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ABSTRACT

Today’s scientific applications running on supercomputers produce
large volumes of data, leading to critical data storage and commu-
nication challenges. To tackle the challenges, error-bounded lossy
compression is commonly adopted since it can reduce data size
drastically within a user-defined error threshold. Previous work has
shown that compression techniques can significantly reduce the
storage and I/O overhead while retaining good data quality. How-
ever, the existing compressors are mainly designed for CPU and
GPU. As new Al chips are being incorporated into supercomputers
and increasingly used for accelerating scientific computing, there
is a growing demand for efficient data compression on the new ar-
chitecture. In this paper, we propose an efficient lossy compressor,
CERESZ, based on the Cerebras CS-2 system. The compression al-
gorithm is mapped onto Cerebras using both data parallelism and
pipeline parallelism. In order to achieve a balanced workload on each
processing unit, we propose an algorithm to evenly distribute the
pipeline stages. Our experiments with six scientific datasets demon-
strate that CERESZ can achieve a throughput from 227.93 GB/s to
773.8 GB/s, 2.43x to 10.98x faster than existing GPU compressors.
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1 INTRODUCTION

Scientific computing applications often generate large volumes of
data rapidly. For instance, Reverse Time Migration (RTM), which
is an advanced seismic imaging technique for intricate subsurface
structures, can generate as much as 2,800 TB of data from a 10x10x8
aperture in a single time-stamp [14, 33]. Linear Coherent Light
Source (LCLS), which is a leading X-ray free-electron laser located at
Stanford Linear Accelerator Center, generates raw photon snapshots
at 250 GB/s [31]. Storing and processing such a great amount of
data within a short time impose considerable challenges, even on
high-performance computing systems [35, 37, 38, 45, 47].

To tackle this big data challenge, lossy compression techniques [8,
22, 26, 28, 39, 49] have been commonly used in scientific applica-
tions to reduce the data size while maintaining a user-specified error
limit. Beyond the traditional compressors on CPU, accelerating data
compression on heterogeneous processors, such as FPGA [41] and



GPU [13, 42, 48, 50], has become increasingly important for real-time
compression tasks (e.g. reducing data stream intensity and accel-
erating program execution). For example, cuSZ [42] parallelizes
quantization, prediction, and Huffman encoding on NVIDIA GPU,
benefiting the runtime performance of large-scale cosmic simula-
tion [17] and deep learning training systems [18].

In recent years, there has been a boom in AI chips to meet the
high computation demand of AI workloads. Among the new Al
accelerators, Cerebras has emerged as a powerful and flexible plat-
form for general-purpose high-performance computing. Besides
Al workloads, Cerebras has been increasingly adopted for scien-
tific computing applications. For example, [32] implements 3D fast
Fourier transforms of a 512 complex input array on the Cerebras
CS-2 and achieves 959 microseconds, which is the largest ever par-
allelization for this problem size and the first implementation that
breaks the millisecond barrier. Ltaief et al. [30] utilize the substantial
memory bandwidth of the Cerebras CS-2 systems for seismic data
processing. As massive data is generated by these applications on
the Al chip, there is a growing demand for efficient data compression
on the new architecture.

In this work, we present the first error-bounded lossy compressor
called CERESZ for the Cerebras CS-2 system. Different from CPU
and GPU, which are designed based on the control flow architecture
(i.e. von Neumann architecture), the computing units on Cerebras
construct a dataflow architecture. Each computing unit can only
access data from a small local memory and its neighbors. The re-
stricted memory access imposes new challenges in the design and
implementation of compression algorithms.

First, the dataflow architecture does not allow the maintenance
of any global status in the compression process, unless all compu-
tation is conducted on a single unit. To scale out the computation,
we adopt a block-wise compression algorithm. The data is divided
into blocks and compressed within each block independently. This
allows the computation on different blocks to be naively mapped to
different computing units on the Cerebras chip, without requiring
any communication between the units. We also adopt a stage-wise
design where the compression procedure is divided into multiple
stages with each stage only processing the output of the previous
stage. This allows the computation on each block to be mapped to a
group of contiguous computing units and parallelized as a pipeline.

With the block-wise and stage-wise algorithm design, we can
scale out the compression procedure to a 2D mesh of computing
units on the Cerebras system. However, algorithm design alone is
not enough to fully utilize the computing power of Cerebras. Since
the performance of a pipeline is bottlenecked by the slowest stage,
it is important to achieve a balanced workload among stages. The
problem is nontrivial because different steps in the compression
algorithm can vary significantly in execution time and the execu-
tion time can even be input-dependent. To deal with the issue, we
propose to divide each step into finer-grained sub-stages and redis-
tribute the sub-stages evenly into stage groups. Another issue is
that the number of connected computing units on the chip is much
larger than the number of pipeline stages. To utilize all the comput-
ing units, we must run multiple pipelines. However, it is nontrivial
to run pipelines on the computing units where the input data are

not initially available. We propose a technique that keeps forward-
ing data along the computing units to enable parallel execution of
multiple pipelines.

The contributions of this paper are summarized as follows.

e We proposed and implemented the first end-to-end data com-
pressor on the Cerebras CS-2 system.

o We studied the parallelization of the compression/decompres-
sion algorithm on the dataflow architecture and proposed
three strategies to scale out the computation.

e We theoretically and empirically show that our algorithm

with the proposed parallelization strategies achieves linear
speedups across the rows and columns of the 2D mesh of
computing units on Cerebras.
We conduct comprehensive experiments to evaluate CERESZ
on 6 real-world scientific datasets. The results show that
CERESZ can achieve on average 457.35 GB/s and 581.31 GB/s
for compression and decompression throughput, respectively,
which is 4.97 and 4.84 times faster compared with exiting
GPU compressors without any losses of data quality.

2 BACKGROUND

In this section, we first give some background on the Cerebras Al
chip and its programming model. Then, we introduce the terminolo-
gies related to error-bounded lossy compression.

2.1 Cerebras CS-2 System
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(a) Cerebras WSE, where each node denotes
one PE (processing element).
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(b) Structure of a single PE
on Cerebras WSE.

Figure 1: An illustration of the wafer-scale engine (WSE),
which is the central processor of Cerebras CS-2 system.

Cerebras CS-2 is considered one of the most competitive systems
for accelerating deep learning and scientific simulation tasks to-
day [30, 32, 55]. The Cerebras Al chip is manufactured on a single
wafer-scale engine (WSE), which contains a two-dimensional mesh
of 757 X 996 processing elements (PEs) with fast access to data in its
local memory and nearest neighbors, as shown in Fig. 1(a). Each PE
has its own program counter and thus can operate independently
from other PEs.

Dataflow Architecture. The connected PEs on Cerebras WSE con-
struct a dataflow architecture. As shown in Fig. 1(b), each PE has: 1)
a fabric router which sends and receives data from its neighboring
PEs, 2) a processor, and 3) a local memory that stores all the code
and data used by the processor. The processor is connected to the
fabric router via an internal link called the RAMP. The RAMP, along
with the external links to the four neighbors (east, west, north, and



south), are referred to as the five cardinal dataflow directions of one
PE. A PE can exchange a 32-bit message, known as a wavelet, with
its neighbors in one clock cycle. The programmer can assign one
or more tasks to a PE, and a task will only be executed if its input
data are available (usually received from its neighboring PEs). The
programmer can also terminate a running task and initialize a new
one from the set of tasks on a PE. Compared to the shared memory
single-instruction multiple-data (SIMD) architecture (e.g., GPUs),
Cerebras is more flexible in handling irregular control flows but has
more restricted data flows.
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Figure 2: Pipeline parallelization on Cerebras WSE.

Parallel Processing on Cerebras. The dataflow architecture of
Cerebras allows two types of parallel processing: MIMD and pipeline.
If the computation is embarrassingly parallel, we can simply execute
it in a multiple-instruction multiple-data (MIMD) fashion, typically
by using PEs in different rows as the input data can be flowed into
different rows simultaneously. However, because the computing
and memory capacity of each PE is limited, we often need to split
the computation into multiple stages and run different stages on
consecutive PEs in a pipeline fashion. As shown in Fig. 2, we can
map three computing stages into three consecutive PEs in the same
row. After one PE finishes its computation, the intermediate data
is transferred through the fabric router to the next PE. The data
transfer between PEs can be conducted asynchronously with the
computation.

Implementing a Pipeline. Cere-
bras provides an SDK that allows
programmers to develop native /

code running on the PEs using a out_dsd{ out_dsd2]
language called CSL. To imple- PE 1 PE 2
ment a pipeline, the program-
mer needs to use CSL to explic-
itly define the communication
between PEs. As mentioned ear-
lier, there are five cardinal dataflow directions of one PE, including
four neighbors and the local RAMP. To route a wavelet through the
fabric, the programmer needs to define a logical channel called color.
There are 24 colors available in total. For every color, the program-
mer needs to configure its input and output direction. Figure 3 shows
an example of routing an array from one PE to its neighboring PE on
the right and the pseudocode in Figure 4 shows the implementation
of a pipeline on PE 2. We configure the two PEs with the same color
and then define routing directions respectively. The left PE sends
data from its RAMP to the east (right), and the right PE receives data
from the west (left) and sends it to its RAMP. The data on the fabric
can be accessed by the processor through Data Structure Descriptors
(DSDs) (line 2 to 4 in Figure 4), which can be considered as point-
ers to the memory allocated in the fabric for holding the wavelets.

| in_dsd2

Figure 3: Routing an array
from PE 1 to PE 2.

// Define the input dsd which receives N continuous elements

1

2 | const in_dsd2 = @get_dsd(fabin_dsd, .{

3 .fabric_color = color, .extent = N),

4 .output_queue = @get_output_queue(1)});
5

6 | // Receive data from the left PE and once it finishes, activate
7| // computeColor to run compute task

g | task read() void {

9 @mov32(input_compute_dsd, in_dsd2, .{ .async = true,
10 .activate = computeColor});}

12 // Run compute function, then activate readColor to run read task
1317/ again to start receiving the next N elements

14 | task compute() void {

15 compute(); @activate(readColor);}

16 // Send out_dsd2 to the right PE here}

18 | // Bind two colors to their corresponding tasks
19 | @bind_task(read, readColor);
20 | @bind_task(compute, computeColor);

Figure 4: Routing an array from the left PE to the right PE.

Once the in_dsd2 is available on the right PE, its computeColor
will be triggered, and the compute task bound with the color will
be activated. The compute task then runs the compute function and
activates the readColor to run the read task again and receive the
next array. This data-triggering mechanism allows different PEs to
run different stages simultaneously on different data, thus achieving
pipeline parallelization.

2.2 Error-bounded Lossy Compression

Error-bounded lossy compression can reduce data size drastically
while ensuring a small difference between the original and recon-
structed data. The controllable data distortion can benefit visualiza-
tion and post-hoc analysis and hence has been widely adopted in
modern HPC scientific simulations and large-scale Al systems [7, 12,
14, 17, 18]. More formally, given a dataset O = (ey, ez, ..., enr) Where
e; denotes the i-th element and N is the total number of elements,
we can obtain the reconstructed data R = (ef, 3, ..., e3;) after com-
pression and decompression. This reconstructed data should satisfy
le; —e]] < € Vi € [1, N], where € is a specified error bound.

A lossy compression is often evaluated in three metrics.

1) Throughput: Compression/decompression throughput repre-
sents how much data can be processed during a certain time
period;

2) Compression ratio: The compression ratio, calculated as the
original data size divided by the compressed data size, indicates
a compressor’s efficiency in condensing information from the
original data;

3) Data quality: This metric denotes how well a lossy compressor
preserves the original data from a domain expert’s perspective.

In this work, we consider both visualization quality and quantitative
metrics, such as PSNR and SSIM, which will be further explained in
Section 5.

3 CERESZ: COMPRESSION ALGORITHM

To better utilize the dataflow architecture in Cerebras WSE, we pro-
pose a stage-wise compression algorithm, CERESZ, that operates
on blocks of data. Given an input dataset, which is generally repre-
sented as an array of floating-point numbers, we first divide it into
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(a) Three stages of CERESZ to compress this data block.

(b) Details of Fixed-Length Encoding (©).

(c) Caption

Figure 5: A running example of CERESZ compression algorithm for one data block.

a set of data blocks, with each block comprising the same number
of consecutive elements. As shown in Fig. 5, the data is divided into
blocks of the same number of elements (eight in this example). Next,
CERESZ compresses each data block independently through three
major stages, including Pre-Quantization (@), Lorenzo Prediction
(®), and Fixed-Length Encoding (©):

Pre-Quantization (@). This step converts floating-point numbers
into quantized integers. Given a float number e; and a user-defined
error bound e, the quantized integer p; is calculated as the following
formula:

(1)

The original number can be reconstructed as p; - 2e. This data quan-
tization is the only step that introduces errors in the compression
procedure. Since |pi - 26—2 < 0.5, it is guaranteed that the error is
bounded: |p; - 2¢ — ¢;| < e.In the example in Fig. 5(a), suppose the er-
ror bound € = 0.1, the value 0.83 is converted to round(0.83/0.02) =
4. The error of the reconstructed data is |4 X 2 X 0.01 — 0.83| = 0.03,
which is within the specified error bound.

Lorenzo Prediction (). The quantized data are then passed to a
Lorenzo prediction procedure. Suppose a block of quantized data
is denoted as (p1, p2, ... pL), Where p; is i-th quantized number and
L is the block size. The output of Lorenzo prediction is calculated
as the first-order difference of the input: (p1, p2 — p1, .- PL — PL-1)-
Since many scientific datasets exhibit high smoothness [8, 13, 28, 50],
this step can reduce the repeated bit patterns efficiently. As shown
in Figure 5(a), the absolute value of the output is smaller than the
input, thus requiring fewer bits to store the data. Note that beyond
the first-order difference (i.e. 1D Lorenzo prediction) in CERESZ,
there are higher dimensional Lorenzo prediction methods [39, 42]
that consider more spatial information, which can lead to a higher
compression ratio. Although CERESZ can support such prediction
methods, in this work, we prioritize high throughput, making @ the
preferred choice due to its lower computational requirements (uti-
lizing just the preceding data point) and its facilitation of coalescing
memory access, as evidenced in prior studies [13, 42, 48, 50].
Fixed-Length Encoding (®). Finally, we store the output of Lorenzo
prediction (which are small integers) into a byte stream using as
few bits as possible. We adopt a fixed-length encoding technique
for this task. It computes the absolute values of all numbers in a
block. The number of effective bits in the maximum absolute value
is enough for accommodating the absolute value of any number in
the block. We need one more bit to store the sign (i.e. positive or

pi = round (%)

negative) for each number. In Figure 5(b), the maximum absolute
value in the block is 8, which can be stored in four bits. Thus, the
“fixed-length” of this block is four, and we can store every element
in four bits and all the eight elements with four bytes. All the signs
of the eight numbers can be compacted into one byte. In this exam-
ple, the original data block has 32 bytes (8 single-precision floating
data points), and the encoding procedure compresses it to 6 bytes,
achieving a 5.33 compression ratio.

Decompression Steps. During the decompression phase, CERESZ
follows the same block-wise design and performs the above three
steps in reverse order. Given the compressed bytes for one data
block, the first byte records the “fixed-length" information. If this
length is f and the block size is L, then the subsequent L/8 and
the last f x L/8 bytes can be interpreted as signs and encoded bits,
respectively. Based on this, CERESZ can decode the compressed byte
array into L integers. Then, CERESZ reverses the Lorenzo prediction
and generates quantization integers. This step can be formulated as a
sequential prefix sum task within each data block. Finally, each quan-
tization integer p; can be restored into its corresponding floating
value by e] = p; - 2¢, where € denotes error bound and e] denotes the
reconstructed data of e; while satisfying the error bound |e; —e]| < .
In general, the decompression process in CERESZ bypasses the need
to identify the maximum quantization integer due to the pre-known
“fixed-length", resulting in fewer computations and thereby leading
to higher throughput.

Rationale in CERESZ Algorithm Designs. (1) Prediction Strat-
egy Selection: Besides Lorenzo Prediction adopted in CERESZ, there
are other prediction methods such as spline interpolation [52] and
block-wise linear regression [24, 54]. While the former can cause
strided memory access pattern, the latter requires extensive com-
putations to retrieve the regression coefficients, hence negatively
impacting throughput. For instance, obtaining 10 coefficients via
quadratic regression on a single data block involves floating-point
computations equivalent to a 10x10 matrix multiplication. (2) Loss-
less Encoding Selection: In CERESZ, we select fixed-length encoding
rather than other variable-length encoding methods such as Huff-
man encoding [36, 43, 46], for which reasons are two-fold. First,
building a Huffman encoding tree is expensive for parallel algo-
rithms and violates the high-throughput design in CERESZ. Second,
in fixed-length encoding, the compressed data length of each block
can be calculated once “fixed-length" is known. Since the unique
dataflow design in Cerebras WSE preserves the block processing



order, CERESZ avoids synchronization overheads, which is a device-
level scan while concatenating compressed bytes across data blocks.
This benefits runtime throughput in turn compared with existing
compressors such as GPULZ [51], FZ-GPU [50], and cuSZp [13].

4 MAPPING CERESZ ONTO CEREBRAS WSE

In this section, we explain how our proposed compression algorithm
CERESZ is parallelized and executed on Cerebras WSE. An overview
is shown in Fig. 6.
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Figure 6: Three parallelization strategies for mapping our
compression algorithm to 2D mesh of PEs.

4.1 Data Parallelism for Different Blocks

Since the computations in different blocks are independent, it is
straightforward to assign the processing of different blocks to differ-
ent PE rows. Fig. 6 (left) illustrates this parallelization paradigm with
an assumption that the entire compression procedure is executed
on the first PE of each row.

Linear Speedup Across Rows. 200
As different rows of PEs run in- é 150
dependently without any com- S 100
munication, it is expected that £ 50 |;
3 0
£

increasing the number of rows
will result in a linear speedup.
To verify this point, we run the
compression algorithm on the
temperature field of the NYX
dataset [2] using the first PE of
each row. We set the data block
size to 32 and keep flowing data blocks to each row. Fig. 7 shows the
throughput (MB/s) of compressing the entire data set with different
numbers of PE rows. The execution time is measured as the clock
cycles needed for the last PE to finish processing its data. We can
see the throughput indeed increases linearly w.r.t the number of PE
rows. A similar pattern is observed in other datasets.

0 20 40 60 80
Num. of rows

Figure 7: Throughput with

different numbers of PE

rows.

4.2 Pipeline Parallelism for Different Stages

To further improve the performance, we want to utilize more columns
of PEs. This can be achieved by dividing the compression procedure
into multiple stages and mapping different stages to consecutive PE
columns. Fig. 6 (middle) illustrates the idea by mapping the three
compression steps (quantization, prediction, and encoding) onto the
first three PEs of each row.

As a PE can only start execution when its input data are avail-
able, the pipeline execution will be bottlenecked by the PE with the
longest job. Thus, it is important to achieve a balanced workload
distribution among PEs. To demonstrate the problem, we profile
the execution of quantization, prediction, and encoding on the first
three PEs. Table 1 shows the execution time (in clock cycles) of the

Dataset Pre-Quant. Loren. Pred. FL Encd.
CESM-ATM 6051 975 37124
HACC 6101 975 29181
QMCPack 6111 975 27188

Table 1: Execution cycles for three steps.

three steps for one data block. The experiment is conducted on the
CESM-ATM [19], HACC [9], and QMCPack [20] datasets, and the
execution time is obtained by the maximum execution cycles across
all data blocks within each dataset. We run the experiments 10 times
and report the average execution time and cycles. We can see that
the quantization and prediction steps need a stable number of cycles
and the prediction needs much fewer cycles than quantization and
encoding. This is because quantization and prediction involve a fixed
number of arithmetic operations and the subtraction in the predic-
tion step is much faster than the division operation in quantization.
Encoding is much slower than quantization and prediction, and its
performance is dependent on the number of effective bits in the
input. Considering that quantization and encoding have multiple
operations, we can divide each of them into sub-stages to achieve a
more balanced workload.

Dividing Pre-Quantization into Two Sub-stages. In our real
implementation of the quantization in Formula (1), the division
operation is implemented as a multiplication with the reciprocal
of 2e and the round operation is implemented as an addition with
0.5 followed by a floor operation. The breakdown cycles of the
multiplication and addition operations are shown in Table 2. As
expected, the execution times of the two operations are consistent
across different datasets. Multiplication takes approximately 80% of
the quantization time.

Dataset Pre-Quant. Multiplication Addition
CESM-ATM 6051 5078 1033
HACC 6101 5081 1038
QMCPack 6111 5063 1049

Table 2: Breakdown cycles for Pre-Quantization.

Dividing Fixed-Length Encoding. Fixed-length encoding can be
decomposed into four sub-stages: Sign, Max, GetLength, and Bit-
shuffle. The Sign stage involves storing signs and calculating the
absolute values of numbers in a data block. The Max stage obtains
the maximum of the absolute values. The GetLength stage obtains
the number of effective bits of the maximum value (i.e., the encoding
length). The Bit-shuffle stage transforms effective bits of integers
into a set of aligned bytes according to the encoding length. Among
the four sub-stages, Sign, Max, and GetLength perform fixed numbers
of operations and thus have stable execution time. This is validated
by our profiling results in Table 3.



Algorithm 1: Evenly distributing n sub-stages across m PEs

Input: The stages: s1, S, ..., Sp; Total cycles of all stages: C; Number of PEs:
m;
Output: Stage group assigned to PEs: Gy, Gy, ..., G
Initialize G; = {},G2 = {}, ... G = {}
for each stage group G; in {G1, Gy, ..., Gp—1} do
L while The sum of runtime of the stages in G < % do
|_ move the next s; to G;

P

5 Gm = {81,582, .50} — (G1UG2U ... UGp—1)

Dataset FLEncd. Sign Max GetLength Bit-shuffle
CESM-ATM 37124 1044 1037 1386 33609
HACC 29181 1041 1032 1370 25675
QMCPack 27188 1048 1041 1385 23694

Table 3: Breakdown cycles for Fixed-Length Encoding.

The Bit-shuffle stage, however, requires a varying runtime for
different datasets. This variation is attributed to their different en-
coding lengths (17, 13, and 12 for CESM-ATM, HACC, and QMCPack
respectively). Figure 8 gives an example of Bit-shuffle with 8 integers
from Iy to I7. For the k—th effective bit, we rearrange this bit of all
integers into Byte k. This variation suggests a uniform encoding
overhead per effective bit, as evidenced by the approximate equiv-
alences 33609/17 ~ 25675/13 ~ 23694/12. Since the Bit-shuffle of
each effective bit is independent of each other, this stage can be
further segmented into 1-bit Shuffle.

lo=4 EQ_::_D_D__\__H__\ \__\ \__\.—- Each row denotes one original data point
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Figure 8: Illustrating Bit-shuffle using block from Fig. 5.

The division of the steps in decompression follows a similar pat-

tern. The reverse of Bit-shuffle which breaks down the rearranged
Bytes one by one can be subdivided into operations of each Byte.
Reversing Lorenzo Prediction involving calculating the prefix sum
of all integers, cannot be further divided. Similarly, the reverse Pre-
Quantization step, comprised solely of multiplication operations,
remains indivisible. Having segmented the three reverse operations,
Algorithm 3 can also be effectively employed to distribute these
steps uniformly across PEs.
Distributing Sub-stages to PEs. We now describe a simple greedy
algorithm that evenly distributes m sub-stages across n PEs. As
shown in Alg. 1, we start with m empty stage groups G1, Go, . .., Gp.
Suppose the total execution time of all sub-stages is C. We iterate
over all the sub-stages from s; to s, and keep adding s; to the current
group until the group exceeds an execution time of C/m. When the
execution time limit is reached, we stop adding sub-stages to the
group and move to the next group.

Notice that the Multiplication step has the longest runtime, so it
bottlenecks the performance of the Pipeline. Suppose the runtime
of Multiplication is #;, the maximum feasible length for the Pipeline

can be obtained by |C/t; |. Using a Pipeline with a longer length
than this cannot achieve better performance. Since the length is
determined by the total execution time, the distribution strategy
should be the same for two datasets that have the same fixed length.
In our experiments, 5% of the data points are randomly sampled to
approximate the fixed length for various configurations, allowing
for an estimation of the total execution time C.

4.3 Data Parallelism for Different Pipelines

Because Cerebras has many more PE columns than the number of
stages of our compression algorithm, it will be beneficial to further
divide the data and use more PE columns to process multiple com-
pression pipelines in each row, as shown in Fig. 6 (right). Without
loss of generality, we assume that the input data is generated on the
first PE of each row. To start a pipeline from a certain column, we
need to send the data from the first PE to that column.

1 Data Mvt. across  ——1,. . PE runs PE runs 1
. 1 :
H Fabric Routers i PiPeline group [ ] Stage 1 (. Stage 2 |

(a) Passing data with 2-length pipeline.

// Define the input dsd which receives N continuous elements

1

2 | const din = @get_dsd(fabin_dsd, .{

3 .fabric_color = recvColor, .extent = N),
4 .output_queue = @get_output_queue(1)});
5

6 | // Define the output dsd which sends N continuous elements
7 | const dout = @get_dsd(fabout_dsd, .{

8 .fabric_color = sendColor, .extent = N),
9 .output_queue = @get_output_queue(0)});
10

11 | // Define the input and its dsd
12 | var input: [N]i32;
13 | var data = @get_dsd(memld_dsd, .{.tensor_access = |i|{N}->input[i]});

15 | // Define the number of data blocks received
16 | const nblock : u32 = @;

18 | task relay() void {

19 // Receive the input dsd and activate computeColor once the
20 // current PE receives it own data block

21 if (nblock == (total_cols-cur_col)/pipeline_length)){

22 @mov32(data, din, .{.async = true, .activate =

23 computeColor}); nblocks = 0;}}

24 // Pass the data blocks for right PEs and activate relayColor again
25 else{

26 @mov32(dout, din, .{.async = true});

27 nblocks += 1;

28 @activate(relayColor);}

29

30 | task compute() void {

31 // Activate relayColor to run relay task again

32 @activate(relayColor);}

33 // Execute substages assigned to the PE

34 // Send results to next PE in the pipeline}

35

36 | // Bind two colors to their corresponding tasks
37 | @bind_task(relay, relayColor);
38 | @bind_task(compute, computeColor);

(b) Pseudocode runs on the first PE of each pipeline.
Figure 9: Illustrating data preparation for parallel pipelines.
Data Preparation for Parallel Pipelines. Fig. 9(a) shows how

the data is passed through multiple pipelines in a row. Since a PE
can only communicate with the PEs next to it, the data must be



relayed by every PE along the path. Fig. 9(b) gives a pseudocode
that runs on the first PE of each pipeline for relaying the input data.
We define an input DSD (din) and an output DSD (dout) on each PE
(line 2 to 9). The relay task keeps receiving data in din and passing
it to dout (line 26 to 28). A counter nblocks is used for recording the
number of data blocks relayed through the PE (line 16). Suppose the
total number of PE columns is TC. Since the number of data blocks
required by the PEs following PE-i is (TC —i)/pipeline_length, once
nblocks reaches this number, we move the data to the local memory
of PE-i and activate the computation on the PE (line 21 to 23). Before
executing the sub-stages, the compute task activates the relay task
so that the PE can keep forwarding data to the PEs on the right.
The code running on the remaining PEs of a pipeline is similar,
except that they need another set of input/output descriptors to
receive/send intermediate data.

According to the code in Fig. 9(b), the execution time of a PE
comprises two parts: the time for relaying data needed by the PEs on
its right and the time for executing the sub-stages on its data block.
Consider the PE-i. It needs to wait for (TC — i)/pipeline_length
data blocks to be passed through it between every two executions of
the compute task. The waiting time equals the time that PE-(i — 1)
needs for (TC — i + 1)/pipeline_length data blocks to be passed
through it plus the time to send a block from PE-(i — 1) to PE-i. By
induction, we know that the data relaying time on each PE is

TC-C )

where C; is the number of cycles needed for sending a data block
from one PE to the next PE. We profile the data relaying time with
varying numbers of columns on QMCPack and report. The result in
Fig. 10(a) shows a linear correlation between the number of rows
and the relaying time on each PE, which verifies (2). Suppose the
total number of cycles for the entire compression procedure is C and
the cycles needed for sending the intermediate data of one block
to the next PE is Cy. Assuming that the computation can be evenly
distributed across PEs, the computation time on each PE can be
represented as

m + pipelineilength - Cy. (3)
It is worth noting that Cs is different from C;. While C; only involves
routing a data block on the fabric, C; includes the time of moving
data from local memory to the fabric and routing data on the fabric.
The idea of (3) can be verified in Fig. 10(b), which is conducted
on QMCPack and shows an inversely proportional between the
execution time per PE and pipeline length.
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Figure 10: Profiling the relaying time and execution time on
each PE.

4.4 Complexity Analysis

Given a fixed number of PE columns, the number of parallel pipelines
in a row is TC/pipeline_length. When processing the same dataset,
the number of execution rounds in each pipeline is proportional to
pipeline_length/TC. Multiplying it with the sum of Formula (2) and
(3), we can obtain the total execution time as

0] T—C(; + pipeline_length - Cy + pipeline_length® - C2|.  (4)

The first term in the time complexity suggests that, by combining
our second and third parallelization strategies, we achieve an almost
linear speedup w.r.t the total number of PE columns. The second term
suggests that a small overhead proportional to the pipeline length is
incurred for propagating data through the PEs to multiple pipelines.
Another overhead quadratic to the pipeline length is incurred for
flowing the intermediate data through the PEs within each pipeline.
Selection of Pipeline Length. According to Formula (4), the op-
timal performance is achieved with pipeline_length = 1. That is,
we should execute the entire compression procedure on a single PE
for each data block. However, there are two assumptions here: 1)
the data is generated fast enough to saturate all the TC pipelines
in a row and 2) the local memory is large enough to hold the in-
termediate data of the entire compression procedure. If either of
the assumptions does not hold, we need to split the computation
and use a longer pipeline. The best configuration of pipeline length
depends on the data generation rate and the memory consumption
of the compression algorithm. Since the number of sub-stages in the
compression procedure is limited, usually less than 10, the optimal
configuration can be easily obtained by tuning.

5 EVALUATIONS

In this section, we first present experimental setups. Then we analyze
CERESZ from three perspectives, including throughput, compression
ratio, and data quality, based on Section 2.2.

5.1 Experimental Setups

5.1.1 Platform and Settings for CERESZ. We evaluate CERESZ on
the Cerebras CS-2 system, comprising a grid of 757x996 processing
elements (PEs), with a clock frequency of 850MHz. We can use up
to 750x994 PEs for implementation, since the rest PEs are used for
routing data on and off the WSE. Each PE has 48 KB of SRAM and
there is no global memory for the whole WSE. We use the hardware
cycle counters at each PE to measure runtime and use counters
divided by clock frequency (i.e. 850M) to obtain the runtime in
seconds. In this section, we present the maximum cycles during our
throughput evaluation.

In the Cerebras CS-2 system, the minimum data transfer units are
16-bit and 32-bit, necessitating a block size divisible by 16. We choose
a block size of 32 in our implementation, as it yields the highest com-
pression ratio among the options considered [13]. To comply with
data transfer requirements, we use 32 bits (i.e. 4 bytes), rather than 8,
for storing each block’s fixed-length. While this approach does incur
a slight compression ratio penalty, our evaluations demonstrate it is
negligible for most cases and can significantly benefit throughput.
Our code is implemented using Cerebras SDK of version 0.8.0.



5.1.2  Dataset. We evaluate CERESZ on six real-world HPC datasets
from SDRBench [53]. These datasets are from various scientific do-
mains, including seismic imaging [5, 14], climate simulation [1, 19],
quantum computing [20], and cosmic simulation [4, 9, 10]. Dataset
details can be found in Table 4. These datasets are commonly uti-
lized for assessing lossy compressors in the data reduction commu-
nity [13, 16, 22, 34, 48, 50].

Dataset No. of Fields  Dim. per Field Domain
CESM-ATM [19] 79 1,800x3,600 Climate Simulation
Hurricane [1] 13 500x500x100 Weather Simulation
QMCPack [20] 2 33120x69x69 Quantum Monte Carlo
NYX [4] 6 512x512x512 Cosmic Simulation
RTM [5, 14] 36 449x449x235 Seismic Imaging
HACC [10] 6 280,953,867 Cosmic Simulation

Table 4: Datasets for evaluating CERESZ.

5.1.3  Baseline Compressors and Settings. We compare CERESZ with
several state-of-the-art CPU and GPU lossy compressors, including
SZ [26], cuSZ [42], SZp [21], and cuSZp [13]. All of the four baseline
compressors are error-bounded and prediction-based. For CPU SZ,
we employ its latest version SZ3 [26], which strategically fine-tunes
prediction methods. In the meantime, cuSZ is a GPU compressor
that is based on prediction and Huffman encoding [42]. cuSZp is
another GPU compressor with a kernel fusion design, whereas SZp
has a similar compression algorithm and is paralleled by OpenMP
on CPU. For CPU compressors, we evaluate them on one AMD
EPYC 7742 Processor (2.25GHz, 64C 128T). For GPU compressors,
we compile them by CUDA 11.2.0 and test them on one NVIDIA
A100 GPU (108 SMs, 40 GB). These devices are provided by Swing
cluster from Argonne National Laboratory. All baseline compressors
and CERESZ are assessed using a value-range-based relative (REL)
error bound, to accommodate the varying values across different
HPC datasets. Assuming the value range of a dataset is r, REL A
indicates the difference between original and reconstructed data for
all data points should be controlled within Ar.

5.1.4  Evaluation Metrics. In addition to throughput, which is the
primary focus of this study, both the compression ratio and data
quality are crucial for assessing a lossy compressor, as previously
mentioned in Section 2.2. As such, we formalize all related metrics
as follows.

e Throughput: Throughput, measured in gigabytes per second
(GB/s), is defined as the amount of data that a compressor
per unit of time can process. It can be computed by Sizeyi/T,
where Sizeyi denotes the original data size and T denotes
execution time (either for compression or decompression).
This is the most important metric for compressors that are
executed on heterogeneous processors [13, 27, 41, 42, 50].

o Compression Ratio: The compression ratio is determined by
the formula Sizeori/Sizecmp, where Sizecmp is the size of the
compressed data. A higher ratio implies that the compressor
is more effective in condensing information from the original
dataset. This is a general metric for data reduction works [6,
8, 23, 25, 28].

e Visualization: We visualize the HPC dataset for both origi-
nal and reconstructed ones to present the impacts of errors
introduced by CERESZ.

o PSNR (Peak Signal-to-Noise Ratio) (in dB) is a log scale quan-
titative metric used to measure the noise and loss of recon-
structed data after compression [11, 40]. A higher PSNR value
typically indicates better reconstruction quality.

e SSIM (Structural Similarity Index Measure) is another quanti-
tative metric for data quality [44]. It compares the structural
similarity between the original and reconstructed data while
considering luminance, contrast, and structural information.
SSIM values range within [0, 1], and the closer to 1 the better.
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Figure 11: Compression Throughput (GB/s).

5.2 Throughput

Overall Throughput. We evaluate the throughput, which is the
main target in this work, of CERESZ in this section. For each dataset,
we report the average throughput across all fields. And for each
compressor, we use REL 1E-2, 1E-3, and 1E-4 for a comprehensive
evaluation. Note that we use a pipeline length of 1 and run CERESZ
on 512 X 512 PEs.

Fig. 11 and Fig. 12 present the throughput for compression and de-
compression, respectively. We can observe that CERESZ significantly
outperforms other compressors among all datasets and settings, due
to the high utilization of dataflow architecture and parallelism de-
sign. On average, CERESZ can achieve 457.35 GB/s and 581.31 GB/s
for compression and decompression throughput, which is 4.9 and
4.8 times faster compared with cuSZp. Specifically, compression
throughput in CERESZ is dataset-specific, ranging from 378.21 GB/s
in Hurricane to 773.8 GB/s in RTM with error bound REL 1E-2. While
setting the error bound as REL 1E-3, this range is from 328.9 GB/s
in Hurricane to 654.63 GB/s in RTM. In REL 1E-4, where data qual-
ity is higher preserved, CERESZ still achieves at least 277.93 GB/s
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Figure 12: Decompression Throughput (GB/s).

compression throughput (on QMCPack). For decompression, our
proposed CERESZ can even achieve up to 920.67 GB/s throughput on
RTM. Beyond there are fewer computations in decompression stages
(as stated in Section 3), the key reason is that CERESZ scales the
computation by data parallelism for different data blocks, pipeline
parallelism for computation operations, and data parallelism for
pipelines, which better utilizes the PEs on the WSE.

Another important observation is that compression and decom-
pression throughput slightly reduce as the error bound decreases
(e.g. from REL 1E-2 to REL 1E-3). For example, in NYX, the compres-
sion throughput exhibits 481.37 GB/s, 416.45 GB/s, and 347.51 GB/s
in REL 1E-2, REL 1E-3, and REL 1E-4. The reason can be explained
below. CERESZ processes original datasets in block granularity, and
a larger error-bound can create more zero blocks (i.e. a data block
with all zero elements) in the reconstructed data. While process-
ing zero blocks, CERESZ only needs to store a byte flag, avoiding
computations including fixed-length encoding and bit-shuffle, hence
resulting in higher runtime throughput. This also explains similar
trends in cuSZp and SZp, due to the same lossless encoding method.

Throughput of Pipeline with Different Lengths. To under-
stand the impact of pipeline length selection, we run different pipeline
implementations on QMCPack and Hurricane as an example. Fig.
13 shows the compression throughput of pipelines with different
lengths, where n-PE denotes the pipeline with length n. We can ob-
serve that conducting the complete compression process exclusively
on a single PE results in the highest throughput. This outcome sug-
gests that utilizing a solitary PE represents the most advantageous
selection for maximizing efficiency. Conversely, employing a more
extended pipeline results in a reduced throughput. This discrepancy
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Figure 13: Compression throughput for different pipelines.

can be attributed to the initial estimates of the execution time for
each segment, which were approximate and did not represent a per-
fectly uniform decomposition of the original algorithm. Note that
the results are consistent with our analysis in Section 4.4. Such phe-
nomenon can also be observed in decompression and other datasets
as well.
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Figure 14: Compression throughput with different WSE size.

The impact of WSE size. We also examine the impact of the
WSE size, which denotes the width and height of the 2D mesh of
PEs, on the throughput. We conduct experiments on two whole HPC
datasets (CESM-ATM and HACC) with WSE sizes of 32x32, 64x64,
128x128, 256x256, 512x512, and 750x994, where 750x994 indicates
the greatest number of PEs we can use for computation, while the
rest PEs are used for routing data on and off the WSE. The result for
compression is shown in Fig. 14. As seen, using more PEs can lead
to linear speedups. For example, the throughput of using a 32x32
WSE is about 4 times of that using a 16x16 WSE on CESM-ATM and
HACC. Specifically, such linear speedups are contributed by multiple
rows, as demonstrated by profiling in Section 4.1. Based on this, we
can also achieve linear speedups using more columns because the
overhead of propagating data through the PEs to multiple pipelines
is negligible as shown in (4). Therefore, using more PEs both in
height and weight can also achieve linear speedups.

Observation 1: On average, CERESZ can achieve 457.35
GB/s and 581.31 GB/s throughput for compression and de-
compression, which is 4.9 and 4.8 times faster compared
with the existing GPU compressor cuSZp.

5.3 Compression Ratio

In addition to the main focus — throughput, we also evaluate com-
pression ratios of CERESZ along with baseline compressors, of which



| CESM-ATM | HACC | Hurricane | NYX | QMCPack | RTM
REL | range avg | range avg | range avg | range avg | range avg | range avg
1E-2 | 2.67~21.60 8.73 4.66~9.18 682 | 521~2882  17.10 7.83~31.98 2022 | 9.59~19.67 1463 | 1052~31.99  23.46
CERESZIE-3 | 2.13~16.10 6.49 3.18~4.91 405 | 341~2437 1257 454~31.84 14.05 5.31~9.02 7.16 5.94~31.98  17.73
1E-4 | 1.68~13.42 5.11 2.38~3.20 283 | 253~19.71  9.64 3.10~29.74 9.61 3.48~4.97 423 3.79~31.96 12387
1E-2 | 9.91~7048 2372 | 10.16~13.62 1156 | 10.80~88.94 4026 | 1221~127.80  67.58 | 1244~2245 1745 | 14.22~127.94  67.51
SZp 1E-3 | 670~69.15  20.14 3.82~9.63 539 | 744~5742 2392 | 862~12555  40.16 | 6.08~11.60 884 | 7.91~127.79  43.40
1E-4 | 422~67.65  17.03 3.49~5.51 357 | 449~37.08 1529 4.91~98.23 23.41 3.79~6.57 518 | 473~127.51 2819
1E-2 | 284~4375 1256 | 524~10.08  7.63 | 594~8388 3870 | 9.60~127.80 6673 | 1244~2221 1733 | 13.97~127.95  66.97
cuSZp 1E-3 | 2.25~25.86 8.46 3.43~5.20 431 371~56.88 2231 | 509~12555 3844 | 6.08~1008 808 | 6.90~127.80 4229
1E-4 | 175~19.59 6.24 2.53~3.39 296 | 270~36.66 1436 3.35~98.23 22.14 3.79~5.56 468 | 4.17~127.52 2743
1E-2 | 26.13~40E+4 2.2E+3 | 1658~931.76  217.94 | 23.76~40471 110.33 | 13E+3~12E+5 23E+4 | 17.10~727.13 37211 | 2357~13E+5 4.4E+3
SZ  1E-3 | 930~29E+4 94139 | 6.11~30.97 1557 | 881~10549 3567 | 8455~18E+4  3.2E+3 | 6.37~22111 11374 | 9.27~23E+4  894.69
1E-4 | 5.04~29E+4 82549 | 3.74~8.92 575 | 463~4846 1872 | 14.38~26E+3 47161 | 3.88~66.09 3499 | 530~1.6E+4 54891
1E-2 | 19.18~2533 2289 N/A N/A | 1535~2862 2253 | 2871~3157 3022 | 7.50~2155 1453 N/A N/A
cuSZ 1E-3 | 11.34~25.16 1848 N/A N/A | 891~2361 1597 N/A N/A | 426~17.70  10.98 N/A N/A
1E-4 | 538~2443 1247 N/A N/A | 337~1725 836 10.75~31.28 16.22 N/A N/A | 367~30.84 1163

Table 5: Compression ratio results between CERESZ and four baseline error-bounded CPU or GPU compressors.

results are shown in Table 5. Same as Section 5.2, we select 3 error
bounds, including REL 1E-2, REL 1E-3, and REL 1E-4, for a compre-
hensive evaluation. For each dataset, we measure compression ratios
for all fields and record their range and the average value. Note that
the “N/A" indicates we met bugs in cuSZ compression while storing
Huffman codebooks, as confirmed with developers.

As we can see, SZ exhibits the highest compression ratio for all
six datasets. The reason is that SZ (specifically SZ3) fine-tunes the
prediction strategy between higher dimensional Lorenzo and Spline-
Interpolation to aggregate spatial information and efficiently utilizes
Huffman encoding along with best-fit lossless compression [29] to
further reduce the overhead for storing quantization bins. How-
ever, one drawback of such designs in SZ is the limited throughput
(routinely less than 1 GB/s), as demonstrated in Section 5.2. This
drawback hinders its practical usage in inline compression tasks. As
for SZp and cuSZp, the CPU version has higher compression ratios
on CESM-ATM and HACC datasets due to its simpler implementa-
tions while recording the compressed block offsets.

For CERESZ, it has similar compression ratios compared with
cuSZ. We also notice that, although with a similar compression
algorithm, CERESZ leads to lower compression ratios compared
with SZp and cuSZp in some cases such as NYX dataset REL 1E-
2, where cuSZp and SZp have around 3x compression ratios of
CERESZ. This is because CERESZ adheres to the 32-bit message
passing requirement of the Cerebras WSE to maximize transaction
bandwidth. As a result, it allocates 32 bits (or 4 bytes) to record the
“fixed-length" at the start of each compressed block. In contrast, this
block information requires only 1 byte in SZp and cuSZp, increasing
the theoretical compression ratio upper bound by 4 times for sparse
datasets (see RTM with REL 1E-2 in Table 6). However, we argue
that this penalty in CERESZ can be relieved when we reduce the
error bound, indicating CERESZ is more suitable for compression
tasks under a strict error bound, such as DNN training, where the
weight values are routinely small and irregularly distributed.

Observation 2: With higher throughput, CERESZ has sim-
ilar compression ratios compared with cuSZ, and slightly
lower compression ratios compared with SZp and cuSZp
due to the message passing restriction.
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Figure 15: Slice (3-th dim and 200-th panel) and isosurface
visualization analysis for velocity_x.f32 field in NYX dataset,
where the error bound is REL 1E-4. In this case, cuSZP and
CERESZ achieve 3.35 and 3.10 compression ratios. Both of
these two compressors have SSIM 0.9996 and PSNR 84.77 dB.

5.4 Data Quality

As mentioned in Section 3, Pre-Quantization (@) converts original
floating points to quantization integers, which is the only lossy step
in CERESZ. This design also appears in other several state-of-the-art
GPU lossy compressors, such as cuSZ, FZ-GPU, and cuSZp - they



only differ in lossless encoding and concatenation strategies while
compressing the generated integers. As a result, for all compres-
sors with pre-quantization, the loss of reconstructed data is only
determined by the user-defined error bound. We demonstrate this
in Fig. 15. Here we reconstruct the velocity x.f32 field by cuSZp and
CeRESZ under REL 1E-4 error bound and visualize them in both
slice and isosurface. We can see that CERESZ and cuSZp share the
same visualization quality, SSIM (0.9996), and PSNR (84.77 dB), once
the error bound is determined. The only difference between cuSZp
and CERESZ is the compromised compression ratio (3.35 vs 3.10),
which will lead to a more conservative rate-distortion curve. In all,
for further details on data quality, we recommend that readers refer
to the works that feature pre-quantization design [13, 42, 50].

Beyond visualization quality, existing works [13, 50] also eval-
uate the data quality of a lossy compression from the perspective
of rate-distortion curves. The rate-distortion curve measures the
quantitative metrics (e.g. PSNR and SSIM) for different compres-
sors under the same bit rate. Bit rate denotes how many bits are
required to preserve each floating point data, which is usually the
reciprocal of compression ratio. The higher PSNR/SSIM and lower
bit rate represent a higher data quality that a lossy compressor pre-
serves. As mentioned above, compressors including CERESZ, cuSZ,
FZ-GPU, and cuSZp share the same pre-quantization design, result-
ing in the same reconstructed data (also PSNR and SSIM) under the
same error bound. In this case, a compressor with higher compres-
sion ratios can deliver better rate-distortion curves. Since CERESZ
achieves lower but close compression ratios compared with cuSZp,
the rate-distortion curves are also slightly compromised.

Observation 3: CERESZ shares the identical visualization
quality, SSIM, and PSNR with cuSZp under the same error
bounds. The rate-distortion curves of CERESZ are slightly
compromised compared with cuSZp.

6 RELATED WORK

6.1 Error-bounded Lossy Compression

Error-bounded lossy compression has been extensively studied in
the past decade since it can reduce data size drastically while quan-
titatively controlling the numerical losses for post-hoc analysis [3,
8, 13, 22, 25, 28, 39, 50]. For the CPU platform, SZ [8, 39], ZFP [28],
and MGARD [3, 25] are three leading lossy compressor and utilizes
either prediction- or transformation-based designs. They mainly
focus on attaining high compression ratios or high reconstructed
data quality, instead of ultra-fast throughput.

In the meanwhile, some researchers also implemented lossy com-
pression frameworks on heterogeneous processors (e.g. GPU and
FPGA) with improved runtime throughput, to benefit inline com-
pression tasks. Tian et al. proposed cuSZ [42] and waveSZ [41],
which are the first prediction-based error-bounded lossy compres-
sion frameworks that utilize the hardware characteristics on GPU
and FPGA. Yu et al. [48] introduced cuSZx, achieving high com-
pression throughput by a constant block design and fast bit-level
operations. Lindstrom et al. [27] implemented the fixed-ratio mode
of ZFP, named cuZFP, encompassing the transform and bit trunca-
tion stages, to a single-kernel implementation on GPU, resulting in

exceptionally fast compression and decompression speeds. Zhang
et al. [50] proposed FZ-GPU, drastically improving the end-to-end
throughput with warp-level optimizations and a partially fused
compression/decompression kernel. Huang et al. [13] fuse entire
compression/decompression stages (including quantization, predic-
tion, lossless encoding, parallel scan, and block concatenation) into
a single GPU kernel, achieving ultra-fast end-to-end throughput.

Although existing solutions achieve promising results in terms
of throughput, compression ratio, and data quality on different plat-
forms, this work has a different focus — CERESZ is the first high-
throughput compression framework that exploits the data-flow ar-
chitecture (e.g. Cerebras Al chips).

6.2 Cerebras-Accelerated Algorithms

In the realm of high-performance computing [15, 30, 35, 37, 38,
45, 47], Cerebras Systems has emerged as a pivotal and influential
role. Algorithms designed on Cerebras achieve extraordinary perfor-
mance, particularly excelling in machine learning and scientific com-
puting workloads, due to their advanced architectural efficiencies
and processing capabilities. Zvyagin et al. [55] successfully devel-
oped and implemented genome-scale language models (GenSLMs),
specifically designed to comprehend and learn the complex evolu-
tionary landscape of SARS-CoV-2 genomes. Remarkably, these mod-
els achieved the desired levels of accuracy and perplexity in their
results within a timeframe of less than one day, demonstrating their
efficiency and effectiveness in rapid computational biology. Ltaief
et al. [30] expertly utilize the substantial memory bandwidth of the
Al-specialized Cerebras CS-2 systems to efficiently process seismic
data. This impressive performance is achieved through the strategic
application of low-rank matrix approximation techniques, which are
ingeniously designed to accommodate memory-intensive seismic
applications within the inherently more limited SRAM capacity of
the innovative wafer-scale hardware. This approach effectively tack-
les a common issue encountered in numerous wave-equation-based
algorithms, particularly those dependent on Multi-Dimensional Con-
volution (MDC) operators. Orenes-Vera et al. [32] implemented fast
Fourier transforms for one, two, and three-dimensional arrays on
the Cerebras CS-2, of which 3D fast Fourier transforms of a 5123
complex input array on the Cerebras CS-2 and achieves 959 microsec-
onds, which is the first implementation that breaks the millisecond
barrier. Different from the above works, CERESZ is the first touch
to introduce data reduction to Cerebras architecture, which can
complement and mutually reinforce other techniques in this field.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose an efficient error-bounded lossy compres-
sor CERESZ on Cerebras CS-2 system for scientific data. We carefully
select a compression algorithm that processes at a block granularity,
thoroughly explore the parallelization of the compression/decom-
pression algorithm, and propose innovative strategies that include
both data parallelism and pipeline parallelism to effectively scale out
the computation. We demonstrate the effectiveness of our pipeline
parallelization approach, achieving linear speedups across the 2D
mesh of computation units of Cererbras. Finally, we conducted a
comprehensive evaluation of our proposed CERESZ on a variety of
large-scale scientific datasets. CERESZ can deliver a throughput of



227.93 GB/s to 773.8 GB/s, 2.43x to 10.98x faster than existing GPU
compressor cuSZp with only slightly compromised compression
ratios. This result successfully showcases the potential of Cerebras
data-flow architectures in data reduction compared with lossy com-
pressors executed on existing platforms including CPU and GPU.

In the future, we plan to explore this work in two directions. First,
we aim to further improve the computation balance and bandwidth
utilization of PEs in CERESZ. Second, we plan to implement and
optimize more compression/decompression algorithms and make
them suitable for the dataflow architecture of Cerebras.
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