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Homological mirror symmetry at large volume

Benjamin Gammage and Vivek Shende

A typical large complex-structure limit for mirror symmetry consists of toric

varieties glued to each other along their toric boundaries. Here we construct the

mirror large volume limit space as a Weinstein symplectic manifold. We prove

homological mirror symmetry: the category of coherent sheaves on the first space

is equivalent to the Fukaya category of the second.

Our equivalence intertwines the Viterbo restriction maps for a generalized

pair-of-pants cover of the symplectic manifold with the restriction of coherent

sheaves for a certain affine cover of the algebraic variety. We deduce a posteriori

a local-to-global principle conjectured by Seidel — certain diagrams of Viterbo re-

strictions are cartesian — by passing Zariski descent through our mirror symmetry

result.
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1. Introduction

Homological mirror symmetry concerns the existence of isomorphisms

Fuk(X)= Coh(Y )

between the Fukaya category of a symplectic manifold and the category of coherent

sheaves on an algebraic variety [Kontsevich 1995]. It serves as an underlying

explanation for various matchings of holomorphic curve invariants of X with

Hodge-theoretic invariants of Y , which are recovered from the categorical statement
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by studying Hochschild homology and related structures [Costello 2005; Katzarkov

et al. 2008; Ganatra et al. 2015; Căldăraru and Tu 2020].

The model case in which mirror symmetry may be expected to hold is when

X and Y admit dual “SYZ” Lagrangian torus fibrations over a common base

[Strominger et al. 1996]. Indeed, in this case a local system on a torus fiber

of X yields both an object of Fuk(X) and also a point on the dual torus (hence a

skyscraper sheaf in Coh(Y )). However, for general X, Y one will need fibrations

with singularities, which are hard to construct, hard to dualize, and hard to study

[Kontsevich and Soibelman 2001].

Mirror symmetry is best understood when the algebraic variety is infinitesimally

near in moduli to a “large complex structure limit”. For example, for a hypersurface

in projective space, this means being close to a union of hyperplanes. A natural

and very general setting for studying such phenomena is that of toric degenerations

[Gross and Siebert 2006; 2010]. In the present article we will be interested for the

most part solely in the central fiber of such a degeneration: our Y will be a union of

toric varieties glued along their toric boundaries. Note that as Y has singularities,

the derived Hom spaces between coherent sheaves may be unbounded even if Y is

compact.

A choice of ample line bundle on Y gives moment maps to its toric components,

and hence a fibration Ã : Y → 9 over some space 9 glued from their moment

polytopes: this fibration should be understood as the SYZ fibration. Traditionally,

the base 9 is a topological manifold (but see Example 4-24, in which we consider

the case of three lines meeting at a point). Note that 9 carries naturally an integral

affine structure on each face of these polytopes — that is, along the tangent directions

to the face, but not in their normal directions.1 The space 9 also carries a sheaf

of lattices R1Ã∗Z. The SYZ picture suggests that there should be an embedding

R1Ã∗Z ↪→ T∗9 and X = T∗9/R1Ã∗Z. (Note that this will have noncompact fibers

over the positive-codimensional strata of 9.)

However, we will prefer a dual picture. As we are only interested in the complex

(rather than Kähler) geometry of Y , it is not natural to require the toric varieties in Y
be polarized or even projective. Instead of a moment polytope, we associate to a toric

variety its fan, the collection of rational polyhedral cones of toric cocharacters with

the same limit point. We glue together these fans into a stratified space 8, whose

k-dimensional strata correspond to k-dimensional cones in fans of components of Y .

When the SYZ base 9 is well-defined, the space 8 is dual to it in a sense that can

be made precise in terms of the discrete Legendre transform; at the topological

level, this duality entails an anti-isomorphism between the stratification posets of 9

1Gross and Siebert [2006; 2010] argue that appropriate deformations of Y to a smooth variety

correspond to extensions of the integral affine structure over the complement of a codimension-2

discriminant in 9. As we are interested solely in the central fiber, this will play no role here.
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and 8. In duality to the situation for 9, each k-stratum in 8 has an integral affine

structure only in its normal directions.

In Section 2, we make precise the notion of a stratified manifold where the

normal geometry to each stratum is a fan. We will show that these fanifolds provide

the organizing topological and discrete data for homological mirror symmetry at

large volume.

In Section 3, we explain how a fanifold encodes a gluing of toric varieties and

organizes functorialities and descent among their categories of coherent sheaves.

More precisely, we describe a functor T from fanifolds to algebraic spaces and

define Y = T(8).

As we have mentioned, the SYZ picture indicates that X should be noncompact.

As Y is singular, there are necessarily infinite dimensional (derived) Hom spaces

in Coh(Y ), which will correspond to the infinite-dimensional Hom spaces in the

wrapped Fukaya category of X . In order to define the wrapped category, we require

not only the data of the symplectic manifold X , but the additional choice of a

conical primitive at least in the complement of a compact set. In fact, X will be

exact: in Section 4 we explain how to construct for any 8 a Weinstein manifold

X =W(8).

Our construction of W(8) is guided by the idea of gluing together mirror

symmetry for toric varieties. From [Fang et al. 2011; Kuwagaki 2020] we know

that the mirror category to a toric variety with fan 6 =
⋃

Ã is controlled by the

conic Lagrangian L(6) :=
⋃

Ã§×Ã in the conormal bundle to a torus. (Moreover,

when 6 is simplicial, it is shown in [Gammage and Shende 2022; Zhou 2020]

that L(6) is the relative skeleton of the Liouville sector associated to the expected

Hori–Vafa superpotential.) In that case, the projection to the cotangent fiber gives a

stratified map L(6)→6; the guiding principle behind our construction of W(8)

is that its skeleton should have an analogous map L(8)→8.

It remains to prove homological mirror symmetry, which we accomplish as

follows: By [Ganatra et al. 2018a] we may calculate W(8) in terms of the sheaf

of categories of microsheaves (as defined in [Shende 2021; Nadler and Shende

2020]) over L(8); pushing this forward, we obtain a constructible sheaf of categories

over 8. Meanwhile, by [Gaitsgory and Rozenblyum 2017b, Chap. 8.A, Thm. A.1.2]

we may calculate the coherent sheaves over T(8) in terms of a limit of categories

of coherent sheaves on toric varieties; in other words, Coh(T(8)) is computed as

global sections of a second sheaf of categories over 8.2 The main calculation of

[Gammage and Shende 2022] shows that these two sheaves of categories are locally

equivalent. To establish a global equivalence, we will need a way of calculating

microsheaf categories from local pieces; in Section 4E, we explain how the fact

2The importance of this result for mirror symmetry was first recognized in [Nadler 2016].
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that W(8) has a cover by cotangent bundles in which L(8) is conical makes this

calculation possible.

We state our mirror theorems in Section 5 and prove them there under the

hypothesis that all fans are smooth; Section 6 removes this hypothesis. All the

results of the article in fact hold in the setting of stacky fans; for expository reasons

we restrict ourselves to ordinary fans until Section 6, where we explain the minor

adjustments required to work in the stacky case.

A key feature of our mirror symmetry result is that it intertwines certain Viterbo

restriction functors of Fukaya categories with restriction of coherent sheaves to

Zariski-open subsets. This is of paramount importance to the problem of deforming

our mirror symmetry result to one for smooth compact manifolds, as we explain in

Section 7.

Categorical notions and notations. For foundations on DG categories, we refer to

the development in [Gaitsgory and Rozenblyum 2017a].

We denote the category of colimit-complete dg categories and colimit-preserving

functors by ∗DG; the notation reminds us that all morphisms are left adjoints

when viewed as morphisms of dg categories (though their adjoints will not in

general live in ∗DG). Similarly, we write DG∗ for the category of colimit-complete

dg categories and limit-preserving functors. Note that taking adjoints gives an

identification (∗DG)op = DG∗, so that colimits in ∗DG can be computed as limits

in DG∗, which are simply limits in the category of categories.

We write dg for the category of small dg categories. Taking Ind-objects (or

equivalently, passing to module categories) gives a full embedding dg→ ∗∗DG

into the category of colimit-complete dg categories and functors which preserve

colimits and compact objects (equivalently, functors which are left adjoints of

left adjoints). The image of this embedding is the full subcategory of compactly

generated categories.

We always use the least decorated name for the presentable variant of a DG

category. Thus we write Coh for what is termed IndCoh in [Gaitsgory and Rozen-

blyum 2017a; 2017b], and Fuk for what would elsewhere be called the category of

modules over the Fukaya category.

2. Fanifolds

In this section, we make precise the notion of a stratified manifold for which the

geometry normal to each stratum is equipped with the structure of a fan.

Let us fix some notation for stratified spaces. We will consider only spaces

which are stratified by finitely many strata and which are conical in the comple-

ment of a compact set. For such a stratified space S, we write S for the natural

compactification.
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For a stratified space S, we write Exit(S) for the exit path category of S.

These serve to organize constructible sheaves, which are equivalent to functors

from Exit(S), and constructible cosheaves, which are equivalent to functors from

Exit(S)op. For a stratum F , we write ExitF (S) for the category of exit paths starting

at F contained inside a sufficiently small neighborhood Nbd(F).

Consider a stratified space S which is given as a germ of a closed subset in a

manifold and whose strata are smooth submanifolds. We will express properties

of S in terms of a choice of ambient manifold M, although they will only depend

on the germ of S. Fix a stratum F of S. Taking deformation to the normal cone,

we obtain a stratification of the normal cone CFS ¢ TFM. We say that S is

smoothly normally conical if some choice of tubular neighborhood TFM→M

induces locally near F a stratified diffeomorphism CFS→ S, inducing the identity

CFS→ CFS upon deformation to the normal cone.

Example 2-1. A typical example of a smoothly normally conical stratification is

a polytopal decomposition of a vector space; a typical nonexample is the cusp

y2 = x3.

Definition 2-2. We denote by Fan↠ a category whose objects are pairs (M, 6),

where M is a lattice and 6 is stratified by finitely many rational polyhedral cones

in M ¹R. A map (M, 6)→ (M ′, 6′) in Fan↠ is the data of a cone Ã ∈6 and an

isomorphism M/ Span(Ã )∼= M ′, such that 6′ consists of the images of cones in 6

whose closures contain Ã ; we may therefore write 6′ =6/Ã .

Remark 2-3. There are other interesting notions of morphisms of fans, which is

why we use the decoration ↠.

We may view a fan 6 as a space stratified by its cones; evidently, it is smoothly

normally conical. We have a natural identification of posets

Exit(6)∼= Fan↠6/, Ã 7→ [6 7→6/Ã ].

In addition, the normal geometry to Ã is that of the fan 6/Ã . We wish to study

stratified spaces whose normal geometry has this local model.

Definition 2-4. A fanifold is a smoothly normally conical stratified space 8¢M,

equipped with the following data:

• a functor Exit(8)→ Fan↠, whose value on a stratum F determines a (local

system of) lattice MF and rational polyhedral fan 6F ¢ MF ¹R,

• for each stratum F ¢ S, an isomorphism of the normal bundle Æ : TFM
∼=

MF ¹R carrying the induced stratification on the normal cone CF8 to the

standard stratification induced by the fan.

These data are required to satisfy the following compatibility:
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Given a stratum F ′ of the induced stratification on Nbd(F) (equivalently,

given a stratum F ′ of the normal cone CF8), the above trivialization gives

an associated cone ÃF ′ ¢6F . The tangent bundle to F ′ naturally extends

over F , and we get an induced map on normal bundles TFM→TF ′M|F ,

which is the quotient by the span of ÃF ′ . We ask that this map is intertwined

by Æ with the corresponding map on lattices MF → M ′F . (In case 6F

spans MF , this is automatic.)

Note that we may regard a manifold as a fanifold: the normal to the unique

stratum is simply zero, and we equip it with the trivial fan. The product of a

manifold and fanifold is naturally a fanifold; in fact, since the product of fans is a

fan, the product of fanifolds is a fanifold in a natural way.

However, we impose a restriction on the fanifolds we will study here:

Assumption 2-5. Throughout this paper, we require that all strata in the fanifolds

we consider are contractible, so that the local systems of lattices appearing in

Definition 2-4 are trivial. In this case, it follows from the definition that ExitF (8)

is equivalent to the poset Exit(6F ).

Example 2-6. Consider a single point p in some ambient n-manifold M. The

point p carries a natural fanifold structure, where we equip the normal bundle to

the point with the trivial fan of cones, whose only cone is {0}. (This fan is familiar

in toric geometry as the fan of cones describing the toric variety G
n
m .)

Example 2-7. Consider a circle stratified by r points and r intervals, for any r g 1.

This space acquires a fanifold structure from the evident identification of the normal

geometry at each point with the fan in R consisting of the origin and both rays. For

r = 1 we denote this fanifold as⃝•.

Example 2-8. Let 6 be a fan of cones in R
n , and view 6 as stratified by its cones.

Then equipping the stratum Ã with normal fan 6/Ã determines a fanifold structure

on 6.

Example 2-9. Consider R
n equipped with an integral polyhedral decomposition in

the sense of [Gross and Siebert 2003, Definition 2.3]. Each k-face is contained in a

k-dimensional affine subspace of R
n , so that its normal directions are the quotient

of R
n by its affine span, and the faces incident on it determine a fan of cones in this

quotient, giving R
n a fanifold structure.

Example 2-10. If 8¢M is a fanifold, and N ¢M is a submanifold transverse to

all strata in 8, then 8∩N ¢N inherits a fanifold structure in an evident way.

Example 2-11. If 6 is a fan of cones in R
n+1, and we write Sn :=

{∑
x2

i =1
}
¢R

n+1

for the standard embedding of the n-sphere, then 6 ∩ Sn ¢ Sn carries a natural

fanifold structure.
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Recall we assume that our stratified spaces are conical at infinity. Given a

fanifold 8, we write ∂∞8 for the ideal boundary — i.e., the stratified space for

which, in the complement of a compact set, 8≈ R>0× ∂∞8. The ideal boundary

∂∞8 may be identified with a hypersurface in 8, and as such carries a natural

fanifold structure. (One might also formulate a notion of fanifold with boundary,

but we will avoid doing so here.)

Fanifolds may be glued along common subsets of their ideal boundary. That

is, given n-dimensional fanifolds 8, 8′ and an (n − 1)-dimensional fanifold U ,

along with open embeddings (with boundary transverse to all strata) U ↪→ ∂∞8

and U ↪→ ∂∞8′, there is a natural gluing 8#U 8′.

Remark 2-12. One can always think of a fanifold 8 as being constructed by iterative

“handle attachments”, in the following way: At a 0-stratum P , by definition, the

local geometry is that of some fan 6P . So begin with a disjoint union of fans

80 :=
∐

6P corresponding to the 0-strata, equipped with the canonical fanifold

structure. For each 1-stratum I , there will be some transverse fan 6I . The ideal

boundary ∂∞ I will have some subset ∂in I which is in the direction of the interior

of 8, and we may use it to perform a gluing 80#6I×∂in I (6I × I ). (Note that 8

may not have 0-strata, in which case ∂in I will be empty, as will 80, and this gluing

will be trivially equal to 6I × I .) Doing this for all 1-strata yields a 1-dimensional

fanifold 81, to which we then attach handles S×6S for each 2-stratum S, and so on.

Note that not all handle attachments change the geometry. For example, when

8 = 6 is already a fan, after beginning with 80 = 6, we still attach 1-handles,

2-handles, etc., for all the remaining cones of the fan, but each of these handle

attachments acts trivially on the fanifold (just as a connect sum with a ball acts

trivially on a manifold).

In Section 4C, we will lift this procedure to a construction of symplectic mani-

folds, essentially by replacing S by T ∗S and 6 by the FLTZ skeleton associated to 6.

3. B-model

A lattice M and a fan 6 ¢ M ¹ R classically determine a toric variety T(6),

constructed by gluing the affine varieties Spec k[Ã ] via the evident inclusions. A

cone Ã ∈ 6 also determines a toric orbit O(Ã ) in T(6) whose closure O(Ã ) is

itself a toric variety, canonically isomorphic to T(6/Ã).

That is, there is a functor

T : (Fan↠)op→ Schemes (3-1)

carrying all morphisms to closed embeddings. In this section, we study the extension

of this functor from fans to fanifolds.
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3A. Schemes from fanifolds. A fanifold 8 includes the data of a functor

Exit(8)→ Fan↠.

We denote the composition of this functor with (3-1) also by

T : Exit(8)op→ Schemes .

A functor with domain Exit(8)op would define a cosheaf if it were valued in a

cocomplete category, in which case its global sections would be computed by the

colimit

T(8) := lim
−−→

Exit(8)op

T(F).

Unfortunately, the category Schemes is not cocomplete; in fact, it is not even

guaranteed to contain colimits of pushout diagrams. Although a pushout diagram

of affine schemes A ← B → C certainly admits a pushout in the category of

affine schemes — namely the spectrum of the limit of the corresponding rings —

this need not agree with the pushout in the category of schemes, even when both

exist. (Consider for instance the diagram Spec k[t]←Spec k[t, t−1]→Spec k[t−1].)

However, if at least one of the morphisms is a closed immersion, then the pushout of

affine schemes is the same as the pushout of schemes [Schwede 2005, Theorem 3.4].

Moreover, for arbitrary diagrams of schemes A← B→ C in which both mor-

phisms are closed immersions, the pushout exists [Schwede 2005, Corollary 3.9].

(The requirement that the second morphism is also an immersion is used to construct

an affine cover to which the previous theorem may be applied locally. In situations

where such a cover can be given by hand, it suffices for one of the morphisms to be

a closed immersion.)

Example 3-2. Consider a fanifold 8 with two interior 0-strata, and a single interior

1-stratum joining them. Such a fanifold entails the data of a fan 6 (for the 1-stratum)

and two fans 6′, 6′′ for the 0-strata, along with rays Ã ′ ∈ 6′ and Ã ′′ ∈ 6′′ and

identifications

6′/Ã ′ ∼=6 ∼=6′′/Ã ′′.

This determines isomorphisms of toric varieties O(Ã1)∼= T6
∼= O(Ã2). Thus, the

maps T(61)← T(6)→ T(62) are both closed embeddings, so the pushout T(8)

of the diagram exists as a scheme.

Example 3-3. Let 6 be a fan of cones in R
n+1, and consider the fanifold 8 =

6∩ Sn ¢ Sn defined in Example 2-11. It is natural to guess that the global sections

lim
−−→Exit(8)op T(F) of the cosheaf T on this fanifold produces the toric boundary

∂T(6) of the toric variety T(6). We may check whether or not ∂T(6) agrees

with this colimit affine-locally, in the restrictions for the standard affine toric charts

on T(6). In each of these, the colimit is evidently an iterated pushout of affine
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varieties along closed embeddings, hence by [Schwede 2005, Theorem 3.4] given

by an affine scheme which is the spectrum of the appropriate limit of rings. That

the toric boundary has this property is checked in [Gammage and Shende 2022,

Lem. 3.4.1].

Proposition 3-4. If Exit(8) is equivalent to a poset, then the colimit

T(8) := lim
−−→

Exit(8)op

T(F)

exists in the category of schemes.

Proof. We can compute this colimit as a sequence of pushouts. We begin with the

top-dimensional cells of 8: the coproduct of T over the top-dimensional strata

is a disjoint union of points, which we denote by Z0. We would like to proceed

inductively by defining

Zk := lim
−−→

(
Zk−1←

∐
∂T(F)→

∐
T(F)

)
, (3-5)

where the coproduct (disjoint union) is taken over all codimension-k strata F .

The right-hand map in (3-5) is an embedding and the left-hand map is finite,

which is not quite sufficient to apply [Schwede 2005, Corollary 3.9]. We can resolve

this by instead attaching the T(F) one at a time, in which case the hypothesis that

Exit(8) is a poset implies that the relevant inclusion of ∂T(F) is an embedding. □

Note that the hypothesis of the proposition is inherited by any locally closed

constructible subset of 8. This ensures that each of the iterative pushouts Zk exists

as a scheme.

Example 3-6. Consider⃝•, the stratification of a circle by a point and an interval,

as in Example 2-7. The exit path category Exit(⃝•) = (•⇒ •) is the Kronecker

quiver, which is not a poset. Nevertheless, the colimit in question exists. (One

could deduce this from [Schwede 2005, Corollary 3.9] by first deleting a point on

P
1 to reduce to the affine case.) The result T(⃝•) is the irreducible nodal curve

of genus 1, which is certainly an example of interest to us. In order to apply the

theorems we prove here to this example and others of a similar nature, one can

perform all calculations on a cover and conclude by invoking étale descent.

Let us state in general a result we already used in a special case during the proof

of Proposition 3-4.

Proposition 3-7. Let 8 be a fanifold with ideal boundary ∂∞8. Assuming Exit(8)

is a poset, there is a finite morphism of schemes T(∂∞8)→ T(8).

Proof. The existence of the schemes (and map) follows from Proposition 3-4. The

morphism is finite because it is a finite colimit of embeddings. □
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Example 3-8. Consider 8=R×Rg0, stratified as (R×R>0)⊔(R×{0}). We equip

this with a fanifold structure by putting the fan of A
1 normal to the “boundary”

stratum R×{0}. Evidently, T(8)= A
1. The ideal boundary ∂∞8, which we can

picture as an infinite-radius semicircle, is a closed interval, with the fan of A
1 placed

at each endpoint. Thus, T(∂8)= A
1 ⊔0 A

1, and the map T(∂8)→ T(8) identifies

the two A
1.

Example 3-9. Let 8 be the 2-disk stratified by a single 0-stratum, 1-stratum, and

2-stratum. We can equip 8 with fanifold structure by putting the fan of A
2 at the

point, the fan of A
1 along the interval, and the trivial fan on the 2-stratum. The

exit path category of 8 is •⇒ •→ •. In the iterative construction described in the

proof of Proposition 3-4, Z0 is a point, Z1 is A
1, and

Z2 = lim
−−→

(A1← (A1 ∪0 A
1)→ A

2).

This colimit corresponds to the fanifold gluing of the fan of A
2 and the fanifold of

Example 3-8 along their ideal boundaries, each of which is a closed interval.

Because everything in sight is affine, we may invoke Theorem 3.4 of [Schwede

2005] to deduce that the colimit exists and agrees with the colimit of affine schemes,

which may in turn be computed to be k[x+y, xy, xy2]∼=k[a, b, c]/(b3+c2=abc).3

Let us describe explicitly an affine cover of T(8). Given a stratum F of 8,

we obtain a fanifold structure on the closure F by restriction. Assuming that

Exit(8) was a poset, the same holds for F . In this case, T(F) is a colimit of affines

along embeddings, hence it is itself affine. Collecting from all strata F the maps

T(F)→ T(8), we obtain an affine (hyper)cover.

We may make a similar construction even without the hypothesis that Exit(8) is

a poset.

Proposition 3-10. For 8 a fanifold, T(8) := lim
−−→Exit(8)op T(F) exists as an alge-

braic space.

Proof. For a stratum F , let F̃ be the “blowup” of F obtained by replacing the

topological boundary of F with the space of pairs ( f, c), where f ∈ ∂ F and c
is a choice of cone along which F arrives in the normal bundle to the stratum

containing f . The space F̃ carries a natural fanifold structure, and the colimit T(F̃),

as an iterated pushout of affines along closed inclusions, is affine. The natural

inclusions among the T(F̃) form an étale equivalence relation, giving a presentation

of T(8) as an algebraic space. □

3We thank David Madore, Laurent Moret-Bailly, David Speyer, and especially Dan Petersen for

help at https://mathoverflow.net/questions/389117/can-i-glue-the-x-axis-to-the-y-axis.
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Example 3-11. Consider again the circle⃝•, stratified by a point p and interval I .

Then Ĩ is a closed interval, and T( Ĩ )=A
1⊔0 A

1. The map T( Ĩ )→T(⃝•) identifies

the two copies of A
1 \ 0 by z 7→ 1/z.

Remark 3-12. It may be that with additional care, one could find local affine charts

by hand. This would allow [Schwede 2005, Theorem 3.4] to be used in place of

[Schwede 2005, Corollary 3.9] in the proof of Proposition 3-4, showing that T(8)

is a scheme in general.

Remark 3-13. Ideas similar to those of this subsection appear in [Gross and Siebert

2006, Section 2].

3B. Coherent sheaves. We now turn to studying coherent sheaves on these glued-up

objects.

Let us fix some notation. For a scheme (or algebraic space, stack, etc.) Z , we

write Coh(Z) for the category of dg modules over the classical category of coherent

sheaves on Z . The theory of this category is extensively developed in [Gaitsgory and

Rozenblyum 2017a; 2017b], where it is termed IndCoh. Coh(Z) is a presentable

dg category. We write Coh! : Sch→ ∗DG for the functor taking Z 7→ Coh(Z)

and morphisms of varieties to pushforward. When restricted to proper morphisms,

this functor lands in ∗∗DG, since pushforward along proper morphisms preserves

coherent sheaves in the ordinary sense. We similarly write Coh! : Schop→DG∗ for

the corresponding functor taking morphisms of varieties to pullbacks; again it lands

in ∗DG∗ when restricted to proper morphisms. These functors carry equivalent

information; each is obtained from the other by taking adjoints (of the images of

morphisms).

We may then produce a composite functor

Coh! ◦T : Exit(8)→ ∗DG∗.

Limits in any of ∗DG, DG∗, etc., exist and agree with the limit in the underlying

category of DG categories. Thus, the above composition defines a sheaf of categories

(independently of our above considerations about when we can take sections of T).

Similarly, there is a constructible cosheaf Coh! ◦T, related to the sheaf above by

taking adjoints. This cosheaf is valued in ∗∗DG, so if desired it may be restricted to

the full subcategory of compact objects, which is the (dg) bounded derived category

of coherent sheaves in the ordinary sense.

Proposition 3-14. The natural map

(Coh! ◦T)(8)= lim
−−→

Exit(8)op

Coh(T(F))→ Coh( lim
−−→

Exit(8)op

T(F))= Coh(T(8))

is an equivalence. (Here if necessary we understand T(8) as an algebraic space.)
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Proof. We showed above that the colimit of spaces on the right-hand side can be

calculated by iterated pushouts along diagrams where one map is an embedding

and the other is finite. As the strata are contractible, the left-hand colimit entails the

same sequence of pushouts (now taken in ∗∗DG). By Zariski (or étale if Exit(8)

is not a poset) descent, we may reduce the question of checking equivalence to a

calculation local on the cover by the T(F) described above.

Finally, we apply the result [Gaitsgory and Rozenblyum 2017b, Chap. 8.A,

Thm. A.1.2] that pushouts of affine schemes along diagrams where one inclusion

is an embedding and the other is finite are carried to pushouts of coherent sheaf

categories. □

We have seen that constructible open subsets of 8 correspond to closed subsets

of T(8). Taking complements, we can associate an open subset of T(8) to a

constructible closed subset of 8.

Proposition 3-15. Writing Closed(8) for the poset of constructible closed subsets
of 8, where morphisms are inclusions, we have a functor

U : Closed(8)→ Spaces, Z 7→ T(8) \T(8 \Z).

If Exit(8) is a poset, the functor lands in schemes.

Example 3-16. For 8 =⃝•, the closed constructible subsets are • and ⃝•. We

have U(•)= P
1 \ {0,∞}, and U(⃝•)= P

1/{0=∞}.

In general, for a closed inclusion of algebraic spaces S ¢ T , one has an exact

sequence

Coh(S)→ Coh(T )→ Coh(T \ S)→ 0.

Taking S ¢ T to be the inclusion T(8\Z)¢ T(8) as above, we obtain an exact

sequence

(Coh ◦T)(8 \Z)→ (Coh ◦T)(8)→ (Coh ◦U)(Z)→ 0. (3-17)

We conclude that the functor Coh ◦U is completely determined from Coh ◦T. It

does not follow formally from the fact that Coh! ◦T is a sheaf that Coh ◦U satisfies

any descent properties, but this is nevertheless true:

Proposition 3-18. Given closed constructible subsets C ∪D the natural map

Coh(U(C ∪D))→ Coh(U(C)) ×
Coh(U(C∩D))

Coh(U(D))

is an isomorphism.

Proof. This is descent for a Zariski cover. □
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Remark 3-19. Proposition 3-18 applies without the hypothesis that Exit(8) is a

poset but may not be very useful in such cases. For instance,⃝• has no nontrivial

covers by closed constructible sets. One can repair this by defining a version of U for

noninjective maps — for instance, from the F̃ used in the proof of Proposition 3-10.

4. A-model

In this section, we construct the expected SYZ dual space to T(8).

Theorem 4-1. Given a fanifold 8 (with contractible strata), there is a subana-
lytic Weinstein manifold W(8), a conic subanalytic Lagrangian L(8) ¢W(8)

containing the skeleton of W(8), and a map Ã : L(8)→ 8, with the following
properties:

(1) Let F ¢8 be a stratum of codimension d. Then:

• Ã−1(F)∼= F × T d , where T d is a d-torus.
• Ã−1(Nbd(F))∼= F × LF , where Nbd(F) is an appropriate neighborhood,

and LF is the FLTZ Lagrangian associated to the normal fan of F.
• In a neighborhood of this F × T d , there is a symplectomorphism of pairs

(T∗F ×T∗T d , F × LF ) ↪→ (W(8), L(8)).

(2) If 8 is closed, then L(8) is equal to the skeleton of W(8).

(3) A subfanifold 8′ ¢8 determines a Weinstein subdomain W(8′)¢W(8) such
that L(8′)¢W(8′)∩ L(8).

Finally, W(8) carries a Lagrangian polarization given in the local charts by
taking the base direction in T∗F and the cotangent fiber direction in T∗T d .

Remark 4-2. In fact the construction (and indeed this entire section) works without

the hypothesis of contractible strata, though in that case Ã−1(F) and Ã−1(Nbd(F))

will be possibly nontrivial bundles over F , with fibers T d and LF , respectively.

Remark 4-3. We have chosen our conventions so that ∂∞(L(8))∼= L(∂∞8). In-

deed, one can see from our construction that there is a Liouville hypersurface

embedding W(∂∞8)¢ ∂∞W(8) such that L(8) is the relative skeleton of the pair

(W(8), W(∂∞8)).

Remark 4-4. It would be straightforward to obtain the germ of W(8) along

L(8) by gluing the putative charts (T∗C × T∗T d , F × LF ). However, to get an

exact symplectic form giving a Liouville manifold with core 3, one would have

to carefully modify the local cotangent forms in order to interpolate between

them, while preserving the skeleton and maintaining the existence of a convex

neighborhood thereof. Rather than — or in order to — do this, we construct W(8)

using the handle attachment process, which already has the desired interpolations

built in.
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Remark 4-5. The map Ã is presumably the restriction of a large-volume-limit

fibration Ã̃ :W(8)→8 to the skeleton. We expect that with additional care, the

construction described in this section would produce this fibration, in fact as an

integrable system with noncompact fibers. (This would require checking that the

various adjustments made in the handle attachment process can be made compatibly

with the projection.) Note that if we fix an appropriate line bundle on T(8) so that

it makes sense to discuss the B-side SYZ base 9 glued from moment polytopes,

then 8 is combinatorially dual to 9.

Remark 4-6. The map L(8)→8 has a natural section, glued together from the

sections L(6)→6 given by the inclusion of the cotangent fiber at zero. We thank

Alex Takeda for this observation.

4A. Review of Liouville manifolds, skeleta, and gluing. By definition, a Liouville
domain (W, É = d¼) is an exact symplectic manifold-with-boundary such that

the Liouville vector field Z = É#¼ is outwardly transverse to the boundary, which

we denote by ∂∞W . This is closely related to the notion of Liouville manifold,

which is a Liouville domain extended by an infinite symplectization cone of the

form Rg0× ∂∞W . The typical examples of Liouville domains and manifolds are

codisk and cotangent bundles, respectively, with the tautological “p dq” form. The

textbook reference for these notions is [Cieliebak and Eliashberg 2012]. For our

purposes, the Liouville manifold is the fundamental object, and we use domains

only to be precise about various intermediate steps of constructions; as is common

in the literature, we often pass back and forth between Liouville domains and

Liouville manifolds without much comment.

Definition 4-7. We say a subset of a Liouville manifold is conic if it is invariant

under the Liouville vector field. By definition the skeleton LW of a Liouville

manifold W is the maximal conic compact subset.

The Liouville vector field gives W \LW a free action of R, for which the quotient

is canonically identified with ∂∞W . More generally, for any conic subset K ¢W ,

we write ∂∞K for (K \LW )/R (or equivalently for its intersection with the boundary

of some Liouville subdomain completing to the Liouville manifold W ).

Definition 4-8. For a subset V ¢ ∂∞W , the relative skeleton associated to V is

the subset LW,V := LW ⊔RV . (Usually, we are interested in situations where V is

Legendrian and itself the skeleton of a Liouville hypersurface in ∂∞W .)

The outward condition on the vector field creates an evident difficulty with gluing

Liouville domains along their boundaries. However, when gluing along a standard

neighborhood of a Legendrian, one can modify the vector field in such a way that

the resulting glued-up manifold is again Liouville. The modification is canonical
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up to contractible choices. This construction originates in [Weinstein 1991]; we

briefly review the idea here.

Consider a smooth Legendrian L¢ ∂∞W . Let us fix such a standard neighbor-

hood

¸ : Nbd∂∞W (L) ↪→ J 1
L,

which we extend to a neighborhood

À : NbdW (L) ↪→ J 1
L×Rg0 = T∗L×R×Rf0 = T∗(L×Rf0),

chosen so that the Liouville flow on W is identified with the translation action

on Rf0.

We now define another space W̃ by first modifying the Liouville flow on W
so it is carried instead to the cotangent scaling on T∗(L×Rf0) when sufficiently

close to ∂L, and then taking the conic completion of W . W̃ is an exact symplectic

manifold-with-boundary; in fact, it is a Liouville sector with exact boundary in

the sense of [Ganatra et al. 2020, Section 2], whose skeleton LW̃ is the relative

skeleton LW,L defined above.

Note that ¸ induces an identification of the actual (not ideal-at-infinity) boundary

of W̃ with J 1L; we denote this also by ˜̧: ∂W̃
∼
→ J 1L. Similarly, we have

À̃ : NbdW̃ (L) ↪→ T∗(L×Rf0),

which by construction matches the Liouville structure on W̃ to the standard cotan-

gent scaling, at least over some (−ϵ, 0] ¢ Rf0. Under the (symplectic but not

Liouville-preserving) embedding W ¢ W̃ , whose image contains a neighborhood

of L, we have À̃ |W = À .

Given Liouville domains (W, ∂∞W ) and (W ′, ∂∞W ′), and a smooth manifold L

with Legendrian embeddings ∂∞W ←↩ L ↪→ ∂∞W ′, we write

W #LW ′ := W̃ ∪J 1L W̃ ′.

The space W #LW ′ is a Liouville manifold, but we use the same notation for some

domain completing to it. On skeleta we have

LW #LW ′ = LW,L ∪L LW ′,L.

We will also want to glue together some conical Lagrangians in W, W ′ to form

a new Lagrangian in W #LW ′.

Definition 4-9. We say that a conic subset V¢W is (À -)biconic if its image under À

is invariant also under the cotangent scaling in the T∗(L×Rf0) direction. Inspection

of the deformation used in [Weinstein 1991] shows that biconic subsets remain

conic in W̃ ; we write Ṽ¢ W̃ for the saturation under the Liouville flow.
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It is easy to rephrase the biconicity condition in terms of the standard neighbor-

hood ¸ chosen above:

Lemma 4-10. For L¢∂∞W a smooth Legendrian, and V¢W a (possibly singular)

Lagrangian, the following are equivalent:

• V is conic and ¸(∂∞V)¢ T∗L× 0¢ J 1L.

• V is biconic.

Moreover, in this case À(V∩NbdW (L))= ¸(∂∞V)|T∗L×Rf0 ¢ T∗L×T∗Rf0.

Given biconic Lagrangians V¢W and V
′ ¢W ′ with matching ends in the sense

that ˜̧(∂∞V)= ˜̧ ′(∂∞V
′), we may form a new Lagrangian

V#LV
′ := Ṽ∪ Ṽ′

in the glued manifold W #LW ′. From the above discussion, we see that the glued

Lagrangian V#LV
′ is conic and in a chart near the gluing region, is a product

¸(∂∞V)|T∗L× (−ϵ, ϵ)¢ T∗L×T∗(−ϵ, ϵ).

In this article, we apply the above constructions in the special case when W̃ ′ =
T∗M and ∂ M =L. We term these handle attachments (though many authors reserve

this for the case when M is a ball). For noncompact M we require as usual conicality

at infinity. Note that such a noncompact M has both an ordinary boundary ∂ M = L

along which we glue, and an ideal boundary ∂∞M .

The gluings we consider will usually occur in the situation where L= (∂ F)×G
and we attach T∗F × T∗G, respecting the product structure. In this situation,

suppose we are given a conic V¢W which is not only biconic near (∂ F)×G as

in Lemma 4-10, but in addition factors locally as

¸(∂∞V)= ∂ F × L¢ T∗∂ F ×T∗G

for some fixed conic Lagrangian L¢ T∗G.

Definition 4-11. With L = (∂ F)× G and V ¢ W as above, the extension of V

through the handle is the gluing V#LV
′, where we define

V
′ = F × L¢ T∗F ×T∗G.

For 3¢ ∂∞W such that ¸(3)¢ T∗L× 0¢ J 1L, the relative skeleton LW,3 is

biconic. We say that we extend 3 through the handle to mean that we extend LW,3

through the handle, and take the boundary at infinity of the result.

Note that if 3 is smooth (with boundary along (∂ F)×G), then so is the extension.

More generally, other structures or properties of 3 which respect the biconic

structure can also be extended through the handle.

Let us give a criterion for biconicity:
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Lemma 4-12. Let E→ M be a vector bundle, and L= ∂∞T∗M E be the conormal
Legendrian to the zero section. Then there are local coordinates near L such that:

for any collection of submanifolds S³ ¢ E which are conic with respect to the
scaling of E , if a Lagrangian 3¢ T ∗E is contained in the union

⋃
³ T∗S³

E , then 3

is biconic along L.

Proof. Note T∗E = E· E(·T∗M as a bundle over M . We write P ¢ T∗E for the

polar hypersurface defined as the kernel of the pairing between E and E(. Then P
contains the conormal to any conic subset of E , and ∂∞P can be locally identified

with the cotangent bundle to L, compatibly with Liouville structure. Indeed, the

cotangent fibers are locally near L the conormals to (codimension-1) hyperplanes

through the origin in fibers of E .

The desired standard coordinates are swept out by applying the Reeb flow to

NbdP(L). □

Corollary 4-13. Let M ¢ N be a submanifold. Then the conormal T∗M N ad-
mits standard coordinates with respect to which any conic Lagrangian 3¢ T∗N
contained in a union of conormals to submanifolds of M is biconic.

Proof. Identify a tubular neighborhood of M with a subset of the normal bundle

TM N . Strata contained in M are (trivially) conic, so we may apply Lemma 4-12. □

Intersections of Legendrians satisfying the hypotheses of the above lemma are

quite special. To illustrate what can go wrong, we give an example where biconicity

cannot be achieved by any choice of coordinates.

Example 4-14. Consider three lines through the origin in R
3, all lying in the same

plane P , and let V¢ T∗R3 be the union of their conormals. Then ∂∞V consists of

three Legendrian surfaces C1, C2, C3 (diffeomorphic to S1×R) whose pairwise

intersections Ci ∩C j consist of two points, namely the two conormal directions to

P at the origin. These two points are also the intersection of all three surfaces.

The ideal boundary ∂∞V is not biconic (for any choice of coordinates) along any

of these surfaces. Indeed, if it were biconic to (say) C1, then at a triple intersection

point ∗, both C2 and C3 would be identified with some conic Lagrangian in T∗C1

meeting C1 only at ∗. Since the only such conic Lagrangian is the cotangent fiber,

this would imply that locally C2 = C3, which is contradicted by the definition of

the Ci . By the same reasoning, no configuration of Legendrians in which three

smooth components pass through the same point and are pairwise transverse can be

biconic, in the sense above, with respect to any of these components.

Note that the above reasoning does not disallow such a configuration of La-

grangians from being contained in the skeleton of a Liouville hypersurface. (For

instance, begin with a ball carrying the radial Liouville form, take three mutually

transverse linear Lagrangians through the origin, attach handles along their ideal
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boundaries, and then contactize.) In fact, the constructions above can be made more

generally in neighborhoods of such Liouville hypersurfaces (which take the place

of the cotangent bundle of a smooth Legendrian); for instance, standard models

for the gluing of Liouville manifolds along such Liouville hypersurfaces can be

found in [Avdek 2021; Ganatra et al. 2020, Section 2; Eliashberg 2018, Section 3.1;

Ganatra et al. 2018a, Section 9; Alvarez-Gavela et al. 2020, Section 2].

4B. Review of FLTZ Lagrangian. Fix the usual data necessary to define a toric

variety: a rank-n lattice M and a rational polyhedral fan 6 ¢ MR := M ¹Z R.

Consider the n-torus

M̂ := Hom(M, S1)= M(
R
/M(.

Note the canonical isomorphism T∗M̂ = M̂×MR. For any subset Z ¢ M , we write

Z§ ¢ M̂ for the locus of maps carrying Z to 1 ∈ S1.

For each cone Ã in 6, we write LÃ for the Lagrangian

LÃ = Ã§× Ã ¢ M̂ ×MR = T∗M̂ . (4-15)

For a cone Ã we write ∂∞Ã for its projectivization, so that ∂∞LÃ = Ã§× ∂∞Ã .

The union of these conic Lagrangians is the FLTZ Lagrangian

L(6) :=
⋃

Ã∈6

LÃ .

Recall that for a cone Ã in the fan 6, we write 6/Ã for the normal fan to Ã in

M/Ã . Using the canonical identification
'

M/Ã ∼= Ã§, we consider L(6/Ã)¢ T∗Ã§.

The Legendrian ∂∞L(6) admits biconic local coordinates respecting the geometry

of these quotient fans:

Lemma 4-16. For a fan 6, there is a system of standard coordinates

¸Ã : NÃ = Nbd(∂∞LÃ ) ↪→ J 1∂∞LÃ = T∗∂∞LÃ ×R,

indexed by cones Ã ∈6, for which L6 is biconic: ¸Ã (∂∞L(6)∩NÃ )¢ T∗∂∞LÃ ×0.
Moreover, for any cone Ä containing Ã in its closure, the Legendrian boundary

of LÄ has an expression in NÃ as a lower-dimensional FLTZ Lagrangian:

¸(∂∞LÄ ∩ NÃ )= LÄ/Ã × ∂∞Ã × 0¢ T∗Ã§×T∗∂∞Ã × 0= T∗∂∞LÃ × 0. (4-17)

The coordinates ¸Ã determine for each cone Ã a Liouville hypersurface

RÃ := ¸−1
Ã (T∗∂∞LÃ × 0)¢ ∂∞T∗M̂

containing ∂∞LÃ as its skeleton, and we may choose these coordinates to ensure
that for Ã ¢ Ǟ as above, we have RÄ ∩ NÃ ¢ RÃ .
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Proof. First observe that if the intersection LÄ ∩ LÃ = (Ä§× Ǟ )∩ (Ã§× Ã) is ever

nonempty, then the intersection Ǟ∩Ã must itself be nonempty, so that Ã is contained

in the closure of Ä . Thus, for each Ã , it is necessary to prove the biconicity near

∂∞LÃ of LÄ for such Ä . Note that in this case, there is a contravariant inclusion

Ã§ £ Ä§. Moreover, in this case we will deduce the inductive characterization

of the Legendrian ∂∞LÄ in terms of the FLTZ Lagrangian LÄ/Ã from the fact that

near Ã , the cone Ä can be described as a product Ä/Ã × Ã , so that the Lagrangian

LÄ = Ä§× Ä locally looks like ((Ä/Ã )§× (Ä/Ã ))× Ã . (Note that for Ǟ £ Ã , the

tori (Ä/Ã )§ and Ä§, which live inside respective tori
'

M/Ã ¢ M̂ , are actually the

same torus.)

Since the Lagrangian LÃ is contained in the conormal bundle T∗
Ã§

M̂ , we may

produce standard coordinates for LÃ using the method of Corollary 4-13: restrict to

a tubular neighborhood

UÃ := Nbd(Ã§)¢ M̂

of Ã§, which may be identified with a subset of the normal bundle NÃ§ M̂ , and then

apply the polar hypersurface construction of Lemma 4-12 to produce coordinates

on the boundary of

T∗
Ã§

M̂ = T∗
Ã§

(NÃ§ M̂)= (NÃ§ M̂)× (NÃ§ M̂)(× T ∗Ã§.

By Corollary 4-13, the Lagrangian LÄ , which is contained in the conormal to

Ä§ ¢ Ã§, will be biconic in these coordinates.

Unfortunately, the standard coordinates so constructed are not compatible as we

range over cones in the fan 6: For Ǟ £ Ã , we constructed a polar hypersurface PÃ

in the cotangent bundle of a neighborhood of Ã§ as the zero set of the function

fÃ : T
∗UÃ = (NÃ§ M̂)× (NÃ§ M̂)(×T∗Ã§→ R, (4-18)

which pairs the first two factors. Near Ä§ ¢ Ã§, we constructed a hypersurface

PÄ = { fÄ = 0} in the analogous way, but there is no inclusion between PÄ and

(restriction near Ä§ of) PÃ , since the function fÄ contains more terms than fÃ ,

corresponding to normal directions to Ä§ which are contained in Ã§.

We will therefore need to modify our polar hypersurface construction. For each

cone Ã in 6, we continue to write UÃ ¢ M̂ for the tubular neighborhood of Ã§

in M̂ , and we denote by VÃ ¢ T∗M̂ a conic tubular neighborhood of LÃ projecting

to UÃ under the projection T∗M̂→ M̂ , chosen moreover so that VÃ , VÃ ′ are disjoint

when Ã̄ ∩ Ã̄ ′ = {0}. We will also denote by WÃ ¢ MR the image of VÃ under the

cotangent fiber projection T∗
'

MR→ MR.

For each VÃ , we will define a function gÃ : VÃ → R, a modification of the

polar hypersurface function fÃ described above, such that the zero loci of the

restrictions gÃ |VÃ∩VÄ
and gÄ |VÃ∩VÄ

agree and, by replacing the polar hypersurface
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PÃ = { fÃ = 0} with P ′Ã := {gÃ = 0} in the polar hypersurface construction, we still

obtain coordinates in which LÃ is biconic. We will therefore obtain ribbons RÃ

which are compatible with each other, in the sense that RÄ ∩ NÃ ¢ RÃ , as desired.

We define gÃ inductively on the dimension of the cone Ã . For Ã a 1-dimensional

cone, we take

gÃ := fÃ |VÃ
,

the restriction to VÃ of the polar hypersurface pairing fÃ : T∗UÃ → R defined

in (4-18).

Now let Ä be a 2-dimensional cone spanned by rays Ã1 and Ã2. We need to extend

the function (gÃ1
, gÃ2

) : VÃ1
⊔VÃ2

→R to a function which is also defined on VÄ . To

accomplish this, observe that any nonzero linear combination (a1 fÃ1
+ a2 fÃ2

)|VÄ
:

VÄ→R, with a1, a2∈Rg0, still defines a hypersurface P ′Ä with the desired properties,

and this remains true if we allow a1(m̄), a2(m̄) to vary in the cosphere coordinate

m̄ ∈ ∂∞WÄ : in other words, the hypersurface

P ′Ä := {a1(m̄) fÃ1
+ a2(m̄) fÃ2

= 0}

contains the conormal to any submanifold in Ä§ (since the functions fÃi both vanish

there), guaranteeing that components LÄ of the FLTZ skeleton with Ǟ £ Ä are

biconic with respect to the coordinates defined by P ′Ä .

Moreover, by taking a2(m)≡ 0 in VÃ1
and a1(m)≡ 0 in VÃ2

(and both ai nonzero

in the intermediate region between the VÃi ), we obtain a function

gÄ := a1(m̄) fÃ1
+ a2(m̄) fÃ2

: VÄ → R

such that the zero locus of gi |VÃi
agrees with {gÃi = 0}. Similarly, for each

higher-dimensional cone Ä, we continue to interpolate among nonzero linear com-

binations of the functions gÃ defined for lower-dimensional cones to produce the

function gÄ . □

We recall below in Theorem 5-2 the role of L(6) in homological mirror sym-

metry [Fang et al. 2011; Kuwagaki 2020; Gammage and Shende 2022], and in

Example 4-23 its corresponding appearance as the relative skeleton of the Liouville

sector associated to a Hori–Vafa superpotential [Gammage and Shende 2022; Zhou

2020]. L(6) also arises directly from considerations around SYZ mirror symmetry;

see [Fang et al. 2012].

4C. Proof of Theorem 4-1. Now we have the ingredients needed and will proceed

exactly as described in Remark 2-12: we begin with the fanifold 80 of (neighbor-

hoods of) vertices in 8, which will contribute to W(8) a disjoint union of cotangent

bundles of tori, equipped with FLTZ Lagrangians; the edges in 8 will specify pieces

of these FLTZ Lagrangians corresponding to 1-dimensional cones, which we will
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Figure 1. For 8= [0, 1]× [0, 1], the space L(80) consists of the

four depicted corner components. Each consists of the union, in

the cotangent bundle to a 2-torus, of the zero section, the positive

conormals to the longitude and meridian, and a quadrant of the

conormal to the intersection point of the longitude and meridian

(this last being lightly shaded). The blue locus in their boundaries

(appearing as sixteen ovals not inside the corner circles) is L1.

Extending L(80) through the corresponding handles gives rise to

the edge components; attaching all these together gives L(81). The

red locus (squarish inner circuit) indicates the Legendrian L2, along

which we will attach a 2-disk in the final step.

glue together via handle attachment, and then we will extend the remaining pieces

of the FLTZ Lagrangians across the handle attachment by biconicity. The same

procedure is followed at the next step for the 2-dimensional cones, and so on.

This construction is best summarized in Figure 1.

Proof of Theorem 4-1. The fanifold 8 has a filtration 80 ¢81 ¢ · · · ¢8n =8 by

fanifolds 8k defined as neighborhoods of the k-skeleta Skk(8); we will prove the

theorem inductively over the fanifolds 8k .

At the start of stage k, we will already have W(8k−1) and Ã : L(8k−1)→8k−1

satisfying the conditions of the theorem. We will then have to construct W(8k) and

Ã : L(8k)→8k . As we have noted in Remark 2-12, 8k is constructed from 8k−1

by handle attachment. We will lift this fanifold handle attachment to a Weinstein

handle attachment on W(8k−1) to form W(8k), and we will then extend Lk−1

through the newly attached handle to form Lk .
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At stage k, for each interior k-stratum F¢8, there is a smooth closed Legendrian

LF := Ã−1(F)∩ ∂∞L(8k−1). (4-19)

We write F◦ := F \ Ã(8k−1). This F◦ is a manifold-with-boundary, where the

boundary is the portion of the ideal boundary of F which is in the interior of 8.

(That is, ∂ F◦ is what we called ∂in F in Remark 2-12.)

The local description of Ã ensures that LF
∼= ∂ F◦ × M̂F , where MF is the

rank-(n− k) lattice associated to the stratum F , and M̂F is the corresponding

Pontryagin dual (n− k)-torus. Thus, we may attach a handle T∗F◦×T∗M̂F .

We will show below that LF admits local coordinates in which L(8k−1) is locally

biconic and in fact splits locally as a product ∂ F◦× LF ¢ T∗∂ F◦×T∗M̂F . Having

done so, we may extend L(8k−1) through this handle.

We do this for all k-strata, so in total our handle attaching locus is

Lk := ∂(Ã−1
k (Skk 8))=

∐

interior F
dim(F)=k

∂∞L∩Ã−1(F),

where the union is taken over the k-strata F of 8.

We define Ã on the handle T∗F◦ × T∗M̂F as the product of projections to F◦
and to the cotangent fibers of T∗M̂F . The compatibility condition on fan structures

ensures that the restriction of this projection from L(8k) to L(8k−1) agrees with

the projection already defined there.

Finally, we must return to the point we postponed above: the demonstration

that at each stage, the LF are as advertised and that L(8k−1) have the appropriate

properties along them. For expository reasons we give steps 1 and 2 explicitly,

although they are special cases of the general procedure at step k. (By step 2 one

sees essentially the full complexity of the construction.) It may be helpful to read

these steps while referring to Example 4-22 and Figure 1.

Step 0: In the case 8 = 6 is simply a rational polyhedral fan for the lattice

M ¢ M ¹R, we define W(6)= T∗M̂ and take L(6) to be the FLTZ Lagrangian.

The map Ã is just the projection to cotangent fibers.

In a general fanifold, 80 is isomorphic to a disjoint union of (disk neighborhoods

of the origin in) such fans. We define W(80), L(80) by the corresponding disjoint

unions, and similarly Ã : L(80)→80.

Step 1: L1 is a disjoint union of Legendrians LF , indexed by interior 1-strata

F ¢81. Given such a stratum F , let F ′, F ′′ be the 0-strata in its closure, and let

Ã ′¢6′ and Ã ′′¢6′′ be the rays associated to F in the respective fans of F ′ and F ′′.
The corresponding components of LF are the Legendrians ∂∞LÃ ′ and ∂∞LÃ ′′ in

the respective cosphere bundles ∂∞T∗M̂F ′ and ∂∞T∗M̂F ′′ . As the boundary ∂ F◦
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consists of 0, 1, or 2 points, there is an evident diffeomorphism LF
∼= ∂ F◦× M̂F .

Note that since F is a 1-stratum, M̂F is an (n− 1)-torus.

Recall that we define W(81) by the gluing

W(81) :=W(80)#L1

∐

interior F
dim(F)=1

T∗F ×T∗M̂F .

We now check the properties of L1 which allow us to extend L(80) through

the handle. In Lemma 4-16, we identified standard coordinates near LF for which

L(6′) and L(6′′) are biconic. We should verify that L(80) locally factors respecting

the product structure T∗M̂F × ∂ F◦. There is only something to check in case ∂ F◦
is two points, over which lie L(6′/Ã ′) and L(6′′/Ã ′′), respectively. Thus, the local

factorization follows from the fan compatibilities

6′/Ã ′ =6F =6′′/Ã ′′

required in the definition of a fanifold.

We conclude that L(80) extends through the handle, and we define L(81) to be

this extension.

Step 2: L2 is a disjoint union of Legendrians LF , indexed by interior 2-strata

F ¢82. To each exit path H→ F of 0-2 strata, we obtain a two-dimensional cone

ÃH→F ¢6H and corresponding Legendrian ∂∞LH→F in ∂∞T∗M̂H .

The disjoint union
⊔

H,F ∂∞LH→F is a smooth Legendrian-with-boundary in

∂∞W(80), and we must show that it extends through the handles we attached in

forming W(81). As it is a subset of L(80), we need only check that it respects the

local factorization already established for L(80).

To see this, consider now a flag G → F of 1-2 strata. This flag specifies a

ray ÃG→F ¢ 6G . If H → G → F and H ′ → G → F are two flags of 0-1-2

strata extending G→ F , then the fanifold compatibility conditions require the fan

isomorphisms

6H/ÃH→G =6G =6H ′/ÃH ′→G

to identify the images of the corresponding cones

ÃH→F 7→ ÃG→F 7→ÃH ′→F .

This shows that indeed L
pre
F :=

⊔
H,F ∂∞LH→F factors as advertised, and it is

straightforward to see that its extension through the handles is indeed LF .

Lemma 4-16 gives the biconicity and local product structure of L(80) along L
pre
F .

Note now that in Lemma 4-16, these structures were constructed inductively on the

dimension of cone Ã , so that near the region of the previous handle attachment, the

biconic coordinates for ∂∞LH→F and ∂∞LH ′→F will agree. Therefore, this entire
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structure extends through the handles to give the corresponding structures for L(81)

along LF .

Step 1f kf n: We have constructed W(8k−1), L(8k−1), and Ã : L(8k−1)→8k−1

already. Our task is to study Lk , which is by definition the disjoint union over interior

k-strata of LF := Ã−1(F)∩∂(L(8k−1)). It suffices to study each LF independently,

so we fix some interior k-stratum F .

As in Step 2, the Legendrian LF can also be described by beginning with all

exit paths H → F from 0-strata to F , considering the Legendrians ∂∞LH→F

corresponding to k-cones ÃH→F ∈6H , and iteratively extending these through all

handle attachments associated to flags of strata ending in F . Existence of these

extensions follows as in Step 2 from compatibility of fans, and the result is readily

seen to be LF .

Local biconicity of L(8k) along LF and the factorization (locally near LF ) of

L(8k) as

L(8k)= F◦× L(6F )¢ T∗F◦×T∗M̂F

follow by extending through the handles the corresponding facts (which were proven

in Lemma 4-16) for the original FLTZ Legendrians ∂∞LH→F . Once again, the

inductive construction of Lemma 4-16 ensures that these structures agree near

previously attached handles, so that we may extend them over the handles. □

4D. Examples. We now give some examples of the Weinstein manifold W(8)

constructed by Theorem 4-1 for some interesting fanifolds 8.

Example 4-20. For any fan 6, the space W(6) is the cotangent bundle of a torus,

and L(6) is the FLTZ Lagrangian for 6. An inclusion 6′ ¢6 corresponds to an

inclusion L(6′)¢ L(6) of FLTZ Lagrangians.

Example 4-21. As in Example 2-7, consider the fanifold 8 associated to the

stratification of S1 into r intervals and r points. Let us step through the construction

of the corresponding W(8). At step zero, we associate to each point the cotangent

bundle of a circle, T∗Ẑ; the W(80) will be the disjoint union of these. (We use the

Ẑ in part for consistency with the above, and in part to distinguish this circle from

the circle 8 = S1.) Inside the T∗Ẑ we have the FLTZ skeleton mirror to P
1; the

union of these is the L(80). The Legendrian at infinity is the positive and negative

conormals over 0 ∈ T 1. The union of all of these gives the L1. At step one, we

attach 1-handles, attaching the positive conormal point of one T ∗T 1 to the negative

conormal point of the next. The procedure terminates here. Note W(8) is the

Weinstein manifold obtained from a compact 2-torus by deleting r points. This

space is well known to be mirror to the necklace of P
1s which is T(8).

Example 4-22. Consider [0, 1] × [0, 1] with stratification by interior, boundary

edges, and boundary vertices. The normal geometry to each vertex is naturally
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Figure 2. The Lagrangian skeleton L(8) mirror to the coordinate

axes in A
3. The boundary skeleton L(∂∞8)= ∂∞L(8) is depicted

as pairs of handcuffs (in blue); it is mirror to three disjoint copies

of the coordinate axes in A
2.

identified with a fan for A
2 placed at each vertex. (The fan of A

2 spans a quadrant

of R
2, and to each vertex we associate a fan spanning the appropriate quadrant.)

The normal geometry to each edge is naturally identified with the fan of A
1. The

Lagrangian skeleton of the resulting Weinstein manifold is obtained from the gluing

depicted in Figure 1 after attaching a 2-disk along the red Legendrian.

Example 4-23. Consider a fan 6 ¢ R
n+1. Assume the fan is simplicial, and

that the primitive generators of each ray lie on the boundary of some fixed convex

polytope 1(. Consider the fanifold 8 :=6∩Sn as in Example 2-11. The calculations

of [Gammage and Shende 2022; Zhou 2020] can be interpreted as showing that in

this case W(8) is (a tailoring of) a generic hypersurface H ¢ (C∗)n+1 with Newton

polytope 1(.

Example 4-24. Let 6 ¢ R
3 be the standard fan of cones for the toric variety A

3,

and let 6̊ be the fan obtained from 6 by deleting the rays. The fan 6̊ has a fanifold

structure inherited by the fanifold 8 := 6̊ ∩ S2, which is a “2-simplex without its

vertices.” The Lagrangian L(8) is a union of three cylinders and a 2-simplex (with

vertices removed) with each edge glued to one of the three cylinders, as illustrated

in Figure 2.

We can see that the fanifold 8 has three 1-strata, each one equipped with the fan

of A
1, and one 2-stratum shared among them, so that the large-complex-structure

variety T(8) determined by 8 is three copies of A
1 meeting at a point — the union

of the coordinate axes in A
3. This example shows that by deleting strata from a

fanifold 8, we can produce n-dimensional B-side varieties whose singularities are

more complicated than those occurring in n-dimensional toric geometry.
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4E. Microsheaves. Having constructed W(8) and L(8), and noting that the polar-

ization gives rise to the necessary Maslov data to define the Fukaya category (as de-

scribed for instance at [Ganatra et al. 2018a, Sec. 5.3]), we write Fuk(W(8), ∂L(8))

for the category of modules over what would in [Ganatra et al. 2018b] be called the

(partially) wrapped Fukaya category. (That is, we take the presentable DG category

associated to the usual Fukaya category.)

Recent work on localization of Fukaya categories [Ganatra et al. 2018a; 2018b;

2020; Shende 2021; Nadler and Shende 2020] ends in an equivalence [Ganatra et al.

2018a, Thm. 1.4] between Fukaya categories of this sort and the global sections of

a certain constructible sheaf of categories obtained from microlocal sheaf theory:

0(L(8), µshL(8))
op ∼= Fuk(W(8), ∂L(8)).

Here, the µshL(8) is a constructible sheaf of categories on L(8) valued in ∗DG∗.

Taking the opposite category is an artifact from various conventions and can be

absorbed into, e.g., negating the symplectic form. In the cotangent bundle setting,

one can absorb it into negating L(6), and indeed it is the Lagrangian −L(6) which

appears in [Fang et al. 2011; 2012; Kuwagaki 2020] — although L(6) itself appears

in [Nadler 2016; Gammage and Shende 2022] where the actual relative skeleton

for a toric mirror is computed.

We may compute global sections after first taking the pushforward Ã∗ µshL(8),

which is a constructible sheaf of categories over 8 itself; it is in terms of this

pushforward that we later formulate our mirror symmetry results.

The remainder of the present subsection is dedicated to explaining how we may

compute the pushforward sheaf of categories Ã∗ µshL(8) in practice. Our previous

work [Gammage and Shende 2022] can be understood as a computation of the

restriction of Ã∗ µshL(8) to the neighborhood of a stratum. By itself, this seems

insufficient to determine the sheaf Ã∗ µshL(8), since such a determination would

also require knowledge of the gluing isomorphisms on overlaps. However, we are

in possession of the pleasant fact that the charts in Theorem 4-1 are all cotangent

bundles with their canonical polarizations. Below, we will explain how this fact

allows us to reconstruct the desired gluing isomorphisms.

We first recall the basic definitions of the microsheaf theory [Kashiwara and

Schapira 1990] and its globalization [Shende 2021; Nadler and Shende 2020].

Let M be a differentiable manifold and consider the category Sh(M) of sheaves

on M valued in some fixed symmetric monoidal presentable DG category, which we

may as well take to be Mod(k). To F ∈Sh(M), there is a conical locus ss(F)¢T∗M
of codirections along which the local space of sections of F is not constant. The

textbook reference is [Kashiwara and Schapira 1990]; see any recent article (for

instance [Nadler and Shende 2020]) for comments on updates to the homological

algebra foundations.
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Because ss(F) interacts well with sums, products, and cones, it is natural to

consider for any given conic 3 ¢ T∗M the category Sh3(M) of sheaves whose

microsupport is contained in 3. We are typically interested in 3 which are subana-

lytic and the closure of their smooth Lagrangian points; we term such a 3 singular
Lagrangian, or just Lagrangian. Any smooth Lagrangian point of 3 determines

a “microstalk functor” Sh3(M)→ Mod(k), or more precisely a family of such

functors parametrized by some topological data at the point and differing by tensor

product with invertible objects of Mod(k). (If there is a Lagrangian disk in M
transverse to this point of 3, then it is carried to a corepresentative of this functor

by [Ganatra et al. 2018a].)

It is a deep result that for any sheaf F , its singular support ss(F) is coisotropic

[Kashiwara and Schapira 1990, Theorem 6.5.4]. One useful application of this

fact is the following: if one knows in advance that ss(F) is contained in some

conic (singular) Lagrangian 3 but is in fact disjoint from the smooth locus of 3,

then ss(F) is empty. It follows that the microstalk functors at smooth points of 3

generate Sh3(M) when 3 is singular Lagrangian.

In fact, Sh3(M) is the global sections of a sheaf of categories µSh over 3:

Definition 4-25. For 3 a conic Lagrangian, the sheaf of categories µSh3 is defined

as the sheafification of the following presheaf of categories on T∗M :

µSh
pre
3 (U ) := Sh3∪(T∗M\U )(M)/ ShT∗M\U (M). (4-26)

(Here we intentionally write µSh rather than µsh to distinguish between this and a

different construction which we will recall below.) Evidently µSh3 is conic and

is the pushforward of a sheaf supported on 3, which we denote also by µSh3.

By restriction away from the zero section, we obtain a sheaf of categories on the

Legendrian ∂∞3¢ ∂∞T∗M .

Now let 3 be an arbitrary Legendrian, carrying the germ of a contact manifold U
in which it is embedded as a Legendrian. The basic innovation of [Shende 2021] was

to consider positive codimension embeddings U ↪→ ∂∞T∗M . Such an embedding

realizes 3 as a subcritical isotropic, so that coisotropicity of microsupports implies

that the microsheaf category µSh3 is actually 0. However, we can remedy this by

thickening 3.

Definition 4-27. Let 3̃¢ ∂∞T∗M be a Legendrian obtained by thickening 3 along

a choice of stable polarization of the symplectic normal bundle of U . Then we

define a sheaf of categories µsh3 on 3 by restriction of the sheaf µSh3̃ defined

above:

µsh3 := µSh3̃ |3.

There is a canonical stabilization functor (3 ¢ U ) 7→ (3× R ¢ U × T∗R),

and a canonical isomorphism µsh3
∼= µsh3×R |3×0, induced from the canonical
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isomorphism ShT∗
R

R(R)∼=Mod(k). By Gromov’s h-principle, the space of all such

embeddings in R
2n+1 as n→∞ is (nonempty and) arbitrarily connected. By contact

invariance of microsheaves, one sees therefore that µsh3 depends only on the stable

normal polarization (in the sense that the space of further choices is contractible).

Remark 4-28. While homotopic choices of stable normal polarization give equiv-

alent (sheaves of) categories µsh3, the space of such choices is not contractible;

one can formulate this universally in terms of the existence of a (canonical up to

contractible choice) sheaf of categories over the Lagrangian Grassmannian bundle

of the stable normal bundle, locally constant in the bundle direction. In fact, this

sheaf descends from the Lagrangian Grassmannian to a principal BPic(Mod(k))

bundle [Nadler and Shende 2020, Sec. 10]. Thus, the true requirements for defining

µsh3 are a trivialization of this bundle: when k = Z, this can be seen to be the

same topological data as is usually required to define gradings and orientations for

the Fukaya category. (See for instance [Ganatra et al. 2018a, Sec. 5.3] for details.)

We will not need this descent here, as we will have a natural choice of polarization

available to us.

Let us also recall that a Lagrangian polarization of the tangent bundle of a

symplectic manifold (or of the contact distribution of a contact manifold) defines

a stable normal polarization by asking that in some cosphere bundle embedding,

the given tangent polarization is contained in the ambient cosphere polarization,

with the quotient defining the normal polarization; such an embedding exists by

h-principle considerations.

That is, to compute µshL(8) directly from the definition involves finding an

embedding of W(8) as a (possibly high-codimensional) Liouville hypersurface of

R
2n+1 and then studying the front projection of L(8) to R

n+1. While the h-principle

guarantees that it is possible to find such an embedding, it is not clear how one

would do so in practice. Instead, we will take advantage of the fact (Theorem 4-1)

that W(8) is covered by cotangent bundle charts, locally with respect to which

L(8) is conical.

At this point, a conical Lagrangian 3¢ T∗M , carries two sheaves of categories:

• Definition 4-25 defines the sheaf of categories µSh3 on the conical Lagrangian 3.

• The Lagrangian 3 admits a natural embedding as a Legendrian in the contacti-

zation T∗M ×R. The fiber polarization on T∗M determines a polarization on the

contactization so that Definition 4-27 determines a canonical (up to contractible

choices) sheaf of categories µsh3.

Our definitions so far do not determine an identification of these sheaves of

categories. We now fix such a choice. Consider the diagram

M
Ã
← M × (0,∞)

j
→ M ×R
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and the map j∗Ã∗ : Sh(M)→ Sh(M ×R). Note that ∂∞ ss( j∗Ã∗Z) is the positive

(in the R direction) conormal M̃ := ∂∞T+(M × 0) to M . Projection to the base

gives an identification M̃
∼
→ M × 0. In fact, there are standard coordinates

¸ : Nbd(M̃)→ J 1 M = T∗M ×R

such that for any sheaf F on M , there is a local factorization

¸(∂∞ ss( j∗Ã
∗F))= ss(F)× 0¢ T∗M ×R.

Given a conic Lagrangian 3¢ T ∗M , which we may also consider as a Legendrian

3× 0¢ T∗M ×R, the map j∗Ã∗ induces an equivalence ¸∗µSh3
∼= µsh¸−1(3) of

sheaves of categories on 3. Note that the restriction ¸∗µSh∂∞3
∼=µsh¸−1(∂∞3) of this

isomorphism to the boundary of 3 agrees with the (previously chosen) stabilization

isomorphism used in the definition of µsh, because near the boundary ∂∞3, the

relation between 3 and 3× 0 is precisely the standard stabilization.

More generally, for a vector space V and open strictly convex cone º : C ↪→ V ,

we may consider the analogous diagram

M
Ã
← M ×C

j
→ M × V . (4-29)

Writing C( for the dual cone inside the cotangent fiber T ∗0 V , there are standard

coordinates

∂∞T∗(M × V )£ Nbd(∂∞(M ×C())
¸
→ T∗M ×T∗∂∞C(×R

such that for any sheaf F on M , we have a local factorization of singular supports

¸(∂∞ ss( j∗Ã
∗F))= ss(F)× ∂∞C(× 0¢ T∗M ×T∗∂∞C(×R.

Consider the conic Lagrangian 3×∂∞C(¢ T∗M×T∗∂∞C(. In the coordinates ¸,

we have an equivalence of sheaves of categories

¸∗µSh3×∂∞C(
∼= µsh¸−1(3×∂∞C(). (4-30)

The C( factor is contractible and is the zero section of its cotangent bundle, so that

we have a canonical isomorphism

p∗µSh3
∼= µSh3×∂∞C(,

where p : 3× ∂∞C(→ 3 is the projection, and likewise we have a canonical

isomorphism

µSh3
∼= p∗ µSh3×∂∞C( .

Combining these with equivalence (4-30), we have therefore produced equivalences

¸∗ p∗µSh3
∼= µsh¸−1(3×∂∞C(), µSh3

∼= p∗¸∗ µsh¸−1(3×∂∞C(). (4-31)
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The significance of (4-31) is that the left-hand side is computed in some specific

cotangent bundle, while the right-hand side depends (up to contractible choice) only
upon the germ of stable contact embedding and normal polarization. Whenever in

any contact manifold we find 3×C( with some chart

¸ : Nbd(3×C()→ T∗M ×T∗C(×R,

and the fixed normal polarization restricts to the standard normal polarization in this

chart (as is the case for instance if we define the normal polarization by a tangent

polarization restricting in this chart to the standard normal polarization — such a

polarization entails the base and fiber polarizations T∗C( and T∗M , respectively),

then we obtain fixed isomorphisms as in (4-31). This will be the key tool in our

computation of global microsheaf categories.

Remark 4-32. Equivalence (4-30) and therefore also the equivalences of (4-31),

are not canonical, in the sense that they depend on the choice we made to produce

them through diagram (4-29). Nevertheless, we fix this choice once and for all, so

that from here on, we do have a fixed way of identifying these sheaves of categories.

The reason for our particular choice is the following: Recall from [Kashiwara

and Schapira 1990, Chap. 3.7] the Fourier–Sato transform

F : Sh(M × V )→ Sh(M × V(),

defined as the integral transform with kernel given by the polar locus {(v, v()g 0}.

Fix a point c(∈ C(. Then for any F ∈ Sh(M), there is a canonical isomorphism

F ∼= F( j∗Ã∗F)|M×c( . That is, |M×c( ◦F is a left inverse to j∗Ã∗.
Our choice is designed to match the corresponding choice in [Kashiwara and

Schapira 1990, Definition 4.3.1], so that Lemma 4-33 below takes its stated form.

Suppose now that we have a submanifold M ¢ N , let us assume with trivial

normal bundle T∗M N = T∗m N ×M . Suppose we are given some conic Lagrangian

LN ¢T∗N , which, when restricted to an appropriate choice of tubular neighborhood

for M , is also conic for the scaling action on the tubular neighborhood. Lemma 4-12

therefore ensures that LN is biconic along the Legendrian T∗M N in the sense of

Definition 4-9. Assume in addition that for some open cone C(×M ¢ T∗m N ×M ,

there is a chart ¸ :Nbd(∂∞C(×M) ↪→ T∗∂∞C(×T∗M×R such that ¸(∂∞LN )=

C(× LM × 0.

Then the previous discussion determines an isomorphism

p∗¸∗ µshLN
|Nbd(∂∞C(×M)

∼
→ µshLM

and, passing to global sections, a particular morphism

ShLN (N )= 0(LN , µshLN
)

→ 0(Nbd(∂∞C(×M), µshLN
)= 0(LM , µshLM

)= ShLM (M).
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It is an exercise to show:

Lemma 4-33. The above morphism ShLN (N )→ ShLM (M) is naturally isomorphic
to composition of the Sato microlocalization along M (as defined in [Kashiwara

and Schapira 1990, Chap. 4.3]) with the restriction to c(×M , for any c(∈ C(.

We studied a particular instance of this in Lemma 7.2.2 of [Gammage and

Shende 2022]. There we showed that sending a fan to the category of sheaves

microsupported in the corresponding FLTZ skeleton in fact extends to a functor

which we now term

fsh : Fan↠→ ∗DG∗, 6 7→ ShL(6)(T6).

The maps on morphisms are constructed using the standard charts on ∂∞L6 (de-

scribed here in Lemma 4-16), from which one sees that if Ã ¢ 6 is a cone, then

the Sato microlocalization (the composition of specialization to the normal cone

with the Fourier–Sato transform) along Ã§, followed by projecting out the trivial Ã

factor, gives a map

µÃ§ : ShL(6)(T6)→ ShL(6/Ã)(T6/Ã ).

As a fanifold 8 includes the data of a map Exit(8)→ Fan↠, we may compose

with fsh to get a map, which we also call fsh : Exit(8)→ ∗DG∗.

Proposition 4-34. For any fanifold 8, there is an equivalence Ã∗ µshL(8)
∼= fsh of

sheaves of categories over 8.

Proof. Both sheaves of categories Ã∗ µshL(8) and fsh can be described in terms

of the images in 8 of the cover discussed in Theorem 4-1, and the corresponding

overlaps. But all charts in this cover are of the form T∗M ×T∗F , where L(8) is

some conic in T∗M times the zero section in T∗F , and the polarization is the fiber

direction in T∗M times the base direction in T∗F . We have seen this gives fixed

identifications of the corresponding sections of Ã∗ µshL(8) and fsh. Moreover, all

restriction maps from the standard charts are either trivial (i.e., induced from the

restriction of the contractible F to a contractible open subset), or of precisely the

kind we have just seen correspond to the defining Sato microlocalizations of fsh. □

4F. Viterbo restriction. In general, given a Weinstein subdomain W ′ ¢W , there

is a Viterbo restriction functor Fuk(W )→ Fuk(W ′). (We use the definition given

in [Ganatra et al. 2018b, Sec. 8.3], which is conjecturally equivalent to the partially

defined functor of [Abouzaid and Seidel 2010] on the domain of definition of the

latter.) This functor is the quotient by the cocores of W which are not contained in

W ′ [Ganatra et al. 2018b, Prop. 8.15].
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Consider the category WeinSubDom whose morphisms are inclusions of Wein-

stein subdomains. We write

Fuk∗ :WeinSubDomop→ ∗∗DG

for the contravariant functor taking inclusions of subdomains to Viterbo restriction

of Fukaya categories (which preserves compact objects because it is defined before

taking module categories).

Given a fanifold 8, recall that we write Closed(8) for the poset of constructible

closed sets and inclusions among them. From Theorem 4-1 (3), we have a functor

W : Closed(8)→WeinSubDom,

and by composition with Fuk∗, we can obtain a functor

Fuk∗◦W : Closed(8)op→ ∗∗DG .

Now consider any closed 8′ ¢8. From [Ganatra et al. 2018b, Prop. 8.15] and

the comparison [Ganatra et al. 2018a], we have a commutative diagram where the

rows are exact:

µshL(8)(L(8)\L(8′))op µshL(8)(L(8))op µshL(8′)(L(8′))op 0

ïCocores of W(8)\W(8′)ð Fuk(W(8)) Fuk(W(8′)) 0

¸!

v

(4-35)

In the above diagram, the lower-right map v is Viterbo restriction, and the

upper-left map ¸! is the left adjoint to the natural restriction of microsheaves.

5. Homological mirror symmetry at large volume

By now, given a fanifold 8, we have produced two constructible sheaves of

categories: Coh! ◦T, defined from the algebraic geometry of toric varieties, and

Ã∗ µshL(8), defined from symplectic geometry and microlocal sheaf theory. Now

we compare them.

The basic ingredient is mirror symmetry for toric varieties. In the framework

of microlocal sheaf theory, mirror symmetry for toric varieties was formulated in

[Fang et al. 2011] and proven in [Kuwagaki 2020]. Crucial to our approach is a

functoriality result established in [Gammage and Shende 2022], matching restriction

to orbit closures with microlocalization. Let us formulate these results in our current

terminology.

In this section, we assume all fans are smooth. However, we will remove this

hypothesis in Theorem 6-1, so we will leave it out of the theorem statements.
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Remark 5-1. The (temporary) restriction to smooth fans has to do with the fact

that in both [Fang et al. 2011] and [Gammage and Shende 2022], calculations are

made using a certain collection of objects which, on the B-side, are quasicoherent

sheaves. To proceed using these objects in general would require finding appropriate

ind-coherent lifts. Although this is presumably possible, it is not the strategy of

proof in [Kuwagaki 2020]. Rather, in [Kuwagaki 2020] the result in the smooth

case is used to deduce the corresponding result in the general case by descending

along toric blowups. In Theorem 6-1, we will imitate this strategy to remove the

hypothesis of smoothness from the result of [Gammage and Shende 2022]

Theorem 5-2 [Kuwagaki 2020; Gammage and Shende 2022]. The functors fshop

and Coh! ◦T from Fan↠→ ∗DG∗, are equivalent.

Proof. For smooth fans, Fang et al. [2011] give a morphism

Coh(T(6)) ↪→ ShL(6)(T6)op =: fsh(6)op,

and this morphism is proven in [Kuwagaki 2020] to be an isomorphism. For smooth

fans, compatibility with the structure of functors out of Fan↠ follows from the

comparison of Lemmas 7.2.1 and 7.2.2 of [Gammage and Shende 2022]. □

Theorem 5-3. There is an equivalence of sheaves of categories on 8:

Coh! ◦T∼= Ã∗ µsh
op
L(8) .

Proof. This follows by composing Theorem 5-2 with the map Exit(8)→ Fan↠,

using Proposition 4-34 to identify fsh with Ã∗ µshL(8). □

Theorem 5-4. There is an equivalence of categories

Coh(T(8))∼= Fuk(W(8), ∂L(8)).

Proof. We conclude this by taking global sections of the comparison in Theorem 5-3,

using Proposition 3-14 to compute the left-hand side and the comparison between mi-

crosheaves and Fukaya categories [Ganatra et al. 2018a] for the right-hand side. □

Remark 5-5. The proof of [Gammage and Shende 2022, Theorem 7.4.1] amounts

to the special case when 8 = Sn ∩6. In that setting, as everything in sight was

embedded into a cotangent bundle, we did not need the constructions of [Shende

2021; Nadler and Shende 2020], and correspondingly did not need Proposition 4-34.

Remark 5-6. The isomorphism of Theorem 5-4 takes the section mentioned in

Remark 4-6 to the structure sheaf, as can be seen by gluing together analogous

(known) statements in the case of toric varieties. This is as one would expect from

the SYZ picture.
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Remark 5-7. The categorical Calabi–Yau structure plays a key role in the proposal

to extract higher-genus enumerative invariants from the Fukaya category [Costello

2005], and thus to pursue this direction it would be desirable to show that mirror

symmetry is compatible with Calabi–Yau structures. In this situation, the local-

to-global formalism of [Shende and Takeda 2016] provides a natural framework

for doing so. Indeed, when all fans are smooth and complete, the various (all

isomorphic) constructible sheaves of categories on fanifolds we have produced here

are locally saturated, so that the main result of [Shende and Takeda 2016] provides

a local Calabi–Yau structure on Ã∗ µshL(8).

We turn to compatibility with Viterbo restriction. Recall that we write Closed(8)

for the poset of closed constructible subsets.

Corollary 5-8. There is an equivalence

Coh∗◦U∼= Fuk∗◦W

of contravariant functors from Closed(8) to ∗∗DG.

Proof. Compare the short exact sequence in diagram (3-17) to the short exact

sequence in diagram (4-35). Theorem 5-3 gives a functorial matching of the first

two terms; hence we obtain one for the third. □

Corollary 5-9. For closed 8 covered by closed subsets 8³, the map from Fuk(W(8))

to the limit

lim
←−−

(∏

³

Fuk(W(8³))→
∏

{³,´}

Fuk(W(8³∩8´))→
∏

{³,´,µ }

Fuk(W(8³∩8´∩8µ ))→···

)

is an isomorphism. Here the W(8³) (etc.) are Weinstein subdomains and the maps
are Viterbo restrictions.

Proof. This is Zariski descent translated across Corollary 5-8. □

Remark 5-10. Corollary 5-9 was in some form suggested by Seidel [2012] and

verified by Heather Lee [2016] by geometric methods in the case of Riemann

surfaces. We emphasize that this local-to-global principle is not the same as that of

[Ganatra et al. 2018b].

Finally, let us mention certain twists of our constructions, which introduce

geometric deformations on one side, and gerbes on the other.

Remark 5-11. There is a deformation which is geometric on the B-side and gerbal

on the A-side. When gluing toric varieties on the B-side, we can twist the gluing

by an automorphism induced from the torus action. This is given by data on the

double overlaps, subject to compatibility conditions on the triple overlaps. The

corresponding construction on the A-side is to twist µsh as follows: on the double
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overlaps, the topology of the skeleton retracts to a torus, and we may twist µsh by

tensor product with a local system on this torus (corresponding to multiplying by an

element of the mirror dual algebraic torus). Again this is data on double overlaps,

and compatibility conditions on triple overlaps. So we see that a B-side geometric

deformation corresponds to an A-side gerbal.

Remark 5-12. Another twist is gerbal on the B-side and geometric on the A-side.

When gluing coherent sheaf categories of B-side varieties, we could twist the result

by specifying a line bundle on each codimension-1 stratum and using it to twist the

gluing. These choices of line bundles must satisfy a compatibility condition along

codimension-2 strata. On the A-side, note in [Shende 2022] one finds that at least

for a smooth fan 6, the FLTZ Lagrangian L(6) comes in a noncharacteristic family

over a real torus 56 . Now over a 1-stratum I in L(8), we could replace L(6I )× I
by a 1-parameter family of skeleta parametrized by some loop I → 56 . Being

able to continue and attach 2-strata imposes a compatibility condition. In fact, the

fundamental group of the torus 56 can be naturally identified with Pic(T(6)), and

the monodromies in the family are mirror to the autoequivalence of Coh(T(6))

given by tensor product with the corresponding line bundle. Thus, the microsheaf

category of this twisted skeleton is mirror to the twisted coherent sheaf category

described above. We note that in this twisted construction there is no longer a

section of L(8)→8.

6. Singular and stacky fans

We now remove the smoothness hypothesis.

Theorem 6-1. The results of Section 5 hold without any smoothness hypothesis on
the fans.

Proof. It suffices to free Theorem 5-2 from the smoothness hypothesis. We will do

so working directly with µsh in place of fsh, as we are free to do by Proposition 4-34.

Basically the point is that we can embed the question into one involving only smooth

fans by taking toric blowups.

Let 6 be a fan. Recall that a toric blowdown Ã : T(6′)→ T(6) corresponds

to a subdivision of cones: the cones of 6 are subdivided to form those of 6′. For

given 6, it is always possible to subdivide to a smooth 6′.

In particular, M6 = M6′ , and L(6) is a closed subset of L(6′), so there is a fully

faithful inclusion ShL(6)(M̂6)¢ ShL(6′)(M̂6). In fact [Kuwagaki 2020] shows that

this inclusion is intertwined with the pullback Ã∗ : Coh(T(6))→ Coh(T(6′)).

Now let Ã be a cone of 6. We write 8 := Nbd(Ã ); it is an open subfanifold of

6 which contains exactly one closed stratum (namely Ã ). Then T(8) is the toric

variety which is the closure of the orbit corresponding to Ã ; i.e., T(8)= T(6/Ã).
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We write 8′ for the same subset as 8 of M6 ¹ R, but with fanifold structure

restricted from 6′. Then T(8′) is the preimage of T(8) under the toric blowdown.

Meanwhile, L(8) is naturally identified with an open subset of L(6); in fact it

is a product of a trivial factor with L(6/Ã). Likewise L(8′) is naturally an open

subset of L(6′). Meanwhile L(6) is a closed subset of L(6′) and correspondingly

L(8) of L(8′).

For brevity we write µsh(X) for 0(X, µshX ). Let us contemplate the diagram

µsh(L(6))op Coh(T(6))

µsh(L(6′))op Coh(T(6′))

µsh(L(8′))op Coh(T(8′))

µsh(L(8))op Coh(T(8))

[Kuwagaki 2020]

[Kuwagaki 2020]

Theorem 5-3

[Kuwagaki 2020]

(6-2)

Our task is to show that the outer square commutes (or more precisely to construct

the natural transformation realizing the commutativity). It will suffice to show that

the inner square and the four trapezoids commute, and that diagonal morphisms are

all fully faithful. (Given commutativity, it is enough to show full faithfulness of the

left diagonals).

The morphisms on the right trapezoid are all pullbacks of coherent sheaves;

it commutes. The vertical morphisms of the left trapezoid are restrictions of

microsheaves to open sets, and the diagonal morphisms are inclusions of the full

subcategory of microsheaves supported on a closed subset of the given microsupport;

these obviously commute. As we have already mentioned, commutativity of the

upper trapezoid is established in [Kuwagaki 2020]. Commutativity of the lower

trapezoid follows from applying global sections over 8 to this result. Finally, all

fans in the central square are smooth, so its commutativity is Theorem 5-3. □

Remark 6-3. We can see from the proof that if 8 is any fanifold and 8′ is a

fanifold obtained by subdividing its strata, then fsh8 is naturally a subsheaf of full

subcategories of fsh8′ .

We can also remove the assumption that the toric components T(6) of the large

complex structure limit variety are varieties rather than stacks, by generalizing

slightly our understanding of what data comprises a fan 6. There are various levels

of generality of the notion of stacky fan; see [Geraschenko and Satriano 2015] for

details. Kuwagaki’s result [2020] is proven for the following class:
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Definition 6-4 [Geraschenko and Satriano 2015; Kuwagaki 2020]. A stacky fan is

the data of a map of lattices ´ : M̃→ M with finite cokernel, together with fans

6̃ ¢ M̃ ¹R and 6 ¢ M ¹R, such that ´ induces a combinatorial equivalence on

the fans.

As explained in [Geraschenko and Satriano 2015], the usual GIT description of a

toric variety from a fan extends in the obvious way to stacky fans, and for any cone

Ã in the fan, the failure of the stacky generators of Ã to be primitive contributes an

isotropy group to the corresponding stratum of the toric DM stack T(6). One way

to prescribe a stacky fan is to fix integral generators on the rays of an ordinary fan;

these are then taken to be the images of the basis vectors of M̃ , and 6′ is defined

by lifting the cones of 6 in the only possible way.

Example 6-5. Let 6 ¢ R
2 be the fan whose nonzero cones are ïv1ð, ïv2ð, ïv1, v2ð,

where we set v1= (−1, 1) and v2= (1, 1), so that the usual toric variety associated to

6 is the singular quadric {xy= z2}. Giving 6 the structure of a stacky fan by fixing

these generators remembers that the inclusion of lattices Zïv1, v2ð ↪→Rïv1, v2ð∩Z

has index 2, and the corresponding toric stack is C
2/(Z/2) (whose coarse moduli

space is the singular quadric mentioned above).

On the A-side, the definition of FLTZ Lagrangian L(6) also generalizes in the

obvious way to the case of stacky fans [Fang et al. 2014; Kuwagaki 2020], where

now for a cone Ã , the failure of stacky generators to be primitive contributes a finite

abelian group component to the corresponding torus Ã§ ¢ M̂ , so that the torus Ã§

is no longer connected. See [Gammage and Shende 2022, Figures 9, 12, 13] for

images of stacky FLTZ Lagrangians.

The category Fan↠ admits an evident generalization StackyFan↠, where now a

morphism (M, M̃, 6, 6̃)→ (M ′, M̃ ′, 6′, 6̃′) is given by the choice of some cone

Ã̃ ∈ 6̃ whose image we denote by Ã = ´(̃Ã ), and compatible isomorphisms

(M/Ã, M̃/Ã̃ , 6/Ã, 6̃/Ã̃ )∼= (M ′, M̃ ′, 6′, 6̃′)

The appropriate notion of smooth stacky fan is that for which the corresponding

toric stack is smooth as a stack; note as in Example 6-5, the underlying fan 6 is

simplicial but not necessarily smooth.

We then define the notion of stacky fanifold by changing Definition 2-4 to require

a map Exit(8)→ StackyFan↠. (The comparison to normal cones still happens

from 6 ¢ M ¹R.)

7. Epilogue

In this article we have established the homological mirror symmetry

Fuk(W(8))= Coh(T(8))
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between the Fukaya category of a certain noncompact symplectic manifold and the

category of coherent sheaves on a certain singular algebraic space (or stack). We now

outline the strategy to deform this result to a proof of mirror symmetry for smooth

compact fibers of toric degenerations. The broad strokes of this strategy are well

known to experts and have been implemented in some special cases [Seidel 2002;

2011; 2015; Sheridan 2015]; the key new point here is the rôle of Corollary 5-8.

The first step is to understand how to construct a compact symplectic manifold

W(8) containing W(8) as the complement of a normal crossings divisor

D = D1 ∪ · · · ∪ Dn.

We expect that such D and W(8) can be constructed by gluing together our local

understanding of W(8) as a pair-of-pants complement. (When 8 = 6 ∩ Sn , the

existence of such a smooth W(8) follows from [Gammage and Shende 2022; Zhou

2020], although such a local gluing description of it does not.)

By general principles, the Fukaya category of W(8) contains a deformation

of the Fukaya category of W(8). Indeed, for Lagrangians disjoint from D, the

essential difference between the definitions of these categories is that the former

counts disks passing through D, and the latter does not. By SFT stretching, we

may instead work entirely in W(8) and count disks asymptotic to certain Reeb

orbits, and pair the result with the class

³ ∈ SH•(W(8))[[Q1, . . . , Qn]]

which counts disks in a neighborhood of the divisor, passing through the divisor.

The identification

SH•(W(8))∼= HH•(Fuk(W(8)))

matches this picture with the abstract deformation theory of categories, and so we

may carry the class ³ across homological mirror symmetry and ask whether the

corresponding class in HH•(Coh(T(8)))[[Q1, . . . , Qn]] arises from a deformation

of T(8) to a smooth Calabi–Yau. This is the key remaining point, and its resolution

in existing works such as [Seidel 2002; 2015; 2011; Sheridan 2015]; depends on

using special symmetries of the particular T(8) of interest there.

By the Hochschild–Kostant–Rosenberg theorem, one can pass from Hochschild

cohomology to polyvector fields H•(T(8), 3•TT(8)) (using the appropriately de-

rived version, where T denotes the tangent complex of T(8)), and from this per-

spective, what must be shown is that the deformation class lives in H1(T(8), TT(8))

and is a smoothing deformation there.

Both questions are naturally studied locally on an affine cover. Let us observe

that our Corollary 5-8 allows us to translate them into questions about ³ expressed

locally in terms of its Viterbo restrictions to a pair-of-pants cover of W(8). We
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will return to the construction of W(8) and the aforementioned local study of the

properties of ³ in a future work.
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