fall of the pipe due
to insufficient pressure.

Performance and Function Measures

The haptic controllers and VR devices were used to track eye-
tracking data, the locomotion of the robot, the real-time position
of the pipes, and task completion time. Task performance and hu-
man function were evaluated by six metrics: time on task, instal-
lation accuracy (error from the center of target pipes), insertion
depth accuracy (error from the target depth), cognitive load, num-
ber of collisions, and number of deformations. In addition, we used
three questionnaires [NASA task load index (NASA TLX) ques-
tionnaire developed by Hart and Staveland (1988), the Situational
Awareness Rating Technique (SART) survey developed by Taylor
(2017), and Trust Scale questionnaire developed by Merritt (2011)]
to evaluate participants’ self-reported cognitive load and situational
awareness (details of the questionnaires can be found in the
Supplemental Materials).

Collisions were also tracked as part of the performance metrics,
although the experimental setup was designed to minimize the pos-
sibility of these events. The robot arm and surrounding objects were
arranged to reduce the likelihood of contact, and the tasks were
formulated such that the robot arm’s proximity to other objects
was limited. Nonetheless, in the rare instances where a collision
did occur, we chose not to include these in our data analysis, con-
sidering them as nonrepresentative of the system’s performance
under typical conditions.

For data collection, we employed a VR system that capitalizes
on real-time data synchronization between ROS and Unity based on
a previous study (Zhou et al. 2020). This integration not only en-
ables a more realistic and synchronized teleoperation experience in
virtual reality systems but also ensures a seamless and synchron-
ized interaction between the robotics middleware (ROS) and the
Unity physics engine. Such integration is important for delivering
accurate and responsive physical feedback to the operators, improv-
ing their situational awareness. This system architecture ensures
comprehensive physical feedback, which is critical in our study.

In the experiment, participants were asked to control the robot to
pick up six pipes and install them into the target pipes. Once the
system detected that the drop position of the pipe that needs to be
installed was in the target pipe, the pipe was marked as successfully
installed and the task status was recorded as completed. In cases
where a pipe was deformed during the pick-up action, we did not
ask participants to redo the action. Instead, we instructed them to
continue with the task. We recorded any instances of pipe defor-
mation and included them in our data analysis. This allowed us
to capture a comprehensive picture of the task execution, including
both successful and unsuccessful interactions. These data will be
particularly useful for identifying areas of difficulty and potential
improvements for future iterations of our system. When all pipes
were successfully installed (i.e., the task is complete), the system
automatically stopped data recording and ended the task trial.

Subsequently, we employed the Mann-Whitney U-test, a non-
parametric statistical measure, to compare two independent sam-
ples. It is especially useful when data do not follow a normal
distribution, which is often the case in real-world data. The test
essentially assesses whether one of the samples is stochastically
larger than the other, and provides a p-value that we can use to
test our hypothesis (Nachar 2008).

The p-values we report, which range from zero to one, are in-
strumental in establishing the statistical significance of our find-
ings. This range represents a probability: a p-value ¼ 0 would
imply that the observed data absolutely contradict the null hypoth-
esis, whereas a p-value ¼ 1 would mean the data perfectly align
with the null hypothesis. In the realm of statistical hypothesis
testing, p-values help determine whether the null hypothesis should
be rejected. They represent the likelihood of obtaining results as
extreme or more extreme than those observed, under the assumption
that the null hypothesis is true. Lower p-values (closer to zero)
indicate more convincing evidence against the null hypothesis,
thereby supporting our research hypothesis. Essentially, smaller
p-values suggest that the results are less likely to have occurred
by chance, thus pointing toward the credibility of the alternative
hypothesis (Goodman 2008) Therefore, our reported p-values
serve as evidence for the statistical significance of our findings,
enhancing the reliability of our results.

To achieve the motion tracking and documentation functions in
the VR, several C# scripts were developed based on Tobii Pro Soft-
ware Development Kit version 1.11 (SDK) and the application pro-
gramming interface (API) in Unity. After each VR experiment, the
developed VR system automatically recorded the raw data and
streamed it into a .csv file.

Results

Task Performance Analysis

To capture human operator performance differences under the four
conditions in the simulated pick up and place task, we used the
aforementioned task performance metrics. We tracked performance
data from each trial of all subjects and performed a Mann-Whitney
U-test across the four conditions. One horizontal line in the box
plots represents the median of the data and the other line represents
the mean of the data. To be noted, in Fig. 8, the metrics are quan-
tities where a smaller value indicates better performance. In con-
trast, some metrics in Fig. 9 (SART score and Trust Level) are such
that a greater value indicates better performance.

As shown in Fig. 8, the 3D perspective with haptics condition
outperformed the other conditions in most metrics, and the 2D per-
spective with haptics condition outperformed the 3D perspective
condition. The 3D perspective condition outperformed the 2D per-
spective condition. Specifically, the 3D perspective with haptics
condition significantly reduced the number of collisions and defor-
mations and had better installation and insertion depth accuracy
than the other conditions. In terms of time on task and cognitive
load, the 3D perspective with haptics condition also outperformed
the other conditions. The 3D perspective condition was signifi-
cantly better than the 2D perspective with haptic condition. Table 3
illustrates the results of statistical analysis.

These findings suggest that adding haptic feedback to 2D dis-
plays or simply changing to 3D perspectives can improve teleop-
eration performance, and that the 3D perspective with haptics
condition is particularly effective.

Human Operator Subjective Assessments

In addition to task performance, we also analyzed human opera-
tors’ reported perception on task workload, situational awareness,
and trust level of the control methods via different questionnaires.
Three surveys were taken when the subject finished the task of
each condition. In this way, they could report an overall evalua-
tion of all trials related to the corresponding control method.
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The Mann-Whitney U-test was performed to test whether there
were any significant differences across the four conditions.

As illustrated in Fig. 9, the six subscale NASATLX questionnaire
(Hart and Staveland 1988), the SART survey (Taylor 2017), and six-
item Trust Scale questionnaire (Merritt 2011) were used to evaluate

the workload levels, situational awareness levels, and time in atten-
tion (TiA) behaviors (Kohn et al. 2021) from different perspectives.

The results show that the 3D perspective with haptics condition
yielded the best performance in comparison with the other condi-
tions. Moreover, the 2D perspective with haptics condition and the

Fig. 8. Mann-Whitney U-test result of the performance metrics.
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3D perspective condition exhibited better performance compared
with the 2D perspective condition. However, there was no statisti-
cally significant difference between the 2D perspective with haptic
condition and the 3D perspective condition. Table 4 illustrates the
results of statistical analysis.

These findings show that the proposed 3D perspective with hap-
tics method can improve the operator’s perception of the remote
environment, reduce the workload during the operation, and im-
prove the operator’s confidence in the robot teleoperation system.

Table 5 presents the result compared with the 2D perspective
condition. A negative percentage indicates a reduction or decrease
compared with the 2D perspective condition, whereas a positive
percentage indicates an increase or improvement.

Discussion

The results of the human-subject experiment demonstrate the ad-
vantages of the proposed 3D perspective with haptics feedback
method. Notably, the study finds that the haptic augmentation sig-
nificantly enhanced the performance of pick up and place tasks
compared with methods with visual augmentation only. Specifi-
cally, the proposed visual and haptic augmentation method (3D per-
spective with haptics) exhibited superior performance to all other
methods in all performance metrics, including the number of col-
lisions, number of deformations, installation accuracy, and inser-
tion accuracy. Furthermore, methods with haptic augmentation
but no visual augmentation (2D perspective with haptics) per-
formed better than visual augmentation alone (3D perspective con-
dition) and the conventional method (2D perspective condition).

Moreover, the visual augmentation method (3D perspective condi-
tion) was better than the conventional method (2D perspective con-
dition) in terms of the four performance metrics. Therefore, the
findings indicate that haptic augmentation and visual augmentation
can both improve task performance, with haptic augmentation pre-
senting a greater benefit. The combination of haptic and visual aug-
mentation proved to be the most successful method in enhancing
task performance.

Our findings also provide valuable insights on how the combi-
nation of various conditions might be differentially advantageous
based on specific requirements or constraints. Although it is not
surprising that the condition of 3D perspective with haptics outper-
formed others in most metrics, it is not straightforward to tell if the
benefits come from the use of 3D visual cues or more from the use
of haptics. In other words, if the resource only allows one upgrade
to the system, namely, either moving from 2D to 3D visual cues or
adding haptic cues, one can hardly tell which sensory channel
(visual versus haptic) plays a more important role for what perfor-
mance metrics. Our experiment designed mix conditions of both
visual and haptic cues to answer this question.

In tasks where accuracy and collision avoidance are crucial
performance metrics, our results suggest that augmenting haptic
feedback (2D perspective with haptics) can be more advantageous
compared with solely enhancing visual feedback. On the other
hand, in tasks where reducing cognitive load is of utmost impor-
tance, enhancing visual feedback (3D perspective) may be more
effective than enhancing haptic feedback. These findings empha-
size the significance of tailoring feedback augmentation in robot
teleoperation to the specific requirements of each task. Rather
than a simple hierarchy of conditions, it is this context-dependent

Fig. 9. Mann-Whitney U-test of NASA TLX, SART, and Trust questionnaires.
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understanding that we believe constitutes the primary contribution
of our study. This information is essential for designers of teleop-
eration systems because it enables them to make informed deci-
sions regarding the prioritization of feedback types based on the
particular tasks at hand.

For practical implications, first, our findings have the potential
to simplify future robot controls for construction. By improving the
understanding of haptic feedback in robot teleoperation, we can
design more intuitive control interfaces that will ease the operation
process. This could drastically decrease the amount of time and
resources invested in training, thereby reducing overall operational
costs. Second, by providing a more immersive and responsive con-
trol environment, we can lower the learning curve associated with
the teleoperation of construction robots. With our proposed system,
operators could quickly familiarize themselves with the control
scheme, thus minimizing the time spent on training and accelerat-
ing the adoption of this technology in the field.

Third, our research can positively impact workplace safety. By
enhancing the operators’ perception of the remote environment, we
reduced the risk of accidents caused by misjudgment or lack of
situational awareness. This could lead to safer work conditions, es-
pecially in hazardous environments where construction robots are
often employed. Fourth, our work could result in increased produc-
tivity in construction operations. More efficient and accurate robot
controls mean tasks can be completed faster and with fewer mis-
takes. The reduction in task completion time and error rates could
lead to significant improvements in overall productivity.

Fifth, it is important to highlight the adaptability of our research
to real-world conditions. The parameters used in our experiments
are based on the known properties of the materials we worked with,
enabling us to provide accurate haptic feedback under controlled
conditions. However, in a real-world construction environment,
it is likely that we may encounter materials with properties that
differ from these predefined parameters or that change due to
environmental conditions. A potential solution to this challenge
is equipping the teleoperation system with additional sensors that
can detect and measure the properties of the materials in real-time.
This would enable the system to adjust the haptic feedback param-
eters dynamically, ensuring accurate feedback even when the
material properties deviate from expected values. This adaptability
highlights the robustness and potential of our system in diverse
construction scenarios.

Regarding the user interface design and control mechanisms in
robot teleoperation, reflecting on the findings of our experiment
and feedback from our participants, we identified several key as-
pects that should be considered in the design of user interfaces and
control mechanisms for robot teleoperation systems that incorpo-
rate haptic feedback. The first aspect is realism versus practicality
in haptic feedback. Our study underscores the importance of haptic
feedback in improving the efficacy of robot teleoperation. How-
ever, a critical challenge we observed is the need to balance the
realism of haptic feedback with practical considerations. In particu-
lar, it is vital to prevent potential damage due to the application of
excessive pressure or force when manipulating objects. Designing
teleoperation systems with safeguards that limit the maximum force
or provide real-time feedback to the operator when the force ex-
ceeds a safe threshold could be one way to address this issue.

The second aspect is user-centered interface design. The user
interface plays a crucial role in the effective operation of teleoper-
ated robots. Our research suggests that the design of the interface
should be intuitive, clear, and tailored to the specific task at hand.
In the context of our experiment, the interface was optimized for
the manipulation of pipes in a simulated construction scenario.
The third aspect is adaptive control mechanisms. Our study alsoT
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highlights the importance of adaptive control mechanisms in tele-
operation systems. Depending on the operator’s skill level, the
system might need to offer more automated adjustments and guid-
ance for novice users, but allow more freedom and flexibility for
experienced operators.

Conclusions

This study presented an innovative embodied robot teleoperation
system for construction tasks, offering an enriched perception of
remote workspaces. Our system leverages physics engines to sim-
ulate physical interactions realistically and provide comprehensive
physical feedback to the human operator, making it a more immer-
sive and embodied experience. This high-resolution force feedback
simulator not only outperformed the common tactile feedback sys-
tems but also captured a variety of physical interactions common in
motor-intensive construction tasks, thus offering a scalable solu-
tion. Furthermore, our system provides synchronized visual and
haptic feedback, allowing a more coordinated and immersive trans-
fer of remote workspace perception to the human operator. In a
simulated task involving the manipulation of a pipe skid, our 3D
perspective with haptic feedback method was compared with con-
ventional 2D perspective and single feedback augmented methods,
demonstrating promising results.

Although this study introduces promising advancements in
embodied robot teleoperation systems, it also opens up several ex-
citing avenues for future research and development. First, our
tests, conducted in a simulated environment, serve as a solid foun-
dation upon which real-world application can be further examined,
offering a prospect for validating the behavior similarity in more
practical settings. Second, our research provides a basis for ex-
ploring how additional types of haptic feedback might enhance

the performance of our system because our study evaluated only
four types. Third, because our current system does not limit or ad-
just user-applied excessive force, future versions could innovate
safety and effectiveness measures for force control.

Fourth, our experiment’s focus on straight pipes represents a
starting point, and future studies could enrich the system’s utility
by incorporating the complexities of handling pipes with different
shapes. Fifth, although our haptic feedback currently relies on pre-
defined material properties, there lies an opportunity to develop
adaptive algorithms that respond to variable material properties
in real-world settings. Sixth, our participant group, which primarily
consisted of university students, offered a glimpse into the system’s
potential; future studies could extend the evaluation to seasoned
construction practitioners, thereby assessing the system’s effective-
ness in broader professional contexts. Lastly, because our research
is in an early phase, forthcoming work could focus on addressing
deployment challenges in real-world conditions, including environ-
mental uncertainties, system reliability, and human adaptability.
These opportunities for continued research underscore the signifi-
cant potential of our work in contributing to more sophisticated and
practical solutions for robot teleoperation.

Despite these limitations, our prototype represents a promising
step forward. It provides a platform for improving upon existing
systems and models real-world complexity more accurately than
previous attempts. It also opens up avenues for future research
and development to address the identified problems. Thus, even as
we recognize our limitations, we also highlight the potential of
our work in paving the way for more sophisticated and practical
solutions for robot teleoperation.
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Table 4. Statistical results of the NASA TLX, SART, and Trust questionnaires

Condition NASA TLX SART Trust level

3D perspective with haptics versus 2D perspective Smaller (p < 0.001) Larger (p < 0.001) Larger (p < 0.001)
3D perspective with haptics versus 3D perspective Smaller (p < 0.001) Larger (p < 0.001) Larger (p < 0.001)
3D perspective with haptics versus 2D perspective
with haptics

Smaller (p < 0.001) Larger (p < 0.001) Larger (p < 0.001)

2D perspective with haptics versus 2D perspective No difference (p ¼ 0.367) No difference (p ¼ 0.543) No difference (p ¼ 0.845)
2D perspective with haptics versus 3D perspective No difference (p ¼ 0.094) Larger (p ¼ 0.005) Larger (p < 0.001)
3D perspective versus 2D perspective Smaller (p < 0.001) Larger (p < 0.001) Larger (p < 0.001)

Table 5. Numerical results compared with 2D perspective condition

Condition

3D
perspective
with haptics

2D
perspective
with haptics

3D
perspective

Collisions (%) −84.6 −75.7 −21.3
Deformations (%) −55.1 −21.7 −17.4
Installation error (%) −50.8 −32.5 −20.3
Insertion depth error (%) −75.4 −60.4 −18.3
Time on task (%) −11.9 þ10.8 −7.3
Cognitive load (%) −12.8 þ1.3 −8.1
Mental load
(NASA TLX) (%)

−46.2 −15.1 −24.7
Situational awareness
(SART) (%)

þ40.6 þ20.7 þ17.3

Trust level (%) þ88.1 þ41.2 þ39.5
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