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AbstractÐTo address the challenges raised by the data man-
agement of exascale scientific data, error-bounded lossy com-
pression has been proposed and well-researched as a prominent
solution. Among the existing works, a recent trend leverages
wavelet transforms in the error-bounded lossy compression task
to effectively capture long-term data correlations within the
inputs. Applying those transforms as data preprocessors and
decorrelators, wavelet-based lossy compressors have achieved op-
timized compression rate-distortion on several datasets. However,
certain significant limitations of wavelet-based compressors have
also been observed: On one hand, attributed to the high compu-
tational cost of wavelet transforms, wavelet-based compressors
suffer from relatively low computational efficiencies compared
to other state-of-the-art compressors. On the other hand, one
certain type of wavelet transform cannot perform well on all
variations of scientific data. Consequently, to further fine-tune the
wavelet-based scientific data lossy compression, more in-depth
and systematic research and analysis needs to be conducted.
In this paper, based on the FAZ auto-tuning-based modular
compression framework, we have integrated a great number of
wavelet transforms into the framework and evaluated them with
various real-world scientific datasets and fields. From the analysis
of those evaluations and the comparison to existing state-of-
the-art wavelet-based and non-wavelet-based error-bounded lossy
compressors, we conclude and present several essential takeaways
for designing and optimizing the wavelet-based scientific error-
bounded lossy compressor.

Index TermsÐerror-bounded lossy compression, wavelet trans-
form, scientific datasets.

I. INTRODUCTION

In order to address the challenges of data storage, transmis-

sion, and analysis for modern huge-scale scientific simulation

data, error-bounded lossy compression has been confirmed

as the essential data reduction technique for scientific data

management. Shortly speaking, error-bounded lossy compres-

sion can substantially reduce the input data size, meanwhile

preserving the compression errors within pre-given constraints.

Due to the significance of error-bounded lossy compression,

multiple scientific error-bounded lossy compressors have been

proposed by researchers and adopted by scientific communi-

ties. Among those existing compressors, various data process-

ing techniques from diverse categories have been leveraged

as the basis of data compression, including but not limited

to linear regression [1], interpolation [2], [3], [4], discrete

orthogonal transform [5], singular value decomposition [6],

wavelet transforms [7], [8], and so on.

In past research works, wavelet transforms (particularly

multi-dimensional discrete wavelet transforms) have been re-

garded as an exceptionally effective data decorrelation tech-

nique for optimizing the compression ratio of error-bounded

lossy compression [7], [8]. Separating high-frequency and low-

frequency data features, discrete wavelet transforms have the

outstanding ability to capture long-distance data correlations,

therefore the transformed coefficients may have much more

compressibility than the original data. Benefiting from that, ex-

isting wavelet-based error-bounded compressors have achieved

state-of-the-art compression ratios and distortions under a large

variety of compression tasks. SPERR [7] can have doubled

or tripled compression ratios of state-of-the-art prediction-

based compressor QoZ [4] under the same PSNR, and FAZ

[8] even further optimized the wavelet-based compression

framework, having up to 100%+ same-PSNR compression

ratio improvements over SPERR in certain cases.

Nevertheless, wavelet-based error-bounded lossy compres-

sors are still far from being a universal solution for scientific

data compression tasks, with several key limitations remaining.

First, the computational costs of multi-dimensional discrete

wavelet transforms are relatively high, which results in the

speeds of wavelet-based compressors being noticeably lower

than quite a few existing efficient compressors. Secondly,

according to experimental analyses in existing works, wavelet

transforms can not optimize the compression ratio for all

datasets, under certain cases they may cause the compression

ratio to decrease. Last, even when wavelet transforms can

help the compression, as there are a great number of wavelet

kernels in various types, having different adaptiveness to the

input data, it would be hard to identify the compressibility of

the transformed coefficients with different wavelet transforms

and select out the best-fit one for each input data. For

example, SPERR [7] proposes a fixed compression pipeline

pre-processing each input data with the CDF9/7 [9] wavelet

transform, which presents sub-optimal or degraded compres-

sion ratios on quite a few data inputs.
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To address those challenges of effectively leveraging

wavelet transforms in scientific error-bounded lossy compres-

sion, in this paper, with the FAZ auto-tuning-based modular

compression framework, we evaluated compression pipelines

with diverse wavelet transforms as preprocessors on a great

variety of scientific datasets, to examine, identify and analyze

how each scientific dataset is adapted to wavelet transforms

for error-bounded lossy compression, and which wavelet trans-

form works best for each dataset. Our contributions include:

• We evaluated the error-bounded lossy compression of var-

ious scientific datasets with most of the existing wavelet

transforms, then determined the best-fit wavelet transform

for each dataset.

• We designed a new error-bounded lossy compression

pipeline leveraging the best-fit wavelet transform for

different input data, then tested it and compared its per-

formance with existing wavelet-based and non-wavelet-

based compressors.

• Based on the experiments and evaluations, we concluded

and proposed several important takeaways for integrat-

ing and optimizing the usage of wavelet transforms in

scientific error-bounded lossy compressors.

The rest of this paper is organized as: In Section II, we dis-

cuss related works. In Section III, we detail the research prob-

lem formulation. We evaluate and compare different variants of

wavelet transforms in Section IV. A compression framework

leveraging different wavelets is proposed and evaluated in

Section V. In Section VI, we conclude our work and discuss

future work.

II. RELATED WORK

Recent efforts in the domain of scientific data compression

have yielded a variety of error-bounded lossy compressors

to accommodate diverse scenarios [10]. These compressors

are generally grouped into four main types: prediction-

based, transform-based, dimension-reduction-based, and

neural-network-based.

Prediction-based compressors employ algorithms such as

linear regression [1] and spline interpolations [2] to estimate

the values in data. They control the prediction distortion

through techniques like quantization, ensuring it stays within

set error thresholds. Examples of this type include FPZIP

[11], SZ2 [1], and SZ3 [2], [3]. Transform-based compressors,

like ZFP [5], use mathematical transforms to lessen data

correlation, facilitating easier compression of the resulting

coefficients through methods like exponent alignment and

orthogonal transforms. Dimension-reduction-based compres-

sors, for instance, TTHRESH [6], reduce the data volume

by employing methods such as singular vector decomposition

(SVD). Lastly, neural-network-based compressors [12], [13],

[14], [15] leverage neural network models, including various

forms of autoencoders [16], [17], [18], to encode and decode

data efficiently within the required error boundaries.

Like wavelet-based image compressors such as JPEG-

2000 [19], Wavelet transforms have also been applied to the

scientific error-bounded lossy compression task. Besides the

early works including SSEM [20] and VAPOR [21], recently

several wavelet-based compressors have been proposed which

exhibit excellent compression ratio and distortion. For exam-

ple, SPERR [7] adopts multi-dimensional discrete CDF9/7

wavelet [9] for effective scientific data compression, and FAZ

[8] is a hybrid compression framework that combines di-

verse compression techniques, among which wavelet transform

is a key component. There is a large variety of discrete

wavelet transforms, which are potentially available for the

error-bounded lossy compressor, including but not limited to

Symlets [22], Coiflets [23], and Biorthogonal wavelets [24].

For the implementation of those wavelets, PyWavelets [25] is a

Python-based library that contains diverse wavelet transforms

including all the aforementioned ones.

III. PROBLEM FORMULATION

In this subsection, we propose several key mathematical

definitions and the mathematical formulation of our research

target for this paper.

1) Compression ratio and bit rate: Compression ratio is

defined by the input data size divided by the compressed data

size. Specifically, for input data X and compressed data Z,

compression ratio ρ is:

ρ =
|X|

|Z|
(1)

According to Eq. 1, a higher compression ratio means better

(smaller) compressed size, and vice versa. In the visualization

of experimental results, researchers often plot curves with

another metric closely related to the compression ratio, namely

the bit rate. Bit rate is defined by the average number of bytes

used in the compressed data to store each data element for the

input data, which can be expressed as (denote bit rate by b):

b =
sizeof(x)

|Z|
(2)

in which x is an element of the input X , and sizeof() returns

the byte size. Since the bit rate is reciprocal to the compression

ratio, a lower bit rate is better.

2) PSNR: PSNR (Peak Signal-to-Noise Ratio) is one of

the most important data distortion metrics for evaluating the

quality of the decompressed data from the lossy compression.

it is defined as follows:

PSNR = 20 log
10

vrange(X)−10log
10

mse(X,X ′), (3)

where X is the input data and X ′ is the decompressed data.

vrange() calculates the value range of one data array, and mse

refers to the mean-squared error. Fixing the input data (and

also the data range), a smaller mean-squared error will lead to

higher PSNR, therefore higher PSNR means higher precision

of the decompressed data.

3) Research target: The objective of our research is to

find the best-fit wavelet preprocessor for each dataset to

optimize the compression ratio under the same decompression

data distortion in terms of PSNR. Mathematically speaking,

given the input data X and a set of wavelet transforms

W = {W1,W2, ...}, the compressed data Z and decompres-

sion output X ′ is generated from compressing/decompressing
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the wavelet-transformed Wi(X) with a compressor C and

decompressor D. Under a certain error bound e, and the target

decompression PSNR P , we will optimize the selection of

best-fit wavelet W via the following optimization problem:

W = argmax
{Wi}⊂W

|X|

|Z|

s.t. PSNR(X,X ′) = P

Z = C(Wi(X)), X ′ = D(Z)

|xi − x′
i
| ≤ e, ∀xi ∈ X.

(4)

IV. EVALUATION OF WAVELET TYPES

In this section, we feature our in-depth evaluations and

analyses for determining the best-fit wavelet transforms for dif-

ferent scientific datasets. Shortly speaking, for each dataset, we

perform compression tasks on it by preprocessing (transform-

ing) it with multiple wavelet transform types and compressing

the transformed coefficients. The compression rate-distortion

with different wavelet transforms is compared and evaluated,

and at last, the best-fit wavelet transform with the optimized

rate-distortion is selected. In the rest of this section, we will

demonstrate those evaluations in detail.

A. Wavelet transform evaluation framework

The evaluation framework for wavelet transforms is pro-

posed in Figure 1. For each wavelet transform to be eval-

uated, we preprocess the input data with that wavelet. The

transformed coefficients are further encoded with the SPECK

encoding algorithm [26] and losslessly compressed with Zstd

[27], which have been verified to be one of the most effective

pipelines for wavelet-based compression [7], [8]. As SPECK

is a lossy encoding method, after decoding the lossy-encoded

coefficients and an inverse-transform process, we can acquire

the lossy-decompressed data and compute the data distortion

with metrics such as PSNR. Eventually, the compression rate-

distortion for this compression task is collected. With this

framework, for each input data, we collect the compression

rate-distortion results by compressing it with each wavelet

transform and then plot those results.

Wavelet 

Transform 

Module

SPECK 

Encoding 

Module

Lossless 

Module

(Zstd)

Input 

Data

Decompres

sed Data

Inverse 

Transform 

Module

Decoding 

Module

Rate-

distortion 

Results

Wavelet transform evaluation framework

Fig. 1: The high-level pipeline of our wavelet transform

evaluation framework.

B. Wavelet transform evaluation setup

In this part, we discuss the setup of the evaluation experi-

ments for wavelet types.

1) Evaluation Datasets: The evaluations of wavelet types

are based on the datasets listed in Table I. Those datasets are

all real-world scientific datasets from diverse domains.

TABLE I: Information of the datasets in experiments

Dataset Dimensions Domain

RTM [28] 449×449×235 Seismic Wave

SEGSalt [29] 1008×1008×352 Geology

Miranda [30] 256×384×384 Turbulence

QMCPack [31] 288×115×69×69 Quantum

SCALE-LetKF [32] 98×1200×1200 Climate

NYX [33] 512×512×512 Cosmology

JHTDB [34] 512×512×512 Turbulence

Hurricane [35] 100×500×500 Climate

2) Evaluation Wavelets: The wavelets we evaluated are

from 2 aspects: one is the multi-dimensional discrete CDF

9/7 wavelet transform [9] implemented by SPERR [7], and the

other contains the multi-level and multi-dimensional wavelet

transforms implemented in PyWavelets [25]. The latter ones

are consisted of several wavelet families each having a number

of variations. The information of the wavelet families is

presented in Table II. The first column is the names and their

abbreviations of the wavelet families, which are both to be

used in the following evaluation results.

TABLE II: Wavelet families

Family (Abbr.) Description # of variations

bior (b) Biorthogonal Wavelet 15

coif (c) Coiflets 17

db (d) Daubechies Wavelet 38

rbio (r) Reverse biorthogonal 15

sym (s) Symlets 19

CDF 9/7 (C9/7) CDF9/7 [9] 1

3) Evaluation Configurations: For a fair comparison, when

encoding the wavelet coefficients with the lossy SPECK algo-

rithm, for each wavelet transform we encode the corresponding

coefficients under the same error threshold, which is 0.1%

of the input data range. For the padding during the wavelet

transform, we apply the ºperiodicalº mode in PyWavelets.

4) Evaluation Metric: We evaluate the effectiveness of

wavelet-based compression by calculating the bit rate of

compressed data and the PSNR [36] between input and de-

compressed data. A lower bit rate or a higher PSNR is better.

C. Wavelet transform evaluation results and analysis

In this section, we present the compression results of differ-

ent scientific datasets using various types of wavelets. Due to

the page limitation, we only present the compression results

of several datasets but we have done the same evaluation and

analysis to all the mentioned datasets in Table I.

1) Hurricane dataset: In this paragraph, we analyze the

compression result of the Hurricane dataset using two different

fields. From Figure 2, we notice that CDF9/7 has the best

compression quality(PSNR) as well as the compression ratio

among all the evaluated wavelets for the u field. For the qvapor

field, CDF9/7 also has the best overall compression result,

however, it can not beat the bior3.3 in terms of the compression
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