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Abstract

Cell identification is an important yet difficult process in data analysis of biological images.
Previously, we developed an automated cell identification method called CRF_ID and
demonstrated its high performance in C. elegans whole-brain images (Chaudhary et al, 2021).
However, because the method was optimized for whole-brain imaging, comparable
performance could not be guaranteed for application in commonly used C. elegans multi-cell
images that display a subpopulation of cells. Here, we present an advance CRF_ID 2.0 that
expands the generalizability of the method to multi-cell imaging beyond whole-brain
imaging. To illustrate the application of the advance, we show the characterization of CRF_ID
2.0 in multi-cell imaging and cell-specific gene expression analysis in C. elegans. This work
demonstrates that high accuracy automated cell annotation in multi-cell imaging can
expedite cell identification and reduce its subjectivity in C. elegans and potentially other
biological images of various origins.

eLife assessment

This research advance article describes a valuable image analysis method to identify
individual cells (neurons) within a population of fluorescently labeled cells in the
nematode C. elegans. The findings are solid and the method succeeds to identify
cells with high precision. The method will be valuable to the C. elegans research
community.

Introduction

One of the bottlenecks in biological research is the inefficiency and inaccuracy of analyzing
bioimages, which have become essential research materials owing to the emergence of
advanced microscopy and imaging modalities (Xu and Jackson, 2019). For studies with the
popular model organism Caenorhabditis elegans (C. elegans), one of the most challenging
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image analysis processes is cell identification, annotating the cells in the image based on
their anatomical or other biological features. Accurate cell identification is important in
applications, such as gene expression analysis and calcium imaging in order to associate the
cell-specific information with existing knowledge about the cell. Previously, we developed an
automated cell identification method called CRF_ID based on graphical optimization using
the Conditional Random Fields (CRF) model (Chaudhary et al., 2021). We demonstrated that
for whole-brain images, CRF_ID shows higher annotation accuracy and more robustness
against various sources of noises compared to conventional registration-based methods.

However, because CRF_ID was optimized for whole-brain images, it is not ideal for multi-cell
imaging, which focuses on a subpopulation of cells. In fact, there are no automated methods
currently designed for processing multi-cell images; only ad hoc and heuristic tracking and
annotation are available. This represents an unmet demand because multi-cell imaging is
still much more frequently used than whole-brain imaging despite the recent popularization
of brain-wide imaging. For instance, multi-cell imaging is necessary for transcriptional or
translational reporter-based gene expression analysis because the number of cells imaged is
governed by the gene expression itself, with the average being around 40 neurons (Taylor et

specific structures and functions. For example, studies focusing on chemosensory neurons of
the olfactory circuit in C. elegans characterized how the identity and intensity of olfactory
stimuli were represented by the activity of the sensory neurons, which provided input
Furthermore, multi-cell imaging is more accessible than whole-brain"i"r'ﬁééiﬁ"gmﬁéeause it
does not require fast-speed and multi-color volumetric microscopy techniques.

In this work, we present CRF_ID 2.0, an update of our original CRF_ID algorithm for multi-
cell images. Compared with other automated whole-brain annotation methods (Toyoshima et
al., 2020; Yu et al., 2021), CRF_ID is an ideal method to adapt for multi-cell imageéuf)"é'i':'éﬁgéuafm
its demonstrated high accuracy, modularity, and efficiency for atlas-building; CRF_ID builds
structured models, rather than deep-learning models, which makes it readily interpretable.
In principle, the original CRF_ID algorithm should be applicable to multi-cell images;
however, in practice, multi-cell specific modifications were necessary to achieve the highest
accuracy. In addition to optimizing the method, we characterized its performance by
comparing the accuracy of different types of atlases against each other and against manual
annotations. Such characterizations, which were not addressed in our previous work,
provide a necessary reference for future users. Furthermore, we demonstrate the
application of multi-cell neuron annotation in a cell-specific gene expression analysis. Thus,
this follow-up work enhances the generalizability and usefulness of the CRF_ID method by
enabling high performance operation regardless of the number of cells in the images.

Results

CRF_ID 2.0 for automatic cell annotation in multi-cell
images

The multicell identification pipeline is a multi-step optimization algorithm (Figure 1a), built
upon CRF_ID (Chaudhary et al., 2021). First, the user acquires a volumetric image set of a
sample that contains multiple cells labeled with markers, such as fluorescent proteins or
dyes (Figure 1a-1). Image processing begins with cell segmentation. Here we use a simple
automatic method that finds the local maxima of fluorescence intensity and fits the 3D
Gaussian mixture model on them (Figure 1a-2). Then, the coordinate axes of C. elegans body
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orientation are either assigned by the user or automatically predicted on the point cloud
using an improved algorithm included in CRF_ID 2.0 (Fig. 1a-3). Next, based on the cell
coordinates relative to the axes, the algorithm extracts the positional features of the cells,
such as the pair-wise 3D positional relationships and angular relationships with other cells
(Figure 1a-4). Lastly, the Conditional Random Fields (CRF) model (Lafferty et al., 2001)
compares the extracted features from the dataset against a reference atlas, which could be
derived from the literature or new data (Figure 1a-5). The model computes a conditional
joint probability distribution over all feasible cell identification (cell ID) assignments, and
the neuronal cell ID assignments are ranked for each cell based on the computed
probabilities (Figure 1a-6). Additionally, to maximize the accuracy of neuron identification,
the reference atlas may be constructed by the user with use-specific datasets (Figure 1b). The
atlas-building process is computationally simple and fast upon the availability of ground-
truth datasets, which can be manually annotated by the user.

a) Overall workflow: automated cell ID of multi-cell images
(1) Volumetric image
Multi-cell marker strain acquisition

-
-
-
-
-
-

Figure 1
(2) Cell segmentation (3) Axes prediction

v

(5) Optimization of features (4) Feature extraction
against the atlas (PA, LR, DV, angle...)

CRF_ID for multi-cell images. a)
Computational workflow starting from
image acquisition to final cell identity pre-
dictions. a-1,2,3) Image preprocessing
steps include automatic cell segmenta-
tion and coordinate axes prediction. a-4)
Feature variables that represent position-
al relationships of the cells are extracted
(PA, posterior and anterior; LR, left and
right; DV, dorsal and ventral). a-5) The
CRF algorithm maximizes the similarities
between the extracted features from the
images and those from an atlas. a-6) The
final results are represented as a list of
most likely neuron candidates for each
cell with predicted probabilities. b) The at-
las can be customized to meet the specifi-
cations of the images, and this is easily
done by compiling and averaging anno-
tated data.

Neuron

Fluorescent
marker

(6) Automated cell ID prediction

Top1 Top2 Top3
- &L 88% AIBL 8% RMEL 3%
- 5L 82% RMEL 6% a-L 5%
- RMEL78% RIAL 19% a-R 1%
- RMDVL 85% RIAL 12% AIBL2%
- AVAL 87% RIAL 8% AVEL 2%
- RMDL 82% AIBL 9% RMDDL 4%
- SMDVL 8% RIAL 10% a-L 1%
- AVEL74% AIBL1%% RMDL 4%
- RMDDL 85% SMDDL 7% RIML 7%
10- B86% a-L 13% a-R 1%
11- AVBL83% a-L 13% AVDL3%
12- SMDDL82% RIML 14% SMDDR 2%
13- AVDLB85% RIML 12% AVBL 2%
14- RIML77% SMDDL 19% y 4%

CONDOE®N

Data-specific atlas

To demonstrate the utility of the automatic cell annotation algorithm for multi-cell images,
we chose as an example a C. elegans strain carrying a red fluorescent protein mCherry
expressed by a glr-1 promoter (see the schematic and fluorescence images in Figure 1). The
fluorescent protein has been tagged with nuclear localization sequences to confine the signal
to the cell nucleus and aid the separation of the labeled neurons. gir-1 is expressed in about
27 neuronal cell types with the majority localized in the head (Hart et al., 1995; Maricq et al.,
1995; Taylor et al., 2021). The set of neurons include interneurons and motor neurons
implicated in various behaviors and neuronal functions, including locomotion, chemotaxis,
learning and memory (Gray et al., 2005; Hart et al., 1995; Liu and Zhang, 2020; Maricq et al.,

and easy cell identification methods do not currently exist. In contrast, the glr-1 promoter
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and its expression has been well-characterized (Hart et al., 1995; Maricq et al., 1995; Taylor et

images from transgenic worms expressing glr-1::mCherry transgene and manually
annotated 26 volumes to assess the performance of our method.

New features improve prediction accuracy of body axes

While CRF_ID performs very well with whole-brain image datasets and has a great potential
for generalization, multi-cell imaging poses challenges that require the algorithm to consider
additional features in the data to accurately predict neuron identities. One such challenge is
in the prediction of body axes from the volumetric images. It is important to correctly assign
the three-dimensional coordinate axes (anterior-posterior, left-right, dorsal-ventral) for each
worm because it is a method to standardize neuronal positions of worms imaged in various
orientations. However, the axes assignment is not a trivial task because the worms,
especially those in microfluidic devices, can deviate from its naturalistic orientation and be
at an angle as large as 20 degrees from the plane (Figure 2-figure supplement).

In our previous work, principal components analysis (PCA) was employed on point clouds of
head neurons segmented from fluorescence volumes (Chaudhary et al., 2021). Since PCA
finds orthogonal dimensions that explain the most variance in the point cloud, the first three
principal components would correspond to the coordinate axes of the worm, assuming the
point cloud adequately represents the worm head shape and radial asymmetry of the
nervous system. However, using PCA on cell point clouds to predict the coordinate axes is
not suitable for multi-cell images. In whole-brain images, nearly all head neurons are
fluorescent, which means the point cloud of the neurons is a fair representation of the
worm’s overall head shape. In contrast, multi-cell images have a smaller number of
fluorescent cells, whose locations may not properly sample the space of the whole brain. For
instance, if the fluorescent cells are concentrated near the ventral side of the head, the
resulting anterior-poster axis would gravitate towards the ventral side, deviating from the
ground truth.

To address the axes prediction challenge in multi-cell images, we have amended the method
to be less dependent on the point cloud of cell centroids, which varies depending on which
neurons are expressing the fluorophore. The new coordinate assignment method takes
advantage of two common features in almost all samples - that the worm is auto-fluorescent,
and that many neuronal pairs are bilaterally symmetric in their anatomical positions. It
involves two correction steps (Figure 2). The first step corrects the AP axis by incorporating
auto-fluorescence signals as natural landmarks to enlarge the point cloud (Figure 2a). This is
easily implemented by imaging a volume in the green channel, where the auto-fluorescence
is prominent, and segmenting the fluorescent signals as points using the same cell
segmentation method. The new point cloud then reflects the overall shape of the head, and
the resulting AP axis from PCA aligns correctly along the head of the animal. The second step
corrects the LR axis, for which we have implemented an algorithm that searches for the best
plane of bilateral symmetry (Figure 2a). Using the initial LR axis as the starting point and the
orthogonality to the AP axis as a constraint, the algorithm iteratively finds planes within a
range and computes a symmetry score of the point cloud with respect to each plane. The
plane that results in the highest symmetry score is assigned as the final LR axis. The DV axis
is automatically determined by orthogonality to the first two axes.

Hyun Jee Lee et al., 2023. eLife https://doi.org/10.7554/eLife.89050.1 4 of 22



i eLife

a) PCA axes

Correction of AP axis
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Figure 2

Improved method of assigning coordinate axes. a) coordi-
nate axes for multi-cell images generated by PCA alone
are not accurate. A two-step correction process is imple-
mented: correction of the AP axis by using natural land-
marks and correction of LR, DV axes by searching for the

best plane of symmetry. b) The corrected axes are more
accurate than the previous axes generated by PCA alone
as they show decreased angle deviations from the ground
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In order to quantitatively evaluate the axes prediction performance, we manually defined
“ground truth” axes for each volume and calculated the angle deviations of the predicted
axes (Figure 2a). Compared to the axes predicted by PCA on cell point clouds, the new axes
that have been corrected by the two-step method all showed decreased deviations from the
manually defined axes. More than 90% of the corrected axes were within 10 degrees from
the ground truth, which was comparable to the standard deviation of manual annotations in
defining the ground truth. More importantly, the axes correction led to a significant
improvement in the accuracy of the neuron ID prediction, measured using correspondence
to human annotations (Figure 2c). Also, there was no significant difference between the
corrected axes and the manually defined axes in terms of the resulting neuron ID
correspondence; this again indicates that the automatically predicted axes are comparable
to those defined by human. The details of the quantification of neuron ID accuracy are
discussed in methods under the section title CRF_ID 2.0: Evaluation of accuracy.

Hyun Jee Lee et al., 2023. eLife

https://doi.org/10.7554/eLife.89050.1 5of 22



7 eLife

Strain of Neuron ID interest:

glr-1p::mCherry

The atlas’s data-specificity is important for high neuron-
identification accuracy

One of the most important requirements for accurate neuron labeling using CRF_ID 2.0 is the
availability of an accurate atlas, which serves as a reference map of the stereotypical and
probable positions of the neurons in the animal. To characterize the extent to which atlases
influence the accuracy of neuron identification and to provide practical guidance on which
atlas to use, we evaluated the performance of CRF_ID 2.0 for several possible atlases. In our
previous work, we demonstrated that for whole-brain images, a data-driven atlas results in
higher prediction accuracy (Chaudhary et al., 2021). We tested whether the same holds true
for multi-cell applications. We characterized several different atlases for predicting neuron
identities in worms expressing glr-1p::NLS-mcherry-NLS transgene (Figure 3A-B). The first
atlas is derived from electron microscopy data in the OpenWorm project, which provides the
three-dimensional coordinates of neurons in a model adult hermaphrodite C. elegans (Szigeti

with 9 imaging data of the NeuroPAL strain (Yemini et al., 2021), and this atlas was reported
in our previous work (Chaudhary et al., 2021). The other atlases were derived from
fluorescence imaging data of glr-1p::NLS-mcherry-NLS strain, the same strain of neuron ID
interest. Several different versions of the glr-1 atlas containing different numbers of data
sets were created to characterize the effect of the number of datasets in the atlas.

VA

Figure 3

Characterizing the importance of data-specific at-
lases. a,b) Several example atlases (b) are com-
pared on their performance in neuron ID prediction
on the glr-1p::NLS-mcherry-NLS multi-cell images (a).
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We examined the effect of data source in atlas performance. Three factors were observed to
be most important in determining an atlas’s accuracy: strain specificity, mode of data
acquisition or imaging conditions, and the number of datasets in the atlas. The neuron
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annotation accuracy was lowest with the OpenWorm atlas, which scores the poorest in all
three factors (Figure 3c). This is likely due to the fact that the OpenWorm data are derived
from a strain of different genotypical background from the glr-1p::NLS-mcherry-NLS strain,
and more importantly, data acquisition from electron microscopy and the fluorescence
volumetric imaging distort the anatomy differently. In addition, the OpenWorm atlas is
based on a single dataset, which does not capture the variability of neuronal positions. A
slightly higher accuracy was achieved by using the atlas built on NeuroPAL data (Figure 3c).
Note that the genotype of the model training data (the NeuroPAL set) and that of the test set
(glr-1p::NLS-mcherry-NLS) are still different. The difference between the glr-1p::NLS-
mcherry-NLS and NeuroPAL strains is significant because, in addition to possible anatomical
differences from genetic make-up, there are neuron pairs in the gir-1p::NLS-mcherry-NLS
strain that were not updated in the NeuroPAL atlas due to variable expressions of the
transgenes used in the NeuroPAL strain and the difficulty of manually annotating all the
neurons in the whole-brain images. In fact, only 58% of the pairwise relationships of
neurons expressing the glr-1p::NLS-mcherry-NLS transgene were augmented with the
NeuroPAL data, and the rest were assigned the default values from the OpenWorm atlas.
Further, the imaging conditions for the training and test sets are not entirely comparable
because the NeuroPAL images were acquired with a lower z resolution. Such a difference in
the imaging condition can lead to differences in segmentation of cell centroids and affect the
angular relationships between cells, and thus lowering the accuracy of using the atlas for
cell ID prediction. Unlike the OpenWorm atlas, however, the NeuroPAL atlas contains a
statistical distribution of neuronal positions from 9 datasets, which provides a more
accurate representation of the neuronal positions than that from a single dataset (Corsi et al.,

can be used as a starting point, the more strain-specific datasets used to correct and augment
the reference atlas, the more accurate the neuron identification prediction would be.

The highest neuron identification correspondence was found with the data-driven atlas,
derived from the glr-1p::NLS-mcherry-NLS strain, the same strain that is of interest (Figure
30). The high accuracy can be attributed to the fact that both the strain (thus presumably the
anatomy) and the imaging conditions are matching the test dataset. It is notable that even
the glr-1 atlas that is derived from a single dataset performed better than the NeuroPAL atlas
containing 9 datasets (Figure 3c). This implies that the matching strain type and the imaging
conditions play a more important role than the sheer number of datasets in the quality of
the atlas measured by the cell ID correspondence.

We also examined the effect of sample size in atlas building, in addition to the matching
strain type and imaging conditions. Atlases should be derived from sufficiently large sample
size to capture the variability within the dataset. Because the neuronal positions are highly
variable, an accurate atlas should contain data from a sufficient number of training samples
to account for the positional variability of the neurons. As seen with the OpenWorm atlas, an
atlas based on only one sample does not contain any statistical information on positional
variability, so it performs poorly against testing samples whose neuronal positions do not
match those in the atlas well. Figure 3C demonstrates that the average correspondence
increased with the number of ground-truth datasets used to construct the atlas. While the
glr-1 atlas constructed using 25 datasets had the highest overall accuracy, the glr-1 atlases
containing 5-10 datasets are statistically indistinguishable in their performance. We observe
that the saturation of information is achieved at 5-10 datasets for the gir-1 case, given that
the select datasets exhibit reliable gene expressions to provide statistically good sample sizes
for all neuron candidates. This indicates that an atlas derived from 10 well-curated datasets
may be sufficient for CRF_ID 2.0. In general, the performance of atlas models would depend
on the natural variabilities of the neuronal anatomy and experimental noises, best
determined empirically for each strain.
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We also compared the differences of the atlases against the best performing atlas (the gir-1
atlas derived from 25 datasets) as a benchmark. We found that the results correlate well
with the trend observed for neuron correspondence (Figure 3c-e). The neuron ID
correspondence increased with similarity to the glr-1 atlas with 25 datasets, as defined by
the smaller differences in the angular (Figure 3d) and PA, LR, DV relationships (Figure 3e).
Interestingly NeuroPAL atlas displayed the highest difference in angular relationship; this is
likely due to the difference in the imaging condition for NeuroPAL, in which the fluorescent
images were down-sampled in the z direction (Yemini et al., Cell 2021). This would result in
the neuronal locations to be more discretized along the z axis, which can distort the angular
relationships more than the binary relationships. Overall, the results demonstrate that for
optimal CRF_ID 2.0 accuracy, it is important to use the atlas derived from data specific to the
subject of interest for neuron identification.

The automated cell annotation accuracy is comparable to
manual cell annotation accuracy

In evaluating the performance of CRF_ID 2.0 as an automated cell annotation method, the
most important criterion is the accuracy of prediction. It should be noted that we defined
accuracy as the correspondence to human annotations (which is how cell ID has been
traditionally done), while being cognizant that human annotators do not always provide the
absolute ground truth. For this study, the “ground truth” was established as the cell labels
from the consensus of three annotators, which means that the ground truth label of a cell is
one that has been agreed by at least two annotators. Although there were slight
inconsistencies in labels among the three annotators, they had high degrees of
correspondence with each other with an average of at least 80% (Figure 4-figure
supplement). The annotations from all three annotators were used as training data, but the
accuracy did not decrease to a statistically significant level even when an individual
annotator’s data were used as the training data (Figure 4b). It should be noted that all
accuracies reported in this work represent leave-one-out cross validation, in which the test
sample is excluded from the training set.
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Because the absolute ground truth labels are often unknown and unattainable even for
human annotators, our algorithm provides ranked multiple alternative labels in addition to
the best single prediction. These top ranked labels are generated by iteratively running the
annotation algorithm with a randomized set of a specific number of neurons in the
candidate list removed, similar to our prior approach with building the whole-brain atlas
(Chaudhary et al., 2021). “Top 3 accuracy” characterizes the fraction of cells with top three
predictions that include the ground truth label. Note that the top 1 prediction may be
different from the best single prediction, which is the result of running the annotation
algorithm once with the full set of candidate neurons. The accuracy for the best single
prediction mode was around 85%, and those for top 1, 2, 3 predictions were around 85%,
94%, and 96% respectively (Figure 4a). This indicates that in cases where there is appreciable
uncertainty of the candidate neuron set, the algorithm can assist the users to decide the final
label of a cell by narrowing the candidates and knowing the correct label is almost certainly
among the three predictions.

To assess whether the accuracy is acceptable, we compared the aforementioned CRF_ID 2.0
accuracies against the accuracies of human annotators (Figure 4a). Annotator 1 had the
lowest accuracy that is statically comparable to the best single prediction and top-1
prediction results from CRF_ID 2.0. Annotators 2 and 3 had higher accuracies, resembling
the distributions for top-2 and top-3 prediction results, respectively. Thus, the automated
neuron identification using CRF_ID does not come at a loss in accuracy. Moreover, we
observed that the incorrect neuron identifications are not entirely unreasonable. When the
accuracies are examined per neuron basis, there was a good correlation between the
automated and manual neuron ID accuracies. The neurons that were more incorrectly
predicted by the CRF_ID 2.0 algorithm were more likely the ones on which human
annotators disagreed with each other (Figure 4c). On the other hand, “easy” neurons for the
annotators were also more likely to be easy for the CRF_ID 2.0 algorithm to predict them
correctly.

The multi-cell neuron ID is useful for in-vivo gene
expression analysis

To further characterize our multi-cell neuron identification method, we applied it to a
problem of biological interest. Although the method has potential uses in any application

application in gene expression analysis as an example. Knowing the expression of a
particular gene is important for understanding the genetic basis of neuronal function, and it
can be studied by examining the expression of its mRNA (Spencer et al., 2011; Taylor et al.,
2021), transcriptional or translational reporters (Choi et al., 2020; Kuroyanagi et al., 2010).

(Taylor et al., 2021), fluorescent reporters allow one to monitor gene expression in vivo, and
on individual basis. This will enable studies on changes in gene expression due to
perturbations or experimental conditions.

In this type of applications, the need for neuron identification emerges when the gene of
interest is expressed in multiple neurons. For such cases, manually annotating the neurons
is difficult and time-consuming, and this difficulty has often prompted researchers to
abandon the neuron-specificity of gene expression by measuring the collective expression of
all fluorescence (Richman et al., 2018; Sdnchez-Blanco and Kim, 2011). However, neuron-
specific gene expression is more informative and facilitates the elucidation of neuronal
functions by connecting the ongoing studies with existing knowledge on specific neurons.
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For this reason, we applied CRF_ID 2.0 to aid the neuron identification in multi-cell gene
expression analysis.

We studied the neuron-specific expression of the glr-1 gene. glr-1 encodes a homolog of the
mammalian AMPA type glutamate-gated ionotropic receptor subunits GluA1 and GluA2
(Brockie et al., 2001) which play important roles in neural plasticity, learning and memory
(Henley and Wilkinson, 2016). glr-1 is known to be expressed in AVA, AVE, AVD, RMDD/V,
RMD, RIM, and SMDD/V among other neurons (Maricq et al., 1995). We imaged a C. elegans
strain that has two types of transcriptional reporters, an integrated transgene (glr-1p::gfp)
and an extrachromosomal transgene with a nuclear-localized sequence (glr-1p::NLS-
mCherry) (Figure 5a). In general, the expression of an integrated transgene is more robust
and more reflective of the physiological expression because, unlike the expression of an
extrachromosomal transgene, it is more resistant to genetic mosaicism, in which a transgene
is not inherited to some neurons during differentiation due to mitotic instability of the
extrachromosomal DNA (Frgkjeer-Jensen et al., 2008).

To quantify expression, we next segmented the neurons from the mCherry image stacks.
Because of nuclear localization, the fluorophore signals are more resolved between cells. We
then applied CRF_ID 2.0 to the multi-cell point cloud to assign cell identities (Figure 5a). The
neuron identification results were provided as top three candidate labels for each cell for
the user to decide on the final labels. There were about 20-35 fluorescent cells in each
volume. The fluorescence intensities of paired neurons were pooled together and then re-
grouped into two: one on the brighter side closer to the objective and one on the dimmer
side farther from the objective. Figure 5b and 5c only report the fluorescent intensities of
neurons on the brighter side (the side closer to the imaging objective), but the dimmer side
showed a very similar profile (Figure 5-figure supplement).

The gene expression analysis revealed several insights. First, we did not observe a
significant difference in relative expression trends between extrachromosomal (Figure 5b)
and integrated transgenes (Figure 5c¢). For example, the neurons that had high expression
levels for the integrated transgene, such as AVA, RMDV, RMD, SMDV, SMDD, and AVB, also
exhibited high expression levels for the extrachromosomal transgene. More specifically,
there was a linear correlation between GFP and mCherry intensities (Figure 5-figure
supplement 2). Second, the extrachromosomal transgene expression did not have
particularly more variable expression levels. This suggests that gene expression studies with
extrachromosomal transcriptional reporters, which do not require the time-consuming
process of gene integration, may still be able to provide a robust and meaningful picture of
the gene expression. Third, gene expressions in neurons were found to be highly variable
among individual samples, which was generally expected considering the dynamic nature of
gene expressions. The neurons with high average expression appeared to have a wider
dynamic range.

Interestingly, the mRNA profiling data generated by CeNGEN do not correlate well with the
results from transgene expressions. In the plots in Figure 5, The neuron labels on the x axis

reporters more indicative of the expression of the fusion proteins. Second, the promoter
sequence in the transgene, while carefully chosen, could still be different from the native cis-
regulatory sequence that could include sequences residing in the intron regions or
downstream regions all of which may regulate mRNA expression measured by sequencing.
Lastly, the cell dissociation process needed for profiling mRNAs of individual neurons may
impact gene expression.
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Discussion

In this work, we have upgraded and characterized the original CRF_ID method to
accommodate common needs to analyze more diverse types of biological images. While the
original method demonstrated high annotation accuracy in C. elegans whole-brain images,
its performance in multi-cell images, which include all images of neuronal groups that are
not whole-brain, was not fully warranted. The modified axes assignment method accurately
predicts the coordinate axes of C. elegans volumetric images regardless of the number of
cells expressed and thereby greatly enhances cell identification success. Our
characterization of the CRF_ID 2.0 performance in comparison with the atlas and human
annotators offers an important benchmark for users interested in using CRF_ID 2.0 to
annotate multi-cell images. In addition, we demonstrate its application in transgenic
reporter-based gene expression analysis, which is multi-cell expression by nature. This work
represents a practical advance, with updated features better suited for multi-cell
applications, and still applicable to whole-brain images.

One of the distinguishing advantages of CRF_ID 2.0 is its flexibility, which stems from its
modular architecture. Compared with registration or deep learning-based methods, in which
it is difficult or impossible to adjust the optimization process, the graphical-model approach
of CRF_ID allows heuristic-based deliberate selection and tuning of the features. This aspect
opens the door for many other use cases. For example, for images with distinctive cellular
characteristics, the user may add new unary features for characteristics, such as the cell
shape and signal intensity, to be optimized. For imaging conditions for which certain
features become less reliable, the user may choose to reduce or remove the weights for those
features. Further, the simplicity of building the atlas is another important aspect that
enables the incorporation of new images of different strains and imaging conditions into
these data-driven custom atlases. Whereas the deep learning method would require high-
performance computing and hours of training time, our atlases can be built or updated from
existing atlases within seconds with basic arithmetical operations. As such, CRF_ID can be
easily applied to biological images of various origins, not restricted to C. elegans that display
stereotypical cellular characteristics.

Materials and Methods

Strains

Adult C. elegans hermaphrodites were used in this study and were cultured using standard
procedures (Br , 1974). Two C. elegans transgenic strains were used. All data reported in
Figures 1-4, inc g the training data for the glr-1 atlases, are from images of ZC3292
YXxEx1701[glr-1p::GCaMPé6s, glr-1p::NLS-mCherry-NLS]. The gene expression data in Figure 5
are from images of ZC3292 and ZC3612 lin-15B&lin-15A(n765) kyIs30[glr-1::GFP, lin-15(+)] X;
VXEx1932[glr-1p::NLS-mCherry-NLS].

Construction of transgenes and transgenic strains

glr-1p::GCaMP6s was generated by LR recombination (NEB) of a destination vector
containing DNA sequence encoding GCaMP6s (Chen et al., 2013) and unc-54 3’UTR with an
entry vector glr-1p-PCR8 that contained a sequéﬁéém(‘)'f'gégi"iﬁé'ges upstream of gir-1 coding
region. glr-1p::NLS-mCherry-NLS was generated by LR recombination of the glr-1p-PCR8

entry vector with a destination vector that contained a mCherry sequence flanked by two
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NLSs (nuclear localization sequences) followed by unc-54 3’'UTR constructed using Gibson
assembly (Thermo Fisher). Each plasmid was injected at 10ng/uL to generate ZC3292, and
glr-1p::NLS-mCherry-NLS was injected at 40ng/uL to generate ZC3612 using standard
methods of microinjection (Mello et al., 1991).

Imaging data collection

Imaging of the ZC3292 strain was performed using an Andor Spinning Disk confocal system
on a Nikon Eclipse Ti-E inverted microscope using a 40x oil-immersion objective (N.A.=1.3)
and images were recorded using an ANDOR iXon Ultra EMCCD camera. Hermaphrodites at
day 1 adult stage were used and were immobilized with sodiam azide in the chamber of a
microfluidic device (Chronis et al., 2007) controlled by an AutoMate Scientific ValveBank
perfusion system (Berkeley, CA). Volumetric images of the head region were acquired in both
green (laser: 488nm,; filter 525nm/50nm) and red channels (laser: 561nm; filter:
617nm/73nm) with a Z step size of 0.3um and XY resolution of 0.4um. The exposure time is
20ms for both green channel and red channel.

Imaging of the strain ZC3612 was performed using a Nikon W1 spinning disk confocal
system on Nikon Ti2-E microscope with Hamamatsu ORCA-Fusion Gen-III sCMOS camera. A
60x objective lens with N.A. 1.4 was used. The animals were age-synchronized to day 1 adult
stage and chemically immobilized in 20mM tetramisole. In order to efficiently image
straight-headed animals, we loaded the animals into an array type microfluidic device (Lee

green (laser: 488nm,; filter: ET525/36m) channels were acquired with a Z step size of 0.3um.
The exposure times were 10ms and 50ms for red and green channels respectively. The XY
resolution of the images was 0.12pm.

Manual annotation and atlas construction

Building an atlas requires manually annotated datasets. Three participants separately
segmented and annotated cells on raw 3D stacks of 26 worm data. Most of the annotations
were done by visually comparing the cell point cloud against reference images. The
references include the anatomical features of head neurons, including the positions of the
cell bodies and the shape of the neuronal processes, on the WormaAtlas website (Hall et al.,

known expression patterns [(Hart et al., 1995; Maricq et al., 1995) and Taylor et al., Cell 2021]
and by analyzing the expression patterns in our own data. The list of annotated neurons is
as follows: AIBL/R, AVAL/R, AVBL/R, AVDL/R, AVEL/R, AVG, a-L/R, B, RIAL/R, RIGL/R, RIML/R,
RMDL/R, RMDDL/R, RMEL/R, y, RMDVL/R, SMDDL/R, SMDVL/R, §-L/R, e-L/R. Neuronal
expressions with low confidence have been indicated in Greek symbols; we cautiously
mention q, B, y, §, € may correspond to AV], M1, RIS, URYD, and URYV, respectively. The data-
driven atlas was constructed using the atlas generation codes included in the original
CRF_ID. Instead of building an atlas from the consensus labels of three annotators, the labels
from different annotators were considered as separate annotations, effectively capturing the
statistics of the information from the data set instead of using majority-vote single label.

CRF_ID 2.0: Improved axes prediction

The new axes prediction method consists of two parts: AP axis correction and LR/DV axes
correction. For AP axis correction, the point cloud was artificially enlarged by including
naturally fluorescent landmarks in the animal’s body. The autofluorescence signals were
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segmented by thresholding local maxima from the image after Gaussian filtering. The
threshold value of 99.85 was determined experimentally and can be tuned for different
imaging conditions. Then, PCA was applied to the point cloud to find the AP axis and the
initial LR and DV axes.

The algorithm for LR/DV axes correction takes the initial LR and DV axes and cell point cloud
as inputs and outputs the corrected LR and DV axes. It searches for the plane/axes pair that
divides the point cloud into two sides with the highest symmetry across the plane. First, it
finds a range of planes that satisfy the following constraints: orthogonality to the AP axis,
within the angle of 20 degrees from the initial axis, and an increment of 1 degree. The initial
axis is the LR axis that was generated by PCA in the previous step. By iteratively testing each
plane, the one that results in highest symmetry was found. Symmetry was quantified as the
inverse of the deviation from perfect symmetry. The deviation was calculated by reflecting
each point with respect to the plane and calculating the distance of the reflected point to the
closest neighboring point. The distance was calculated for all points in the point cloud and
the average of the lowest 7 distances was used for the given plane. The threshold value of 7
was derived from the expectation of at least 7 left/right pairs of neurons in the glr-1 strain,
but this threshold can be tuned depending on the characteristics of the strain or the images.
Higher symmetry with respect to a plane would result in a lower distance value. The plane
that resulted in the lowest distance was assigned the final LR axis, and the DV axis is
automatically determined by orthogonality to the first two axes. The average run time for
each point cloud was under 1 min.

CRF_ID 2.0: Evaluation of accuracy

Because the absolute ground truth neuron labels for the cells are not available, we defined
the annotation accuracy as correspondence to the consensus labels of three human
annotations. The consensus was established as the label that has been agreed by at least two
annotators. Cells whose identities were differently annotated by all three annotators, which
account for less than 3% of all cells, were omitted from the accuracy calculation. Also, all
reported correspondence values are results of leave-one-out cross validations, meaning the
atlas used to test the accuracy on a specific worm did not include that specific data set. Thus,
there are 26 different versions of the glr-1 25 dataset-atlas, one for each dataset exclusion.
For example, in Figure 3a, a correspondence value of 0.8 indicates that 80% of the cells in the
dataset were assigned the neuron label that matches the consensus label, and the atlas used
is driven from manual annotations of 25 other worm datasets. The correspondences
reported in Figures 2 and 3 are from results of running the prediction algorithm once in the
best single prediction mode. Figure 4 additionally reports top 1, 2, 3 results from 100
iterations while randomly removing neuron labels from the candidate list.

Gene expression analysis

To extract the cell-specific fluorescent signals, we first used the automatic segmentation tool
to segment the cells in a total of 27 image stacks of ZC3612. The segmentation was done on
the nuclear-localized mCherry signals. The quality of the segmentation was visually
inspected to eliminate false positives. Then, iterative neuron ID predictions were performed
on the segmented red channel images. The resulting top 3 candidates were reviewed for
each cell, and the final neuron label was selected based on human judgment. Then, a series
of data processing steps were necessary to best represent the cell-specific gene expression
data from different animals. First, we extracted the mCherry and GFP signal intensities by
averaging the intensities of the brightest 100 pixels in the segmented masks, which had
around 500 pixels on average. Because mCherry and GFP expressions are driven by separate
transgenes, mCherry expression does not guarantee GFP expression. Thus, GFP expressions

Hyun Jee Lee et al., 2023. eLife https://doi.org/10.7554/eLife.89050.1 14 of 22



7 eLife

that were deemed absent were eliminated during data curation. Second, because the
expression levels are variable among animals, the fluorescence intensities were normalized
for each animal by dividing by the average intensity of all neurons in the animal. Lastly, we
compared the intensities of cells only on the same side of the animal because the side of the
animal closer to the objective lens was generally brighter due to light scattering through the
biological tissues. The reported values in Figure 5 are the intensities on the brighter side of
the animal.

Statistical analysis

Statistical analyses of the data were performed using Paired Comparisons App in OriginPro
2020. The asterisk symbol denotes a significance level of p<0.05. Not significantly different
comparisons are denoted non-significant (n.s.).

Code and data availability

CRF_ID 2.0 can be accessed at https://github.com/lu-lab/CRF-Cell-ID-2.0. This repository
contains all components of the framework and the atlases produced and compared in this
work.
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Figure 2-figure supplement.

Neuron ID accuracy no longer depends on
the axes inaccuracy after axes correction.
a) High negative correlation between axes
inaccuracy and neuron ID accuracy before
axes correction. b) No correlation between
axes inaccuracy and neuron ID accuracy
after axes correction. c). No correlation
between worm orientation and neuron ID
accuracy.

Figure 3-figure supplement.

A more detailed visual representation of the
difference of each atlas from the best avail-
able atlas (gir-1 from 25 datasets). a) differ-
ences in angular relationships.b) differences
in PA/LR/DV relationships.
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a) correspondence between any two among the three annotators. b) Slight correlation be-
tween the fraction of cells unanimously labeled by 3 annotators and neuron ID
correspondence.

Figure 5-figure supplement 2.
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Reviewer #1 (Public Review):

In this paper, the authors developed an image analysis pipeline to automatically identify
individual neurons within a population of fluorescently tagged neurons. This application is
optimized to deal with multi-cell analysis and builds on a previous software version,
developed by the same team, to resolve individual neurons from whole-brain imaging
stacks. Using advanced statistical approaches and several heuristics tailored for C. elegans
anatomy, the method successfully identifies individual neurons with a fairly high accuracy.
Thus, while specific to C. elegans, this method can become instrumental for a variety of
research directions such as in-vivo single-cell gene expression analysis and calcium-based
neural activity studies.

The analysis procedure depends on the availability of an accurate atlas that serves as a
reference map for neural positions. Thus, when imaging a new reporter line without fair
prior knowledge of the tagged cells, such an atlas may be very difficult to construct.
Moreover, usage of available reference atlases, constructed based on other databases, is not
very helpful (as shown by the authors in Fig 3), so for each new reporter line a de-novo atlas
needs to be constructed.

I have a few comments that may help to better understand the potential of the tool to
become handy:

1) I wonder the degree by which strain mosaicism affects the analysis (Figs 1-4) as it was
performed on a non-integrated reporter strain. As stated, for constructing the reference
atlas, the authors used worms in which they could identify the complete set of tagged
neurons. But how sensitive is the analysis when assaying worms with different levels of
mosaicism? Are the results shown in the paper stem from animals with a full neural set
expression? Could the authors add results for which the assayed worms show partial
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expression where only 80%, 70%, 50% of the cells population are observed, and how this will
affect identification accuracy? This may be important as many non-integrated reporter lines
show high mosaic patterns and may therefore not be suitable for using this analytic method.
In that sense, could the authors describe the mosaic degree of their line used for validating
the method.

1. For the gene expression analysis (Fig 5), where was the intensity of the GFP extracted
from? As it has no nuclear tag, the protein should be cytoplasmic (as seen in Fig 5a),
but in Fig 5c it is shown as if the region of interest to extract fluorescence was
nuclear. If fluorescence was indeed extracted from the cytoplasm, then it will be
helpful to include in the software and in the results description how this was done, as
a huge hurdle in dissecting such multi-cell images is avoiding crossreads between
adjacent/intersecting neurons.

2. In the same matter: In the methods, it is specified that the strain expressing GCAMP
was also used in the gene expression analysis shown in Figure 5. But the calcium
indicator may show transient intensities depending on spontaneous neural activity
during the imaging. This will introduce a significant variability that may affect the
expression correlation analysis as depicted in Figure 5.

Reviewer #2 (Public Review):

The authors succeed in generalizing the pre-alignment procedure for their cell identification
method to allow it to work effectively on data with only small subsets of cells labeled. They
convincingly show that their extension accurately identifies head angle, based on finding
auto fluorescent tissue and looking for a symmetric l/r axis. They demonstrate that the
method works to identify known subsets of neurons with varying accuracy depending on the
nature of underlying atlas data. Their approach should be a useful one for researchers
wishing to identify subsets of head neurons in C. elegans, for example in whole brain
recording, and the ideas might be useful elsewhere.

The authors also strive to give some general insights on what makes a good atlas. It is
interesting and valuable to see (at least for this specific set of neurons) that 5-10 ideal
examples are sufficient. However, some critical details would help in understanding how far
their insights generalize. I believe the set of neurons in each atlas version are matched to the
known set of cells in the sparse neuronal marker, however this critical detail isn't explicitly
stated anywhere I can see. In addition, it is stated that some neuron positions are missing in
the neuropal data and replaced with the (single) position available from the open worm
atlas. It should be stated how many neurons are missing and replaced in this way (providing
weaker information). It also is not explicitly stated that the putative identities for the
uncertain cells (designated with Greek letters) are used to sample the neuropal data. Large
numbers of openworm single positions or if uncertain cells are misidentified forcing
alignment against the positions of nearby but different cells would both handicap the
neuropal atlas relative to the matched florescence atlas. This is an important question since
sufficient performance from an ideal neuropal atlas (subsampled) would avoid the need for
building custom atlases per strain.
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