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ABSTRACT

Today’s scientific applications running on supercomputers produce

large volumes of data, leading to critical data storage and commu-

nication challenges. To tackle the challenges, error-bounded lossy

compression is commonly adopted since it can reduce data size

drastically within a user-defined error threshold. Previous work has

shown that compression techniques can significantly reduce the

storage and I/O overhead while retaining good data quality. How-

ever, the existing compressors are mainly designed for CPU and

GPU. As new AI chips are being incorporated into supercomputers

and increasingly used for accelerating scientific computing, there

is a growing demand for efficient data compression on the new ar-

chitecture. In this paper, we propose an efficient lossy compressor,

CereSZ, based on the Cerebras CS-2 system. The compression al-

gorithm is mapped onto Cerebras using both data parallelism and

pipeline parallelism. In order to achieve a balanced workload on each

processing unit, we propose an algorithm to evenly distribute the

pipeline stages. Our experiments with six scientific datasets demon-

strate that CereSZ can achieve a throughput from 227.93 GB/s to

773.8 GB/s, 2.43x to 10.98x faster than existing GPU compressors.
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1 INTRODUCTION

Scientific computing applications often generate large volumes of

data rapidly. For instance, Reverse Time Migration (RTM), which

is an advanced seismic imaging technique for intricate subsurface

structures, can generate as much as 2,800 TB of data from a 10x10x8

aperture in a single time-stamp [14, 33]. Linear Coherent Light

Source (LCLS), which is a leading X-ray free-electron laser located at

Stanford Linear Accelerator Center, generates raw photon snapshots

at 250 GB/s [31]. Storing and processing such a great amount of

data within a short time impose considerable challenges, even on

high-performance computing systems [35, 37, 38, 45, 47].

To tackle this big data challenge, lossy compression techniques [8,

22, 26, 28, 39, 49] have been commonly used in scientific applica-

tions to reduce the data size while maintaining a user-specified error

limit. Beyond the traditional compressors on CPU, accelerating data

compression on heterogeneous processors, such as FPGA [41] and





















only differ in lossless encoding and concatenation strategies while

compressing the generated integers. As a result, for all compres-

sors with pre-quantization, the loss of reconstructed data is only

determined by the user-defined error bound. We demonstrate this

in Fig. 15. Here we reconstruct the velocity_x.f32 field by cuSZp and

CereSZ under REL 1E-4 error bound and visualize them in both

slice and isosurface. We can see that CereSZ and cuSZp share the

same visualization quality, SSIM (0.9996), and PSNR (84.77 dB), once

the error bound is determined. The only difference between cuSZp

and CereSZ is the compromised compression ratio (3.35 vs 3.10),

which will lead to a more conservative rate-distortion curve. In all,

for further details on data quality, we recommend that readers refer

to the works that feature pre-quantization design [13, 42, 50].

Beyond visualization quality, existing works [13, 50] also eval-

uate the data quality of a lossy compression from the perspective

of rate-distortion curves. The rate-distortion curve measures the

quantitative metrics (e.g. PSNR and SSIM) for different compres-

sors under the same bit rate. Bit rate denotes how many bits are

required to preserve each floating point data, which is usually the

reciprocal of compression ratio. The higher PSNR/SSIM and lower

bit rate represent a higher data quality that a lossy compressor pre-

serves. As mentioned above, compressors including CereSZ, cuSZ,

FZ-GPU, and cuSZp share the same pre-quantization design, result-

ing in the same reconstructed data (also PSNR and SSIM) under the

same error bound. In this case, a compressor with higher compres-

sion ratios can deliver better rate-distortion curves. Since CereSZ

achieves lower but close compression ratios compared with cuSZp,

the rate-distortion curves are also slightly compromised.

Observation 3: CereSZ shares the identical visualization

quality, SSIM, and PSNR with cuSZp under the same error

bounds. The rate-distortion curves of CereSZ are slightly

compromised compared with cuSZp.

6 RELATED WORK

6.1 Error-bounded Lossy Compression

Error-bounded lossy compression has been extensively studied in

the past decade since it can reduce data size drastically while quan-

titatively controlling the numerical losses for post-hoc analysis [3,

8, 13, 22, 25, 28, 39, 50]. For the CPU platform, SZ [8, 39], ZFP [28],

and MGARD [3, 25] are three leading lossy compressor and utilizes

either prediction- or transformation-based designs. They mainly

focus on attaining high compression ratios or high reconstructed

data quality, instead of ultra-fast throughput.

In the meanwhile, some researchers also implemented lossy com-

pression frameworks on heterogeneous processors (e.g. GPU and

FPGA) with improved runtime throughput, to benefit inline com-

pression tasks. Tian et al. proposed cuSZ [42] and waveSZ [41],

which are the first prediction-based error-bounded lossy compres-

sion frameworks that utilize the hardware characteristics on GPU

and FPGA. Yu et al. [48] introduced cuSZx, achieving high com-

pression throughput by a constant block design and fast bit-level

operations. Lindstrom et al. [27] implemented the fixed-ratio mode

of ZFP, named cuZFP, encompassing the transform and bit trunca-

tion stages, to a single-kernel implementation on GPU, resulting in

exceptionally fast compression and decompression speeds. Zhang

et al. [50] proposed FZ-GPU, drastically improving the end-to-end

throughput with warp-level optimizations and a partially fused

compression/decompression kernel. Huang et al. [13] fuse entire

compression/decompression stages (including quantization, predic-

tion, lossless encoding, parallel scan, and block concatenation) into

a single GPU kernel, achieving ultra-fast end-to-end throughput.

Although existing solutions achieve promising results in terms

of throughput, compression ratio, and data quality on different plat-

forms, this work has a different focus ś CereSZ is the first high-

throughput compression framework that exploits the data-flow ar-

chitecture (e.g. Cerebras AI chips).

6.2 Cerebras-Accelerated Algorithms

In the realm of high-performance computing [15, 30, 35, 37, 38,

45, 47], Cerebras Systems has emerged as a pivotal and influential

role. Algorithms designed on Cerebras achieve extraordinary perfor-

mance, particularly excelling in machine learning and scientific com-

puting workloads, due to their advanced architectural efficiencies

and processing capabilities. Zvyagin et al. [55] successfully devel-

oped and implemented genome-scale language models (GenSLMs),

specifically designed to comprehend and learn the complex evolu-

tionary landscape of SARS-CoV-2 genomes. Remarkably, these mod-

els achieved the desired levels of accuracy and perplexity in their

results within a timeframe of less than one day, demonstrating their

efficiency and effectiveness in rapid computational biology. Ltaief

et al. [30] expertly utilize the substantial memory bandwidth of the

AI-specialized Cerebras CS-2 systems to efficiently process seismic

data. This impressive performance is achieved through the strategic

application of low-rank matrix approximation techniques, which are

ingeniously designed to accommodate memory-intensive seismic

applications within the inherently more limited SRAM capacity of

the innovative wafer-scale hardware. This approach effectively tack-

les a common issue encountered in numerous wave-equation-based

algorithms, particularly those dependent onMulti-Dimensional Con-

volution (MDC) operators. Orenes-Vera et al. [32] implemented fast

Fourier transforms for one, two, and three-dimensional arrays on

the Cerebras CS-2, of which 3D fast Fourier transforms of a 5123

complex input array on the Cerebras CS-2 and achieves 959microsec-

onds, which is the first implementation that breaks the millisecond

barrier. Different from the above works, CereSZ is the first touch

to introduce data reduction to Cerebras architecture, which can

complement and mutually reinforce other techniques in this field.

7 CONCLUSION AND FUTUREWORK

In this paper, we propose an efficient error-bounded lossy compres-

sor CereSZ on Cerebras CS-2 system for scientific data. We carefully

select a compression algorithm that processes at a block granularity,

thoroughly explore the parallelization of the compression/decom-

pression algorithm, and propose innovative strategies that include

both data parallelism and pipeline parallelism to effectively scale out

the computation. We demonstrate the effectiveness of our pipeline

parallelization approach, achieving linear speedups across the 2D

mesh of computation units of Cererbras. Finally, we conducted a

comprehensive evaluation of our proposed CereSZ on a variety of

large-scale scientific datasets. CereSZ can deliver a throughput of



227.93 GB/s to 773.8 GB/s, 2.43x to 10.98x faster than existing GPU

compressor cuSZp with only slightly compromised compression

ratios. This result successfully showcases the potential of Cerebras

data-flow architectures in data reduction compared with lossy com-

pressors executed on existing platforms including CPU and GPU.

In the future, we plan to explore this work in two directions. First,

we aim to further improve the computation balance and bandwidth

utilization of PEs in CereSZ. Second, we plan to implement and

optimize more compression/decompression algorithms and make

them suitable for the dataflow architecture of Cerebras.
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