
A Portable, Fast, DCT-based Compressor for AI Accelerators

Milan Shah
North Carolina State University
Argonne National Laboratory

Raleigh, NC, USA
mkshah5@ncsu.edu

Xiaodong Yu
Stevens Institute of Technology

Hoboken, NJ, USA
xyu38@stevens.edu

Sheng Di
Argonne National Laboratory

Lemont, IL, USA
sdi1@anl.gov

Michela Becchi
North Carolina State University

Raleigh, NC, USA
mbecchi@ncsu.edu

Franck Cappello
Argonne National Laboratory

Lemont, IL, USA
cappello@mcs.anl.gov

ABSTRACT

Lossy compression can be an effective tool in AI training and in-

ference to reduce memory requirements, storage footprint, and in

some cases, execution time. With the rise of novel architectures

designed to accelerate AI workloads, compression can continue to

serve these purposes, but must be adapted to the new accelerators.

Due to programmability and architectural differences, existing lossy

compressors cannot be directly ported to and are not optimized for

any AI accelerator, thus requiring new compression designs.

In this paper, we propose a novel, portable, DCT-based lossy com-

pressor that can be used across a variety of AI accelerators. More

specifically, we make the following contributions: 1) We propose

a DCT-based lossy compressor design for training data that uses

operators supported across four state-of-the-art AI accelerators:

Cerebras CS-2, SambaNova SN30, Groq GroqChip, and Graphcore

IPU. 2) We design two optimization techniques to allow for higher

resolution compressed data on certain platforms and improved com-

pression ratio on the IPU. 3) We evaluate our compressor’s ability

to preserve accuracy on four benchmarks, three of which are AI

for science benchmarks going beyond image classification. Our ex-

periments show that accuracy degradation can be limited to 3% or

less, and sometimes, compression improves accuracy. 4) We study

compression/decompression time as a function of resolution and

batch size, finding that our compressor can achieve throughputs

on the scale of tens of GB/s, depending on the platform.

CCS CONCEPTS

• Theory of computation→ Data compression; • Computer

systems organization → Neural networks; Data flow architec-

tures.

KEYWORDS

Compression, AI accelerator, ML training

Corresponding author: Sheng Di, Mathematics and Computer Science Division, Ar-
gonne National Laboratory, 9700 Cass Avenue, Lemont, IL 60439, USA.

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.

HPDC ’24, June 3ś7, 2024, Pisa, Italy

© 2024 Association for Computing Machinery.
ACM ISBN 979-8-4007-0413-0/24/06. . . $15.00
https://doi.org/10.1145/3625549.3658662

ACM Reference Format:

Milan Shah, Xiaodong Yu, Sheng Di, Michela Becchi, and Franck Cappello.

2024. A Portable, Fast, DCT-based Compressor for AI Accelerators. In The

33rd International Symposium on High-Performance Parallel and Distributed

Computing (HPDC ’24), June 3ś7, 2024, Pisa, Italy. ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/3625549.3658662

1 INTRODUCTION

Motivation: In recent years, AI models have grown rapidly in size,

from 100s of millions of parameters to 100s of billions of parameters

[33]. The training cost in terms of time, hardware requirements, and

power consumption increases greatly with the size, with models

on the scale of 100s of billions of parameters requiring hundreds

to thousands of GPUs for training. For instance, OPT-175B has 175

billion parameters and was trained on 992 80 GB NVIDIA A100

GPUs [30]. To match this meteoric rise in training demand, AI

accelerators with architectures more finely tuned for ML training

and inference have been developed, including the Cerebras CS-

2 [2], the SambaNova SN30 [6], the Groq GroqChip [8], and the

Graphcore IPU [3]. These emerging architectures have already

been deployed in a variety of scientific research tasks, including

molecular dynamics simulations [12] and genome-scale language

models [34]. In [12] and [34], AI accelerators are shown to improve

time-to-solution and enable larger batch sizes, both of which are

critical to performance.

Novel accelerators attempt to overcome the salient drawbacks

of traditional AI training platforms like CPUs and GPUs. GPUs rely

on frequent memory exchange between on-chip and global device

memory, and require kernel launches for each layer of computation

in a neural network. CPUs often have deeper memory hierarchies

and lack high degrees of parallelism, which can be a bottleneck for

tensor operations frequently occurring in neural networks. Many

emerging AI accelerators seek to improve training and inference

performance by introducing an abundance of on-chip memory

close to compute while simultaneously achieving high degrees of

data parallelism through specialized GEMM units, many ALUs, or

hundreds to thousands of compute units. Across CPU, GPU, and AI

accelerators, memory still remains a precious resource that must

be rationed to train increasingly large models and datasets. SciML-

Bench [28] is an łAI for Sciencež benchmarking suite that contains

several training and inference tasks found in scientific applications.

Datasets part of this suite as well as other datasets (i.e., the 800

GB training set used for OPT-175B [30]) are on the scale of tens

1

HPDC ’24, June 3–7, 2024, Pisa, Italy Milan Shah, Xiaodong Yu, Sheng Di, Michela Becchi, and Franck Cappello

of GB to nearly the TB level [33]. However, on-chip memory of

accelerators is on the scale of 100s of MB to tens of GB, significantly

smaller than the size of training datasets, as shown in Table 1 and

Table 2.

Limitation of state-of-art approaches: If batch sizes or reso-

lutions of samples used to train models are too large, memory and

storage can quickly be exhausted. As such, compression becomes a

vital tool in managing model and dataset footprint. While previous

works have studied compression for improving memory utilization

and performance of models on CPU/GPU [13, 19] and for decreas-

ing data transfer costs in distributed training [11, 21], little work

has been done to explore compression for AI accelerators. These

works have developed novel compression techniques for varying

compression targets, but lack a direct port or optimized implemen-

tation for AI accelerators such that these emerging accelerators can

reap the benefits of compression.

Key insights and contributions: In this work, we design a

portable, DCT-based compressor that seamlessly runs across four

emerging AI accelerators: the CS-2, SN30, GroqChip, and IPU. To

the best of our knowledge, this is the first attempt to develop a lossy

compressor compatible with these accelerators. The discrete cosine

transform, or DCT [10], is widely used in image compression as a

means of decorrelating image data to improve compressibility. Our

compressor is implemented in PyTorch, allowing the end-user to

call our compress or decompress APIs directly from their Python

training or inference code. Our compressor seeks to provide an

efficient means of reducing data footprint while maintaining data fi-

delity and requiring little programmer effort. Our key contributions

are as follows:

• We develop a cross-accelerator compressor targeting training

data. Our design only requires two matrix multiplications for

compression and decompression each. DCT-II is applied to the

input data, and only a portion of the DCT coefficients matrix is

retained to yield the compressed data.

• We extend our compressor to support higher resolution inputs at

lowermemory footprint using a partial-serialization optimization.

Additionally, we propose a Graphcore IPU-specific optimization

that improves the compression ratio with little impact on test

accuracy/loss.

• Our compressor maintains accuracy close to baseline, generally

within 3%, while reaching compression/decompression through-

puts of 100s of MB/s on GroqChip, 1-2 GB/s on a single IPU, 7-10

GB/s on a single SN30 RDU, and up to 26 GB/s on CS-2.

• We test the additional optimizations and find that partial serializa-

tion can enable higher resolution images (512×512) on SN30 and

IPU, while the IPU-specific optimization can improve compres-

sion ratio by a factor 1-2× with 50% or less drop in throughput.

Experimental methodology and artifact availability: We

perform a comprehensive evaluation of our compressor on the

four AI accelerators and an NVIDIA A100 GPU. The compressor

is evaluated with four benchmarks, a traditional image classifica-

tion task and three AI for Science benchmarks, and a battery of

compression and decompression timing tests with varying input

data resolution and batch size. The code for this work is available

at https://github.com/mkshah5/AI-Accelerator-Compression.git.

Table 1: Breakdown of accelerator specifications. CU = Compute

Unit, OCM = On-chip Memory, PT=PyTorch, TF=Tensorflow.

CS-2 SN30 GroqChip IPU

CUs 850,000 1280 5120 1472

OCM 40 GB 640 MB 230 MB 900 MB

OCM/CUs 48 KB 0.5 MB 0.045 MB 0.61 MB

Software TF, PT,CSL SF, PT
PT, Keras

ONNX

TF, PT,

PopArt

Arch. Dataflow Dataflow SIMD MIMD

Limitations of the proposed approach: Our work focuses on

portability and relies on the rapidly changing development ecosys-

tem for each accelerator. As such, the compressor is lightweight

and does not achieve compression ratios as high as compressors

available on CPU and GPU. Additionally, our design is tailored for

training data as this data is readily available across platforms. In

the future, more work to optimize the compressor for each platform

and for differing compression targets can improve compression ra-

tio and speed as APIs to access activations and gradients are made

available on these platforms.

2 BACKGROUND AND MOTIVATION

2.1 AI Accelerators

AI accelerators are novel architectures targeting fast training and

inference of AI models. These accelerators are designed for opera-

tions and dataflows commonly required for training and inference,

such as matrix multiplications and deep pipelines. In this section,

we provide a high-level overview of each accelerator’s architecture

and programming interface. Table 1 outlines key specifications, in-

cluding compute unit (CU) count, on-chip memory (OCM) capacity,

software interfaces (TF for Tensorflow and PT for PyTorch), and

architecture type.

2.1.1 Cerebras CS-2. The Cerebras CS-2 [2, 5] is a wafer-scale ac-

celerator. The CS-2 wafer contains 850,000 compute units, called

processing elements (PEs), and each PE has an associated 48 KB of

on-chip memory, for a total of more than 40 GB of on-chip memory.

A PE is specialized compute core that accelerates sparse matrix

and other AI operations. The PEs are laid out in a 2-D meshgrid

with high-speed interconnects connecting each PE to its neighbors.

Once the user develops the model using one of the supported soft-

ware toolchains, the Cerebras compiler physically maps the model

computation to the PEs, arranging the computation in a dataflow

manner. This enables deep pipeline-level parallelism where sam-

ples for training and inference flow from host to device memory,

then to the on-chip PEs to proceed with computation. While the

CS-2 does support a custom low-level programming interface, CSL,

custom kernels in CSL are not fully integrated with PyTorch and

Tensorflow. For models with less than 1 billion parameters, the

CS-2 performs pipelined execution as-is, while larger models uti-

lize a weight streaming execution method, where the parameters

are streamed from pipeline stage to pipeline stage along with the

sample or activation data.

2

HPDC ’24, June 3–7, 2024, Pisa, Italy Milan Shah, Xiaodong Yu, Sheng Di, Michela Becchi, and Franck Cappello

Table 2: Various image datasets for benchmarking AI models

Dataset Size Type Task Sample Size

ILSVRC 2012-17 [26] 167.62 GB General Images Classification 3x256x256

em_graphene_sim [28] 5 GB Electron Micrographs Denoising 1x256x256

optical_damage_ds1 [28] 27 GB Laser Optics Reconstruction 3x492x656

cloud_slstr_ds1 [28] 187 GB Remote Sensing Pixel Segmentation 3x1200x1500

successfully used for AI training on CPU and GPU, the design of

efficient compression techniques targeting novel AI accelerators

has yet to be explored. However, due to their specific architectural

features and programmability constraints, existing lossy compres-

sors are not optimized for these platforms and cannot be directly

ported to them. A portable compressor that can be easily integrated

across accelerators would allow a variety of users to deploy com-

pression in their AI applications. Such a compressor should have

high throughput, offer reasonable compression ratios, and cause

limited impact on model accuracy.

Since these AI accelerators are connected to a host machine,

compression can improve host-device communication as well as

reduce memory and storage footprint. Device-to-device commu-

nication cost can additionally be reduced in both model and data

parallel settings. In some instances, on-chip performance can bene-

fit from compression, such as when compute units must retrieve

data residing in memory units not adjacent to them.

Previous efforts [15, 20] have explored compression of training

data, while focusing primarily on image classification tasks per-

formed on common computer vision datasets, such as CIFAR10 or

ImageNet. Other downstream tasks, such as image reconstruction

and segmentation within AI-for-Science applications, have not been

thoroughly investigated in the context of data compression. A com-

pressor that integrates well with tasks beyond image classification

can benefit the scientific community at large. Thus, we evaluate

our proposed compressor against not only a traditional image clas-

sification benchmark, but also three scientific AI benchmarks.

As of this work, the software stacks of most AI accelerators do

not provide APIs to directly access activation and gradient data.

Thus, we evaluate our portable compressor on training data. As

described in Section 1, training data size is significantly larger

than accelerator memory capacity. We expect that future software

releases might allow programmers to directly access activation and

gradient data stored on the device. To this end, we will discuss

potential modifications to our proposed compressor to extend its

effectiveness to future compression targets.

3 DESIGN AND OPTIMIZATIONS

3.1 Design Challenges

The architectural features and programming support of each accel-

erator poses a set of challenges and constraints on the design of

the compressor.

Tensor Sizes: All the considered accelerators rely on strong

compiler intervention: the compiler generates instruction streams,

execution schedules, and resource allocation. For the dataflow ar-

chitectures, Cerebras’s CS-2 and Sambanova’s SN30, the compiler

places computation physically on-chip, allocating and routing com-

pute and memory units. GroqChip’s SIMD-like architecture, called

the Tensor Streaming Processor (TSP), relies on the compiler to de-

termine the execution schedule, so as to allow more of the chip area

to be used for memory and ALUs instead of control logic. Graph-

core’s IPU also relies on its compiler to build the execution schedule.

Across all compilers, models are converted to computation graphs,

and data structure sizes, specifically tensor sizes, must be known

at compile time. Knowing tensor sizes at compile-time allows the

compiler to generate appropriate instruction schedules and allocate

enough compute and memory resources. The main drawback of

this is that, since all samples must have the same predefined size,

the compression ratio must be known at compile time and cannot

vary from sample to sample.

Programmability and Operator Support: All AI platforms

provide support for popular machine learning frameworks (such

as PyTorch and TensorFlow), with some platforms additionally

supporting custom, lower level programming interfaces (typically

extensions of C/C++). For some of these platforms, we found low

level programming interfaces to have limited documentation and

support. While a PyTorch programming interface is available on

all considered accelerators, it does not have full operator support

on each platform. For instance, PyTorch’s support on SambaNova’s

SN30 includes the torch.bitwise_not API, which performs the

NOT operator on each bit of the input tensor, but lacks bitwise

shift operators that are integral to many variable length encoding

schemes. The lack of support for PyTorch bitwise shift operators is

common among many of the platforms, limiting the ability to im-

plement existing compression schemes relying on these operators.

Using lower level programming interfaces specific to each platform

enables finer grain control of workload partitioning, which can im-

prove throughput, but this reduces compressor portability, making

PyTorch the best programming interface for this work.

Arithmetic Precision Support: While providing low preci-

sion floating point data types to allow faster memory accesses and

computation, different accelerators support different standards. For

example, for 16-bit floating point types, CS-2, GroqChip, and IPU

support the FP16 format, while SN30 supports the BF16 format. In

this work, we use the 32-bit floating point data type for consistency

across all four accelerators and the GPU, and to ensure that data

from benchmarks can be used without type conversion. While this

is not the optimal choice for individual accelerators, using the 32-bit

floating point format allows for a high degree of portability.

Accuracy Preservation: As is the case with all AI/ML tasks,

accuracy is one of the key metrics when gauging a model. In the

case of lossy compression, distortions in reconstructed data can

have downstream effects on model performance. Excessive data

4

HPDC ’24, June 3–7, 2024, Pisa, Italy Milan Shah, Xiaodong Yu, Sheng Di, Michela Becchi, and Franck Cappello

Existing works have explored lossy compression of other targets,

such as gradients [21] and activations [13][19]. These works seek to

use compression to reduce training memory footprint and improve

distributed training scenarios and use GPU as the primary training

platform. These compression methods, while effective on GPU, can-

not yet be ported to the AI accelerators since 1) access to activations

and gradients is limited or not available, and 2) operators integral

to each compressor are not yet supported, specifically bitwise and

bitshift operations for encoding stages.

In the space of AI accelerators, Emani et al. [16] perform a com-

parison study of large language models (LLMs) across a variety

of accelerators, including the NVIDIA A100, Cerebras CS-2, Sam-

baNova SN30, and Graphcore Bow-Pod64 system. Their work evalu-

ates each accelerator with the same set of LLM benchmarks, finding

that across all accelerators, memory reduction techniques are łof

paramount significancež [16] since the memory size of weights,

activations, and data is often the limiting factor in fitting a model

on a single device.

For compatibility with AI accelerators, one approach for com-

pressor design is using neural networks as the compressor itself.

Liu et al. [23] propose an autoencoder integration for SZ, using the

autoencoder as a predictor that can improve quantization efficiency

of SZ. Lu et al. [25] propose a transformer network that builds on

top of a variational autoencoder to compress images. Both designs

utilize neural network architectures, which are supported across

all AI accelerators, and the encoding stage could be modified such

that a fixed length encoding that does not use bitwise operations

is used. If these designs were successfully implemented, however,

compression and decompression throughput would be significantly

slower than our design. Both designs are deep networks or trans-

formers that require many more operations compared to our two

matrix multiplication algorithm. As such, while AI-based compres-

sors could be implemented on these accelerators, speed would be a

concern.

6 CONCLUSION AND FUTUREWORK

Conclusion: In this work, we have designed a PyTorch-based lossy

compressor that can run across four different novel AI accelerators

with little programmer effort. Our compressor can achieve speeds

ranging from 100s of MB/s on GroqChip, to up to 26 GB/s on the CS-

2. For dataflow architectures, these speeds are significantly faster

than the processing time for equivalent data sizes, allowing com-

pression and decompression to be masked in the dataflow pipelines.

Additionally, loss introduced from our compressor has a limited

impact on test loss and accuracy, leading to reductions in model

performance of generally less than 3%.

Future Work: At the compressor-level, more platform-specific

optimizations can be explored to generate a library of tailored

compressors. In terms of core compressor design changes, we can

test using the ZFP block transform instead of DCT-II, especially

as compression targets change. Since the training data we have

evaluated in this work has been image data, DCT-II is suitable as

a transform, but the ZFP block transform can be more applicable

to general scientific floating point datasets. At the target-level, the

compression targets can evolve as the development ecosystem of

each platform evolves. Weights, activations, and gradients all have

the opportunity to be compressed, reducing model footprint and

training memory utilization. Changing targets can lead to com-

pressor design changes, such as in [19] where SZ is modified to

accurately reconstruct zero-valued activations. If a similar compres-

sion procedure were implemented, this would introduce sparsity,

opening the door to an exploration of sparse matrix operations on

AI accelerators.

ACKNOWLEDGMENT

This research was supported by the U.S. Department of Energy,

Office of Science, Advanced Scientific Computing Research (ASCR),

under contract DE-AC02-06CH11357, and supported by the Na-

tional Science Foundation under Grant OAC-2003709, OAC-2104023,

OAC-2311875. This research used resources of the Argonne Lead-

ership Computing Facility, a U.S. Department of Energy (DOE)

Office of Science user facility at Argonne National Laboratory and

is based on research supported by the U.S. DOE Office of Science-

Advanced Scientific Computing Research Program, under Contract

No. DE-AC02-06CH11357.

REFERENCES
[1] [n. d.]. CIFAR-10 and CIFAR-100 datasets. https://www.cs.toronto.edu/~kriz/

cifar.html
[2] [n. d.]. Explore Cerebras Documentation Ð Cerebras Developer Documentation.

https://docs.cerebras.net/en/latest/
[3] [n. d.]. Graphcore Documents Ð Graphcore Documents. https://docs.graphcore.

ai/en/latest/
[4] [n. d.]. JPEG - JPEG 1. https://jpeg.org/jpeg/index.html
[5] [n. d.]. Product - System. https://www.cerebras.net/product-system/
[6] [n. d.]. SambaNova :: SambaNova Documentation. https://docs.sambanova.ai/

home/latest/index.html
[7] 2023. GroqCard™ Accelerator - Groq. https://wow.groq.com/groqcard-

accelerator/ Section: Blog.
[8] 2023. groq/groqflow. https://github.com/groq/groqflow original-date: 2022-08-

08T23:46:56Z.
[9] Ibrahim Ahmed, Sahil Parmar, Matthew Boyd, Michael Beidler, Kris Kang, Bill Liu,

Kyle Roach, John Kim, and Dennis Abts. 2022. Answer Fast: Accelerating BERT
on the Tensor Streaming Processor. In 2022 IEEE 33rd International Conference on
Application-specific Systems, Architectures and Processors (ASAP). 80ś87. https:
//doi.org/10.1109/ASAP54787.2022.00022 ISSN: 2160-052X.

[10] N. Ahmed, T. Natarajan, and K.R. Rao. 1974. Discrete Cosine Transform. IEEE
Trans. Comput. C-23, 1 (Jan. 1974), 90ś93. https://doi.org/10.1109/T-C.1974.
223784 Conference Name: IEEE Transactions on Computers.

[11] Dan Alistarh, Demjan Grubic, Jerry Z. Li, Ryota Tomioka, and Milan Vojnovic.
2017. QSGD: communication-efficient SGD via gradient quantization and en-
coding. In Proceedings of the 31st International Conference on Neural Information
Processing Systems (Long Beach, California, USA) (NIPS’17). Curran Associates
Inc., Red Hook, NY, USA, 1707ś1718.

[12] Alexander Brace, Michael Salim, Vishal Subbiah, Heng Ma, Murali Emani,
Anda Trifa, Austin R. Clyde, Corey Adams, Thomas Uram, Hyunseung Yoo,
Andew Hock, Jessica Liu, Venkatram Vishwanath, and Arvind Ramanathan.
2021. Stream-AI-MD: Streaming AI-Driven Adaptive Molecular Simulations
for Heterogeneous Computing Platforms. In Proceedings of the Platform for Ad-
vanced Scientific Computing Conference (Geneva, Switzerland) (PASC ’21). As-
sociation for Computing Machinery, New York, NY, USA, Article 6, 13 pages.
https://doi.org/10.1145/3468267.3470578

[13] Jianfei Chen, Lianmin Zheng, Zhewei Yao, DequanWang, Ion Stoica, Michael Ma-
honey, and Joseph Gonzalez. 2021. ActNN: Reducing Training Memory Footprint
via 2-Bit Activation Compressed Training. In Proceedings of the 38th International
Conference on Machine Learning. PMLR, 1803ś1813. https://proceedings.mlr.
press/v139/chen21z.html ISSN: 2640-3498.

[14] Sheng Di and Franck Cappello. 2016. Fast Error-Bounded Lossy HPC Data
Compression with SZ. In 2016 IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS). 730ś739. https://doi.org/10.1109/IPDPS.2016.11 ISSN:
1530-2075.

[15] Samuel Dodge and Lina Karam. 2016. Understanding how image quality affects
deep neural networks. In 2016 Eighth International Conference on Quality of
Multimedia Experience (QoMEX). 1ś6. https://doi.org/10.1109/QoMEX.2016.
7498955

[16] Murali Emani, Sam Foreman, Varuni Sastry, Zhen Xie, Siddhisanket Raskar,
William Arnold, Rajeev Thakur, Venkatram Vishwanath, and Michael E. Papka.

12

A Portable, Fast, DCT-based Compressor for AI Accelerators HPDC ’24, June 3–7, 2024, Pisa, Italy

2023. A Comprehensive Performance Study of Large Language Models on Novel
AI Accelerators. https://doi.org/10.48550/arXiv.2310.04607 arXiv:2310.04607
[cs].

[17] Paul Heckbert. 1982. Color image quantization for frame buffer display. In Pro-
ceedings of the 9th Annual Conference on Computer Graphics and Interactive Tech-
niques (Boston, Massachusetts, USA) (SIGGRAPH ’82). Association for Computing
Machinery, New York, NY, USA, 297ś307. https://doi.org/10.1145/800064.801294

[18] Yafan Huang, Sheng Di, Xiaodong Yu, Guanpeng Li, and Franck Cappello.
2023. cuSZp: An Ultra-fast GPU Error-bounded Lossy Compression Frame-
work with Optimized End-to-End Performance. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analy-
sis (SC ’23). Association for Computing Machinery, New York, NY, USA, 1ś13.
https://doi.org/10.1145/3581784.3607048

[19] Sian Jin, Chengming Zhang, Xintong Jiang, Yunhe Feng, Hui Guan, Guanpeng Li,
Shuaiwen Leon Song, and Dingwen Tao. 2021. COMET: a novel memory-efficient
deep learning training framework by using error-bounded lossy compression.
Proceedings of the VLDB Endowment 15, 4 (Dec. 2021), 886ś899. https://doi.org/
10.14778/3503585.3503597

[20] Vinu Joseph, Nithin Chalapathi, Aditya Bhaskara, Ganesh Gopalakrishnan,
Pavel Panchekha, and Mu Zhang. 2020. Correctness-preserving Compres-
sion of Datasets and Neural Network Models. In 2020 IEEE/ACM 4th Interna-
tional Workshop on Software Correctness for HPC Applications (Correctness). 1ś9.
https://doi.org/10.1109/Correctness51934.2020.00006

[21] Hyeontaek Lim, David G. Andersen, and Michael Kaminsky. 2018. 3LC:
Lightweight and Effective Traffic Compression for Distributed Machine Learn-
ing. https://doi.org/10.48550/arXiv.1802.07389 Issue: arXiv:1802.07389
arXiv:1802.07389 [cs, stat].

[22] Peter Lindstrom. 2014. Fixed-Rate Compressed Floating-Point Arrays. IEEE
Transactions on Visualization and Computer Graphics 20, 12 (Dec. 2014), 2674ś
2683. https://doi.org/10.1109/TVCG.2014.2346458

[23] Jinyang Liu, Sheng Di, Kai Zhao, Sian Jin, Dingwen Tao, Xin Liang, Zizhong
Chen, and Franck Cappello. 2021. Exploring Autoencoder-Based Error-Bounded
Compression for Scientific Data. CoRR abs/2105.11730 (2021). arXiv:2105.11730
https://arxiv.org/abs/2105.11730

[24] Graphcore Ltd. [n. d.]. IPU Processors. https://www.graphcore.ai/products/ipu
[25] Ming Lu, Peiyao Guo, Huiqing Shi, Chuntong Cao, and Zhan Ma. 2021.

Transformer-based Image Compression. http://arxiv.org/abs/2111.06707
arXiv:2111.06707 [cs, eess].

[26] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, SeanMa,
ZhihengHuang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV) 115, 3 (2015), 211ś252. https:
//doi.org/10.1007/s11263-015-0816-y

[27] SambaNova Systems. [n. d.]. SambaNova Systems DataScale® | Our Products.
https://sambanova.ai/products/datascale

[28] Jeyan Thiyagalingam, Juri Papay, Kuangdai Leng, Samuel Jackson, Mallikarjun
Shankar, Geoffrey Fox, and Tony Hey. 2021. SciML-Bench: A Benchmarking
Suite for AI for Science. https://github.com/stfc-sciml/sciml-bench

[29] Jiannan Tian, Sheng Di, Kai Zhao, Cody Rivera, Megan Hickman Fulp, Robert
Underwood, Sian Jin, Xin Liang, Jon Calhoun, Dingwen Tao, and Franck Cap-
pello. 2020. cuSZ: An Efficient GPU-Based Error-Bounded Lossy Compres-
sion Framework for Scientific Data. In Proceedings of the ACM International
Conference on Parallel Architectures and Compilation Techniques (PACT ’20).
Association for Computing Machinery, New York, NY, USA, 3ś15. https:
//doi.org/10.1145/3410463.3414624

[30] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui
Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov,
Myle Ott, Sam Shleifer, Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali
Sridhar, Tianlu Wang, and Luke Zettlemoyer. 2022. OPT: Open Pre-trained
Transformer Language Models. https://doi.org/10.48550/arXiv.2205.01068
arXiv:2205.01068 [cs].

[31] Kai Zhao, Sheng Di, Maxim Dmitriev, Thierry-Laurent D. Tonellot, Zizhong Chen,
and Franck Cappello. 2021. Optimizing Error-Bounded Lossy Compression for
Scientific Data by Dynamic Spline Interpolation. In 2021 IEEE 37th International
Conference on Data Engineering (ICDE). 1643ś1654. https://doi.org/10.1109/
ICDE51399.2021.00145

[32] Kai Zhao, Sheng Di, Xin Liang, Sihuan Li, Dingwen Tao, Zizhong Chen, and
Franck Cappello. 2020. Significantly Improving Lossy Compression for HPC
Datasets with Second-Order Prediction and Parameter Optimization. In Proceed-
ings of the 29th International Symposium on High-Performance Parallel and Dis-
tributed Computing (Stockholm, Sweden) (HPDC ’20). Association for Computing
Machinery, New York, NY, USA, 89ś100. https://doi.org/10.1145/3369583.3392688

[33] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang,
Yushuo Chen, Zhipeng Chen, Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang,
Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 2023. A Survey of Large
Language Models. http://arxiv.org/abs/2303.18223 arXiv:2303.18223 [cs].

[34] Maxim Zvyagin, Alexander Brace, Kyle Hippe, Yuntian Deng, Bin Zhang,
Cindy Orozco Bohorquez, Austin Clyde, Bharat Kale, Danilo Perez-Rivera, Heng
Ma, Carla M. Mann, Michael Irvin, J. Gregory Pauloski, Logan Ward, Valerie
Hayot-Sasson, Murali Emani, Sam Foreman, Zhen Xie, Diangen Lin, Maulik
Shukla, Weili Nie, Josh Romero, Christian Dallago, Arash Vahdat, Chaowei Xiao,
Thomas Gibbs, Ian Foster, James J. Davis, Michael E. Papka, Thomas Brettin, Rick
Stevens, Anima Anandkumar, Venkatram Vishwanath, and Arvind Ramanathan.
2022. GenSLMs: Genome-scale language models reveal SARS-CoV-2 evolutionary
dynamics. bioRxiv: The Preprint Server for Biology (Nov. 2022), 2022.10.10.511571.
https://doi.org/10.1101/2022.10.10.511571

13

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 AI Accelerators
	2.2 Lossy Compression and AI/ML
	2.3 Motivation

	3 Design and Optimizations
	3.1 Design Challenges
	3.2 Fundamental Design and Approach
	3.3 Compression Implementation
	3.4 Decompression Implementation
	3.5 Optimizations

	4 Experimental Evaluation
	4.1 Methodology
	4.2 Results

	5 Related Work
	6 Conclusion and Future Work
	References

