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collectives that can realize high performance for all MPI

collectives with controlled errors [3]. Nevertheless, this ap-

proach suffers from suboptimal performance on modern

GPU clusters because of under-utilized GPU devices.

To address the aforementioned limitations, we design a

generic framework for GPU-aware compression-accelerated

collective communications that can realize both high perfor-

mance and controlled error propagation.

2 GPU-LCC Design and Optimization

In this section, we present our design and optimization strate-

gies as shown in Figure 1. To be specific, we analyze the prob-

lems of prior solutions and do a comprehensive performance

breakdown to identify potential bottlenecks. Additionally,

we also characterize the performance of the lossy compres-

sor and find that the direct application of ring-based algo-

rithms for collective computation with GPU compression

may not always yield optimal results. It is hence vital to ex-

plore other algorithms that may offer superior performance.

After that, we propose the GPU-LCC framework to address

and overcome the performance issues noted in the previous

GPU-awareMPI collective framework that incorporates com-

pression, such that a superior performance can be reached.

Our contributions are 5-fold: (1) To circumvent the high

cost of device-to-host data transfer inherent in traditional

CPU-centric designs, we implement a GPU-centric design. (2)

To improve collective performance in compression-enabled

collectives, we adapt the lossy compression to suit the re-

quirements of collective communications. (3) We explore

new metrics regarding GPU compression-enabled collective

performance, focusing on minimizing total compression cost

and accuracy loss. (4) We propose two algorithm design

frameworks for both collective computation and collective

data movement to increase device utilization, decrease times

of compression/decompression, and maximize the perfor-

mance. (5) Furthermore, we improve the error-bounded lossy

compressor (cuSZp[6]) and develop a multi-stream version

to suit the context of the two collective performance op-

timization frameworks. In our performance optimization

frameworks, we try to let as many operations as possible

overlap with each other, including kernel launching, com-

pression/decompression operation, and data movement.

User Applications & Analysis (Image Stacking, etc.)

GPU-LCC Interface (GPUL-Allreduce, GPUL-Scatter)

Application

Interface

Collective Computation 
Framework

Improve 

Scalability

Improve 

GPU 

Utilization

Collective Data Movement 
Framework

Overlap 

Compression

Multi-stream 

cuSZp

MPI P2P Compression Adapter

Abstract Device Interface Lossy Compression Library Library

Middleware

Algorithm 

designing & 

performance 

optimizationG
P
U
-L
C
C

Third-party
Our designed key 
modules in GPU-LCC

Detailed performance 
optimization strategies

Figure 1. GPU-LCC design architecture.

3 Experimental Evaluation

We present and discuss the evaluation results as follows.

3.1 Experimental Setup

We perform the evaluation on a GPU supercomputer that

involves 64 NVIDIA A100 80G GPUs with 4 GPUs per node,

interconnected with a bandwidth of 100 Gbps. Two dis-

tinct RTM datasets [7], originating from the real-world 3D

SEG/EAGE Overthrust model, are generated under two dif-

ferent simulation settings.

Evaluation with different message sizes.We evaluate

the performance of our GPUL-Allreduce algorithm using

various data sizes up to 600 MB on a configuration of 64

NVIDIA A100 GPUs across 16 nodes. As observed in Figure

2, our recursive doubling-based GPUL-Allreduce (ReDoub)

consistently outperforms across all data sizes, achieving up

to a speedup of 18.7× compared to Cray MPI and a 3.4×

performance improvement over NCCL. Furthermore, with

increasing data sizes, the speedup generally rises, demon-

strating high scalability with respect to data size.
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Figure 2. Performance evaluation of our GPUL-Allreduce

with Cray MPI and NCCL in different data sizes.

4 Conclusion

This paper presents GPU-LCC, an innovative framework that

optimizes GPU-aware collective communications, which can

obtain 18.7× and 3.4× speedups over Cray MPI and NCCL

on a testbed of 64 NVIDIA A100 GPUs.

Acknowledgment

This research was supported by the Exascale Computing

Project (ECP), Project Number: 17-SC-20-SC, a collaborative

effort of two DOE organizations ś the Office of Science and

the National Nuclear Security Administration, responsible

for the planning and preparation of a capable exascale ecosys-

tem, including software, applications, hardware, advanced

system engineering and early testbed platforms, to support

the nation’s exascale computing imperative. The material

was supported by the U.S. Department of Energy, Office of

Science, Advanced Scientific Computing Research (ASCR),

under contract DE-AC02-06CH11357, and supported by the

National Science Foundation under Grant OAC-2003709,

OAC-2104023, and OAC-2311875. We acknowledge the com-

puting resources on Polaris (operated by Argonne Leadership

Computing Facility).

455



Optimizing Collective Communications with Lossy Compression for GPU Clusters PPoPP ’24, March 2ś6, 2024, Edinburgh, United Kingdom

References
[1] George Almási, Philip Heidelberger, Charles J. Archer, Xavier Mar-

torell, C. Chris Erway, José E. Moreira, B. Steinmacher-Burow, and

Yili Zheng. 2005. Optimization of MPI Collective Communication on

BlueGene/L Systems. In Proceedings of the 19th Annual International

Conference on Supercomputing (Cambridge, Massachusetts) (ICS ’05).

Association for Computing Machinery, New York, NY, USA, 253ś262.

https://doi.org/10.1145/1088149.1088183

[2] Sheng Di and Franck Cappello. 2016. Fast error-bounded lossy HPC

data compression with SZ. In 2016 IEEE International Parallel and

Distributed Processing Symposium (IPDPS). IEEE, 730ś739.

[3] Jiajun Huang, Sheng Di, Xiaodong Yu, Yujia Zhai, Zhaorui Zhang,

Jinyang Liu, Xiaoyi Lu, Ken Raffenetti, Hui Zhou, Kai Zhao, Zizhong

Chen, Franck Cappello, Yanfei Guo, and Rajeev Thakur. 2023. An

Optimized Error-controlledMPI Collective Framework Integrated with

Lossy Compression. arXiv:2304.03890 [cs.DC]

[4] Jiajun Huang, Kaiming Ouyang, Yujia Zhai, Jinyang Liu, Min Si, Ken

Raffenetti, Hui Zhou, Atsushi Hori, Zizhong Chen, Yanfei Guo, and

Rajeev Thakur. 2023. Accelerating MPI Collectives with Process-in-

Process-Based Multi-Object Techniques. In Proceedings of the 32nd

International Symposium on High-Performance Parallel and Distributed

Computing (Orlando, FL, USA) (HPDC ’23). Association for Computing

Machinery, New York, NY, USA, 333ś334. https://doi.org/10.1145/

3588195.3595955

[5] Jiajun Huang, Kaiming Ouyang, Yujia Zhai, Jinyang Liu, Min Si, Ken

Raffenetti, Hui Zhou, Atsushi Hori, Zizhong Chen, Yanfei Guo, and Ra-

jeev Thakur. 2023. PiP-MColl: Process-in-Process-based Multi-object

MPI Collectives. In 2023 IEEE International Conference on Cluster Com-

puting (CLUSTER). 354ś364. https://doi.org/10.1109/CLUSTER52292.

2023.00037

[6] Yafan Huang, Sheng Di, Xiaodong Yu, Guanpeng Li, and Franck Cap-

pello. 2023. cuSZp: An Ultra-fast GPU Error-bounded Lossy Compres-

sion Framework with Optimized End-to-End Performance. In Proceed-

ings of the International Conference for High Performance Computing,

Networking, Storage and Analysis. 1ś13.

[7] Suha Kayum et al. 2020. GeoDRIVE ś A high performance computing

flexible platform for seismic applications. First Break 38, 2 (2020),

97ś100.

[8] Peter Lindstrom. 2014. Fixed-Rate Compressed Floating-Point Arrays.

IEEE Transactions on Visualization and Computer Graphics 20 (2014),

2674ś2683.

[9] Pitch Patarasuk and Xin Yuan. 2009. Bandwidth optimal all-reduce

algorithms for clusters of workstations. J. Parallel and Distrib. Comput.

69, 2 (2009), 117ś124.

[10] Dingwen Tao, Sheng Di, and Franck Cappello. 2017. Significantly

Improving Lossy Compression for Scientific Data Sets Based on Mul-

tidimensional Prediction and Error-Controlled Quantization. https:

//doi.org/10.1109/IPDPS.2017.115

[11] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. 2005. Opti-

mization of collective communication operations in MPICH. The

International Journal of High Performance Computing Applications 19,

1 (2005), 49ś66.

[12] Kai Zhao, Sheng Di, Xin Liang, Sihuan Li, Dingwen Tao, Zizhong Chen,

and Franck Cappello. 2020. Significantly improving lossy compres-

sion for HPC datasets with second-order prediction and parameter

optimization. In Proceedings of the 29th International Symposium on

High-Performance Parallel and Distributed Computing. 89ś100.

[13] Q. Zhou, C. Chu, N. S. Kumar, P. Kousha, S. M. Ghazimirsaeed, H.

Subramoni, and D. K. Panda. 2021. Designing High-Performance MPI

Libraries with On-the-fly Compression for Modern GPU Clusters. In

2021 IEEE International Parallel and Distributed Processing Symposium

(IPDPS). 444ś453. https://doi.org/10.1109/IPDPS49936.2021.00053

456


	Abstract
	1 Introduction
	2 GPU-LCC Design and Optimization
	3 Experimental Evaluation
	3.1 Experimental Setup

	4 Conclusion
	References

