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Abstract—To address the challenges raised by the data man-
agement of exascale scientific data, error-bounded lossy com-
pression has been proposed and well-researched as a prominent
solution. Among the existing works, a recent trend leverages
wavelet transforms in the error-bounded lossy compression task
to effectively capture long-term data correlations within the
inputs. Applying those transforms as data preprocessors and
decorrelators, wavelet-based lossy compressors have achieved op-
timized compression rate-distortion on several datasets. However,
certain significant limitations of wavelet-based compressors have
also been observed: On one hand, attributed to the high compu-
tational cost of wavelet transforms, wavelet-based compressors
suffer from relatively low computational efficiencies compared
to other state-of-the-art compressors. On the other hand, one
certain type of wavelet transform cannot perform well on all
variations of scientific data. Consequently, to further fine-tune the
wavelet-based scientific data lossy compression, more in-depth
and systematic research and analysis needs to be conducted.
In this paper, based on the FAZ auto-tuning-based modular
compression framework, we have integrated a great number of
wavelet transforms into the framework and evaluated them with
various real-world scientific datasets and fields. From the analysis
of those evaluations and the comparison to existing state-of-
the-art wavelet-based and non-wavelet-based error-bounded lossy
compressors, we conclude and present several essential takeaways
for designing and optimizing the wavelet-based scientific error-
bounded lossy compressor.

Index Terms—error-bounded lossy compression, wavelet trans-
form, scientific datasets.

I. INTRODUCTION

In order to address the challenges of data storage, transmis-
sion, and analysis for modern huge-scale scientific simulation
data, error-bounded lossy compression has been confirmed
as the essential data reduction technique for scientific data
management. Shortly speaking, error-bounded lossy compres-
sion can substantially reduce the input data size, meanwhile
preserving the compression errors within pre-given constraints.
Due to the significance of error-bounded lossy compression,
multiple scientific error-bounded lossy compressors have been
proposed by researchers and adopted by scientific communi-
ties. Among those existing compressors, various data process-
ing techniques from diverse categories have been leveraged
as the basis of data compression, including but not limited
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to linear regression [1], interpolation [2], [3], [4], discrete
orthogonal transform [5], singular value decomposition [6],
wavelet transforms [7], [8], and so on.

In past research works, wavelet transforms (particularly
multi-dimensional discrete wavelet transforms) have been re-
garded as an exceptionally effective data decorrelation tech-
nique for optimizing the compression ratio of error-bounded
lossy compression [7], [8]. Separating high-frequency and low-
frequency data features, discrete wavelet transforms have the
outstanding ability to capture long-distance data correlations,
therefore the transformed coefficients may have much more
compressibility than the original data. Benefiting from that, ex-
isting wavelet-based error-bounded compressors have achieved
state-of-the-art compression ratios and distortions under a large
variety of compression tasks. SPERR [7] can have doubled
or tripled compression ratios of state-of-the-art prediction-
based compressor QoZ [4] under the same PSNR, and FAZ
[8] even further optimized the wavelet-based compression
framework, having up to 100%+ same-PSNR compression
ratio improvements over SPERR in certain cases.

Nevertheless, wavelet-based error-bounded lossy compres-
sors are still far from being a universal solution for scientific
data compression tasks, with several key limitations remaining.
First, the computational costs of multi-dimensional discrete
wavelet transforms are relatively high, which results in the
speeds of wavelet-based compressors being noticeably lower
than quite a few existing efficient compressors. Secondly,
according to experimental analyses in existing works, wavelet
transforms can not optimize the compression ratio for all
datasets, under certain cases they may cause the compression
ratio to decrease. Last, even when wavelet transforms can
help the compression, as there are a great number of wavelet
kernels in various types, having different adaptiveness to the
input data, it would be hard to identify the compressibility of
the transformed coefficients with different wavelet transforms
and select out the best-fit one for each input data. For
example, SPERR [7] proposes a fixed compression pipeline
pre-processing each input data with the CDF9/7 [9] wavelet
transform, which presents sub-optimal or degraded compres-
sion ratios on quite a few data inputs.
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To address those challenges of effectively leveraging
wavelet transforms in scientific error-bounded lossy compres-
sion, in this paper, with the FAZ auto-tuning-based modular
compression framework, we evaluated compression pipelines
with diverse wavelet transforms as preprocessors on a great
variety of scientific datasets, to examine, identify and analyze
how each scientific dataset is adapted to wavelet transforms
for error-bounded lossy compression, and which wavelet trans-
form works best for each dataset. Our contributions include:

« We evaluated the error-bounded lossy compression of var-
ious scientific datasets with most of the existing wavelet
transforms, then determined the best-fit wavelet transform
for each dataset.

e We designed a new error-bounded lossy compression
pipeline leveraging the best-fit wavelet transform for
different input data, then tested it and compared its per-
formance with existing wavelet-based and non-wavelet-
based compressors.

« Based on the experiments and evaluations, we concluded
and proposed several important takeaways for integrat-
ing and optimizing the usage of wavelet transforms in
scientific error-bounded lossy compressors.

The rest of this paper is organized as: In Section II, we dis-
cuss related works. In Section III, we detail the research prob-
lem formulation. We evaluate and compare different variants of
wavelet transforms in Section IV. A compression framework
leveraging different wavelets is proposed and evaluated in
Section V. In Section VI, we conclude our work and discuss
future work.

II. RELATED WORK

Recent efforts in the domain of scientific data compression
have yielded a variety of error-bounded lossy compressors
to accommodate diverse scenarios [10]. These compressors
are generally grouped into four main types: prediction-
based, transform-based, dimension-reduction-based, and
neural-network-based.

Prediction-based compressors employ algorithms such as
linear regression [1] and spline interpolations [2] to estimate
the values in data. They control the prediction distortion
through techniques like quantization, ensuring it stays within
set error thresholds. Examples of this type include FPZIP
[11], SZ2 [1], and SZ3 [2], [3]. Transform-based compressors,
like ZFP [5], use mathematical transforms to lessen data
correlation, facilitating easier compression of the resulting
coefficients through methods like exponent alignment and
orthogonal transforms. Dimension-reduction-based compres-
sors, for instance, TTHRESH [6], reduce the data volume
by employing methods such as singular vector decomposition
(SVD). Lastly, neural-network-based compressors [12], [13],
[14], [15] leverage neural network models, including various
forms of autoencoders [16], [17], [18], to encode and decode
data efficiently within the required error boundaries.

Like wavelet-based image compressors such as JPEG-
2000 [19], Wavelet transforms have also been applied to the
scientific error-bounded lossy compression task. Besides the
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early works including SSEM [20] and VAPOR [21], recently
several wavelet-based compressors have been proposed which
exhibit excellent compression ratio and distortion. For exam-
ple, SPERR [7] adopts multi-dimensional discrete CDF9/7
wavelet [9] for effective scientific data compression, and FAZ
[8] is a hybrid compression framework that combines di-
verse compression techniques, among which wavelet transform
is a key component. There is a large variety of discrete
wavelet transforms, which are potentially available for the
error-bounded lossy compressor, including but not limited to
Symlets [22], Coiflets [23], and Biorthogonal wavelets [24].
For the implementation of those wavelets, PyWavelets [25] is a
Python-based library that contains diverse wavelet transforms
including all the aforementioned ones.

III. PROBLEM FORMULATION

In this subsection, we propose several key mathematical
definitions and the mathematical formulation of our research
target for this paper.

1) Compression ratio and bit rate: Compression ratio is
defined by the input data size divided by the compressed data
size. Specifically, for input data X and compressed data Z,
compression ratio p is:

p= ||XZ|| (1)
According to Eq. 1, a higher compression ratio means better
(smaller) compressed size, and vice versa. In the visualization
of experimental results, researchers often plot curves with
another metric closely related to the compression ratio, namely
the bit rate. Bit rate is defined by the average number of bytes
used in the compressed data to store each data element for the
input data, which can be expressed as (denote bit rate by b):

sizeof(x)

7] 2
in which z is an element of the input X, and sizeof() returns
the byte size. Since the bit rate is reciprocal to the compression
ratio, a lower bit rate is better.

2) PSNR: PSNR (Peak Signal-to-Noise Ratio) is one of
the most important data distortion metrics for evaluating the
quality of the decompressed data from the lossy compression.
it is defined as follows:

PSNR = 20log,, vrange(X) — 10log;o mse(X,X"), (3)

where X is the input data and X’ is the decompressed data.
vrange() calculates the value range of one data array, and mse
refers to the mean-squared error. Fixing the input data (and
also the data range), a smaller mean-squared error will lead to
higher PSNR, therefore higher PSNR means higher precision
of the decompressed data.

3) Research target: The objective of our research is to
find the best-fit wavelet preprocessor for each dataset to
optimize the compression ratio under the same decompression
data distortion in terms of PSNR. Mathematically speaking,
given the input data X and a set of wavelet transforms
W = {Wp,Whs, ...}, the compressed data Z and decompres-
sion output X’ is generated from compressing/decompressing

b:
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the wavelet-transformed W;(X) with a compressor C' and
decompressor D. Under a certain error bound e, and the target
decompression PSNR P, we will optimize the selection of
best-fit wavelet W via the following optimization problem:

X
W =arg maﬂcu
wicw 12|
st. PSNR(X,X')=P 4
Z = C(Wy(X)), X' = D(Z)

|z, — 2| <e, Va; € X.
IV. EVALUATION OF WAVELET TYPES

In this section, we feature our in-depth evaluations and
analyses for determining the best-fit wavelet transforms for dif-
ferent scientific datasets. Shortly speaking, for each dataset, we
perform compression tasks on it by preprocessing (transform-
ing) it with multiple wavelet transform types and compressing
the transformed coefficients. The compression rate-distortion
with different wavelet transforms is compared and evaluated,
and at last, the best-fit wavelet transform with the optimized
rate-distortion is selected. In the rest of this section, we will
demonstrate those evaluations in detail.

A. Wavelet transform evaluation framework

The evaluation framework for wavelet transforms is pro-
posed in Figure 1. For each wavelet transform to be eval-
uated, we preprocess the input data with that wavelet. The
transformed coefficients are further encoded with the SPECK
encoding algorithm [26] and losslessly compressed with Zstd
[27], which have been verified to be one of the most effective
pipelines for wavelet-based compression [7], [8]. As SPECK
is a lossy encoding method, after decoding the lossy-encoded
coefficients and an inverse-transform process, we can acquire
the lossy-decompressed data and compute the data distortion
with metrics such as PSNR. Eventually, the compression rate-
distortion for this compression task is collected. With this
framework, for each input data, we collect the compression
rate-distortion results by compressing it with each wavelet
transform and then plot those results.

Lossless }
Module

Inout Wavelet SPECK
Sg’; Transform Encoding
Module Module (Zstd)

Wavelet transform evaluation framework

Rate- Inverse f
. ' Decoding
distortion Transform Module
Results Module

Fig. 1: The high-level pipeline of our wavelet transform
evaluation framework.

B. Wavelet transform evaluation setup

In this part, we discuss the setup of the evaluation experi-
ments for wavelet types.
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1) Evaluation Datasets: The evaluations of wavelet types
are based on the datasets listed in Table I. Those datasets are
all real-world scientific datasets from diverse domains.

TABLE I: Information of the datasets in experiments

Dataset Dimensions Domain
RTM [28] 449x449x235 Seismic Wave
SEGSalt [29] 1008 x 1008 x 352 Geology
Miranda [30] 256x384x384 Turbulence
QMCPack [31] 288 x115x69x69 Quantum
SCALE-LetKF [32] 98 x1200x 1200 Climate
NYX [33] 512x512x512 Cosmology
JHTDB [34] 512x512x512 Turbulence
Hurricane [35] 100x500x 500 Climate

2) Evaluation Wavelets: The wavelets we evaluated are
from 2 aspects: one is the multi-dimensional discrete CDF
9/7 wavelet transform [9] implemented by SPERR [7], and the
other contains the multi-level and multi-dimensional wavelet
transforms implemented in PyWavelets [25]. The latter ones
are consisted of several wavelet families each having a number
of wvariations. The information of the wavelet families is
presented in Table II. The first column is the names and their
abbreviations of the wavelet families, which are both to be
used in the following evaluation results.

TABLE II: Wavelet families

Family (Abbr.) Description # of variations
bior (b) Biorthogonal Wavelet 15
coif (¢) Coiflets 17
db (d) Daubechies Wavelet 38
rbio (r) Reverse biorthogonal 15
sym (s) Symlets 19
CDF 9/7 (C9/7) CDF9/7 9] 1

3) Evaluation Configurations: For a fair comparison, when
encoding the wavelet coefficients with the lossy SPECK algo-
rithm, for each wavelet transform we encode the corresponding
coefficients under the same error threshold, which is 0.1%
of the input data range. For the padding during the wavelet
transform, we apply the ”periodical” mode in PyWavelets.

4) Evaluation Metric: We evaluate the effectiveness of
wavelet-based compression by calculating the bit rate of
compressed data and the PSNR [36] between input and de-
compressed data. A lower bit rate or a higher PSNR is better.

C. Wavelet transform evaluation results and analysis

In this section, we present the compression results of differ-
ent scientific datasets using various types of wavelets. Due to
the page limitation, we only present the compression results
of several datasets but we have done the same evaluation and
analysis to all the mentioned datasets in Table I.

1) Hurricane dataset: In this paragraph, we analyze the
compression result of the Hurricane dataset using two different
fields. From Figure 2, we notice that CDF9/7 has the best
compression quality(PSNR) as well as the compression ratio
among all the evaluated wavelets for the u field. For the qvapor
field, CDF9/7 also has the best overall compression result,
however, it can not beat the bior3.3 in terms of the compression
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ratio. Therefore, CDF9/7 serves as the most suitable wavelet
for compressing both the qvapor and u fields.
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Fig. 2: Compression quality (PSNR) and compression ratio for
various wavelets when compressing the Hurricane dataset.

2) Miranda dataset: In this paragraph, we compare the
compression result of the Miranda dataset utilizing two dif-
ferent fields. From Figure 3, we can see that the wavelet-coif7
has the best PSNR and compression ratio compared with other
wavelets in the pressure field. However, in the vx field of
the Miranda dataset, coif5 has the best compression quality
(PSNR) while bior6.8 has the best compression ratio. Thus,
unlike the Hurricane dataset, we can find that different fields
have their own suitable wavelets for the Miranda dataset.
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Fig. 3: Compression quality (PSNR) and compression ratio for
various wavelets when compressing the Miranda dataset.

3) RTM/SegSalt dataset: For the RTM and SegSalt datasets,
we illustrate the compression results of two different snapshots
with different wavelets. In Figure 4, we notice that sym14 is
the overall best pick in terms of both compression quality
and compression ratio for the RTM #1800 snapshot. On the
contrary, coifl3 presents the best data accuracy and sym20
outperforms other wavelets regarding compression ratio for the
SegSalt #2000 snapshot. This finding suggests that different
wavelets should be used for different snapshots to obtain
optimal compression results in the RTM/SegSalt datasets.
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Fig. 4: Compression quality (PSNR) and compression ratio for
various wavelets when compressing the RTM dataset.
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4) Nyx dataset: We demonstrate the variant compression
results of the Nyx dataset using two distinct fields. We can see
that coif8, coif9, and coif10 have similar overall compression
results and are generally outperforming other wavelets for the
bdlog field. Specifically, coif8 has the best PSNR among these
three wavelets, while coifl0 has the finest compression ratio
(20.69). Besides, coif9 is in the middle of the three wavelets
with regard to both compression ratio and compression quality.
As a result, we can choose any one from these three wavelets
as the best-fit wavelet for the bdlog field. On the other hand,
the bior6.8 wavelet has the top compression quality and the
bior4.4 wavelet showcases the best compression ratio for the
vx field. However, as the PSNR difference between these two
wavelets is comparably small compared with the compression
ratio difference, bior4.4 is the overall winner for the vx field.
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Fig. 5: Compression quality (PSNR) and compression ratio for
various wavelets when compressing the Nyx dataset.

5) Conclusion: From the previous experimental analysis,
we can conclude that different datasets or even distinct field-
s/snapshots within the same dataset require various wavelets
to achieve the best compression quality and compression ratio.
This motivates us to find and utilize the best-fit wavelet for a
specific snapshot to obtain the finest compression results.

V. MULTIWAVE DESIGN AND EVALUATION

In this section, we present the design and performance
evaluation of our proposed wavelet-based error-bounded
compressor—MultiWave.

A. High-level design of MultiWave compressor

Based on our previous analysis, we conclude that different
wavelets should be utilized to compress various datasets,
fields, and snapshots to optimize the compression results.
Thus, we design and implement the MultiWave compressor
that always utilizes the best-fit compressor to compress the
input data. Figure 6 represents the compression pipeline of
our MultiWave compressor. It first auto-tune the point-wise
error threshold of the SPECK encoding based on the input
data and then carries out the wavelet transform using the
best-fit wavelet, followed by the SPECK Encoding Module.
Because of the lossy nature of the SPECK encoding, an error-
controlling module is required to ensure the error-bounded
compressed results. After that, the lossless compressor—Zstd
is utilized to compress the error-controlled data and we can
obtain the final compressed data.
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Fig. 6: The high-level pipeline of our MultiWave compressor.

B. Experimental setup

1) Experimental environment: We conducted all the evalu-
ation experiments on the Purdue Anvil supercomputer. On the
Anvil supercomputer, each computing node features two AMD
EPYC 7763 CPUs with 64 cores having a 2.45GHz clock rate
and 256 GB DDR4-3200 RAM.

2) Experimental datasets and configurations: The datasets
used are already presented in Table I. For each dataset, the
best-fit wavelet found in Section 1V is utilized in MultiWave
and will be detailed later in the experimental results.

3) Comparison of lossy compressors in evaluation: We
involve 3 other state-of-the-art scientific error-bounded lossy
compressors for the comparison with MultiWave. They are the
representatives of different wavelet-usage strategies, including:

e QoZ1.1 [4]: A non-wavelet-based but interpolation-based
error-bounded lossy compressor;

« SPERR [7]: A wavelet-based lossy compression with
fixed-design of compression pipeline, integrating CDF9/7
[9] wavelet and SPECK [26] encoding.

e FAZ [8]: A lossy compressor with auto-tuned compres-
sion pipeline. Depending on different inputs, different
wavelet transforms (no transform, CDF9/7 or syml3)
may be applied.

Through comparing with those state-of-the-art error-bounded
lossy compressors, we can determine whether the flexibility
of wavelet usage in MultiWave is the optimized wavelet usage
strategy for scientific data compression.

C. Rate-distortion evaluation

In this subsection, we present the rate-distortion evaluations
of the compressors. We have employed both PSNR and
SSIM as distortion metrics to assess whether MultiWave can
adaptively optimize different quality metrics throughout the
compression process. Our baseline includes state-of-the-art
error-bounded compressors such as FAZ, SPERR, and QoZ1.1.

1) RTM/SegSalt datasets: Figure 7 showcases the rate-
distortion comparison of our MultiWave compressor with other
baselines for the RTM/SegSalt datasets. For the RTM dataset,
we could notice that Multiwave has a slightly better PSNR
compared with the second-best compressor—-FAZ when the bit
rate is the same. This is because MultiWave is able to utilize
the best-fit wavelet (sym14) while FAZ is limited to CDF9/7
and Sym13 wavelets. The same phenomenon can be witnessed
in the SegSalt dataset, where MultiWave with sym20 wavelet
has a notable improvement compared with the FAZ and both
of the compressors are significantly better in terms of rate-
distortion results compared with SPERR and QoZ1.1.

4237

100

. —— MultiWave (sym14)
FAZ

—-— SPERR

Qoz1.1

PSNR (dB)
PSNR (dB)

6% 01 02 03 04 05 06 07
Bit rate

ii
681900.050.100.150.200.250.300.35 0.40
Bit rate

(a) RTM dataset (b) SegSalt dataset

Fig. 7: The rate-distortion comparison between our Multiwave
and multiple baseline compressors when compressing the
RTM/SegSalt datasets.

2) Hurricane/Scale datasets: Figure 8 illustrates the rate-
distortion analysis comparing our MultiWave compressor
against other baseline compressors using the Hurricane/Scale
datasets. From the results in the Hurricane dataset, we know
that FAZ is showing the overall best rate-distortion result
while QoZ1.1 can obtain a great PSNR when the bit rate is
low. When the bit rate is increasing, the PSNR of MultiWave
and SPERR is gradually exceeding QoZl.1 and MultiWave
is outperforming SPERR for all bit rates. However, because
MultiWave always uses the wavelet-based compression, it can
not reach the same PSNR as FAZ for some bit rates where
the wavelet-based compression is not a good choice. Besides,
as the FAZ is also capable of using the best-fit wavelet
(CDF9/7) of the Hurricane dataset and it can adaptively choose
from wavelet-based compression and FAZ-like compression
pipeline, the FAZ can obtain a better PSNR than our Mul-
tiWave throughout all the bit rates. A similar trend can be
observed in the Scale dataset, where FAZ is surpassing Multi-
Wave for the same reason. However, we can see that the
Scale dataset is more suitable to be compressed with wavelet-
based method compared with the Hurricane dataset, because
MultiWave can have a similar PSNR compared with FAZ when
the bit rate is large.
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Fig. 8: The rate-distortion comparison between our Multiwave
and multiple baseline compressors when compressing the
Hurricane/Scale datasets.

3) Miranda/Nyx datasets: Figure 9 presents a comparative
rate-distortion analysis of the MultiWave compressor and
other baseline compressors using the Pressure field from the
Miranda dataset and the Baryon Density field from the Nyx
dataset. The reason why we only show the compression results
of a single field for each dataset is that the best-fit wavelets
vary for different fields in these two datasets. For the Pressure
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field of the Miranda dataset, the most suitable wavelet is coif7
and the MultiWave compressor shows the best compression
result compared with all other baselines because it is able to
compress using the bestfit wavelet while other compressors can
not. Additionally, the non-wavelet-based compressor QoZ1.1
is falling behind all other counterparts because the Pressure
field of Miranda data is more suitable for wavelet-based
compression. For the Baryon Density field of the Nyx dataset,
we can witness similar compression results as shown in the
sub-figure of the Miranda dataset. The MultiWave with the
bior6.8 wavelet presents the best compression performance for
the same reason.

PSNR (dB)

§:
5¢0 05 10 15 20 25 30 35 40
Bit rate

Bit rate

(a) Miranda dataset (b) Nyx dataset

Fig. 9: The rate-distortion comparison between our Multiwave
and multiple baseline compressors when compressing the
Miranda/Nyx datasets.

VI. CONCLUSION AND FUTURE WORK

This paper delves into the utilization of wavelet trans-
forms for compressing scientific datasets and introduces the
MultiWave compressor. This approach consistently selects the
optimal wavelet for each input, as determined by extensive
testing and analysis. Our findings demonstrate that varying
datasets and even different fields or snapshots within the same
dataset necessitate specific wavelets to attain the highest qual-
ity and compression ratio. Besides, by comparing MultiWave
with multiple state-of-the-art lossy compressors, we find that
MultiWave is able to demonstrate the finest rate-distortion
results for various datasets. However, not all the datasets are
suitable for wavelet-based compression, and MultiWave with
the bestfit wavelet can not always have the best compression
result compared with non-wavelet-based compressor (QoZ1.1)
or compressor with hybrid approaches (FAZ). In the future, we
plan to extend our MutiWave compressor to enable a more
flexible compression for different scientific datasets.

ACKNOWLEDGMENTS

This research was supported by the Exascale Computing
Project (ECP), Project Number: 17-SC-20-SC, a collaborative
effort of two DOE organizations — the Office of Science and
the National Nuclear Security Administration, responsible for
the planning and preparation of a capable exascale ecosystem,
including software, applications, hardware, advanced system
engineering and early testbed platforms, to support the nation’s
exascale computing imperative. The material was supported by
the U.S. Department of Energy, Office of Science, Advanced
Scientific Computing Research (ASCR), under contract DE-
AC02-06CH11357, and supported by the National Science

4238

Foundation under Grant OAC-2003709, OAC-2104023, OAC-
2311875, OAC-2311877, and OAC-2153451. We acknowledge
the computing resources provided on Bebop (operated by
Laboratory Computing Resource Center at Argonne) and on
Theta and JLSE (operated by Argonne Leadership Computing
Facility).

REFERENCES
[1] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello,
“Error-controlled lossy compression optimized for high compression
ratios of scientific datasets,” in 2018 IEEE International Conference
on Big Data. 1EEE, 2018.
K. Zhao, S. Di, M. Dmitriev, T.-L. D. Tonellot, Z. Chen, and F. Cappello,
“Optimizing error-bounded lossy compression for scientific data by dy-
namic spline interpolation,” in 2021 IEEE 37th International Conference
on Data Engineering (ICDE), 2021, pp. 1643-1654.
X. Liang, K. Zhao, S. Di, S. Li, R. Underwood, A. M. Gok, J. Tian,
J. Deng, J. C. Calhoun, D. Tao et al, “SZ3: A modular framework
for composing prediction-based error-bounded lossy compressors,” IEEE
Transactions on Big Data, 2022.
J. Liu, S. Di, K. Zhao, X. Liang, Z. Chen, and F. Cappello, “Dynamic
quality metric oriented error bounded lossy compression for scientific
datasets,” in 2022 SC22: International Conference for High Performance
Computing, Networking, Storage and Analysis (SC). 1EEE Computer
Society, 2022, pp. 892-906.
P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE trans-
actions on visualization and computer graphics, vol. 20, no. 12, pp.
2674-2683, 2014.
R. Ballester-Ripoll, P. Lindstrom, and R. Pajarola, “TTHRESH: Tensor
compression for multidimensional visual data,” IEEE transactions on
visualization and computer graphics, vol. 26, no. 9, pp. 2891-2903,
2019.
S. Li, P. Lindstrom, and J. Clyne, “Lossy scientific data compression
with sperr,” in 2023 IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS). 1EEE, 2023, pp. 1007-1017.
J. Liu, S. Di, K. Zhao, X. Liang, Z. Chen, and F. Cappello, “Faz: A
flexible auto-tuned modular error-bounded compression framework for
scientific data,” in Proceedings of the 37th International Conference on
Supercomputing, 2023, pp. 1-13.
A. Cohen, I. Daubechies, and J.-C. Feauveau, “Biorthogonal bases of
compactly supported wavelets,” Communications on pure and applied
mathematics, vol. 45, no. 5, pp. 485-560, 1992.
F. Cappello, S. Di, S. Li, X. Liang, G. M. Ali, D. Tao, C. Yoon Hong, X.-
c. Wu, Y. Alexeev, and T. F. Chong, “Use cases of lossy compression for
floating-point data in scientific datasets,” International Journal of High
Performance Computing Applications (IJHPCA), vol. 33, pp. 1201-
1220, 2019.
P. G. Lindstrom et al, “Fpzip,” Lawrence Livermore National
Lab.(LLNL), Livermore, CA (United States), Tech. Rep., 2017.
J. Liu, S. Di, K. Zhao, S. Jin, D. Tao, X. Liang, Z. Chen, and F. Cappello,
“Exploring autoencoder-based error-bounded compression for scientific
data,” in 2021 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, 2021, pp. 294-306.
A. Glaws, R. King, and M. Sprague, “Deep learning for in situ
data compression of large turbulent flow simulations,” Physical Review
Fluids, vol. 5, no. 11, p. 114602, 2020.
T. Liu, J. Wang, Q. Liu, S. Alibhai, T. Lu, and X. He, “High-ratio lossy
compression: Exploring the autoencoder to compress scientific data,”
IEEE Transactions on Big Data, 2021.
L. Hayne, J. Clyne, and S. Li, “Using neural networks for two di-
mensional scientific data compression,” in 2021 IEEE International
Conference on Big Data (Big Data). 1EEE, 2021, pp. 2956-2965.
D. Bank, N. Koenigstein, and R. Giryes, “Autoencoders,” arXiv preprint
arXiv:2003.05991, 2020.
D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.
S. Kolouri, P. E. Pope, C. E. Martin, and G. K. Rohde, “Sliced
Wasserstein auto-encoders,” in International Conference on Learning
Representations, 2018.
D. S. Taubman and M. W. Marcellin, “Jpeg2000: Standard for interactive
imaging,” Proceedings of the IEEE, vol. 90, no. 8, pp. 1336-1357, 2002.

[2]

[3]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on September 06,2024 at 19:27:39 UTC from IEEE Xplore. Restrictions apply.



[20] N. Sasaki, K. Sato, T. Endo, and S. Matsuoka, “Exploration of lossy
compression for application-level checkpoint/restart,” in IPDPS 2015,
2015, pp. 914-922.

[21] J. Clyne, P. Mininni, A. Norton, and M. Rast, “Interactive desktop
analysis of high resolution simulations: application to turbulent plume
dynamics and current sheet formation,” New Journal of Physics, vol. 9,
no. 8, p. 301, 2007.

[22] 1. Daubechies, “Orthonormal bases of compactly supported wavelets,”
Communications on pure and applied mathematics, vol. 41, no. 7, pp.
909-996, 1988.

[23] ——, Ten lectures on wavelets. SIAM, 1992.

[24] S. Mallat, A wavelet tour of signal processing. Elsevier, 1999.

[25] G. Lee, R. Gommers, F. Waselewski, K. Wohlfahrt, and A. O’Leary,
“Pywavelets: A python package for wavelet analysis,” Journal of Open
Source Software, vol. 4, no. 36, p. 1237, 2019.

[26] W. A. Pearlman, A. Islam, N. Nagaraj, and A. Said, “Efficient, low-
complexity image coding with a set-partitioning embedded block coder,”
IEEE transactions on circuits and systems for video technology, vol. 14,
no. 11, pp. 1219-1235, 2004.

[27] Y. Collet, “Zstandard — real-time data compression algorithm,”
http://facebook.github.io/zstd/, 2015.

[28] S. Kayum et al., “GeoDRIVE - a high performance computing flexible
platform for seismic applications,” First Break, vol. 38, no. 2, pp. 97—

100, 2020.

[29] “SEGSalt,” https://wiki.seg.org/wiki/SEG/EAGE_Salt_and_Overthrust
_Models.

[30] Miranda application. [Online]. Available:

https://wci.llnl.gov/simulation/computer-codes/miranda

[31] J. Kim et al., “QMCPACK: an open source ab initio quantum monte
carlo package for the electronic structure of atoms, molecules and
solids,” Journal of Physics: Condensed Matter, vol. 30, no. 19, p.
195901, 2018.

[32] “Scalable computing for advanced library and environment (scale) —
letkf,” https://github.com/gylien/scale-letkf.

[33] NYX simulation, https://amrex-astro.github.io/Nyx, 2019, online.

[34] Y. Li, E. Perlman, M. Wan, Y. Yang, C. Meneveau, R. Burns, S. Chen,
A. Szalay, and G. Eyink, “A public turbulence database cluster and
applications to study lagrangian evolution of velocity increments in
turbulence,” Journal of Turbulence, no. 9, p. N31, 2008.

[35] Hurricane ISABEL simulation data,
http://vis.computer.org/vis2004contest/data.html, 2004, online.

[36] D. Tao, S. Di, H. Guo, Z. Chen, and F. Cappello, “Z-checker: A
framework for assessing lossy compression of scientific data,” The
International Journal of High Performance Computing Applications,
vol. 33, no. 2, pp. 285-303, 2019.

4239
Authorized licensed use limited to: Argonne National Laboratory. Downloaded on September 06,2024 at 19:27:39 UTC from IEEE Xplore. Restrictions apply.



