A Portable, Fast, DCT-based Compressor for Al Accelerators

Milan Shah
North Carolina State University
Argonne National Laboratory
Raleigh, NC, USA
mkshah5@ncsu.edu

Michela Becchi
North Carolina State University
Raleigh, NC, USA
mbecchi@ncsu.edu

ABSTRACT

Lossy compression can be an effective tool in Al training and in-
ference to reduce memory requirements, storage footprint, and in
some cases, execution time. With the rise of novel architectures
designed to accelerate Al workloads, compression can continue to
serve these purposes, but must be adapted to the new accelerators.
Due to programmability and architectural differences, existing lossy
compressors cannot be directly ported to and are not optimized for
any Al accelerator, thus requiring new compression designs.

In this paper, we propose a novel, portable, DCT-based lossy com-
pressor that can be used across a variety of Al accelerators. More
specifically, we make the following contributions: 1) We propose
a DCT-based lossy compressor design for training data that uses
operators supported across four state-of-the-art Al accelerators:
Cerebras CS-2, SambaNova SN30, Groq GroqChip, and Graphcore
IPU. 2) We design two optimization techniques to allow for higher
resolution compressed data on certain platforms and improved com-
pression ratio on the IPU. 3) We evaluate our compressor’s ability
to preserve accuracy on four benchmarks, three of which are Al
for science benchmarks going beyond image classification. Our ex-
periments show that accuracy degradation can be limited to 3% or
less, and sometimes, compression improves accuracy. 4) We study
compression/decompression time as a function of resolution and
batch size, finding that our compressor can achieve throughputs
on the scale of tens of GB/s, depending on the platform.

CCS CONCEPTS

« Theory of computation — Data compression; « Computer
systems organization — Neural networks; Data flow architec-
tures.

KEYWORDS

Compression, Al accelerator, ML training

Corresponding author: Sheng Di, Mathematics and Computer Science Division, Ar-
gonne National Laboratory, 9700 Cass Avenue, Lemont, IL 60439, USA.

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.

HPDC °24, June 3-7, 2024, Pisa, Italy

© 2024 Association for Computing Machinery.

ACM ISBN 979-8-4007-0413-0/24/06...$15.00
https://doi.org/10.1145/3625549.3658662

Xiaodong Yu
Stevens Institute of Technology
Hoboken, NJ, USA
xyu38@stevens.edu

Sheng Di

Argonne National Laboratory
Lemont, IL, USA
sdil@anl.gov

Franck Cappello
Argonne National Laboratory
Lemont, IL, USA
cappello@mcs.anl.gov

ACM Reference Format:

Milan Shah, Xiaodong Yu, Sheng Di, Michela Becchi, and Franck Cappello.
2024. A Portable, Fast, DCT-based Compressor for Al Accelerators. In The
33rd International Symposium on High-Performance Parallel and Distributed
Computing (HPDC ’24), June 3-7, 2024, Pisa, Italy. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3625549.3658662

1 INTRODUCTION

Motivation: In recent years, Al models have grown rapidly in size,
from 100s of millions of parameters to 100s of billions of parameters
[33]. The training cost in terms of time, hardware requirements, and
power consumption increases greatly with the size, with models
on the scale of 100s of billions of parameters requiring hundreds
to thousands of GPUs for training. For instance, OPT-175B has 175
billion parameters and was trained on 992 80 GB NVIDIA A100
GPUs [30]. To match this meteoric rise in training demand, Al
accelerators with architectures more finely tuned for ML training
and inference have been developed, including the Cerebras CS-
2 [2], the SambaNova SN30 [6], the Groq GroqChip [8], and the
Graphcore IPU [3]. These emerging architectures have already
been deployed in a variety of scientific research tasks, including
molecular dynamics simulations [12] and genome-scale language
models [34]. In [12] and [34], AT accelerators are shown to improve
time-to-solution and enable larger batch sizes, both of which are
critical to performance.

Novel accelerators attempt to overcome the salient drawbacks
of traditional Al training platforms like CPUs and GPUs. GPUs rely
on frequent memory exchange between on-chip and global device
memory, and require kernel launches for each layer of computation
in a neural network. CPUs often have deeper memory hierarchies
and lack high degrees of parallelism, which can be a bottleneck for
tensor operations frequently occurring in neural networks. Many
emerging Al accelerators seek to improve training and inference
performance by introducing an abundance of on-chip memory
close to compute while simultaneously achieving high degrees of
data parallelism through specialized GEMM units, many ALUs, or
hundreds to thousands of compute units. Across CPU, GPU, and Al
accelerators, memory still remains a precious resource that must
be rationed to train increasingly large models and datasets. SciML-
Bench [28] is an “Al for Science” benchmarking suite that contains
several training and inference tasks found in scientific applications.
Datasets part of this suite as well as other datasets (i.e., the 800
GB training set used for OPT-175B [30]) are on the scale of tens

HPDC ’24, June 3-7, 2024, Pisa, Italy

of GB to nearly the TB level [33]. However, on-chip memory of
accelerators is on the scale of 100s of MB to tens of GB, significantly
smaller than the size of training datasets, as shown in Table 1 and
Table 2.

Limitation of state-of-art approaches: If batch sizes or reso-
lutions of samples used to train models are too large, memory and
storage can quickly be exhausted. As such, compression becomes a
vital tool in managing model and dataset footprint. While previous
works have studied compression for improving memory utilization
and performance of models on CPU/GPU [13, 19] and for decreas-
ing data transfer costs in distributed training [11, 21], little work
has been done to explore compression for Al accelerators. These
works have developed novel compression techniques for varying
compression targets, but lack a direct port or optimized implemen-
tation for Al accelerators such that these emerging accelerators can
reap the benefits of compression.

Key insights and contributions: In this work, we design a
portable, DCT-based compressor that seamlessly runs across four
emerging Al accelerators: the CS-2, SN30, GroqChip, and IPU. To
the best of our knowledge, this is the first attempt to develop a lossy
compressor compatible with these accelerators. The discrete cosine
transform, or DCT [10], is widely used in image compression as a
means of decorrelating image data to improve compressibility. Our
compressor is implemented in PyTorch, allowing the end-user to
call our compress or decompress APIs directly from their Python
training or inference code. Our compressor seeks to provide an
efficient means of reducing data footprint while maintaining data fi-
delity and requiring little programmer effort. Our key contributions
are as follows:

e We develop a cross-accelerator compressor targeting training
data. Our design only requires two matrix multiplications for
compression and decompression each. DCT-II is applied to the
input data, and only a portion of the DCT coefficients matrix is
retained to yield the compressed data.

e We extend our compressor to support higher resolution inputs at
lower memory footprint using a partial-serialization optimization.
Additionally, we propose a Graphcore IPU-specific optimization
that improves the compression ratio with little impact on test
accuracy/loss.

o Our compressor maintains accuracy close to baseline, generally

within 3%, while reaching compression/decompression through-

puts of 100s of MB/s on GroqChip, 1-2 GB/s on a single IPU, 7-10

GB/s on a single SN30 RDU, and up to 26 GB/s on CS-2.

We test the additional optimizations and find that partial serializa-

tion can enable higher resolution images (512x512) on SN30 and

IPU, while the IPU-specific optimization can improve compres-

sion ratio by a factor 1-2x with 50% or less drop in throughput.

Experimental methodology and artifact availability: We
perform a comprehensive evaluation of our compressor on the
four AT accelerators and an NVIDIA A100 GPU. The compressor
is evaluated with four benchmarks, a traditional image classifica-
tion task and three Al for Science benchmarks, and a battery of
compression and decompression timing tests with varying input
data resolution and batch size. The code for this work is available
at https://github.com/mkshah5/AI-Accelerator-Compression.git.

Milan Shah, Xiaodong Yu, Sheng Di, Michela Becchi, and Franck Cappello

Table 1: Breakdown of accelerator specifications. CU = Compute
Unit, OCM = On-chip Memory, PT=PyTorch, TF=Tensorflow.

CS-2 SN30 GroqChip IPU
CUs 850,000 1280 5120 1472
OCM 40 GB 640 MB 230 MB 900 MB
OCM/CUs 48 KB 0.5 MB 0.045 MB 0.61 MB
PT, Keras TF, PT,
Software TF, PT,CSL SF, PT ONNX PopArt
Arch. Dataflow Dataflow SIMD MIMD

Limitations of the proposed approach: Our work focuses on
portability and relies on the rapidly changing development ecosys-
tem for each accelerator. As such, the compressor is lightweight
and does not achieve compression ratios as high as compressors
available on CPU and GPU. Additionally, our design is tailored for
training data as this data is readily available across platforms. In
the future, more work to optimize the compressor for each platform
and for differing compression targets can improve compression ra-
tio and speed as APIs to access activations and gradients are made
available on these platforms.

2 BACKGROUND AND MOTIVATION
2.1 AI Accelerators

AT accelerators are novel architectures targeting fast training and
inference of Al models. These accelerators are designed for opera-
tions and dataflows commonly required for training and inference,
such as matrix multiplications and deep pipelines. In this section,
we provide a high-level overview of each accelerator’s architecture
and programming interface. Table 1 outlines key specifications, in-
cluding compute unit (CU) count, on-chip memory (OCM) capacity,
software interfaces (TF for Tensorflow and PT for PyTorch), and
architecture type.

2.1.1 Cerebras CS-2. The Cerebras CS-2 [2, 5] is a wafer-scale ac-
celerator. The CS-2 wafer contains 850,000 compute units, called
processing elements (PEs), and each PE has an associated 48 KB of
on-chip memory, for a total of more than 40 GB of on-chip memory.
A PE is specialized compute core that accelerates sparse matrix
and other Al operations. The PEs are laid out in a 2-D meshgrid
with high-speed interconnects connecting each PE to its neighbors.
Once the user develops the model using one of the supported soft-
ware toolchains, the Cerebras compiler physically maps the model
computation to the PEs, arranging the computation in a dataflow
manner. This enables deep pipeline-level parallelism where sam-
ples for training and inference flow from host to device memory,
then to the on-chip PEs to proceed with computation. While the
CS-2 does support a custom low-level programming interface, CSL,
custom kernels in CSL are not fully integrated with PyTorch and
Tensorflow. For models with less than 1 billion parameters, the
CS-2 performs pipelined execution as-is, while larger models uti-
lize a weight streaming execution method, where the parameters
are streamed from pipeline stage to pipeline stage along with the
sample or activation data.

A Portable, Fast, DCT-based Compressor for Al Accelerators

2.1.2 SambaNova SN30. The SambaNova SN30 [6, 27] is another
dataflow architecture, composed of eight reconfigurable dataflow
units (RDUs). Each RDU has 1280 compute units, called pattern com-
pute units (PCUs), and 1280 on-chip memory units, called pattern
memory units (PMUs). Each RDU is composed of 8 tiles, where each
tile has 160 PCUs and 160 PMUs. RDUs are interconnected for both
model and data parallel modes, and PCUs and PMUs are assigned to
computation by the compiler based on the model’s computational
graph. The graph is traced during compile time and the compiler
performs some optimizations that may merge graph nodes (opera-
tors) and edges (data flows) depending on PCU and PMU capacity.
SambaFlow (SF), is similar to PyTorch and provides a Python pro-
gramming interface. A computation schedule, composed of sections
that compute forward, backward, and optimization passes, specifies
computation order and maps a section to tiles on the RDU. RDUs
additionally have 1 TB of off-chip device memory that can hold
weights, activations, and other data as sections are scheduled and
de-scheduled from the tiles. In this work, we perform the SN30
evaluation using a single RDU.

2.1.3 Groq GroqChip. GroqChip [7, 8] is a combination of a dataflow
and SIMD architecture that leverages both the low-latency data
transfers of a dataflow architecture and the data parallelism of a
SIMD architecture. The GroqChip has 230 MB of on-chip memory
and 5120 compute units, or ALUs. The 230 MB is shared across a
layer of ALUs, with subsequent layers retrieving results from the
previous layer of ALUs. Data is streamed from this 230 MB memory
to the first layer and each ALU layer receives instructions from a
compiler-generated instruction schedule to perform the associated
computation. Like the previously described accelerators, the com-
putation schedule is offloaded to the compiler. Additionally, when
the pipeline is fully occupied, a set of results is generated every
cycle.

2.1.4 Graphcore IPU. The Graphcore Intelligence Processing Unit
(IPU) [3, 24] is the most MIMD-like architecture among the accel-
erators considered. It is composed of 1472 compute units, called
cores, and 900 MB of on-chip memory distributed evenly across all
cores. Each core is capable of executing its own instruction stream
and uses on-chip memory to store parameters and activations as
needed. Each core can additionally communicate with other cores
to retrieve data that is not directly adjacent to the core, with 4.1
TB of DDR memory (“streaming memory”) for the Graphcore Bow-
Pod64 system used as a means of host-device communication. In
addition to PyTorch and Tensorflow, PopArt allows the implementa-
tion of custom kernels in C++ exposed to PyTorch. To handle larger
models, the user can utilize more IPUs. The Graphcore Bow-Pod64
system contains 64 IPUs with custom interconnects to enable larger
models, model parallelism, and data parallelism.

2.2 Lossy Compression and AI/ML

Lossy compression is a form of data compression where the de-
compressed data may not be exactly equal to the data before com-
pression. This in contrast with lossless compression, where decom-
pressed data is guaranteed to be equal to data before compres-
sion. Lossy compression is often utilized in scientific floating-point
datasets since lossless compression yields lower compression ratios

HPDC ’24, June 3-7, 2024, Pisa, Italy

Layer2 eee | LayerN-1

Weights Weights

[. l .o

Gradients](——[Gradients] vee

Figure 1: Neural network training procedure and compression tar-
gets. Red target indicates data being compressed/decompressed in
this work. Blue targets are compressed/decompressed in other works
on CPU/GPU and are future work for Al accelerators.

Backward Pass

and lower compression/decompression throughput [31]. Introduc-
ing some amount of loss can vastly improve compression ratio and
compression/decompression speed at the cost of data fidelity. Thus,
it is imperative to understand the impact of lossy compression on
dataset fidelity and post-hoc data analysis.

Some lossy compressors, such as SZ [14, 32], are error-bounded:
the user specifies an error bound such that decompressed or re-
constructed data points are within the error bound of the original
data points. Other lossy compressors, such as ZFP [22], approach
lossy compression with a fixed compression rate. The user can spe-
cific how rigorously the data should be compressed, with greater
compression leading to more data loss. Both SZ and ZFP have been
designed for scientific floating-point data and have GPU implemen-
tations, namely, cuSZ [29], cuSZp [18], and cuZFP [22]. In terms
of image compression, JPEG [4] is a commonly used compression
method that allows for user control of decompressed data visual
quality. JPEG first applies DCT, then quantizes the resultant co-
efficients matrix. This matrix is subsequently compressed using
some encoding method. Another form of lossy image compression
is color quantization, where the range of color values is limited to
some integer range [17].

Lossy compression has been widely studied as a means of reduc-
ing the memory requirements of Al model training and inference.
Compression targets include model parameters, activations [13, 19],
gradients [11, 21], and training data [15]. Reducing model parame-
ter footprint allows for more efficient storage of the model itself,
enabling easier deployment to memory-constrained edge devices.
Compressing activations (model layer outputs generated during the
forward pass and required for gradient computation) can reduce
the memory required during training, ensuring that device memory
is not exhausted. In distributed training environments, gradients
must be communicated across interconnects or networks, incurring
significant overhead. Compression can reduce gradient size, lower-
ing distributed training communication costs. Lastly, compressing
training data can lower disk storage costs, improve host-to-device
communication when data is transferred to device memory, and
reduce device memory consumption. Interestingly, previous work
has shown that applying lossy compression on Al data does not
necessarily hurt accuracy, and can even help training convergence
(e.g., by avoiding overfitting).

2.3 Motivation

Data compression can benefit Al training and inference in several
ways, and can be applied to training data, model weights, acti-
vations and gradients (see Fig. 1). While compression has been

HPDC ’24, June 3-7, 2024, Pisa, Italy

Milan Shah, Xiaodong Yu, Sheng Di, Michela Becchi, and Franck Cappello

Table 2: Various image datasets for benchmarking AI models

Dataset Size Type Task Sample Size
ILSVRC 2012-17 [26] 167.62 GB General Images Classification 3x256x256
em_graphene_sim [28] 5 GB Electron Micrographs Denoising 1x256x256
optical_damage_ds1 [28] 27 GB Laser Optics Reconstruction 3x492x656

cloud_slstr_ds1 [28] 187 GB Remote Sensing Pixel Segmentation ~ 3x1200x1500

successfully used for Al training on CPU and GPU, the design of
efficient compression techniques targeting novel Al accelerators
has yet to be explored. However, due to their specific architectural
features and programmability constraints, existing lossy compres-
sors are not optimized for these platforms and cannot be directly
ported to them. A portable compressor that can be easily integrated
across accelerators would allow a variety of users to deploy com-
pression in their Al applications. Such a compressor should have
high throughput, offer reasonable compression ratios, and cause
limited impact on model accuracy.

Since these Al accelerators are connected to a host machine,
compression can improve host-device communication as well as
reduce memory and storage footprint. Device-to-device commu-
nication cost can additionally be reduced in both model and data
parallel settings. In some instances, on-chip performance can bene-
fit from compression, such as when compute units must retrieve
data residing in memory units not adjacent to them.

Previous efforts [15, 20] have explored compression of training
data, while focusing primarily on image classification tasks per-
formed on common computer vision datasets, such as CIFAR10 or
ImageNet. Other downstream tasks, such as image reconstruction
and segmentation within Al-for-Science applications, have not been
thoroughly investigated in the context of data compression. A com-
pressor that integrates well with tasks beyond image classification
can benefit the scientific community at large. Thus, we evaluate
our proposed compressor against not only a traditional image clas-
sification benchmark, but also three scientific AI benchmarks.

As of this work, the software stacks of most Al accelerators do
not provide APIs to directly access activation and gradient data.
Thus, we evaluate our portable compressor on training data. As
described in Section 1, training data size is significantly larger
than accelerator memory capacity. We expect that future software
releases might allow programmers to directly access activation and
gradient data stored on the device. To this end, we will discuss
potential modifications to our proposed compressor to extend its
effectiveness to future compression targets.

3 DESIGN AND OPTIMIZATIONS
3.1 Design Challenges

The architectural features and programming support of each accel-
erator poses a set of challenges and constraints on the design of
the compressor.

Tensor Sizes: All the considered accelerators rely on strong
compiler intervention: the compiler generates instruction streams,
execution schedules, and resource allocation. For the dataflow ar-
chitectures, Cerebras’s CS-2 and Sambanova’s SN30, the compiler

places computation physically on-chip, allocating and routing com-
pute and memory units. GroqChip’s SIMD-like architecture, called
the Tensor Streaming Processor (TSP), relies on the compiler to de-
termine the execution schedule, so as to allow more of the chip area
to be used for memory and ALUs instead of control logic. Graph-
core’s IPU also relies on its compiler to build the execution schedule.
Across all compilers, models are converted to computation graphs,
and data structure sizes, specifically tensor sizes, must be known
at compile time. Knowing tensor sizes at compile-time allows the
compiler to generate appropriate instruction schedules and allocate
enough compute and memory resources. The main drawback of
this is that, since all samples must have the same predefined size,
the compression ratio must be known at compile time and cannot
vary from sample to sample.

Programmability and Operator Support: All Al platforms
provide support for popular machine learning frameworks (such
as PyTorch and TensorFlow), with some platforms additionally
supporting custom, lower level programming interfaces (typically
extensions of C/C++). For some of these platforms, we found low
level programming interfaces to have limited documentation and
support. While a PyTorch programming interface is available on
all considered accelerators, it does not have full operator support
on each platform. For instance, PyTorch’s support on SambaNova’s
SN30 includes the torch.bitwise_not API which performs the
NOT operator on each bit of the input tensor, but lacks bitwise
shift operators that are integral to many variable length encoding
schemes. The lack of support for PyTorch bitwise shift operators is
common among many of the platforms, limiting the ability to im-
plement existing compression schemes relying on these operators.
Using lower level programming interfaces specific to each platform
enables finer grain control of workload partitioning, which can im-
prove throughput, but this reduces compressor portability, making
PyTorch the best programming interface for this work.

Arithmetic Precision Support: While providing low preci-
sion floating point data types to allow faster memory accesses and
computation, different accelerators support different standards. For
example, for 16-bit floating point types, CS-2, GroqChip, and IPU
support the FP16 format, while SN30 supports the BF16 format. In
this work, we use the 32-bit floating point data type for consistency
across all four accelerators and the GPU, and to ensure that data
from benchmarks can be used without type conversion. While this
is not the optimal choice for individual accelerators, using the 32-bit
floating point format allows for a high degree of portability.

Accuracy Preservation: As is the case with all AI/ML tasks,
accuracy is one of the key metrics when gauging a model. In the
case of lossy compression, distortions in reconstructed data can
have downstream effects on model performance. Excessive data

A Portable, Fast, DCT-based Compressor for Al Accelerators

distortion on training data can cause the model to learn from a non-
representative training set, as seen with the drop in accuracy with
decreasing JPEG quality factor in [15]. In the case of activations,
data loss can lead to incorrectly calculated gradients and poor
convergence on the loss function minimum. A compressor designed
for AT accelerators must ensure a sufficiently high degree of data
fidelity is met, else compression may not be a practical means of
improving training and inference.

3.2 Fundamental Design and Approach

To design a compressor for these four Al accelerators, we must
balance platform limitations with strengths. Since these accelera-
tors are designed for high throughput fully-connected layers and
convolutions, matrix multiplication is highly optimized for each
platform. As such, we propose a discrete cosine transform (DCT)-
based compressor that primarily uses matrix multiplications to both
compress and decompress input data. DCT-II, the version of the
DCT specifically used in JPEG [4] and originally proposed in [10],
is analogous to the discrete Fourier transform (DFT) in that both
map data to frequency domain. Unlike DFT, however, DCT yields
coefficients that are only real components, thus complex numbers
need not be handled.

Dij = Z=C(C() X35! Zy5! ple y)S(x DSy, J)

_ (2u+1)or
S(u,0) = cos ~—x—

1 e
C(w):{% ifw=0

1 ifw>0
1 ap s
— ifi=0
Tij=1 ' i)
2 x(2j+1)i .o
NCOST ifi >0

Eq. 1 shows the DCT-II formula. The DCT matrix D is an N X N
matrix and is the result of applying the transform to an N X N
input p, where p(x,y) is the input data at index x,y (x =0,y =0
corresponds to the upper left-most index). D; ; is the DCT matrix
coeflicient at index i, j. Eq. 2 shows the matrix formulation of the
transform. T; j corresponds to the transform matrix value at in-
dex i, j. The formula D = TATT applies the DCT to input N x N
matrix A. Element Dy g is referred to as the DC coefficient and is
representative of the average value of A.

JPEG and other compressors, such as ZFP [22], apply DCT or
similar transforms to chunks of the input data to convert image
or scientific floating point data to frequency domain, then subse-
quently discard high frequency coefficients of the resultant matrix
D. Higher frequency elements of these data are less visually percep-
tible and more characteristic of noise. JPEG compression quantizes
the DCT coeflicients, introducing loss. After quantization, higher
frequency DCT coeflicients (coefficients with higher indices i, j),
become zero. JPEG compresses the quantized DCT matrix using a
variable-length encoding (VLE) scheme, such as run-length encod-
ing (RLE) or Huffman coding. When using RLE, the DCT matrix is
encoded in a zig-zag fashion (see Fig. 2).

Fig. 3 shows the proportion of nonzero DCT coefficients across
all 8x8 blocks of 1000 images from the CIFAR10 dataset ([1]). JPEG
uses the 8x8 block size in the standard algorithm [4], an appropriate

HPDC ’24, June 3-7, 2024, Pisa, Italy

Figure 2: Two encoding methods for the DCT matrix: Zig-zag (green,
dotted arrows) and Chop (blue, dashed box). RLE can be applied to
data stored in zig-zag fashion to leverage many zeroes. Chop retains
upper left CF x CF values (CF =5 here).

size for balancing computational complexity of compression with
keeping enough local information for DCT to be effective. Each
row corresponds to a color channel (i.e., blue, green and red) and
each column corresponds to a JPEG quality factor. The quality
factor determines how much the DCT matrix is quantized: lower
quality factor increases quantization, generating more zeroes, and
increasing data loss. With more zeroes, the DCT matrix becomes
more compressible since encoding schemes can leverage the lower
entropy of the data to increase compression ratio.

For compatibility with the accelerator platforms, we must design
the encoding stage carefully. Variable-length encoding schemes, like
RLE and Huffman, are dependent on bitwise operations and result in
compressed data that can vary in size dependent on the underlying
data. As previously explained, certain bitwise operations are not
supported and data sizes must generally be known at compile time
for the accelerators. To accommodate these limitations as well
as ensure high throughput compression and decompression, we
compress the DCT matrix coefficients by only retaining the upper
left CF X CF values. We call the overall method DCT+Chop since
the compressor applies DCT to the input data then discards, or
“chops", all DCT coefficients not part of the upper left CFXCF values.

Quality Factor
50

Red

1

lor Chann
Green

Blue

Figure 3: Heatmap of DCT coefficients after JPEG quantization with
varying quality factor and color channel. Each element corresponds
to percent of 8x8 blocks that have a nonzero value at that index
(darker is lower). DCT is applied to 1000 32x32 images from the
CIFAR10 dataset.

HPDC ’24, June 3-7, 2024, Pisa, Italy

Accordingly, we define CF as the “chop factor”. Recall that these
elements (with lower i, j indices) are lower frequency coefficients
that are more significant to the overall data fidelity. DCT+Chop is
applied to each 8 X 8 chunk of the input data (N = 8 in Eq. 1 and 2).
The compression ratio can then be computed as:

88 64

CF+CF _ CF? @)

In the case of image data, each channel can be compressed or de-
compressed in parallel using DCT+Chop. Additionally, for batches
of images, each sample of the batch can be compressed or decom-
pressed in parallel with other samples. Thus, for a dataset of size
BD xCxnxn, where BD is the batch size, C the number of channels,
and n X n the number of pixes in the image, there are W
parallel DCT+Chop runs. With respect to color channels, the stan-
dard JPEG algorithm differs slightly: a color space transform from
RGB to YCbCr is applied to leverage luminance and chrominance[4].
In an effort to keep compression fast and lightweight, we keep the
original data in RGB space. The following sections will cover how
DCT+Chop is algorithmically implemented for both compression
and decompression.

CR =

3.3 Compression Implementation
CF 8

E 8 T
——) =] T

crlx]

T

Mask Matrix M
(nrow_blks x CF x n)

DCT Matrix T L

(n x n)

Input A

(n x n)
Figure 4: Example matrices used in compression/decompression. For
this example, n = 24. nrow_blks is the number of blocks along the
row dimension, CF is the chop factor.

Implementing the DCT+Chop compressor requires two matrix
multiplications to perform all BPXCXRX1 ¢ompressions. Eq. 4 shows
how the input n X n matrix A is converted to compressed matrix Y.
Y has size SE x Chen

Y = MDMT = MTLATT MT = (MT) A(T MT) (4)

D is the DCT coefficients matrix, computed as D = TLATLT .Fig. 4
illustrates the matrices M and Ty, for n = 24, both of which are
required to compress A. The mask matrix M performs the “chop”
and the transform matrix Ty, performs the DCT. M is composed of
CF X CF identity matrices placed in an all zero matrix. Each row
of M has one “1” and only columns of M that correspond to values
retained during compression have one “1”. Since we are retaining
the upper left CF x CF values of the 8x8 block, each CF x CF
identity matrix is placed every 8 columns. T is a large version of
the T matrix from Eq.2. T matrices are placed along the diagonal of
Tr, such that T is applied to every block in A.

Eq. 4 implies that LHS = (MTr) and RHS = (TLTMT), both of
which can be computed offline, thus the compressor computes these
during compilation. The overall number of FLOPs for compression
is:

Milan Shah, Xiaodong Yu, Sheng Di, Michela Becchi, and Franck Cappello

C X n/s x n/s

CXnxn

~BD X s xs

m

an'n
pAan'n

—
Figure 5: Partially serializing compression: The input dataset on the
left with batch size BD = 2, channels ¢ = 3, and resolution n X n
is subdivided by a factor s = 2 to yield the samples on the right.
Compression and decompression are run on each channel of each
subdivision.

2n3CF CF , CF CF?
- (?+1)—"(?+§))
The final implementation written in PyTorch is as follows:
Y = torch.matmul(LHS, torch.matmul(A, RHS))
All accelerators in this work have a PyTorch interface for pro-
gramming each device, thus this design enables a high degree of

portability and efficiency across Al accelerators.

FLOPScompress =

3.4 Decompression Implementation

Decompression is computationally similar to compression. Eq. 6
shows how the decompressed data Alis computed:

A =1IMTYMTy, = (1T MT)Y (MTy) (6)
This is nearly identical to compression, except with LHS and
RHS swapped. The overall number of FLOPs for decompression is:

3
FLOPSdecompress = 2 8CF (% +1) - nz(%‘F +1) (7

This formula implies that decompression requires less FLOPs
than compression for CF < 8, and less data need to be loaded
to perform decompression. The final implementation written in
PyTorch is as follows:

A_prime = torch.matmul(RHS, torch.matmul(Y, LHS))

Like compression, this formulation allows for all W
decompressions to occur in parallel in the form of matrix multipli-
cations.

3.5 Optimizations

3.5.1 Partially-serialized compression. As the n X n resolution of
the input data increases, so do the sizes of matrices LHS and RHS
needed for compression and decompression. Recall that LHS is of
size CI;*" xn and RHS is of size n X %. Though the aggregate on-
chip memory capacity of the Al accelerators is on the scale of 100s
of MB to 10s of GB, compute units that are assigned a portion of the

matrix multiplication computation may have their associated local

A Portable, Fast, DCT-based Compressor for Al Accelerators

memory exhausted as the resolution increases. For instance, one
pattern memory unit (PMU) on the SN30 has 0.5 MB of space and
can hold up to one, single-channel 362 X362 matrix of 32-bit floating
point values. Some accelerators fail to compile models requiring
higher resolutions or larger tensor widths.

To reduce the memory requirements of using the DCT+Chop
compressor while simultaneously supporting compression of higher
resolution images/tensors, we propose a partial serialization op-
timization (illustrated in Fig. 5). Instead of compressing an input
dataset of size BD X C X n X n, we divide the data into chunks by a
subdivision factor s. This results in s xs chunks of size BDXCx % X %,

a LHS matrix of size Cg;” x 2, and a RHS matrix of size & x Cg;”.
The s x s chunks are processed serially and the memory require-
ments of the compressor are reduced by a factor of s X s. Both the
SN30 RDU and Graphcore IPU can benefit from this optimization
since both compilers require tiles to have enough memory to re-
ceive high resolution data along with the matrices required for

multiplication.

3.5.2 Graphcore: torch.scatter and torch.gather. Recall the zig-zag
encoding method shown in Fig. 2. Zig-zag encoding is an efficient
means of compressing each DCT coefficient matrix since diagonals
(from bottom left to top right) become less important to data fidelity
as we move along the main diagonal. As such, more values are
quantized to zero and are not needed to reconstruct high fidelity
decompressed data. Due to operator support limitations and to
preserve high throughput, DCT+Chop is used on most accelerators,
but some values are unnecessarily stored. The IPU supports two
APIs that can allow for efficient storage of the upper left triangle
instead of upper left square: torch.scatter and torch.gather.

The proposed optimization is illustrated in Fig. 6. Using pre-
computed indices of the upper left triangle, torch.gather can
collect the upper left triangle values and discard values not en-
capsulated in the triangle. Since the size of data must be known at
compile time, the indices can be computed at compile time and need
not be stored. For a given chop factor CF, the number of retained
values for each 2-D matrix can be decreased from nblks = CF *CF to
nblks+CF s (CF+1)/2, increasing the compression ratio by a factor
of glgfl To decompress the data, torch.scatter returns the re-
tained values to their original position in the decompressed matrix,
given the indices. In the final implementation, compression first
runs DCT+Chop compression then calls torch. gather with the up-
per left triangle indices. Decompression first calls torch.scatter,
then runs DCT+Chop decompression.

torch.scatter and torch.gather are examples of operators
not yet supported across all accelerators. However, these types of
APIs can be utilized in the context of sparse operations and quanti-
zation, thus we expect more support as development environments
evolve. Other operators relating to sparsity and quantization could
also be supported in the future, improving the ability to compress
data.

4 EXPERIMENTAL EVALUATION
4.1 Methodology

To evaluate our compressor design, we perform an accuracy and
throughput analysis across a variety of compressor configurations

HPDC ’24, June 3-7, 2024, Pisa, Italy

11
1

1]

Retained Values:
nblks*CF*CF

Retained Values:
nblks*CF (CF+1) /2

Figure 6: torch.scatter/torch.gather optimization: retain the up-
per left triangle of values instead of upper left CF x CF values.
nblks = 9 for this example.

on all platforms listed in Table 1. We use one of each accelerator
device (i.e., one CS-2 chip, one SN30 RDU, one GroqChip, and one
IPU). The three compressor designs we test are baseline DCT+Chop
(DC), Partial Serialization (PS), and torch.scatter/gather (SG),
with chop factor CF varying from 2 to 7. The compressor is im-
plemented in PyTorch 2.0.1, with compression and decompression
compiled separately for each accelerator. We use Cerebras Release
2.0.1, SambaFlow 1.17, GroqFlow 4.2.1, and PopTorch 3.3.0.

First, we evaluate the impact of lossy compression on accuracy:
the configurations are tested with the benchmarks in Table 3 from
the SciML benchmarking suite [28], each of which is trained for
30 epochs and compared against a no-compression baseline. For
the classify benchmark, we report training loss and test accuracy,
and for the other benchmarks, we report training and test loss as
these are the metrics of value specified in [28]. Next, we evaluate
the speed of each compressor configuration. Datasets to compress
are varied in resolution from 32x32 to 512x512 and batch size is
varied from 10 to 5000. We collect the average compression and de-
compression time of 100 runs. Execution time includes host-device
communication. Compilation time is omitted from these results.
Depending on the network size, accelerator, and optimization level,
compilation is a one-time cost that can range on the scale of minutes
to hours, amortized over the course of more training epochs/runs.

4.2 Results

4.2.1 Impact on Accuracy. Fig. 7 plots the training loss, while Fig. 8
plots the test loss percent difference against baseline (“base”). Note
that for Fig. 8a, accuracy difference instead of loss difference is
reported. While for loss difference lower is better, for accuracy
difference higher is better. During training, each batch is first com-
pressed and then decompressed, so that increasing levels of loss
and compression ratio can be studied against model accuracy. Each
series of each plot corresponds to a fixed compression ratio using
DCT+Chop, with the corresponding compression ratio reported in
the legend.

As shown in Fig. 7, after compression and decompression of
training data, the model is still able to follow a similar path to
convergence and can achieve very similar training loss to baseline.
For em_denoise, optical_damage, and slstr_cloud, training loss
across all compression ratios closely follows baseline, while for
classify, increasing compression ratio, which increases data loss,
results in a lag in the loss curve. More loss leads to sub-optimal
convergence.

Fig. 8 indicates that for both em_denoise and slstr_cloud,
DCT+Chop compression can ensure strong accuracy/fidelity close

HPDC ’24, June 3-7, 2024, Pisa, Italy

Milan Shah, Xiaodong Yu, Sheng Di, Michela Becchi, and Franck Cappello

Table 3: Tests performed during evaluation and associated parameters

Test Dataset Task Network Sample Size Training Params.
. Classify images
classify CIFAR10 . ResNet34 3x32x32 BS=100, LR=0.001
into 10 classes
. . Denoise electron
em_denoise em_graphene_sim . Deep Encoder-Decoder 1x256x256 BS=32, LR=0.0005
micrographs
. . Reconstruct laser
optical_damage optical_damage_ds1 . Autoencoder 1x200x200 BS=2, LR=0.0005
optics images
Identify pixels
slstr_cloud cloud_slstr_ds1 yp UNet 9x256x256 BS=4, LR=0.0005
that are clouds
N 0.125- b
1.5 % —— base T EEES £ 0.00- — 160 ¥ —— 16.0
w R e 160 0100} - Us a /\/k/\/—— 711 & %% 4 — 711
310 711 & 4 7.11 ® —0.05 40 X \ 4.0
S Joo7s- 4.0) w 0.0- A\
P N p— 40 = S _.10- 256 3 \ —— 256
Tos 2.56 T 0.050- | 2.56 < \/—/\/\/ 178 S A 1.78
= 178 © A\ 178 2 -0.15- \ 131 02 A 131
L 131 0025 Swwe. 131 @ N ——— 8 N ECSNSY
00- R . P — 0.0 | o4 ‘
0 10 20 : 0 10 20 30 0 10 20 : 0 10 20 30
Epoch Epoch Epoch Epoch
(a) classify (b) em_denoise (a) classify (b) em_denoise
0.50-, 0.3
0.008 —— base ! — base & A= b= — 16.0
0w | = 60 oo 4 T 16.0 a ~ —— 160 7015 — 711
3 0.006- 711 & 7.11 ® 02 — 711 R0 4.0
= I 4.0 = s T 4.0 @ / = 4.0 a 256
‘S 0.004 256 © 0.40- 2.56 3 0.1- / — 2.56 3 0.05- \Q 1.78 {;/
= = 1.78 o 178 — >
\ 178 (N 131 PN
0.002 N— i 0.35 > 800 / 131 000] C Sl
0 10 20 : 0 10 0 10 20 : 0 10 20 30
Epoch Epoch Epoch Epoch

(c) optical_damage (d) slstr_cloud

Figure 7: Average training loss per epoch of four benchmarks. Each
series corresponds to a different compression ratio of the DCT+Chop
compressor, base is no compression.

to baseline. Surprisingly, compression for em_denoise actually im-
proves accuracy (reduces test loss more than baseline). This is likely
due to the denoising effect of removing high frequency elements of
the DCT coefficients matrix since these elements tend to be noise.
For optical_damage, the percent difference is higher, but the actual
loss values are close to each other. For mean squared error (MSE)
loss, the baseline loss at epoch 30 is 0.0060, compared to 0.00068 for
compression ratio of 16.0. Given that the optical_damage bench-
mark trains a model to reconstruct undamaged laser optics images
such that reconstructed optics with damage have high MSE loss, this
relatively limited performance gap is acceptable for the task at hand.
For the classify benchmark, the impact on accuracy of varying
compression ratios is more stratified: increasing the compression
ratio and loss clearly has a direct, negative impact on accuracy. For
CF = [5,6,7] (CR = 2.56,1.78,1.31, respectively), accuracy drop is
less than three percent, still within a reasonable range considering
the low resolution of samples.

While ZFP cannot be ported onto the considered AI accelera-
tors, we compare its accuracy with that of our compressor on CPU.
Fig. 9 plots the test accuracy/loss percent difference from baseline
for DCT+Chop and ZFP. The compression ratio of each series is

(c) optical_damage (d) slstr_cloud

Figure 8: Average test loss percent difference from no compression
case per epoch of four benchmarks. Each series corresponds to a dif-
ferent compression ratio of the DCT+Chop compressor. For classify
benchmark, test accuracy percent difference is reported instead.

reported in the legend. For the classify benchmark, ZFP can gen-
erally achieve higher compression ratio for comparable accuracy.
For em_denoise, ZFP performs much closer to DCT+Chop, only
slightly outperforming DCT+Chop for a compression ratio of 16.
Across both compressors, em_denoise enjoys a performance boost
with the integration of compression on training data.

 000. A INA DCT:16.0 ¥ o02- \\ - DCT: 16.0
a NFAT Ve DCT:40 O 2N% DCT: 4.0

X A DCT:1.31 X DCT: 1.31
g S 26p:16.0 g —— 2fp: 16.0
< zfp: 4.0 3 zfp: 4.0

ko] A & @ zfp: 1.31

0.20 N N © -o. N~

0 10 20 : 0 10 20 30
Epoch Epoch
(a) classify (b) em_denoise

Figure 9: Average test accuracy/loss percent difference from no com-
pression case per epoch of two benchmarks, comparing DCT+Chop
against ZFP. Each series corresponds to a different compression ratio
of DCT+Chop or ZFP. For classify benchmark, test accuracy percent
difference is reported instead.

A Portable, Fast, DCT-based Compressor for Al Accelerators

— 160 ‘ 0.04-
0 0.02 - - 711 - ©0.03
9] 40 -~ 9]
= 0.01 i———=>= 2.56 E002
(S =
e L7k 0.01
ya 1.31
0.00 0.00-
0 100000 200000 0 20000 40000 60000
Pixels per channel nxn Pixels per channel nxn
(a) CS-2 (b) SN30
) 0.06 i
0z — 160 -~ —— 16.0
e - - 7217 B 004 7.11
[J) 4.0 [J) 4.0
E ¢ oI I (e 256 £ 2.56
= 1.78 =002 p 1.78
7 1.31 e 1.31
0.0-.% ; 0.00
0 20000 40000 6000C 0 20000 40000 60000

Pixels per channel nxn Pixels per channel nxn

(c) GroqChip d) IPU

Figure 10: Compression time for DCT+Chop across four accelerators
for varying resolution. Each series corresponds to a compression
ratio.

0.020-
16.0
_0.015- == 7l = _ 003 ;61‘2 /
o 40 3 002 e d
@ 0.010- © 0.02- -
————— 2.56
£ . 18 E ————— 2.56
= | y .) Y
0.005 a5 0.01 . 178 _ -
- s 131
0.000- —=w=r=is == = = o =
0 100000 200000 0 20000 40000 60000
Pixels per channel nxn Pixels per channel nxn
(a) CS-2 (b) SN30
0.6-
— 16.0 — 16.0
7.11 - - 711
4.0 1= 4.0
AEEL - - | I | 0 2.56
1.78 1.78
1.31 = 132 - =
0 20000 40000 6000C 0 100000 200000

Pixels per channel nxn Pixels per channel nxn

(c) GroqChip (d) IPU

Figure 11: Decompression time for DCT+Chop across four accelera-
tors for varying resolution. Each series corresponds to a compression
ratio.

4.2.2 Compression and Decompression Speed. Fig. 10 and Fig. 11
plot the compression and decompression time for all accelerators
with varying resolution for 100, 3 channel samples. Fig. 12 and
Fig. 13 plot the compression and decompression time with varying
batch size for 3 channel, 64 X 64 resolution samples. Each series
corresponds to a different CF, with the associated compression ratio
listed in the legend. Recall that these times are with respect to the
host: they include data transfer time and thus overestimate the time
it takes to perform compression/decompression if the compressor is
integrated in a training or inference pipeline. Note that compilation
for 512x512 resolution fails for SN30 and GroqChip due to an out-
of-memory error on-chip.

HPDC ’24, June 3-7, 2024, Pisa, Italy

0.006. — 16.0) 00200 — 160 /
- - 711 / - - 711 /
a 40 /: 7 0.015 40 /
5 0.004- ’ g ’
“EJ ----- 2.56 qu 0.010- - 2.56
[1.78 /e 1.78
0.002- 131 0.005- 1.31
- e 0.000- - — |
10t 102 103 10t 102 103
Batch Size Batch Size
(a) CS-2 (b) SN30
0.15- 16.0 —— 16.0
. - - 711 004 - - 7.1
£o.10 4.0 <L 4.0
Qe 2.56 /N 2.56
-E 0.05 1.78 E 0.02 1.78
1.31 / 1.31
0.00- ~ L 0.00- - — ‘
10! 102 1 10! 102 103
Batch Size Batch Size
(c) GroqChip (d) IPU

Figure 12: Compression time for DCT+Chop across four accelerators
for varying batch size. Each series corresponds to a compression
ratio.

0.004- 16.0 0.0100- — 16.0
7.11 - - 711
—0.003 = |
0 e G 0.0075 A0
g 0002 256 2 0.0050 - 2.56
IS 1.78 = 1.78
0.001 131 0.0025- 131
0.000- ——— 0.0000 e
10! 102 103 10! 102 103
Batch Size Batch Size
(a) CS-2 (b) SN30
— 16.0 / — 16.0
010~ - - - == 7l
2 4.0
Q256 000 02 2.56
1S
£0.05
= 1.78
131
0.00- . | ; e
10t 10? 1 10t 102 103
Batch Size Batch Size
(c) GroqChip (d) IPU

Figure 13: Decompression time for DCT+Chop across four accelera-
tors for varying batchsize. Each series corresponds to a compression
ratio.

CS-2: The CS-2 has the highest compression and decompression
throughput across all of the accelerators, generally ranging from 16
to 26 GB/s. This is largely due to the CS-2 wafer size: the number
of on-chip compute units is orders of magnitude larger than the
other accelerators, with the obvious tradeoff being power consump-
tion. Compression typically takes longer than decompression, as
expected since compression requires more floating-point operations
and, more importantly, compression requires loading the nxn input
matrix instead of the % X % matrix required for decompres-
sion. Additionally, there is a wider spread of decompression times
compared to compression for varying compression ratios, with
higher compression ratio (lower CF) having significant speedup.
Since the input to be loaded onto the device is dependent on CF for

HPDC ’24, June 3-7, 2024, Pisa, Italy

decompression, lower CF requires less data to be transferred to the
device, whereas for compression, input data is the same size across
varying CF. As batch size increases, the CS-2 performance does
not change significantly, until batch size surpasses 2000. This could
be due to the amount of samples per batch beginning to bound
performance at batch size of 2000 since the dataflow pipeline is
fully occupied. To ensure that compression/decompression is not a
bottleneck, the compression throughput should be at least as high
as the throughput of the forward and backward passes. In the case
of a ResNet34 network processing batches of size 100 from CIFAR10,
the CS-2 can process ~205 samples per second during training. De-
compression is significantly faster, running at ~330,000 samples
per second. As such, our design allows the CS-2 pipeline to remain
full and not stall from compression/decompression. Thus, the over-
head of the compressor is masked in the dataflow pipeline. Even
with more optimized network implementations, compression and
decompression throughput is several orders of magnitude higher
than batch processing time, making compression a practical tool in
training on CS-2 as well as other dataflow architectures.

SN30: As with the CS-2, decompression is generally faster than
compression on the SN30 RDU. Compression ratios of 4.0 and 7.11
perform best for compression and decompression, while all other
compression ratios perform similarly. Interestingly, the highest
compression ratio, 16.0, is slower than both 4.0 and 7.11, suggesting
that even though less FLOPs are required (per Eq. 5 and Eq. 7) and
less memory needs to be loaded, there is some runtime overhead
involved with high compression ratio. This behavior could be attrib-
uted to the memory architecture: the RDU has higher throughput
memory accesses and transfers on fewer, large tensors compared to
many small tensors. Small tensors generated during compression
and operated on during decompression incur runtime overhead
since they may not be mapped to nearby memory locations. Com-
pression and decompression both have a throughput of around 7 to
10 GB/s, which includes data transfer overhead from the PCle 4.0
connection. Note that compilation fails for 512512 resolution since
the PMUs cannot fit the entire output matrix along with matrices
required for compression/decompression. The SN30 execution time
is linearly related to batch size since the computational complexity
scales linearly with increasing batch size. Decompression is sig-
nificantly faster than the forward and backward pass (throughput
of decompression is ~220,000 samples per second against back-
ward/forward pass throughput of ~570 samples per second for
ResNet34 on CIFAR10). Since SN30 has a dataflow architecture,
decompression overhead is not a bottleneck during training and
the compressor adds no significant change in runtime. Additionally,
the compressor sections for 256256 images utilize ~3% or less of
the PCUs on one RDU, leaving most of the RDU available for other
computation.

GroqChip: On GroqChip, compression has a low performance
variance: across all compression ratios, the throughput does not
vary significantly (=150 MB/s). For decompression, performance
becomes more stratified depending on the compression ratio, but
across the board performs better than compression (~200 MB/s for
decompression). Since the GroqChip is a pipelined SIMD architec-
ture, compression and decompression can be overlapped with other
operations, specifically model operations. The compressor fails to
compile for 512 X 512 resolution, due to the limited size of on-chip

10

Milan Shah, Xiaodong Yu, Sheng Di, Michela Becchi, and Franck Cappello

— 16.0
7.11
4.0
0.05- i 2.56
* 1.78
1.31

Time (s)

0.00- = ‘ ‘
0 100000 200000

Pixels per channel nxn

Figure 14: Decompression time for DCT+Chop on A100 GPU for
varying resolution. Each series corresponds to a compression ratio.

memory with respect to input data and compressor matrices as well
as the limits of the matrix-matrix multiplication modules on-chip
(which can handle up to 320 X 320 8-bit integer matrix multiplica-
tions [9]). When varying batch size, the GroqChip fails to compile
beyond a batch size of 1000 since on-chip memory is exhausted.
Compression and decompression times are more spread compared
to other accelerators depending on the compression ratio since for
the CS-2 and SN30, pipeline depth is a significant factor in scaling
with batch size, while for GroqChip, the computational complexity
and memory access time are more significant factors.

IPU: The IPU has the least variance for compression throughput
across compression ratios (1.2 GB/s average throughput for com-
pression). For decompression, the IPU enjoys significant throughput
improvement for higher compression ratios (up to 21 GB/s), while
lower compression ratios perform modestly (~ 2 GB/s). As with the
other platforms, the IPU execution time has a linear relationship
with the number of pixels, suggesting that given the FLOPs formu-
las, the compressor is memory-bounded and highly dependent on
on-chip memory access speed rather than the computation itself.
Like the CS-2 and SN30, performance relative to batch size is similar
across compression ratios. Decompression times are more varying,
suggesting on-chip memory throughput is a greater bottleneck.

Comparison with GPU: We perform a DCT+Chop decom-
pression timing evaluation on an NVIDIA A100 GPU with PCle
4.0 connection. Fig. 14 plots the decompression time for varying
compression ratio, corresponding to each series. Compression per-
formance trends are similar, thus we omit compression speed plots.
The A100 GPU performs decompression at ~2.5 GB/s, with little
variation across each compression ratio. Both the CS-2 and SN30
RDU outperform the A100, while a single GroqChip and single
IPU are outperformed by the A100. However, both the GroqChip
and IPU are generally deployed with other GroqChips or IPUs. For
instance, the Graphcore Bow-Pod64 contains 64 IPUs [3] and the
GrogNode has eight GroqCards, each of which contains a GroqChip
[8]. Thus, the CS-2 and SN30 RDU on their own can outperform
the A100 for DCT+Chop, and GroqChip and IPU rely on scalability
to outperform GPU.

Key Takeaways:

o Compression generally is slower than decompression, likely due
to more data movement and more FLOPs.

e Compression and decompression time is linearly related to pixel
count. This relationship is likely due to the off-chip and on-chip
memory performance, which are linearly related to data size.

e Higher compression ratios often have faster decompression.

A Portable, Fast, DCT-based Compressor for Al Accelerators

w

~ -

g 10" graphcore

= BN samba

-

a

< 5-

o

S

o I I I

—

<

0-

m < — lD
|—| |—| l\ —

=3

Compressmn Ratio
Figure 15: Decompression throughput for IPU (“graphcore”) and
SN30 RDU (“samba”) using partial serialization s = 2 on 100, 3
channel, 512x512 images. Compression ratio is varied on x-axis
(CF =7,6,5,4,3,2 from left to right).

e Execution time and batch size are linearly related since 1) dataflow
architectures begin to fully fill their pipelines and 2) computa-
tional complexity of compression and decompression is linearly
related to the batch size. A larger batch size requires more matrix
multiplications, but not more complex matrix multiplications.

e While the CS-2 and SN30 RDU perform compression/decompression

faster than the A100, IPU, and GroqChip, power differences are
not accounted for in this evaluation. Thus, we cannot directly
compare performance differences between accelerators.

4.2.3 Optimization 1: Partial Serialization. Fig. 15 plots the decom-
pression throughput of the partial serialization optimization with
s = 2 for 100, 3 channel, 512x512 images on the IPU and SN30.
With a serialization factor s = 2, the 512X512 images are chunked
into four, 256x256 pixel chunks, thus four times as many decom-
pression runs are issued. Compared to the decompression timing
from 256X256 images reported in Fig. 11, the throughput results in
Fig. 15 indicate only a 2.5-3.8x slowdown for the SN30 and 2.6-3.7X
slowdown for the IPU when moving to partially-serialized 512x512
images. Considering that the number of matrix multiplications is
four times that of no serialization and that 512x512 images are
four times as large as 256X256 images, these slowdowns are better
than expected. The Graphcore IPU successfully ran no-serialization
decompression for 512x512 images and compared to s = 2 partial
serialization, no-serialization is only 1-8% faster.

4.2.4 Optimization 2: Graphcore torch.scatter/gather. Fig. 16
plots the training loss and test accuracy/loss difference from no
compression with CF = [2, 7] using the torch.scatter/gather
optimization for two benchmarks. The compression ratios are re-
ported in the legend and results are collected for 30 epochs with
the same training parameters listed in Table 3. For classify bench-
mark, there is a slight drop in accuracy compared to DCT+Chop,
typically of 1-2% for equivalent CF. For em_denoise , SG achieves
less difference in test loss compared to DCT+Chop, and can even
improve performance. For instance, SG can be nearly 0.5% lower
than baseline compared to DCT+Chop being nearly 0.4% lower.
We observe similar behavior between SG and DCT+Chop for op-
tical_damage and slstr_cloud. As with DCT+Chop, increasing
CF generally leads to reduction in data quality and lower model
performance.

Fig. 17 plots the decompression throughput of DCT+Chop, “dct”,
against SG, “opt”, for varying CF. 100, 3 channel, 32x32 images are

11

HPDC ’24, June 3-7, 2024, Pisa, Italy

o
]

= £ —— 2133
' . | == 21.33 § —0.05- M/— 10.67
g 10 1067 R ;0 6.4
s W 6.4 g — 427
C o5 427 & -0.15 3.05
. 305 8 _420- \/\J 28—
2 0.
00 | 229 2 “—
0 10 20 : 0 10 20 30
Epoch Epoch
(a) classify: train (b) classify: test
£ 0.50- — 21.33
0 <) —— 1067
3 X 025 6.4
= a — 4.27
£ 2 0.00- /\\ :
© S st 3.05
. 7 -0.25- T A 229
@ 050 - ey
—05 ;
0 10 20 : 0 10 20 30
Epoch Epoch

(c) em_denoise: train

(d) em_denoise: test

Figure 16: Training loss (left column) and test accuracy/loss per-
cent difference (right column) of torch.scatter/gather optimiza-
tion compared to no compression baseline.

3,
B dct
B opt

iy

Chop Factor CF

Th roughput (GB/s)

Figure 17: Decompression throughput for torch.scatter/gather op-
timization (“opt”) against DCT+Chop (“dct”) on Graphcore IPU for
100, 3 channel, 32X32 images.

decompressed on a single IPU. Recall that the compression ratio is
computed as % and m for DCT+Chop and SG, respec-
tively. SG is 1.5-2.7x slower than DCT+Chop and has compression
ratio improvement of 1.3-1.75xX DCT+Chop across varying CF. As
such, the tradeoff between compression ratio and throughput is not
directly related and attaining higher compression ratios with SG
requires greater compromise of compression/decompression speed.

5 RELATED WORK

[15] and [20] study the impact of lossy compression of training data
on image classification accuracy. Dodge and Karam [15] find that,
when using JPEG, a quality factor as low as 10 can still yield image
classification accuracy close to no compression baseline across four
different architectures. Joseph et al. [20] explore using ZFP as a
training data compressor, finding that across six of seven tested
networks, ZFP can achieve higher compression ratio for a given
accuracy target. Both works focus on image classification and have
not factored in platform-specific considerations, an area which we
explore in our work.

HPDC ’24, June 3-7, 2024, Pisa, Italy

Existing works have explored lossy compression of other targets,
such as gradients [21] and activations [13][19]. These works seek to
use compression to reduce training memory footprint and improve
distributed training scenarios and use GPU as the primary training
platform. These compression methods, while effective on GPU, can-
not yet be ported to the Al accelerators since 1) access to activations
and gradients is limited or not available, and 2) operators integral
to each compressor are not yet supported, specifically bitwise and
bitshift operations for encoding stages.

In the space of Al accelerators, Emani et al. [16] perform a com-
parison study of large language models (LLMs) across a variety
of accelerators, including the NVIDIA A100, Cerebras CS-2, Sam-
baNova SN30, and Graphcore Bow-Pod64 system. Their work evalu-
ates each accelerator with the same set of LLM benchmarks, finding
that across all accelerators, memory reduction techniques are “of
paramount significance” [16] since the memory size of weights,
activations, and data is often the limiting factor in fitting a model
on a single device.

For compatibility with AI accelerators, one approach for com-
pressor design is using neural networks as the compressor itself.
Liu et al. [23] propose an autoencoder integration for SZ, using the
autoencoder as a predictor that can improve quantization efficiency
of SZ. Lu et al. [25] propose a transformer network that builds on
top of a variational autoencoder to compress images. Both designs
utilize neural network architectures, which are supported across
all Al accelerators, and the encoding stage could be modified such
that a fixed length encoding that does not use bitwise operations
is used. If these designs were successfully implemented, however,
compression and decompression throughput would be significantly
slower than our design. Both designs are deep networks or trans-
formers that require many more operations compared to our two
matrix multiplication algorithm. As such, while Al-based compres-
sors could be implemented on these accelerators, speed would be a
concern.

6 CONCLUSION AND FUTURE WORK

Conclusion: In this work, we have designed a PyTorch-based lossy
compressor that can run across four different novel Al accelerators
with little programmer effort. Our compressor can achieve speeds
ranging from 100s of MB/s on GroqChip, to up to 26 GB/s on the CS-
2. For dataflow architectures, these speeds are significantly faster
than the processing time for equivalent data sizes, allowing com-
pression and decompression to be masked in the dataflow pipelines.
Additionally, loss introduced from our compressor has a limited
impact on test loss and accuracy, leading to reductions in model
performance of generally less than 3%.

Future Work: At the compressor-level, more platform-specific
optimizations can be explored to generate a library of tailored
compressors. In terms of core compressor design changes, we can
test using the ZFP block transform instead of DCT-II, especially
as compression targets change. Since the training data we have
evaluated in this work has been image data, DCT-II is suitable as
a transform, but the ZFP block transform can be more applicable
to general scientific floating point datasets. At the target-level, the
compression targets can evolve as the development ecosystem of
each platform evolves. Weights, activations, and gradients all have
the opportunity to be compressed, reducing model footprint and

12

Milan Shah, Xiaodong Yu, Sheng Di, Michela Becchi, and Franck Cappello

training memory utilization. Changing targets can lead to com-
pressor design changes, such as in [19] where SZ is modified to
accurately reconstruct zero-valued activations. If a similar compres-
sion procedure were implemented, this would introduce sparsity,
opening the door to an exploration of sparse matrix operations on
Al accelerators.

ACKNOWLEDGMENT

This research was supported by the U.S. Department of Energy,
Office of Science, Advanced Scientific Computing Research (ASCR),
under contract DE-AC02-06CH11357, and supported by the Na-
tional Science Foundation under Grant OAC-2003709, OAC-2104023,
OAC-2311875. This research used resources of the Argonne Lead-
ership Computing Facility, a U.S. Department of Energy (DOE)
Office of Science user facility at Argonne National Laboratory and
is based on research supported by the U.S. DOE Office of Science-
Advanced Scientific Computing Research Program, under Contract
No. DE-AC02-06CH11357.

REFERENCES

[1] [n.d.]. CIFAR-10 and CIFAR-100 datasets. https://www.cs.toronto.edu/~kriz/
cifar.html

[2] [n.d.]. Explore Cerebras Documentation — Cerebras Developer Documentation.
https://docs.cerebras.net/en/latest/

[3] [n.d.]. Graphcore Documents — Graphcore Documents. https://docs.graphcore.
ai/en/latest/

[4] [n.d.]. JPEG - JPEG 1. https://jpeg.org/jpeg/index.html

[5] [n.d.]. Product - System. https://www.cerebras.net/product-system/

[6] [n.d.]. SambaNova :: SambaNova Documentation. https://docs.sambanova.ai/
home/latest/index.html

[7] 2023. GroqCard™ Accelerator - Groq.
accelerator/ Section: Blog.

[8] 2023. grog/grogflow. https://github.com/groq/grogflow original-date: 2022-08-
08T23:46:56Z.

[9] Ibrahim Ahmed, Sahil Parmar, Matthew Boyd, Michael Beidler, Kris Kang, Bill Liu,

Kyle Roach, John Kim, and Dennis Abts. 2022. Answer Fast: Accelerating BERT

on the Tensor Streaming Processor. In 2022 IEEE 33rd International Conference on

Application-specific Systems, Architectures and Processors (ASAP). 80-87. https:

//doi.org/10.1109/ASAP54787.2022.00022 ISSN: 2160-052X.

N. Ahmed, T. Natarajan, and K.R. Rao. 1974. Discrete Cosine Transform. IEEE

Trans. Comput. C-23, 1 (Jan. 1974), 90-93. https://doi.org/10.1109/T-C.1974.

223784 Conference Name: IEEE Transactions on Computers.

Dan Alistarh, Demjan Grubic, Jerry Z. Li, Ryota Tomioka, and Milan Vojnovic.

2017. QSGD: communication-efficient SGD via gradient quantization and en-

coding. In Proceedings of the 31st International Conference on Neural Information

Processing Systems (Long Beach, California, USA) (NIPS’17). Curran Associates

Inc., Red Hook, NY, USA, 1707-1718.

Alexander Brace, Michael Salim, Vishal Subbiah, Heng Ma, Murali Emani,

Anda Trifa, Austin R. Clyde, Corey Adams, Thomas Uram, Hyunseung Yoo,

Andew Hock, Jessica Liu, Venkatram Vishwanath, and Arvind Ramanathan.

2021. Stream-AI-MD: Streaming AI-Driven Adaptive Molecular Simulations

for Heterogeneous Computing Platforms. In Proceedings of the Platform for Ad-

vanced Scientific Computing Conference (Geneva, Switzerland) (PASC "21). As-

sociation for Computing Machinery, New York, NY, USA, Article 6, 13 pages.

https://doi.org/10.1145/3468267.3470578

Jianfei Chen, Lianmin Zheng, Zhewei Yao, Dequan Wang, Ion Stoica, Michael Ma-

honey, and Joseph Gonzalez. 2021. ActNN: Reducing Training Memory Footprint

via 2-Bit Activation Compressed Training. In Proceedings of the 38th International

Conference on Machine Learning. PMLR, 1803-1813. https://proceedings.mlr.

press/v139/chen21z.html ISSN: 2640-3498.

Sheng Di and Franck Cappello. 2016. Fast Error-Bounded Lossy HPC Data

Compression with SZ. In 2016 IEEE International Parallel and Distributed Process-

ing Symposium (IPDPS). 730-739. https://doi.org/10.1109/IPDPS.2016.11 ISSN:

1530-2075.

Samuel Dodge and Lina Karam. 2016. Understanding how image quality affects

deep neural networks. In 2016 Eighth International Conference on Quality of

Multimedia Experience (Q0MEX). 1-6. https://doi.org/10.1109/QoMEX.2016.

7498955

Murali Emani, Sam Foreman, Varuni Sastry, Zhen Xie, Siddhisanket Raskar,

William Arnold, Rajeev Thakur, Venkatram Vishwanath, and Michael E. Papka.

https://wow.groq.com/groqcard-

(10]

[11

=
&N

[13

(14

[15

[16

A Portable, Fast, DCT-based Compressor for Al Accelerators

[17

(18]

[19

[20

[21]

[22]

[23]

[24]
[25]

[27]

[28]

[29]

[30

(31

[32

[33]

2023. A Comprehensive Performance Study of Large Language Models on Novel
Al Accelerators. https://doi.org/10.48550/arXiv.2310.04607 arXiv:2310.04607
[cs].

Paul Heckbert. 1982. Color image quantization for frame buffer display. In Pro-
ceedings of the 9th Annual Conference on Computer Graphics and Interactive Tech-
niques (Boston, Massachusetts, USA) (SSGGRAPH ’82). Association for Computing
Machinery, New York, NY, USA, 297-307. https://doi.org/10.1145/800064.801294
Yafan Huang, Sheng Di, Xiaodong Yu, Guanpeng Li, and Franck Cappello.
2023. cuSZp: An Ultra-fast GPU Error-bounded Lossy Compression Frame-
work with Optimized End-to-End Performance. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analy-
sis (SC ’23). Association for Computing Machinery, New York, NY, USA, 1-13.
https://doi.org/10.1145/3581784.3607048

Sian Jin, Chengming Zhang, Xintong Jiang, Yunhe Feng, Hui Guan, Guanpeng Li,
Shuaiwen Leon Song, and Dingwen Tao. 2021. COMET: a novel memory-efficient
deep learning training framework by using error-bounded lossy compression.
Proceedings of the VLDB Endowment 15, 4 (Dec. 2021), 886-899. https://doi.org/
10.14778/3503585.3503597

Vinu Joseph, Nithin Chalapathi, Aditya Bhaskara, Ganesh Gopalakrishnan,
Pavel Panchekha, and Mu Zhang. 2020. Correctness-preserving Compres-
sion of Datasets and Neural Network Models. In 2020 IEEE/ACM 4th Interna-
tional Workshop on Software Correctness for HPC Applications (Correctness). 1-9.
https://doi.org/10.1109/Correctness51934.2020.00006

Hyeontaek Lim, David G. Andersen, and Michael Kaminsky. 2018. 3LC:
Lightweight and Effective Traffic Compression for Distributed Machine Learn-
ing. https://doi.org/10.48550/arXiv.1802.07389 Issue: arXiv:1802.07389
arXiv:1802.07389 [cs, stat].

Peter Lindstrom. 2014. Fixed-Rate Compressed Floating-Point Arrays. IEEE
Transactions on Visualization and Computer Graphics 20, 12 (Dec. 2014), 2674—
2683. https://doi.org/10.1109/TVCG.2014.2346458

Jinyang Liu, Sheng Di, Kai Zhao, Sian Jin, Dingwen Tao, Xin Liang, Zizhong
Chen, and Franck Cappello. 2021. Exploring Autoencoder-Based Error-Bounded
Compression for Scientific Data. CoRR abs/2105.11730 (2021). arXiv:2105.11730
https://arxiv.org/abs/2105.11730

Graphcore Ltd. [n. d.]. IPU Processors. https://www.graphcore.ai/products/ipu
Ming Lu, Peiyao Guo, Huiging Shi, Chuntong Cao, and Zhan Ma. 2021.
Transformer-based Image Compression. http://arxiv.org/abs/2111.06707
arXiv:2111.06707 [cs, eess].

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV) 115, 3 (2015), 211-252. https:
//doi.org/10.1007/s11263-015-0816-y

SambaNova Systems. [n. d.]. SambaNova Systems DataScale® | Our Products.
https://sambanova.ai/products/datascale

Jeyan Thiyagalingam, Juri Papay, Kuangdai Leng, Samuel Jackson, Mallikarjun
Shankar, Geoffrey Fox, and Tony Hey. 2021. SciML-Bench: A Benchmarking
Suite for Al for Science. https://github.com/stfc-sciml/sciml-bench

Jiannan Tian, Sheng Di, Kai Zhao, Cody Rivera, Megan Hickman Fulp, Robert
Underwood, Sian Jin, Xin Liang, Jon Calhoun, Dingwen Tao, and Franck Cap-
pello. 2020. cuSZ: An Efficient GPU-Based Error-Bounded Lossy Compres-
sion Framework for Scientific Data. In Proceedings of the ACM International
Conference on Parallel Architectures and Compilation Techniques (PACT °20).
Association for Computing Machinery, New York, NY, USA, 3-15. https:
//doi.org/10.1145/3410463.3414624

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui
Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov,
Myle Ott, Sam Shleifer, Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali
Sridhar, Tianlu Wang, and Luke Zettlemoyer. 2022. OPT: Open Pre-trained
Transformer Language Models. https://doi.org/10.48550/arXiv.2205.01068
arXiv:2205.01068 [cs].

Kai Zhao, Sheng Di, Maxim Dmitriev, Thierry-Laurent D. Tonellot, Zizhong Chen,
and Franck Cappello. 2021. Optimizing Error-Bounded Lossy Compression for
Scientific Data by Dynamic Spline Interpolation. In 2021 IEEE 37th International
Conference on Data Engineering (ICDE). 1643-1654. https://doi.org/10.1109/
ICDE51399.2021.00145

Kai Zhao, Sheng Di, Xin Liang, Sihuan Li, Dingwen Tao, Zizhong Chen, and
Franck Cappello. 2020. Significantly Improving Lossy Compression for HPC
Datasets with Second-Order Prediction and Parameter Optimization. In Proceed-
ings of the 29th International Symposium on High-Performance Parallel and Dis-
tributed Computing (Stockholm, Sweden) (HPDC °20). Association for Computing
Machinery, New York, NY, USA, 89-100. https://doi.org/10.1145/3369583.3392688
Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang,
Yushuo Chen, Zhipeng Chen, Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang,
Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 2023. A Survey of Large
Language Models. http://arxiv.org/abs/2303.18223 arXiv:2303.18223 [cs].

13

HPDC ’24, June 3-7, 2024, Pisa, Italy

[34] Maxim Zvyagin, Alexander Brace, Kyle Hippe, Yuntian Deng, Bin Zhang,

Cindy Orozco Bohorquez, Austin Clyde, Bharat Kale, Danilo Perez-Rivera, Heng
Ma, Carla M. Mann, Michael Irvin, J. Gregory Pauloski, Logan Ward, Valerie
Hayot-Sasson, Murali Emani, Sam Foreman, Zhen Xie, Diangen Lin, Maulik
Shukla, Weili Nie, Josh Romero, Christian Dallago, Arash Vahdat, Chaowei Xiao,
Thomas Gibbs, Ian Foster, James J. Davis, Michael E. Papka, Thomas Brettin, Rick
Stevens, Anima Anandkumar, Venkatram Vishwanath, and Arvind Ramanathan.
2022. GenSLMs: Genome-scale language models reveal SARS-CoV-2 evolutionary
dynamics. bioRxiv: The Preprint Server for Biology (Nov. 2022), 2022.10.10.511571.
https://doi.org/10.1101/2022.10.10.511571

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 AI Accelerators
	2.2 Lossy Compression and AI/ML
	2.3 Motivation

	3 Design and Optimizations
	3.1 Design Challenges
	3.2 Fundamental Design and Approach
	3.3 Compression Implementation
	3.4 Decompression Implementation
	3.5 Optimizations

	4 Experimental Evaluation
	4.1 Methodology
	4.2 Results

	5 Related Work
	6 Conclusion and Future Work
	References

