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A B S T R A C T   

Motivated by real-world applications like wireless sensor networks powered by photovoltaic sources, this paper 
models a linear consecutively connected system whose nodes form a linear sequence. To provide the connectivity 
between the first (source) and last (destination) nodes, each non-destination node hosts a connecting element 
characterized by a different connection range and time-to-failure distribution. To supply resource needed for the 
connecting element’s operation, each node also contains a resource generating subsystem and a storage, which is 
used for saving surplus resource when productivity of the resource generator exceeds the connecting element’s 
demand and can also supply resource to the connecting element when the resource generator fails or its pro
ductivity becomes insufficient to meet the demand. A numerical algorithm is first put forward to evaluate the 
instantaneous availability of an individual connecting element. A universal generating function-based approach 
is further proposed to evaluate the instantaneous connectivity of the considered system with unreliable resource 
generators and storages. The optimal storage allocation problem and impacts of several parameters on the system 
connectivity and optimal solutions are investigated through a detailed case study of a wireless sensor network 
with four types of storages, characterized by different time-to-failure distributions, initial and maximum ca
pacities, and maximum uploading and downloading rates.   

1. Introduction 

Many real-world systems (e.g., linear wireless sensor networks, radio 
communication systems, pipeline transportation systems, and produc
tion lines [1–4]) can be modeled as linear consecutively connected 
systems (LCCSs), where system nodes form a linear and ordered 
sequence and each node hosts a connection element (CE) to provide a 
connection between the host node and its subsequent nodes along the 
sequence [5]. The CEs allocated to different nodes may have different 
connection ranges and different time-to-failure distributions; they work 
together to provide the connectivity between the source (first) and 
destination (last) nodes [6,7]. Due to the heterogeneity of CEs, different 
CEs allocation schemes may lead to significantly different connectivity 
performance of LCCSs. Thus, it is relevant and pivotal to solve the 
optimal CE allocation problem to maximize the LCCS performance [8,9]. 

Considerable research efforts have been devoted to addressing the 
optimal CE allocation problem for LCCSs with different features. For 
example, the allocation problem was solved for LCCSs subject to 

multiple and consecutive phases of operations where different source 
and destination nodes are engaged in different phases [10]. In [11], the 
problem was solved for multi-phase LCCSs subject to common-cause 
failures where a shared root cause may incur simultaneous malfunc
tions of multiple CEs. In [12] and [13], extensions were respectively 
made to the traditional single-phase and multi-phase LCCS models by 
allowing a certain number of single-node gaps (disconnected nodes) for 
the system functionality. In [14], the LCCS model that can tolerate a 
certain size of consecutive gaps was considered. In [15,16], the LCCS 
model tolerating a combination of single-node gaps and consecutive 
gaps were optimized. In [17], the allocation problem was solved for 
LCCSs with warm standby redundancy. In [18], the preventive 
replacement and corrective maintenance with constant average repair 
time and minimal repair policy of CEs were modeled. In [11,19], 
random repair time and general repair policy (covering the minimal 
repair, perfect repair, and imperfect repair) of CEs were modeled. 

To the best of our knowledge, none of the existing LCCS models 
addressed the resource generation and storage units that supply the 
resource (e.g., power) necessary for the CE’s function. In particular, the 
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storage is used to store surplus resource, which may subsequently be 
utilized to supply the system demand when the resource generation unit 
fails, or its productivity is insufficient. A set of diverse methods have 
been suggested for incorporating the storage in the system reliability 
analysis, including, for example, the universal generating functions- 
based method for multi-phase performance sharing systems [20], the 
semi-Markov processes-based method for multi-production line chemi
cal process plants [21], the discrete-event simulation method for 
multi-state industrial processes [22], the probabilistic modeling method 
for warm standby systems [23], the multivalued decision 
diagrams-based methods for phased-mission systems [24] and 
demand-based standby systems [25], the numerical methods for multi
state systems with mission aborting [26], and non-repairable systems 
with multiple storage units used in parallel [27] or consecutively [28]. 
However, none of those methods considering storage are directly 
applicable to modeling and analyzing LCCSs. 

This work contributes by pioneering the modeling of binary-state 
LCCSs with unreliable resource generation and storages. Specifically, 
to supply resource needed for the operation of each CE, each node of the 
LCCS contains a resource generating subsystem (RGS), which has certain 
productivity when operating. Each RGS may be equipped with a 
resource storage characterized by maximum capacity as well as 
maximum uploading and downloading rates. The storage can save the 
surplus resource when the RGS’s productivity exceeds the CE’s demand 
and can also supply resource to the CE when the RGS fails or its pro
ductivity becomes insufficient to meet the CE’s demand. We propose a 
numerical algorithm to evaluate the instantaneous availability of an 
individual CE. We further use a universal generating function-based 
approach to evaluate the instantaneous connectivity of the considered 
LCCS, based on which the expected LCCS connectivity (ELC) can be 
computed. We formulate and solve the optimal storage allocation 
problem maximizing the ELC and examine impacts of several model 
parameters through a detailed case study of a wireless sensor network 
LCCS. 

The remainder of the paper is structured as follows. Section 2 depicts 
the LCCS model considered in this work and definitions of the instan
taneous LCCS connectivity and ELC. Section 3 suggests the numerical 
algorithm that evaluates the instantaneous availability of an individual 
CE and investigates the effects of initial amount of resource and maximal 
downloading rate of the storage through an example. Section 4 describes 
the universal generating function-based method to evaluate the instan
taneous LCCS connectivity. Section 5 presents the detailed case study 
and examines the influences of several model parameters. Section 6 
provides conclusions and several further research topics. 

2. System model 

The binary-state LCCS consists of M + 1 consecutive nodes (loca
tions). CEs are located at each of the first M nodes to provide a 
connection between the first (source) node and the M + 1-th (sink) node. 
Each CE located at node m (1 ≤ m ≤ M) is characterized by a specific 
connection range lm, and time-to-failure cumulative distribution func
tion (cdf) Fm(t). Thus, the most remote node that can be reached by this 
CE at time t is m+Lm(t), where Pr(Lm(t) = lm) = am(t), 
Pr(Lm(t) = 0) = 1 − am(t) and am(t) is the instantaneous availability of 
CE m at time t (evaluated in Section 3). The most remote node that can 
be reached by the group of CEs located at the first k nodes (i.e., nodes 1, 
2,…, k) at time t is 

Hk(t) = min
{

M + 1, max
1≤m≤k

{m + Lm(t)}

}

. (1) 

In case of Hk(t)<k + 1 for any k (1 ≤ k ≤ M), node k + 1 is 
disconnected from all the preceding nodes, and thus the source and sink 
nodes cannot be connected. Therefore, the connectivity condition of the 
considered LCCS at time t is 

φ(L1(t), …, LM(t)) =
∏M

k=1
1(Hk(t) > k), (2)  

which returns 1 if the LCCS is connected and 0 otherwise. 
The considered LCCS can be found in many applications. For 

example, a pipe flow transmission system has pumps that are distributed 
among certain locations along the pipeline. The pump (i.e., CE) residing 
at a location m provides necessary pressure to transfer the flow to the 
next Lm(t) locations [12]. The distance between the consecutive loca
tions can vary depending on geographical and environmental condi
tions, which affects the connection ranges and repair times of different 
pumps. The pipeline fails if the flow transmission between the source 
and sink locations cannot be maintained. 

Another example of LCCS applications is a radio communication 
system, which consists of a set of radio relay stations (nodes) with a 
transmitter allocated at station 1 and a receiver allocated at the last 
station M + 1. To provide signal propagation from the transmitter to the 
receiver, some re-transmitters (i.e., CEs) are deployed. Specifically, each 
station m (2 ≤ m ≤ M) can have a re-transmitter relaying signals that 
reach the next Lm(t) stations. The connection range Lm(t) depends on the 
amplifier’s power of re-transmitter m and on the distance between node 
m and its subsequent nodes. Fig. 1 presents an example of a radio 
communication system with M = 6, L1=L3=L5=2, L2=L6=1 and L4=3 
when it provides connection between the transmitter and the receiver 

Acronyms 

RGS resource generation subsystem 
CE connecting element 
LCCS linear consecutively connected system 
ILC instantaneous LCCS connectivity 
ELC expected LCCS connectivity 
cdf cumulative distribution function 
pdf probability density function 

Notations 
M number of CEs in LCCS 
T mission time 
cm capacity of storage m 
um maximum uploading rate of storage m 
wm maximum downloading rate of storage m 
dm resource demand of CE m 
lm maximum connection range of CE m 

gm(t) productivity of RGS m at time t 
Qm(t) probability that demand of CE m is supplied at time t 
am(t) instantaneous availability of individual CE m 
Lm(t) random connection range of CE m at time t 
A(t) instantaneous availability of LCCS 
E(T) ELC during mission time T 
xm(t) amount of resource in storage m at time t given that RGS 

and storage are available 
xm(0) amount of resource in storage m at the beginning of 

mission 
Fm(t) cdf of time-to-failure distribution for CE m 
Ym(t) cdf of time-to-failure distribution of resource storage of CE 

m 
vm(t),Vm(t) pdf, cdf of time-to-failure distribution of RGS of CE m 
Pr(X) probability of event X 
1(Z) indicator function: 1(TRUE)=1, 1(FALSE)=0  
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despite the failure of stations 2 and 4 (scenario (A)), and when it fails to 
provide such connection because of the failure of stations 2 and 3 
(scenario (B)). 

An example of a wireless sensor network is also presented in Section 
5. 

The instantaneous LCCS connectivity (ILC) at a particular time 
instant t can be defined as A(t)=Pr(φ(L1(t), …, LM(t))=1). Usually, 
technical systems are planned to operate during a specific time horizon, 
after which their elements are replaced or repaired and/or structure is 
changed (due to changes in technology, conditions of functioning and/ 
or system mission). Thus, the availability analysis beyond the planned 
horizon has no sense and the LCCS behavior is modeled within a time 
horizon T. The expected LCCS connectivity (ELC) during the mission 
time T can thus be obtained as 

E(T) =
1
T

∫T

0

A(t)dt (3) 

Each CE m consumes per unit time amount or resource (demand) dm 
needed for its operation. Therefore, each node contains a RGS aimed at 
supplying the resource demand. The per unit time amount of resource 
generated by the RGS m (productivity) gm(t) varies with time. Besides, 
the RGS can fail. If the demand dm is not satisfied, the CE m cannot 
provide connection to the next nodes and Lm(t) = 0. The cdf of time-to- 
failure of RGS m is Vm(t). 

To enhance the resource supply reliability by supplying the CE when 
the generation rate of the RGS is insufficient or when the RGS fails, RGS 

m can be equipped with a resource storage having a given capacity cm 
and maximum uploading and downloading rates of um and wm, respec
tively (see Fig. 2). When the RGS productivity exceeds the demand 
(gm(t) > dm) and the storage is available and not fully loaded, the surplus 
resource is uploaded to the storage with rate not exceeding um. When the 
RGS productivity is insufficient (gm(t) < dm), the storage is available and 
not empty and the resource deficiency does not exceed the maximum 
storage downloading rate (i.e., dm − gm(t) < wm), the storage is down
loaded with rate dm − gm(t) and the CE demand is satisfied. When the 
RGS productivity is insufficient, the storage is available and not empty, 
but the resource deficiency exceeds the maximum storage downloading 
rate, the CE demand cannot be satisfied anyway and if the storage is not 
fully loaded, it is uploaded from the RGS with rate min(um, gm(t)). 

When both RGS and resource storage of CE m are available at time t, 
the change in the amount of the resource accumulated in the storage 
during time interval [t,t+dt), where dt is infinitesimal is 

δxm(t) = 1(gm(t) > dm)min(um,(gm(t)−dm))dt
+1(dm −gm(t) > wm)min(um,gm(t))dt −1(0 < dm −gm(t) ≤ wm)(dm −gm(t))dt,

(4)  

where the first term corresponds to the case where the RGS supplies both 
CE and storage, the second term corresponds to the case where the RGS 
and the storage cannot satisfy the demand and the RGS supplies the 
storage, and the third term corresponds to the case where both RGS and 
storage supply the demand. 

The total amount of the resource accumulated in the storage by time t 

Fig. 1. An example of a radio communication LCCS in the connected state (A) and disconnected state (B).  

Fig. 2. Structure of the LCCS with RGSs and storages.  
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can be obtained iteratively for t=dt,2dt,…,T 

xm(t) = min(cm, max(0, xm(t − dt) + δxm(t))), (5)  

where xm(0) is the initial amount of resource in the storage at the 
beginning of the mission. 

Fig. 3 presents an example of the CE performance when both RGS 
and storage are available and wm<dm. It can be seen that the CE is unable 
to provide connection to other nodes when the resource deficiency ex
ceeds the maximum storage downloading rate or when the storage is 
empty and cannot compensate any resource deficiency. 

3. Instantaneous availability of individual CEs 

The demand of CE m can be satisfied at time t in the following three 
cases:  

1. RGS m is available at time t and its productivity is not lower than the 
demand dm: gm(t)≥ dm;  

2. Both RGS m and storage m are available at time t, 0<dm-gm(t)≤wm 
and xm(t)>0, i.e., the resource deficiency is compensated from the 
storage;  

3. RGS m fails at time τ<t, but the storage still operates at time t, the 
demand dm does not exceed the maximum storage downloading rate 
wm and the resource in the storage is not depleted till time t, i.e., 
xm(t)=xm(τ)-(t-τ)dm≥0. 

The probability that the RGS m fails in time interval [τ,τ+dτ), where 
dτ is infinitesimal, is vm(τ)dτ. Thus, we can obtain the probability that 
the resource m is supplied at time t (instantaneous availability of CE m 
supply system) as 

Qm(t) = 1(gm(t) ≥ dm)(1 − Vm(t))

+1(0 < dm − gm(t) ≤ wm)1(xm(t) > 0)(1 − Vm(t))(1 − Ym(t))

+1(dm ≤ wm)(1 − Ym(t))

∫t

0

1(xm(τ) > (t − τ)dm)vm(τ)dτ
(6)  

where the three terms correspond to the three cases above. 
When the resource supply system of CE m does not contain storage 

(cm = um = wm = 0), the resource m can be supplied at time t only if the 
corresponding RGS is available and gm(t) ≥ dm. In this case 

Qm(t) = 1(gm(t) ≥ dm)(1 − Vm(t)).

The instantaneous availability of CE m at time t can be obtained as 

am(t) = (1 − Fm(t))Qm(t). (7)  

3.1. Numerical evaluation algorithm 

To realize the derivations presented above in a numerical procedure, 
we obtain the amount of resource in the storage recursively according to 
(4) and (5). For each time interval [t,t+dt), we obtain the values of Qm(t)
for the cases where the RGS is available using the first two terms of (6). 
Instead of the backward equation for the third term of (6), we use a 
forward procedure that updates the values of Qm(τ +t) for any realiza
tion t of the RGS failure time and any realization τ of the storage 
downloading time after the RGS failure. The pseudo-code of the nu
merical procedure for evaluating the instantaneous CE availability is as 
follows.  

1 For m = 1, …,M :

2  x = xm(0);

3  For t = 0, dt, …,T : qm(t) = 0;

4  For t = 0, dt, …,T :

5   δ = Δ = gm(t) − dm; //Δ − surplus resource generated by RGS 
6   If Δ > um then δ = um; //δ – storage uploading pace 
7   If Δ < −wm then δ = min(um,gm(t)); //demand cannot be met 
8   x = x + δdt; 
9   If x > cm then x = cm; 
10   If x < 0 then x = 0; //amount of resource in the storage 
11   If Δ ≥ 0 then qm(t) = qm(t) + 1 − Vm(t); //RGS supplies the demand 
12   If − wm ≤ Δ < 0 AND x>0 then qm(t) = qm(t) + (1 − Vm(t))(1 −

Ym(t)); 
13   

If dm ≤ wm then For τ = 0, dt, …,min
(

T − t,
x

dm

)

:

14    qm(t + τ) = qm(t + τ) + (Vm(t + dt) − Vm(t))Ym(t + τ);

15  am(t) = (1 − Fm(t))qm(t);  

Steps 5 – 7 of the pseudo-code determine the variation of amount of 
the resource accumulated in the storage during time interval [t,t+dt) 
according to (4). Steps 8 – 10 determine the amount of resource in the 

Fig. 3. Example of CE performance when all its components are available.  
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storage at time t. Step 11 updates the resource availability at time t in the 
case where RGS operates and its productivity gm(t) exceeds the demand 
dm. Step 12 updates the resource availability at time t in the case where 
both RGS and storage operate and insufficient RGS productivity gm(t) is 
compensated from the storage. Steps 13 and 14 update the resource 
availability at time t+τ when the RGS fails at time t and the demand is 
supplied from the storage. 

As it can be seen from the pseudo-code, the computational 
complexity of the numerical procedure is O(M dt−2). 

3.2. Illustrative example 

Consider a CE with demand d = 0.09 and time-to-failure cdf F(t) = 1 
− exp( − t /180), which is supplied from a RGS having time-to-failure 
cdf V(t) = 1 − exp( − (t/220)

1.1
). The RGS provides time dependent 

per unit time amount of resource g(t) = 0.1max(0, 0.2 + sin(0.26t +

0.2)). The RGS is equipped with a storage with capacity c = 12, time-to- 
failure distribution cdf Y(t) = 1 − exp( − (t/80)

1.1
), maximum upload

ing and downloading paces u = w = 0.1. 
Fig. 4 presents the difference between the produced resource and 

demand g(t)-d, dynamic amount of resource in the storage x(t) when no 
failures occur and instantaneous availability of the CE a(t) for different 
levels of initial amount of resource in the storage x(0). It can be seen that 
the instantaneous availability sharply increases when the RGS has 
enough resource to supply the demand without using the storage. The 
amount of resource in the storage increases when the resource genera
tion rate exceeds the CE’s demand and decreases when the resource 
generation rate is insufficient and the deficiency is compensated from 
the storage. When the storage is emptied, the demand cannot be met if 
the resource generation rate is lower than the demand d and the 
instantaneous availability is zeroed. The increase in the initial amount of 
resource in the storage allows the storage to supply the resource to the 
CE for a longer time before the storage is empty. This causes an increase 
in the periods when the CE is available. For example, when x(0)=0, the 
storage cannot supply the CE at the beginning of the mission and the CE 
remains unavailable until the RGS productivity exceeds the demand. 
When x(0)=2, the storage is emptied for the first time at t = 44.5 causing 
the CE’s unavailability. Observe that when x(0)≤2, the CE remains 
unavailable during some periods of the mission even when the storage, 
the RGS and the CE do not fail. When x(0)=5, the storage is never 
emptied during the mission and the CE has enough resource to operate 
without interruptions if the storage, the RGS and the CE are available. 

The expected CE availability during the mission having a duration of T 
= 72 h is 0.23 for x(0)=0, 0.45 for x(0)=2, and 0.53 for x(0)=5. 

Fig. 5 presents the difference between the produced resource and 
demand g(t)-d, dynamic amount of resource in the storage x(t) when no 
failures occur and instantaneous availability of the CE a(t) for different 
values of maximal downloading rate of the storage w when x(0)=2. 
When w is low (w = 0.02), the storage cannot compensate the resource 
deficiency when D-g(t)>w and is uploaded for a longer time (when the 
demand cannot be met anyway). In this case, the amount of resource in 
the storage x increases whereas the instantaneous availability of the CE 
remains zero for a long time. When w increases (w = 0.08) the periods 
when D-g(t)>w become shorter and the storage contributes to supplying 
the resource to the CE during longer periods. The amount of resource in 
the storage x decreases. When w exceeds the demand (w = 0.1>d =

0.09), the storage can supply the stored resource to the CE any time 
when the RGS productivity is insufficient. Thus, the instantaneous CE 
availability is not zeroed until the storage emptying at time t = 44.6. 
Though the storage is emptied faster than in the cases of lower w, its 
efficiency in maintaining the CE available increases. The expected CE 
availability during the mission with a duration of T = 72 h is 0.21 for w 
= 0.02, 0.31 for w = 0.08, and 0.45 for w = 1. 

4. ILC evaluation using the universal generating function 
method 

Following a brief background on the universal generating function, 
this section presents the method to obtain ILC A(t)=Pr(φ(L1(t), …,

LM(t))=1) based on am(t) for 1 ≤ m ≤ M derived in Section 3. 
Consider a discrete random variable B(t) that can take K possible 

values, and qk(t)=Pr{B(t)=bk}. The universal generating function rep
resenting its pmf is uB(z, t) =

∑K
k=1qk(t)zbk [6]. Similarly, C(t) is another 

random variable with I possible values and universal generating func
tion uC(z, t) =

∑I
i=1pi(t)zci . Assume that B(t) and C(t) are statistically 

independent. Then the universal generating function denoting the dis
tribution of function γ(B(t),C(t)) can be obtained using the composition 
operator defined in (8). 

uB(z, t)⊗
γ

uC(z, t) =
∑K

k=1
qk(t)zbk ⊗

γ

∑I

i=1
pi(t)zci =

∑K

k=1

∑I

i=1
qk(t)pi(t)zγ(bk ,ci) (8)  

where qk(t)pi(t) gives Pr{(B(t)=bk)∩(C(t)=ci)}. 
The evaluation of ILC involves two universal generating functions 

Fig. 4. Difference between RGS productivity and demand g(t)-d, dynamic amount of resource in the storage x(t) and instantaneous availability of the CE a(t) for 
different levels of initial amount of resource in the storage x(0). 
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um(z, t) = am(t)zlm + (1 − am(t))z0;

Uk(z, t) =
∑M+1

h=k
πk,h(t)zh, whereπk,h(t) = Pr{Hk(t) = h} and U0(z, t) ≡ z1,

(9)  

which respectively represent the distribution of Lm(t) and distribution of 
Hk(t) defined in (1). Function (1) can be represented recursively as 

Hk(t) = min
{

M + 1, max
{

Hk−1,h, k + Lk(t)
}}

. (10) 

Thus, the universal generating function Uk(z,t) for k = 1,…,M can be 
determined using the following recursive procedure 

Uk(z, t) = Uk−1(z, t) ⊗
minmax

uk(z, t) =
∑M+1

h=k
πk,h(t)zh

=
∑M+1

h=k−1

(
πk−1,h(t)ak(t)zmin{M+1,max{h,k+lk}} + πk−1,h(t)(1 − ak(t))zh)

.

(11) 

Notice that the term with Lk(t)=k corresponds to disconnection of 
node k from further nodes and makes no contribution to the LCCS 
connectivity. This term should be removed from the function Uk(z,t), 
which is made by the following operator 

θ(Uk(z, t)) = θ

(
∑M+1

h=k
πk,h(t)zh

)

=
∑M+1

h=k+1
πk,h(t)zh. (12) 

Applying Uk(z, t) = θ
(

Uk−1(z, t) ⊗
minmax

uk(z, t)
)

recursively, we can 

obtain the single-term function of UM(z, t) = πM,M+1(t)zM+1, where 
πM,M+1(t) is the probability that nodes 1 and M + 1 are connected at time 

t (i.e., ILC). 
The following summarizes the universal generating function-based 

algorithm for determining ILC A(t) for a given allocation of CEs and 
configuration of the resource supply subsystems.   

1. Determine the instantaneous availability am(t) of CEs in each node 
m for m = 1,…, M and for t = 0, dt, …, T using the algorithm 
presented in Section 3.  

2 Define U0(z) ≡ z1 and um(z, t) = am(t)zlm + (1 −am)z0 for m = 1, 
…, M.  

3 Apply Uk(z, t) = θ
(

Uk−1(z, t) ⊗
minmax

uk(z, t)
)

recursively for k = 1, 

…, M.  
4 Determine ILC A(t) as coefficient πM,M+1 of UM(z, t). 

5. Case study 

Consider a wireless sensor network used in applications such as 
environmental monitoring, infrastructure monitoring, smart homes or 

Fig. 5. Difference between RGS productivity and demand g(t)-d, dynamic  amount of resource in the storage x(t) and instantaneous availability of the CE a(t) for 
different values of maximal downloading rate of the storage w when x(0)=2. 

Table 1 
Parameters of sensors and their power sources.  

m ηm βm lm dm 

(kW) 
ρm μm λm 

(kW) 
Battery type 

1 1.2 880 4 0.20 1.0 600 0.75 2 
2 1.0 750 3 0.09 1.1 510 0.12 1 
3 1.0 970 3 0.12 1.0 700 0.18 1 
4 1.2 320 2 0.08 1.3 350 0.48 – 
5 1.0 480 5 0.20 1.0 600 0.24 3 
6 1.4 900 4 0.08 1.2 580 0.48 – 
7 1.0 320 2 0.10 1.5 440 0.18 4 
8 1.1 760 3 0.10 1.3 920 0.24 1 
9 1.2 500 1 0.08 1.3 750 0.18 –  

Fig. 6. Normalized power produced by photovoltaic power sources during the 
mission time. 
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offices, smart agriculture, and battlefield surveillance [29–33]. The 
network consists of M = 9 sensor/actuator devices and must provide 
communications and sensing coverage through connections along a 
specific path of nodes. Depending on its transmission range, each device 
located at node m (when available) can provide a connection between 
node m and lm next nodes along the path. Each device is equipped with 
photovoltaic power source. The generated power depends on the time of 
day and varies cyclically. To provide the power supply stability, the 
power accumulating batteries can be connected to each power source. In 
the case of the sensor device failure or the power loss, the node becomes 
disconnected from other nodes. The inter-maintenance period of the 
wireless sensor network is T = 72h 

The reliability and power parameters of sensors, power sources and 
batteries are available from equipment manufacturers/providers. A 
wide range of the considered electronic equipment has time-to-failure 
obeying the Weibull distribution (see [34–37]). Specifically, the 
time-to-failure of the sensor device located at node m obeys the Weibull 
distribution with cdf Fm(t) = 1 − exp(−(t/ηm)

βm ) [34,35]. The values of 
βm and ηm as well as provided connection distance lm and the power 
demand of each device dm are presented in Table 1. Note that the 
connection ranges depend on specific conditions and can be determined 
experimentally. 

The time-to-failure of the power source located at node m obeys the 
Weibull distribution [36] with cdf Vm(t) = 1 − exp(−(t/ρm)

μm ). The 
values of ρm and μm are presented in Table 1. The varying power 
generated by photovoltaic source located at node m depends on its 
installed power and time of the day and can be approximated by the 
function 

gm(t) = λmmax(0, 0.2 + sin(0.26t + 0.2))/1.1975, (13)  

where λm is the maximum generated power (see Fig. 6) with values 
presented in Table 1. 

Six batteries of four different types are distributed among the nodes 

Table 2 
Parameters of batteries.  

Type 
k 

No of 
batteries 

ξk ϑk ck 

(kWh) 
xk (0) (kWh) uk 

(kW) 
wk 

(kW) 

1 3 80 1.1 4 4 0.05 0.10 
2 1 100 1.8 10 10 0.12 0.22 
3 1 120 1.2 5 5 0.18 0.26 
4 1 120 1.2 5 5 0.08 0.16  

Fig. 7. Instantaneous availabilities of the individual CEs am(t) and the ILC A(t) for batteries allocation presented in Table 1.  
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of the wireless sensor network. Table 1 presents types of the batteries 
located at each node (- corresponds to no battery). The time-to-failure 
distribution of battery of type k is Weibull [37] with the cdf taking the 
form Yk = 1 − exp(−(t/ξk)

ϑk ). The parameters of this distribution, the 
battery capacity ck, the maximum charge and discharge power (uk and 
wk) and the initial charge level xk(0) are presented in Table 2. The 
instantaneous availabilities of the individual CEs am(t) and the ILC A(t) 
are presented in Fig. 7. The ELC of the wireless sensor network during 
the inter-maintenance period T = 72 is E(72)=0.675. 

5.1. Influence of the discretization factor dt on ELC evaluation accuracy 

To evaluate the influence of the discretization factor dt on the ELC 
evaluation accuracy, we obtain the ELC E as a function of dt. Fig. 8 
presents E(T) and the running time of the C language realization of the 
numerical algorithm (Section 4) on 3.7 GHz PC as functions of the dis
cretization factor dt. The obtained values of ELC quickly converge with a 
decrease in dt. The related discrepancy between E(0.02) and E(0.6) is 
0.19% and between E(0.02) and E(0.1) is 0.1%. In further optimization 
examples, dt=0.05 is chosen. 

Fig. 8. ELC and running time as functions of the discretization parameter dt.  

Fig. 9. Instantaneous availabilities of the individual CEs am(t) and the ILC A(t) for the optimal batteries’ allocation.  
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5.2. Optimal batteries distribution problem and solution 

If the batteries can be re-distributed among the nodes, the problem of 
the optimal batteries’ distribution arises. Any distribution can be rep
resented by vector b={b1,…,bM}, where bm is the type of the battery 
located in node m. The optimal distribution problem lies in finding the 
distribution maximizing the ELC: 

b=max
b E(b, T), subject to

∑M

m=1
1(bm = k) = Nk for k = 1, ⋯, K,

where Nk is the number of available batteries of type k and K is the 
number of different types of batteries. 

For a large number of nodes and batteries, the problem can be solved 
using heuristics like genetic algorithm [38,39]. In the considered case 
where M = 9, K = 4 and 

∑K
k=1Nk = 6, a brute force enumeration is used 

for obtaining the optimal distribution. 
Fig. 9 presents the instantaneous availabilities of the individual CEs 

am(t) and the ILC A(t) for the optimal batteries’ allocation b={3,- 
,4,1,2,1,1,-,-} providing the ELC E(72)=0.776, which is considerably 
greater than for the allocation presented in Table 1. 

5.3. Influence of variation of system functioning conditions on the optimal 
solution 

The suggested model allows analyzing the influence of variation of 
system functioning conditions on the optimal batteries distribution. For 
example, consider a situation where the signal transmission conditions 
in the area deploying sensors 5 and 6 deteriorate and the signal trans
mission ranges decrease such that l5 = l6 = 3. In this case, the optimal 
batteries allocation changes to b={3,-,-,1,2,1,-,4,1}, which gives the ELC 
E(72)=0.712. The further decrease of the transmission ranges to l5 =

l6 = 2 causes a change of the optimal batteries allocation to b={3,- 
,-,-,2,1,1,4,1}, which gives the ELC E(72)=0.654. The ILC corresponding 
to these two cases and to the initial case of l5 = 5, l6 = 4 are presented in 
Fig. 10. 

Fig. 10. ILC A(t) for the optimal batteries’ allocation when l5 = 5, l6 = 4; l5 =

l6 = 3 and l5 = l6 = 2. 

Fig. 11. ELC E(T) for the optimal batteries’ allocation as a function of the inter- 
maintenance time T. 

Table 3 
Optimal batteries distribution for different system inter-maintenance times T and signal transmission ranges l5, l6.

l5 = l6 = 2 l5 = l6 = 3 l5 = 5, l6 = 4 

T b E(T) b E(T) b E(T) 

24 2,-,-,1,3,1,1,4,- 0.880 2,-,-,1,3,1,-,4,1 0.933 2,-,4,1,3,1,-,-,1 0.959 
32 2,-,-,1,3,1,1,4,- 0.900 2,-,-,1,3,1,-,4,1 0.943 2,-,4,1,3,1,-,-,1 0.964 
40 2,-,-,1,3,1,1,4,- 0.844 2,-,-,1,3,1,-,4,1 0.898 2,-,4,1,3,1,1,-,- 0.934 
48 3,-,-,-,2,1,1,4,1 0.756 2,-,-,1,3,1,-,4,1 0.816 2,-,4,1,3,1,-,-,1 0.874 
56 3,-,-,-,2,1,1,4,1 0.769 2,-,-,1,3,1,-,4,1 0.825 2,-,4,1,3,1,-,-,1 0.879 
64 3,-,-,-,2,1,1,4,1 0.722 3,-,-,1,2,1,-,4,1 0.776 2,-,4,1,3,1,-,-,1 0.831 
72 3,-,-,-,2,1,1,4,1 0.654 3,-,-,1,2,1,-,4,1 0.712 3,-,4,1,2,1,1,-,- 0.776  

Fig. 12. ELC E(T) for the optimal batteries’ allocation as a function of the 
initial charge of the batteries. 
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5.4. Influence of inter-maintenance time on ELC and optimal solutions 

Fig. 11 presents the influence of the reduction of the inter- 
maintenance time T on the ELC E(T) for different values of l5and l6 
(for each combination of values of l5, l6 and T, the ELC is obtained for the 
optimal batteries distribution). 

Table 3 presents the optimal batteries distribution for different sys
tem inter-maintenance times T and signal transmission ranges l5, l6. The 
non-monotonic behavior of E(T) is explained by the fact that the fraction 
of the inter-maintenance time when the power sources are active and 
produce power can increase with increasing T. For example, the power 
sources are active for 13.3 h during 24 h (0.56% of time), whereas they 
are active for 21 h during 32 h (67% of time). 

It can be seen that the inter-maintenance time T influences the 
optimal batteries distribution. For example, the first sensor should be 
equipped with a battery of type 2 when the time T is relatively short, but 
when the time increases, smaller but more reliable battery of type 3 
becomes the better choice for the first node. 

5.5. Influence of initial charge of the batteries on ELC and optimal 
solutions 

Fig. 12 presents the influence of the reduction of initial charge of the 
batteries on the ELC E(T) for different values of l5and l6 when T = 72. It 
is assumed that the initial charge of all the batteries is ωxk (0), where xk 
(0) is taken from Table 2. Table 4 presents the optimal batteries distri
bution for different initial charge of the batteries. It can be seen that the 
optimal batteries distribution depends on their initial charge. Intui
tively, the ELC decreases when the initial charge of the batteries 
decreases. 

6. Conclusions and further research topics 

This paper pioneers the modeling and analysis of LCCSs with unre
liable RGSs and storages, which work together to supply resource 
needed for each CE’s operation, i.e., providing a certain connection 
range based on the specification. The following contributions have been 
made:  

1) A numerical algorithm is proposed to evaluate the instantaneous 
availability of an individual CE with resource supply from the RGS 
and storage.  

2) The effects of initial amount of resource and maximal downloading 
rate of the storage on the CE’s instantaneous availability are 
investigated.  

3) A universal generating function-based approach is implemented to 
evaluate the ILC for the considered LCCS with unreliable RGSs and 
storages.  

4) The optimal storage allocation problem is formulated and solved, 
which determines the distribution of a limited number of storage 
units of different types to maximize the ELC.  

5) Impacts of several model parameters on the ELC and the optimal 
storage allocation solutions are investigated through a detailed case 
study of a wireless sensor network with six batteries (storages) of 
four different types. 

The case study demonstrates that the proposed optimization can 
improve the LCCS connectivity considerably, facilitating the optimal 
decisions on allocating limited storage units to LCCS nodes. 

In this work, CEs, RGSs and storages are assumed to be non- 
repairable during the considered mission time. We plan to relax this 
assumption by considering the general repair model for the LCCS com
ponents. We are also interested in extending the model to consider 
phased mission operations, where the time-to-failure distributions of the 
LCCS components may vary from phase to phase due to dynamic envi
ronment conditions. Another direction of further research is to model 
the LCCS with multi-state CEs providing different connection ranges 
depending on resource supply rates. 
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