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Abstract: The concept of scale is inherent to, and consequential for, the modeling of geo-
graphical processes. However, scale also causes huge problems because the results of many
types of spatial analysis appear to be dependent on the scale of the units for which data are
reported (measurement scale). With the advent of local models and the fundamental dif-
ference in their scale of application compared to global models, this issue is exacerbated in
unexpected ways. For example, a global model and local model calibrated using data mea-
sured at the same aggregation scale can also result in different and sometimes contradictory
inferences (the classic Simpson’s Paradox). Here we provide a geographical perspective on
why and how contrasting inferences might result from the calibration of a local and global
model using the same data. Further, we examine the viability of such an occurrence using a
synthetic experiment and two empirical examples. Finally, we discuss how such a perspec-
tive might inform the analyst’s conundrum: when the respective inferences run counter to
one another, do we believe the local or global model results?

Keywords: local models, Simpson’s paradox, global models, process scale, multiscale geo-
graphically weighted regression (MGWR)

1 Introduction

A fundamental aspect of geographical research is to understand processes operating be-
tween people, objects and events through examination of their observed spatial patterns
[37]. Of prominent interest in investigating spatial processes is the scale at which they
occur. Though many statistical techniques have been created to explore various proper-
ties of spatial patterns, inferring underlying spatial processes from these remains a persis-
tent problem. This gap has often been attributed to the “scale problem” [37]. The issue
is intrinsic to all geographical research and has been an active area of inquiry for many
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decades [37, 46, 59, 70, 71]. Since different processes contribute to spatial patterns at unique
scales of observation (often termed observation or measurement scale), it is difficult to
make accurate inferences about them by studying patterns at any one scale. For example,
where some processes affecting house prices, such as economic performance, may be oper-
ational at a national or even global scale, others such as proximity to public transportation
or population density may operate at the scale of local neighborhoods.

A long-standing problem related to scale is that the inferences we make based on an
analysis of spatial data might vary according to the definition of the spatial units for which
the data are measured. This is often referred to as the Modifiable Areal Unit Problem
(MAUP) which has long beset spatial analysis [25, 53, 54]. Here we describe and discuss
another aspect of scale, Simpson’s paradox, which is perhaps less well-known in spatial
analysis and occurs when the results obtained from the same data aggregated to different
scales (or to different groups in the context of aspatial data) yields contradictory conclu-
sions [10, 11, 20, 68, 77]. A popular aspatial example of Simpson’s paradox was observed in
a study on possible gender bias in the admission process at University of California, Berke-
ley in 1973 [10]. In this study, the pattern of graduate admissions across the university
as a whole indicated a bias against female applicants, whereas data on individual depart-
ments suggested female applicants were generally favored over male applicants [10]. Since
female applicants tended to apply to more competitive departments with lower rates of
admission and the opposite was true for male applicants, the trends at the aggregate level
were seen as contradicting those at the disaggregated department level [10]. Another well-
known example of the paradox from the aspatial statistics literature concerns the batting
averages of players in professional baseball [62]. Ross [62] demonstrated how between two
high ranking players, one player had a better annual batting average for 1995 and 1996
while the other had a higher batting average when the statistics for the two years were
combined. Although much has been written about this phenomenon in aspatial analysis, it
is rarely recognized in the analysis of spatial data. Here, we demonstrate through the lens
of local modeling: (i) that this is a fundamental problem about which geographers should
be aware; (ii) how and why this paradox might commonly plague inferences from the anal-
ysis of spatial data using local and global models (where ’global’ refers to the use of all data
points in a predefined study area in the model calibration); and (iii) that by refocusing the
problem in terms of processes, we contribute significantly to a greater understanding of the
scale problem in spatial modeling.

To date, our understanding of Simpson’s paradox in spatial analysis is limited. It has
rarely been identified and, consequently, there is little understanding of its cause or poten-
tial implications, especially for policy oriented research. While in a recent paper, Fothering-
ham and Sachdeva [24] briefly showcase an empirical example of its occurrence in spatial
analysis, it has not yet been explored in detail. However, as we show below, the increas-
ing popularity of local models means that the spatial variant of the paradox is likely to be
encountered with increasing regularity and therefore needs to be better understood. Local
models are calibrated with subsets of the data and yield results which are specific to each
location thereby allowing the modeling of processes which vary across space. When the
calibrations of local and global models applied to the same data are compared, Simpson’s
paradox can arise in the following way. Suppose a global model is calibrated and a pa-
rameter estimate associated with covariate x is found to be significantly negative. In the
calibration of a local model on the same data, the expectation is that local estimates of the
parameter associated with covariate x will also be significantly negative. However, the
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local parameter estimates can be insignificant or, in rarer cases, they can be significantly
positive. This is essentially a process scale issue—at one spatial scale we infer that y and
x are negatively related; at a different spatial scale we infer they are positively related.
As with aspatial examples of Simpson’s paradox, both of these statements can be true,
which can be confusing to the analyst. What do we do if the results of calibrating the same
model locally and globally produce contrasting inferences—the classic Simpson’s paradox?
Should we believe the results of the local model or the results of the global model?

In what follows, we introduce Simpson’s paradox, provide a geographical perspective
on Simpson’s paradox, explain how it might be identified and understood, give an exam-
ple of how local modeling can be employed to investigate the paradox using simulated
data and then provide two empirical instances of the occurrence of Simpson’s paradox in
real-world spatial data. Finally, we discuss the implications of the paradox in the spatial
sciences and future directions for research.

2 Simpson’s paradox

In a recent comparative study analyzing Covid-19 Case Fatality Rates (CFR) in Italy and
China, Kugelen et al. [73] found that for each age group using analysis from age-stratified
data, CFR in Italy were lower than in China. However, on analyzing aggregated CFR for
both countries (i.e., not disaggregated by age), fatality rates in Italy were found to be higher
than in China. How could fatality rates for all individual age groups in Italy be lower while
the aggregated rate was higher?

This conundrum is a classic example of a well-known statistical phenomenon referred
to as Simpson’s paradox or Simpson’s reversal and it arises when the analysis of aggre-
gated data reveals an opposite trend from that observed when the data are disaggregated
according to some criterion (for example, age in the above example). The phenomenon
was first technically pointed out by Simpson [68] using a hypothetical example where a
treatment was found to be ineffective for the total population but effective for both men
and women when analyzed using gender-stratified data. Similar effects, however, were
reported fifty years earlier [58] although these studies described the disappearance or di-
minishing of a trend through aggregation of data rather than a complete reversal. Cohen
and Nagel [20] appear to be the first to observe a complete reversal of trend during data ag-
gregation and coined the phenomenon a ‘paradox’. Subsequently, instances of the paradox
or reversal have been reported frequently in the statistical literature, especially in the fields
of epidemiology and the social sciences. While the paradox may be seen as a statistical
curiosity from one perspective, its occurrence in policy oriented fields causes consternation
and uncertainty because it would seem that completely contradictory courses of action can
be validated using the same data.

Simpson’s paradox has in fact been observed in a variety of forms. First coined by
Samuels [66], the most intriguing occurrence and the one that is most frequently investi-
gated is known as Association Reversal, [7, 11, 12, 16, 22, 47]. This occurs when the trends
in all subpopulations (the original population disaggregated based on some criterion such
as gender or race) are reversed when the entire population is analyzed. A weaker case of
the Association Reversal, where the trend observed in the overall population disappears
in the analysis of disaggregated data, is called Yule’s Association Paradox [78]. Such an
occurrence is typically observed when associations between variables have a common but
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omitted cause. For example, the probability of having skin cancer is typically observed
to be positively correlated with exercising in the general population but on disaggregat-
ing the population into subgroups, based on average exposure to sunlight, the association
disappears [76]. Another scenario where the individual subpopulation trends add up to a
smaller or larger trend than the one observed for the total population is called the Amal-
gamation Paradox [31] and is perhaps the most common version of Simpson’s paradox.
These types are visualized in Figure 1.

Figure 1: Types of Simpson’s Paradox

The Covid-19 CFR example stated previously exhibits the Association Reversal type of
the paradox and the reversal in trends between the age-stratified groups and the overall
populations for the two countries can be explained in part by focusing on each of their
demographic profiles. On observing the confirmed cases for the two countries, Kugelen et
al. [73] found that while most cases in China fell within the 30-59 age group, the majority of
cases reported in Italy were for people aged 60 and above. Since older people are generally
at a higher risk of succumbing to the disease than the younger population, the 60+ sub-
group rates drive the overall population rates to be higher for Italy over China while lower
CFR are recorded for each individual age group. Additionally, since the population in Italy
(median age 45.4) is generally older than in China (median age 38.4) and there may well
be social behavioral differences between the two age groups, these factors could also cause
the observed reversal between overall and age-stratified results [73].

Several other examples of Simpson’s Paradox, often using aspatial data, have been ob-
served and investigated in the literature [17, 60, 62, 66, 74]. While these aspatial examples
are well-known, the presence of Simpson’s Paradox in spatial analysis has largely gone un-
noticed. Understanding the cause of its occurrence in the aspatial literature provides clues
on how the paradox might occur in spatial analysis. Mathematically, Simpson’s paradox
is observed when the partitioning criterion used to stratify the population into groups is
correlated with both the predictor and the response variables. While some generic ver-
sions of Simpson’s paradox might still occur despite the lack of correlation, we will focus
on the more common and standard kinds of the paradox in this paper. Hence, for an As-
sociation Reversal to occur, the stratifying criterion must be correlated with x and y in
a model [45, 49]. Re-examining the exercise example from above: generally, people who
exercise (x) more appear to be at a higher risk of developing skin cancer (y). However,
when the population is stratified based on the amount of average sun exposure (stratifying
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criterion) a person receives, the association disappears. Since people who exercise more also
tend to get higher sun exposure, the stratifying criterion is correlated with x. Similarly, the
stratifying criterion is also correlated with y. Hence, for two people A and B who have the
same average exposure to sunlight, frequency of physical activity does not affect their risk
of developing skin cancer. This occurrence is an example of a fundamentally aspatial sta-
tistical study. It is however not difficult to imagine the possibility of observing the paradox
in geographical analysis with location-specific data. As a simplistic example, if we were
to expand the scenario of the study and stratify the patients based on the city in which
they lived (spatial stratifying criterion), rather than on the basis of exposure to sunlight,
would we still observe the stratified trends between skin cancer and physical activity to
disappear? We would argue, yes. Cities with higher average sunlight incidence tend to
have people who exercise more outside and gain more sun exposure than those who live in
colder and greyer places. Albeit the overly simplistic nature of the example presented here,
it is easy to imagine that spatial instances of Simpson’s paradox might occur and possibly
be at least as frequently encountered as in aspatial analysis.

3 A geographical perspective on Simpson’s paradox

Research within the field of spatial statistical analysis typically pursues a blend of two
lines of enquiry—one is the description of spatial patterns exhibited by the data we mea-
sure, and the other is the investigation of the spatial processes that produced those data,
which we usually cannot observe and need to infer. Spatial processes are the associations
or conditioned relationships between observed phenomena and factors or variables that
are hypothesized to affect those phenomena. These relationships are often measured us-
ing models within the well-known regression framework. While studies exploring spatial
patterns are invaluable in describing how data are distributed over space [2, 4, 13, 19, 29,
30, 48, 50, 51, 55, 57, 61, 75], various spatial and aspatial models of relationships enable in-
vestigation of the why questions related to spatial data [2, 5, 6, 9, 18, 21, 34–36, 38, 42, 72]. In
traditional models within the regression framework such as Ordinary Least Squares (OLS)
regression, a single parameter estimate is calculated to represent the trend between the
predictor and a response variable. The inherent assumption in these models is that pro-
cesses or conditioned associations are constant or stationary across space. For example, in
an OLS regression model investigating house prices as a function of number of bedrooms
in a house, the assumption would be that no matter where the house is located within the
study area, the marginal value of a bedroom is the same.

However, during the last two decades it has become increasingly recognized that some
processes, particularly those related to human preferences, decision-making and actions,
might vary over space. Consequently, the expectation is that in some neighborhoods of a
city the marginal cost of a bedroom might be higher than in others. If processes do vary
over space, traditional global models of behavior will be misspecified and their calibration
will hide interesting spatial variations in the way in which covariates affect the spatial dis-
tribution of a variable of interest. This has led to the development of various local spatial
modeling frameworks which can be employed to investigate possible variations in pro-
cesses over space, examples of which include those of Geographically Weighted Regres-
sion [14, 15, 23] and the more recent multiscale version, MGWR [26, 56]; Bayesian Spatially
Varying Coefficients Models [8, 27]; Spatial Filtering methods [33, 52]; and Spatially Clus-
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tered Coefficient models [43]. Recognizing the innate difference between the spatial and
aspatial schools of thought and the contrast between local and global models, leads to
some interesting insights into Simpson’s paradox.

As a corollary to the expectation that associations might vary across space, a response
variable could be assumed to be a function of both the predictor variables and space. Vari-
ables that are generally used as predictors in studies related to human-behavior and pref-
erences are also expected to vary as a function of space, that is, exhibit spatial heterogene-
ity [3]. Consequently, it can be imagined that space is correlated with both the response
and predictor variables, and so omitting space could lead to a case of Simpson’s paradox
similar to that discussed above for the aspatial context. For example, suppose a global
model is calibrated using all the data in a study area and a parameter estimate associated
with covariate x is found to be significantly positive. It is possible that in the calibration
of a model using subsections of the same data partitioned across space, the associations
are insignificant or they may be significantly negative. Using simulated data as in Figure
2(a) for instance, the expectation would be that an OLS model calibration would result in
a positive significant beta estimate representing a positive correlation. However, calibrat-
ing individual models using disaggregated data according to spatial neighborhoods from
{N1, N2, ..., N10} as depicted in Figure 2(b), would result in individual negative significant
beta estimates representing a negative correlation between the response and predictor vari-
ables. This simplistic example shows how global and local models can reveal seemingly
contradictory processes.

Figure 2: Simulated data example of spatial Simpson’s Paradox

To highlight the issues Simpson’s paradox might raise in real-world spatial analysis,
a more realistic example is now described. Suppose an analyst has a statewide set of
geocoded residential real estate prices along with data on various determinants used in
hedonic models, one of which is population density. Suppose further that on calibrating a
global model, the relationship between house prices and population density is significantly
positive suggesting that across the state, cities with greater population density have higher
average house prices perhaps owing to access to jobs, amenities and resources. However,
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the calibration of a local model might reveal the relationship to be significantly negative in
many local neighborhoods suggesting that people prefer neighborhoods which are more
spacious and less densely populated. This then poses the question: which level of anal-
ysis is correct—are house prices positively or negatively related to population density?
Simpson’s paradox is therefore a scale issue—at one spatial scale we infer that y and x are
positively related; at a different spatial scale we infer they are negatively related. As with
aspatial examples of Simpson’s paradox, both of these statements can be true which poses
a substantial challenge to drawing robust inferences from the data.

While Wilson [77] describes one occurrence of Simpson’s paradox using a global model
and Sachdeva et al. [64] and Fotheringham and Sachdeva [24] more recently show a limited
empirical instance of Simpson’s paradox using a local model, the potential prevalence of
the problem in spatial analysis is unknown. The empirical instances of Simpson’s paradox
such as those described above could simply be attributed to data anomalies or highly un-
usual examples. Here, we not only describe three further instances of the paradox across
two real world examples, but we also provide a more general argument as to why occur-
rences of Simpson’s paradox when comparing local and global model results might be the
norm rather than the exception. The aim of this paper is therefore to illustrate that: (i)
Simpson’s paradox might be more common than previously thought in spatial information
science; (ii) when the paradox is observed in spatial analytic research, it is not a symptom of
a problem with the analysis but is simply a manifestation of different processes operating
at different spatial scales; and (iii) when the paradox is observed through the calibration of
local and global models, this gives us the opportunity to identify the spatial scale at which
processes change.

These objectives are addressed in sections 4 and 5 where we examine whether a spa-
tial variant of Simpson’s paradox can occur when the results of local and global models
are compared using a general simulation experiment and two distinct empirical examples
from the field of housing market analysis. Next, we first provide a brief overview of local
modeling with MGWR and lead onto the simulation experiment exemplifying its use in
detecting an occurrence of Simpson’s Paradox in spatial analysis.

4 A demonstration of spatial Simpson’s paradox in simu-

lated data

The varying spatial scales at which local and global models are calibrated is demonstrated
in Figure 3. Whereas a global model is calibrated using all the data available in a study
area (Figure 3a), a local model such as MGWR uses subsets of the data to perform multiple
local calibrations with data weighted as inverse functions of distance from the location of
each local calibration (Figure 3b).

In what follows, we use Multiscale Geographically Weighted Regression (MGWR) as
an example of a local modeling technique [26] and OLS regression as an example of an
equivalent global model. For the calibration of the MGWR model, the mgwr Python pack-
age [56] with computation improvements from Li and Fotheringham [44] is employed. For
the calibration of the global OLSmodel, the ols functionwithin the statmodel package for
python is used [67]. In the MGWR calibrations, an adaptive bisquare kernel is employed
and GWR bandwidth initialization is used. Ten groups of 100 points each (1000 points in
total) are constructed such that x and y are negatively correlated in each of the individual
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8 SACHDEVA, FOTHERINGHAM

Figure 3: The scale of data used in (a). Global linear regression (left) and (b). MGWR (right)

groups while the whole dataset of 1000 points displays a positive correlation. The covari-
ates {x1, x2, ..., x10} where xm represents the mth group of 100 points, are simulated as
random normal distributions with a positive mean ranging between 15 and 35 with stan-
dard deviation = 1 and the subsequent {�1,�2, ...,�10} are constructed as random normal
distributions with a negative mean ranging between -15 and -55 with standard deviation =
1. For example, for group 1, x1 is defined as a vector (n = 100) following a random nor-
mal distribution with mean = 25 and standard deviation = 1 and �1 is defined as a vector
(n = 100) following a random normal distribution with mean = -25 and standard deviation
= 1. The range chosen for the means of the distributions of xm and �m are deliberately
spread out such that the association for each disaggregated group is negative but when
aggregated for all the groups it is positive. The dependent variables for each of the groups
{y1, y2, . . . , y10} are then constructed from the xm and �m of the corresponding groups and
a random normal error (✏) with mean = 0 and standard deviation = 1, using the following
equation:

yi,m = �i,mxi,m + ✏i,m (1)

The ten groups of data are then distributed randomly across space as shown in Figure
4. On calibrating the model in equation (1) by MGWR and OLS, the parameter estimates
from the OLS calibration are constant and significantly positive at the 95% confidence limit
(Figure 4d), whereas those estimated usingMGWR (Figure 4e) are all significantly negative
at the 95% CL (adjusted for dependent multiple hypothesis tests) and closely replicate the
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Figure 4: (a). Simulated covariate, (b). Simulated response variable, (c). Simulated process,
(d). Parameters estimated using OLS, (c). Parameters estimated using MGWR

‘real’ beta estimate values (Figure 4c). Consequently, calibration of a global model such
as employing the OLS technique results in a positive association between y and x since
it considers the whole dataset at once. In contrast, a local model such as MGWR is able
to detect the local neighborhoods of negative association and results in a contradictory
inference regarding the relationship between y and x. Figure 5 amplifies the relationships
estimated using OLS and MGWR in comparison to the simulated associations. The blue
clouds of local relationships which reflect the estimates from MGWR are representative of
the neighborhood-level associations (gray), whereas the single red trend estimated using
OLS describes the global relationship between y and x.

In the above, we describe a simple, simulated example in which a spatial variant of
Simpson’s paradox is demonstrated to convey the important difference in the scale of the
questions being answered when global and local models are calibrated. We now employ
these frameworks on real-world data representing two distinct housing markets to detect
and discuss occurrences of Simpson’s paradox in spatial data analysis.
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10 SACHDEVA, FOTHERINGHAM

Figure 5: Simulated vs modeled relationships between y and x using MGWR and OLS

5 Two empirical examples of spatial Simpson’s paradox

The simulation experiment in Section 4 describes how a spatial variant of Simpson’s para-
dox can occur in theory. We now demonstrate its presence in two real data sets. In both
cases a hedonic price model is calibrated: in the first a global and local hedonic price model
is calibrated for individual house sales in King Co., Washington; in the second, a different
form of hedonic price model is calibrated for individual house sales in Los Angeles Co.,
CA.

5.1 House prices in King Co. WA

In this example, we draw our model and data from Sachdeva et al. [64] where house sales
in the form of 19,832 georeferenced properties in King County, WA sold betweenMay, 2014
and May, 2015, along with the various covariates such as living area, access to waterfront,
unemployment rate etc. are used to calibrate a hedonic model. The data were obtained
from the online data science competition platform Kaggle [1] and consist of the sales price
of each house and various structural attributes of each property. The formulation and other
details of the model can be found in Sachdeva et al. [64]. Further, resulting local associa-
tions have been tested for potential non-linearities in relationships using the diagnostic
tool as described in Sachdeva et al. [63], and no indication of related biases are found. In
their paper, Sachdeva et al. [64] report one instance of Simpson’s paradox observed be-
tween the conditioned relationship of age of a property and its price. Fotheringham and
Sachdeva [24] further discuss that instance and comment briefly on its implications for
inference. Here, we elaborate on this instance of Simpson’s paradox, but go beyond it to
report the results of calibrating the local model with different spatial aggregations of the
data to investigate if the results vary when the data are aggregated (a novel version of the
MAUP) and also to see at what scale the results flip signs. House prices are regressed using
the following log-log hedonic price equation:

www.josis.org

http://www.josis.org


A GEOGRAPHICAL PERSPECTIVE ON SIMPSON’S PARADOX 11

ln(house price valuei) = �i,0 + �i,1 ln(sqft livingi) + �i,2 ln(agei)

+�i,3 basement presenti + �i,4 ln(dist to waterfronti)

+�i,5 ln(tech jobsi) + �i,6 ln(unemployment ratei) + �i,7 ln(indexi) + ✏i

(2)

In the calibration of the model in equation (2) by both a global and local model, three
instances of Simpson’s paradox are uncovered out of the seven slope parameters. The first
and most clear instance of the association reversal paradox is observed in the parameter
estimate measuring the association of the age of housing on house prices. In an OLS model
applied to all the data points in the study area, the estimate of this parameter is 0.01 and
significant at the 95% CL suggesting, perhaps counter-intuitively, that across this region
older houses are worth more than newer houses, ceteris paribus, and house prices rise by
0.1% for every 10% increase in the age of the housing units. When the model is calibrated
locally, on the other hand, most local estimates are significantly negative suggesting that
as the age of a house increases, the value declines. Figure 6 depicts these contrasting re-
sults at the local model calibration level (a), at the global level (b) and by comparison of
the associations at both levels (c and d). Figure 6(c) shows the significant parameter esti-
mates resulting from MGWR model calibration (in blue) and the average, negative, trend
line depicting the association between the age of a property and its price. The red dotted
line is the association as estimated by OLS and is positive and more representative of the
insignificant beta estimates resulting from MGWR (those in red). In Figure 6(d) we show
two randomly selected local calibrations (for neighborhoods N1 and N2) of the 19,832 in
MGWR which are both significantly negative at the 95% CL.

The explanation for the seemingly contradictory results lies in realizing that the ques-
tions being answered by the two calibrations are different because of the difference in the
spatial scale of the two applications. When all the data are analyzed in a global model, the
parameter estimates are based on a comparison of house sales across the whole of King
County, WA, and at this scale, areas with older houses, such as in parts of Seattle, are more
desirable than other areas containing newer houses: older areas of housing may be seen as
more stable and/or as having a cachet associated with age. This generates the significant
positive relationship seen in the global model and the local models using highly aggregated
data. However, at the local scale the model parameter estimates are not based on a compar-
ison of house prices across the whole county but only within local neighborhoods around
each property and where, presumably, the age of properties is more uniform. At this scale,
within neighborhoods of similar housing, newer houses are worth more than older ones,
ceteris paribus, leading to locally significant negative relationships. We return to this result
later in the section for a discussion on how the inferences from such an instance relate to
ecological fallacy.

A secondmilder version of the paradox is seen in the parameter estimate measuring the
association of unemployment rates on house prices. In the global model the estimate of this
parameter is -0.128 suggesting that across this region lower house prices are associatedwith
higher unemployment rates. When the model is calibrated locally for each origin, as shown
in the large panel in Figure 7, while most local estimates are significantly negative reaffirm-
ing the conclusions from the global model estimate, there are some positive estimates near
Lake Sammamish to the East. This is the more common kind of Simpson’s paradox where
the trends are not completely reversed for all the subpopulation groups. While even the
negative local parameter estimates provide more information about the processes being
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12 SACHDEVA, FOTHERINGHAM

modeled than the single global estimate, the results do not contradict each other for the
majority of the region. To explore this further, we can examine at what scale the inference
changes by calibrating the local model for the 11 different scales of aggregated data using
grids ranging from 400m by 400m to a larger scale of 4km by 4km and these results are
shown in the smaller panels of Figure 7.

Figure 6: Significant global and local associations between age of a property and its price

In spatial analyses, inference and interpretation of such results becomes all the more
important due to the added complexity of the geographical scale of measurement, analy-
sis and interpretation. Contradictory results for some regions at the finer scales (individual
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Figure 7: Significant (95% CL adjusted for dependent multiple hypothesis tests) local pa-
rameter estimates for the association of rate of unemployment on house price at 12 different
spatial scales

point level, 400m and 450m in Figure 7) that disappear in other coarser scale estimates, may
again seem spurious, indicating an issue with model specification. However, as observed
with the age example, the more likely explanation is that we are inferring different trends
at different scales since we are asking different questions from these distinct models. At the
global scale, when all the data are used for the model calibration, areas with high unem-
ployment rates, such as South of Seattle (Federal Way, Des Moines), are also generally less
desirable than areas with low unemployment rates around Seattle, such as Kirkland and
Queen Anne, and are hence less preferred residential neighborhoods. At finer scales, infer-
ence drawn from comparisons within smaller housing clusters for areas in North and South
of Seattle, exhibit a similar trend. The neighborhoods near Lake Sammamish, however, at
finer scales produce a trend which is contradictory to that at the global scale.

Interestingly, the areas around Sammamish exhibit high unemployment rates (ACS
2014 data) as well as high house prices. The tech industry around Seattle was booming
at that time when industry giants such as Facebook, Google and Uber were setting up
huge offices in the area. The explosion of jobs from these new campuses, in addition to the
existing expanding Microsoft headquarters, led to an increase in employed, skilled people
over the following years in the area. The local trends around Sammamish are therefore po-
tentially signals caught at the start of when the housing market in the area began to change.
People with high-paying jobs moving into the area, as well as real estate companies that
were projecting a rising demand of housing in the area, were potentially acquiring proper-
ties in previously impoverished suburbs with close access to the new office communities.
This process, revealed using local modeling, is reaffirmed by the following data. The popu-

JOSIS, Number 26 (2023), pp. 1–25



14 SACHDEVA, FOTHERINGHAM

lation in Sammamish increased by about 29% and unemployment rate decreased by about
40% from 2014 to 2018 yet the city has one of the costliest housing markets in the country.
Perhaps the lag between high house prices for properties sold between 2014 and 2015 and
the influx of employed and stable population (which would be reflected in community sur-
vey data in the years after 2014) was captured by the local model estimates. Since houses
with high house prices and high unemployment rates are compared amongst each other at
finer scales in the local model calibration, higher unemployment rates are seen as affecting
house prices in a contradictory manner at those scales.

Finally, the third instance of Simpson’s Paradox is observed in the waterfront view pa-
rameter estimates in the model. In addition to accounting for the effects of access to a
waterfront, a composite measure including waterfront access and the elevation of a res-
idence was also included in the model to measure the influence of sea or lake views on
price. The index, ranging between 0 and 1, has a higher value when houses have a high
elevation and are close to a waterfront and a lower value when houses are at low elevations
farther from a water body. The global parameter estimate is significant but negative, which
is counter-intuitive. The significant local estimates range from -5.8 to 8.6 and are displayed
in Figure 8. The positive estimates in areas around Queen Anne, Capitol Hill and Bellevue,
reflect an increase in housing price with an increase in the index, ceteris paribus which is
intuitive as in these areas increased elevation would lead to a better view of a bay or lake.
In some of the areas with negative local parameter estimates the index appears to be acting
as an inverse proxy for access to parks and golf courses. Figure 8 also reveals that there are
relatively few locations with significant parameter estimates despite the global estimate
being significant. This is also a feature of both local modeling and Simpson’s paradox.

5.2 House prices in Greater Los Angeles

A second real-world study based on house-price determinants in greater Los Angeles is
used to support the inferences drawn from the previous example. Here, a subset of a
1990 California census dataset often referred to in the literature [28, 41, 65] is employed
to calibrate a local (MGWR) and global (OLS) hedonic price model. The dataset consists
of median house price values and some summary attributes such as median age of hous-
ing, median income of residents, average proximity of the block group to the coastline, etc,
for all census block groups in California. Here we use median house price in each block
group as the dependent variable. A log-log hedonic house price model where both the
independent and dependent variables are log transformed, is formulated as follows:

ln(median house pricei) = �i,0 + �i,1 ln(median incomei)

+�i,2 ln(median age of housingi)

+�i,3 ln(no. of beds per popi) + �i,4 ln(no. of householdsi)

+�i,5 ln(dist. from coastlinei) + ✏i

(3)

An adaptive bisquare kernel using nearest neighbors is used to calibrate the MGWR
model. A local model is calibrated using the original 7,126 block group data and then on
aggregations of the data to eight spatial scales as shown in Figure 9. The r-squared value
for the individual level base MGWR model is 0.91.

A similar instance of Simpson’s Paradox to the one observed for King County WA is
observed between median house prices in LA and the predictor measuring median age. In
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Figure 8: Significant (95% CL adjusted for dependent multiple hypothesis tests) local pa-
rameter estimates for the influence of waterfront view on house price at 12 different spatial
scales

the global model applied to all 7,126 block groups, the estimate of this parameter is 0.065
with a SE of 0.008 suggesting a preference for older housing neighborhoods at the global
level. The map of the significant local parameter estimates in Figure 10 displays a mix of
negative and positive parameter estimates. For example, positive estimates are observed
around Beverly Hills, where, presumably, block groups containing older and more expen-
sive housing units are preferred to block groups with newer and cheaper house values.
On the other hand, block groups around areas such as Inglewood display a preference for
newer housing communities. At the most coarse scale of the analysis (10km x 10km grid),
the local parameter estimates are all positive and significant and are concentrated in the
richer, more preferred part of the city, similar to that observed in the context of the King
County housing market. This example reaffirms that the different and contradictory results
obtained using the King County dataset were not peculiar to that data set and may well be
a common feature of spatial data analysis.

6 Spatial processes and their scales of transition

6.1 Simpson’s paradox and the ecological fallacy

The observation of Simpson’s Paradox in spatial analysis is not just central to the measure-
ment and operational scales of analyses in spatial sciences but also to the scale at which
interpretations are made. Studies using global models of analysis and spatially aggregated
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Figure 9: Original LA housing block group centroids and grid scales used for aggregation

data are often used to infer behavior or properties relating to individual units within the
study area. When observed in the context of the scale at which the data are measured, this
is referred to as the ecological fallacy. Another type of ecological fallacy can occur when
interpreting the results from local and global models. As observed in the examples of
Simpson’s paradox above, local and global models are operationally different and provide
evidence on fundamentally different processes. In the presence of Simpson’s paradox, in-
ferences from global and local models are therefore not as contradictory as they appear. For
example, consider the effect of the age of a housing unit on house prices in the King Co.
example. As shown in Figure 11, if the data on individual housing units are aggregated
to different administrative units (block groups, census tracts and zip codes), a reversal in
trend between the age of housing and house prices is observed which is similar to that
observed when a comparison between the local and global model calibration is made. At
the property level, a local model is estimated using only a weighted subset of the data
and essentially the model’s parameter estimates report on the choice process of individu-
als comparing houses within neighborhoods with newer houses within a neighborhood of
largely similar houses being preferred (Figure 12 panel a). At the zip code level however,
large areas of housing are being compared with older neighborhoods being preferred to
newer ones (Figure 12 panel b). These are fundamentally different processes that answer
different questions about the observed phenomena. While the marginal cost of a newer
housing unit is higher than its older counterpart, zip codes or areas with older, more stable
housing markets are preferred over newer, less well-established, neighborhoods.
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Figure 10: Significant (95% CL adjusted for dependent multiple hypothesis tests) local pa-
rameter estimates for the association between median age of housing on house prices at 8
different spatial scales.

6.2 Spatial scales at which processes transition

An advantage of calibrating global and local models at different aggregations of data is the
potential to identify the critical spatial scale at which conditioned relationships change sign
For instance, in the King Co. empirical example presented in section 5.1, the aggregation at
which the paradox is observed is different for different conditioned relationships, as shown
in Figure 13. The transition from mixed conditioned associations between unemployment
rate and house price for different neighborhoods to completely negative associations occurs
at a local scale of around 450 m whereas the transition of the waterfront view and housing
age conditioned associations with house price both occur at about 1.5k . This variation in
transition scales may shed light on different aspects of what constitutes a relatively homo-
geneous neighborhood for different facets of house price determinants. In this case, for
example, the scale at which unemployment rates affects house prices appears to be more
local than the scale at which the conditioned relationship between house price and age be-
comes more homogeneous suggesting larger neighborhoods with relatively homogenous
construction ages. Neighborhoods larger than about 1.5 square kms are compared with one
another, the average age of housing in such units exerts a greater distinction between older
and wealthier neighborhoods, such as historic districts, and newer, less wealthy suburban
housing tracts.
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Figure 11: Significant (95% CL adjusted for dependent multiple hypothesis tests) local pa-
rameter estimates for the influence of the age of a residence on house price at four different
spatial scales—King Co., WA.

Figure 12: Detailed panels representing how different spatial processes are estimated at
different scales.

7 Discussion

The geographical scale of analysis is an inherent component of any form of spatial anal-
ysis yet policy implications and interpretations from spatial analysis research are beset
with issues around the appropriate scale at which phenomena are measured, analyzed and
interpreted. Here we demonstrate how this is an even greater problem than previously
thought given the growing popularity of local statistical modeling and the ever-increasing
likelihood of encountering a spatial version of Simpson’s paradox. Until now, instances
of Simpson’s paradox have rarely been identified and explored in spatial analysis so our
understanding of the phenomenon and its implications, especially for policy oriented re-
search, is limited. Here, we demonstrate through the lens of local modeling that: (i) this
is a fundamental problem about which spatial analysts should be aware; (ii) by refocusing
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Figure 13: The spatial scales at which processes change in the King Co. housing empirical
example

the problem in terms of processes, we contribute significantly to a greater understanding of
the paradox as it occurs in local modeling; and (iii) an occurrence of the paradox in studies
comparing local and global models is not a problem and is to be expected. We examine
the role of scale and space in the occurrence of Simpson’s paradox in research using results
from both local and global models. The raison d’etre of local models is that a global scale
(where ‘global’ simply refers to all locations within a predefined area of interest) might be
the incorrect scale at which to undertake any analysis of spatial processes; the alternative
being a local scale (where ‘local’ refers to individual locations). Using results from local and
global models, we discuss and exemplify the extreme differences that can result when cali-
brating global and local models with the same data and how Simpson’s paradox can arise
in this context. We highlight through this study that where scale refers to the geographical
entity for which a model is calibrated, the results from neither the local nor global models
are incorrect—these just answer different spatial questions related to the phenomena.

Further, through this study we show that parameters estimated in the calibration of
global models are not necessarily ‘averages’ of their equivalent local estimates. In some
instances, a spatial variant of Simpson’s paradox can arise whereby a relationship is signif-
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icantly positive (negative) at the global level but is significantly negative (positive) at the
local level. There is nothing wrong in this and there is no reason to expect global estimates
to summarize local estimates, although in some cases, they might. It bears repeating that
while an interpretation of a spatial process at one scale might contradict that at another, one
interpretation is not necessarily more correct than the other. Models aggregated to differ-
ent spatial scales essentially answer different spatial questions. Global parameter estimates
inform on the conditioned relationship between y and x across the whole study area; lo-
cal parameter estimates inform on the same conditioned relationship but around a single
location. These relationships might be very different, as exemplified by the conditioned
relationship between the value of a property and its age shown above in two empirical
examples.

With the growing number of applications that use local modeling techniques, these
findings are important in their own right but are also crucial in understanding the issue of
reproducibility and replicability in geographical analysis [32,39,40,69]. A well-conditioned
model (i.e., one which is properly specified and contains no serious statistical flaws) could
still generate different parameter estimates when applied to the same data set aggregated to
different sets of zones. Further, if the samewell-conditionedmodel were calibrated globally
and locally, we should not expect to see similar results because we are asking different
questions at the two scales. Consequently, the issues of reproducibility and replicability
in geographical analysis are much more nuanced than in some areas of science and the
occurrence of Simpson’s paradox is not a strange, inexplicable property that invalidates
geographical analyses. Rather, variations in estimated parameters from the same model
are to be expected and are a natural reflection of spatially varying processes and because
we ask different questions at different spatial scales.
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