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Abstract

GPU-aware collective communication has become a major
bottleneck for modern computing platforms as GPU com-
puting power rapidly rises. To address this issue, traditional
approaches integrate lossy compression directly into GPU-
aware collectives, which still suffer from serious issues such
as underutilized GPU devices and uncontrolled data distor-
tion. In this paper, we propose GPU-LCC, a general frame-
work that designs and optimizes GPU-aware, compression-
enabled collectives with well-controlled error propagation.
To validate our framework, we evaluate the performance on
up to 64 NVIDIA A100 GPUs with real-world applications
and datasets. Experimental results demonstrate that our GPU-
LCC-accelerated collective computation (Allreduce), can out-
perform NCCL as well as Cray MPI by up to 3.4X and 18.7X,
respectively. Furthermore, our accuracy evaluation with an
image-stacking application confirms the high reconstructed
data quality of our accuracy-aware framework.
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1 Introduction

For GPU-aware collective communication, numerous re-
searchers are actively working on mitigating network con-
gestion in large-message collectives. In fact, network satu-
ration is often the major bottleneck because of limited net-
work bandwidth. For example, even with advanced networks,
such as HPE Slingshot 10, the network bandwidth is only
about 100 Gbps. A straightforward solution is designing
large-message algorithms that can minimize the transferred
data volume instead of latency [1, 4, 5, 9, 11]. Another promis-
ing solution is shrinking the message size by error-bounded
lossy compression techniques [2, 8, 10, 12], as it can signifi-
cantly reduce the data volume and maintain the data quality.

Previous lossy-compression-integrated approaches can be
divided into two categories. The first is compression-enabled
point-to-point communication (namely CPRP2P) [13], which
directly uses the 1D fixed-rate ZFP [8] to compress the data
before it is sent and decompresses the received data after it
is received. This method may cause significant overheads
and unbounded errors in the collective communications as
shown in [3]. The other category is to particularly optimize
the compression-enabled collectives. Huang et al. designed
an optimized general framework for compression-enabled
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collectives that can realize high performance for all MPI
collectives with controlled errors [3]. Nevertheless, this ap-
proach suffers from suboptimal performance on modern
GPU clusters because of under-utilized GPU devices.

To address the aforementioned limitations, we design a
generic framework for GPU-aware compression-accelerated
collective communications that can realize both high perfor-
mance and controlled error propagation.

2 GPU-LCC Design and Optimization

In this section, we present our design and optimization strate-
gies as shown in Figure 1. To be specific, we analyze the prob-
lems of prior solutions and do a comprehensive performance
breakdown to identify potential bottlenecks. Additionally,
we also characterize the performance of the lossy compres-
sor and find that the direct application of ring-based algo-
rithms for collective computation with GPU compression
may not always yield optimal results. It is hence vital to ex-
plore other algorithms that may offer superior performance.
After that, we propose the GPU-LCC framework to address
and overcome the performance issues noted in the previous
GPU-aware MPI collective framework that incorporates com-
pression, such that a superior performance can be reached.
Our contributions are 5-fold: (1) To circumvent the high
cost of device-to-host data transfer inherent in traditional
CPU-centric designs, we implement a GPU-centric design. (2)
To improve collective performance in compression-enabled
collectives, we adapt the lossy compression to suit the re-
quirements of collective communications. (3) We explore
new metrics regarding GPU compression-enabled collective
performance, focusing on minimizing total compression cost
and accuracy loss. (4) We propose two algorithm design
frameworks for both collective computation and collective
data movement to increase device utilization, decrease times
of compression/decompression, and maximize the perfor-
mance. (5) Furthermore, we improve the error-bounded lossy
compressor (cuSZp[6]) and develop a multi-stream version
to suit the context of the two collective performance op-
timization frameworks. In our performance optimization
frameworks, we try to let as many operations as possible
overlap with each other, including kernel launching, com-
pression/decompression operation, and data movement.
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| GPU-LCC Interface (GPUL-Allreduce, GPUL-Scatter) | Interface

o Collective Computation Collective Data Movement Algorithm
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Figure 1. GPU-LCC design architecture.
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3 Experimental Evaluation

We present and discuss the evaluation results as follows.

3.1 Experimental Setup

We perform the evaluation on a GPU supercomputer that
involves 64 NVIDIA A100 80G GPUs with 4 GPUs per node,
interconnected with a bandwidth of 100 Gbps. Two dis-
tinct RTM datasets [7], originating from the real-world 3D
SEG/EAGE Overthrust model, are generated under two dif-
ferent simulation settings.

Evaluation with different message sizes. We evaluate
the performance of our GPUL-Allreduce algorithm using
various data sizes up to 600 MB on a configuration of 64
NVIDIA A100 GPUs across 16 nodes. As observed in Figure
2, our recursive doubling-based GPUL-Allreduce (ReDoub)
consistently outperforms across all data sizes, achieving up
to a speedup of 18.7x compared to Cray MPI and a 3.4x
performance improvement over NCCL. Furthermore, with
increasing data sizes, the speedup generally rises, demon-
strating high scalability with respect to data size.
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Figure 2. Performance evaluation of our GPUL-Allreduce
with Cray MPI and NCCL in different data sizes.

4 Conclusion

This paper presents GPU-LCC, an innovative framework that
optimizes GPU-aware collective communications, which can
obtain 18.7X and 3.4X speedups over Cray MPI and NCCL
on a testbed of 64 NVIDIA A100 GPUs.
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