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Abstract 
Regional Psychologically Valid Agents (R-PVAs) are computational models representing 
cognition and behavior of regional populations. R-PVAs are developed using ACT-R—a 
computational implementation of the Common Model of Cognition. We developed R-PVAs to 
model mask-wearing behavior in the U.S. over the pre-vaccination phase of COVID-19 using 
regionally organized demographic, psychographic, epidemiological, information diet, and 
behavioral data. An R-PVA using a set of five regional predictors selected by stepwise 
regression, a psychological self-efficacy process, and context-awareness of the effective 
transmission number, Rt, yields good fits to the observed proportion of the population wearing 
masks in 50 U.S. states [R2 = 0.92].  An R-PVA based on regional Big 5 personality traits yields 
strong fits [R2 = 0.83].  R-PVAs can be probed with combinations of population traits and time-
varying context to predict behavior. R-PVAs are a novel technique to understand dynamical, 
nonlinear relations amongst context, traits, states, and behavior based on cognitive modeling. 
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The COVID-19 pandemic prompted global-scale changes in human behavior1. It also produced a 
historically large set of natural experiments on behavior change due to variations in localized 
disease context, governmental public health policies and mandates, and regional variations in 
psychological and sociological makeup. In the early phases of the pandemic—prior to 
widespread availability of vaccines—the main response options were non-pharmaceutical 
interventions (NPIs) such as social distancing, mask wearing, and hand washing.  This is because 
human behavior plays a crucial role in mediating viral transmission2.  Throughout history, people 
have typically modulated their behavior to mitigate pandemic transmission rates3.  Analysis of 
mask wearing across countries4 shows that people modulate their behavior, but the impact of 
government mandates is weak to non-existent.  A recent Royal Society report5 concluded that the 
“weight of evidence from all studies …consistently, though not universally, reported that mask 
wearing, and mask mandates were an effective approach to reduce infection.” The underlying 
causal pathways of behavior change, and the effects of psychology and behavior on transmission, 
remain poorly understood.  
 
During the early phases of COVID-19, it was argued6 that people’s awareness of case rates or 
fatality rates appeared to be driving the modulation of protective behaviors, and that it was 
awareness-driven behavior that produced the signature temporal phenomenon observed in 
virtually all regions: the damped oscillation pattern of the effective reproductive number, Rt, as 
presented in Figure 1.  At the beginning of a pandemic, there is a rapid increase in Rt, followed 
by an asymmetric decline, followed by oscillations around Rt = 1.  As noted previously,7,8 this 
oscillation is similar to that produced by a Proportional-Integral-Derivative control system in 
which a controlling intervention (e.g., mask wearing) occurs in proportional response to the state 
of the system (e.g., Rt), although there may be lags between the awareness of the system state 
and the response, and between the response and effecting a change.  The lags may occur (for 
instance) because of the pathogen incubation period, news time cycles, or the observation of 
local social conditions. 
 

 
Figure 1.  Dampened oscillation of Rt.  The values of Rt are plotted against Rt+7, where t is in 
days. 
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Another factor driving the adoption and maintaining of NPIs is self-efficacy.  Self-efficacy, in 
essence, refers to an individual's belief in their ability to carry out actions required to achieve 
specific goals. According to Bandura's Social Cognitive Theory of self-efficacy9, if individuals 
perceive their goals as excessively challenging, they are less likely to attempt them. Generally, 
higher levels of self-efficacy correlate with increased likelihoods of goal attainment. 
Assessments of self-efficacy are closely linked to people's motivation to engage in demanding 
activities, whether physical or cognitive. Vancouver10,11 observed that when self-efficacy is low 
in comparison to a difficult task, it tends to be perceived as more strenuous, yet high motivation 
can compensate for low self-efficacy, albeit within limits. This aligns with the Attributional 
Theory of Performance12, a variant of Motivational Intensity Theory13, which suggests that 
beyond a certain point, as task difficulty increases, people may not be motivated to invest effort, 
leading to a fluctuating relationship between effort and perceived task difficulty.  Self-efficacy 
might account for the spiraling increase with time in mask wearing, as shown in Figure 2.  That 
is, as people successfully achieve goals, they gain self-efficacy. 
 

 
Figure 2.  Rt vs. proportion of mask wearing 7 days later.  A spiraling increase in the 
adoption of mask wearing can be observed in many cases as time progresses. 
 
The responses of public officials in the early phases of the pandemic were guided, in part, by 
epidemiological models that had abundant, very large, uncertainties around the effects of NPIs14-
17 and large regional heterogeneity18,19, which has been attributed to a failure to address the 
crucial role of socio-psychological-behavioral mechanisms20.  The U.S. National Academies of 
Sciences, Engineering, and Medicine21 emphasized the importance of psychological science to 
the mitigation of the spread of COVID-19. Human psychology matters in controlling the 
dynamics of disease transmission, and people respond differently because they have different 
mindsets and capabilities that vary over space and time. There is a need for population-scale 
computational models that accurately predict the complexity and heterogeneity of human 
behaviors that are key to modulating pathogen transmission.  Advances in computational 



 5 

cognitive modeling, artificial intelligence, and machine learning provide the opportunity to build 
such models.8,22-25 
 
In this article, we present models based on the development of Psychologically Valid Agents 
(PVAs)22 that represent the behavior of regional populations in the U.S. over the pre-vaccination 
phase of COVID-19.  We call these Regional Psychologically Valid Agents (R-PVAs).  For the 
U.S. the availability of vast amounts of regionally organized (e.g., state, county) demographic, 
psychographic, epidemiological, behavioral, and information environment data makes it feasible 
to develop and test such models. Our work with PVAs22,23,26  has relied on the development of 
data pipelines combining demographic and psychographic data about U.S. regions and Natural 
Language Processing of online social media that are used to initialize Regional PVAs and to 
provide time series data about human behavior such as mask wearing. Similar large-scale models 
could be significant in other societally important areas, such as response to natural disasters, 
public health, climate change, civic discourse, diplomacy, economic policy, and cybersecurity. 
 
Research on geographical psychology examines the spatial distribution of psychological features 
and their relation to social, psychological, and behavioral phenomena27.  For instance, regional 
differences in state-level or county-level Big Five personality scores are related to political, 
economic, social and health outcomes28, and big data methods processing social media can 
identify regional personality scores related to entrepreneurship29.  Typically, relations between 
regional psychological factors and outcomes are analyzed using variations of linear regression.   
 
In contrast to prior work on geographical psychology, the Regional PVAs presented here were 
developed using the ACT-R architecture. ACT-R30,31 is a computational implementation of a 
unified theory of cognition32.  A wide variety of cognitive architectures have been proposed, but 
there is an emerging consensus regarding the central structures and processes in the form of a 
Common Model of Cognition (CMC)33. ACT-R provides a computational implementation of the 
CMC. ACT-R is intended to be a model of individual-level cognition, and can be the basis of 
highly individualized learning34 and behavior-change interventions35.  However, in other 
examples, ACT-R models are often used to capture cognition at an aggregate level—e.g., the 
average participant in a psychology experiment.  Regional PVAs could be viewed as an 
extension of this approach: as models that capture the psychological function and behavior of a 
sample or population of people having some particular statistical mixture of attributes, beliefs, 
knowledge and experience, responding to inputs from some context. 
 
The ACT-R theory36 has evolved since the 1970s to address a wide variety of experimental 
results on human problem solving, decision making, memory, learning, cognitive skill 
acquisition, perception, and attention, as well as the fine-grained time course of neural processes. 
The theory has been applied to a variety of domains including education, human-computer 
interaction, and language learning37-39. ACT-R is implemented as a simulation environment with 
several software variants that can simplify its application to a specific domain or problem.  
Practically, ACT-R is a computational cognitive architecture that supports the development of 
models. A scientific understanding of behavior change in response to pandemics requires such 
unified models and toolkits. The literature on behavior change is extensive, lacks coherence, and 
needs mechanistic theory. Preliminary integrative models of behavior change have been 
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developed in ACT-R35,40, which provide some promise of their utility to modeling behavior 
change during a pandemic. 
 
ACT-R can integrate self-efficacy and motivation intensity theories8,41. Such assumes that self-
efficacy and intended effort are fundamentally the result of memory processes. Past experiences 
of efficacy at behaviors similar to a target goal are retrieved and blended to produce assessments 
of self-efficacy and intended effort for the new goal. Given a pending decision to pursue a 
behavioral goal, an assessment is made of the difficulty of achieving that goal. A blended 
retrieval is performed to assess self-efficacy with respect to the behavioral goal, based on 
memory of experiences on behaviors similar to the goal behavior.  A judgment is made about the 
intentional level of effort required to achieve the behavior, given the judged difficulty of the 
behavior and assessment of efficacy towards that goal. It is assumed that the individual will put 
in effort if it is less than a threshold. If the behavior is performed, then a new instance is learned.  
That instance will be stored with a self-efficacy that includes the old self-efficacy value boosted 
by the additional intentional effort expended. New successes on behaviors where the perceived 
difficulty was high relative to self-efficacy will tend to improve self-efficacy with repeated 
experience.  
 
We selected a set of static regional variables from several sources representing data at the county 
and state levels of the U.S.  The sources included data aggregated by the Johns Hopkins 
Coronavirus Resource Center42,43, regional Big 5 personality statistics27, and a fused data set 
used in a study of predictors of social distancing behavior.44  Guided by previous machine 
learning research on the same or similar data45, we selected a subset of variables to include in our 
analysis (see Methods and Supplementary Materials). 
 
In addition to the static regional variables, we selected and created a set of time series regional 
variables.  For each county and/or state, we combined survey data from the CovidCast and the 
Covid States projects. The time series data is daily for the pre-vaccination rollout period of 
4/24/2020 to 3/31/2021, which covers the time period of the first three waves of Covid-19 as 
defined by Pew Foundation2. Rt data at the state and county level was downloaded from 
covidestim.org, a project of the Yale School of Public Health. Mask wearing data at the state 
level was downloaded from CovidStates46, which compiled the data from survey waves deployed 
every three weeks.  We created an imputation algorithm to combine that data with CovidCast 
mask-wearing data.  (See Supplementary Materials for more details on the data pipeline and 
variables.) 

Results 
We present Regional PVAs of mask wearing behavior for the 50 states of the U.S. and show that 
these models capture the signature phenomena of transmission awareness-driven mask wearing.   
A change in a system is often not recognized instantaneously.  It takes time for the awareness to 
percolate throughout the population before people react to the new situation.  We utilized 
Granger causality analysis46 to determine if there was a delay between a change in Rt and a 
change in the mask wearing behavior.  The shortest lag with a significant effect was 7 days.  We 

 
2  https://www.pewresearch.org/politics/2022/03/03/the-changing-political-geography-of-covid-19-over-the-last-
two-years/.   
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thus offset the Rt values in the data by 7 days to reflect this dependency in all subsequent 
analyses. 
 
Regression Analysis 
We performed some exploratory analysis using regression models, to examine the relationship 
between the variables in our data set and identify candidate variables that had a significant effect 
on mask-wearing.  We considered two variations of the Rt predictor: (1) RDt = Rt – 1, and (2) 
RD2t = (Rt – 1)2 * sgn(Rt – 1).  The intuition for the transformations is that the phenomena in 
Figure 1 suggest that transmission-reducing behavior increases as Rt > 1 and decreases as Rt < 1.  
The feature RDt would capture a linear relationship with the deviations from the stable level Rt = 
1, that is, the strength of response is linearly related to the deviation.  RD2t would capture a 
quadratic relationship.  The untransformed but standardized Rt was not included in the analysis 
since it is identical to RDt except for a shift in the mean value.   
 
Table 1 shows the coefficients and p-values of the predictors in the two cases.  Both RDt and RD2t 
are significant predictors in their respective runs, with the effect of RD2t being greater than RDt, 
suggesting that larger deviations from the baseline have a larger influence on mask wearing.  In 
addition to several significant demographic and education variables, notably 'Fox News Lean' 
and 'PctTrump State 2016' were both significant but with opposite effects.  In addition, most of 
the Big 5 personality variables were also significant and with relatively large effect sizes, 
indicating personality traits could have considerable influence on mask wearing behavior.   

Table 1.  Mask wearing regressed on the static predictor variables, together with RDt and 
RD2t respectively.  All regressions were random coefficients models analyzed using the 
LMER package in R.  We included states as a random coefficient predictor. 
 

RDt RD2t   
 

coefficient p coefficient p 
Intercept -0.03 0.533 -0.04 0.4 

RDt  or RD2t   -0.24 <0.001 -0.32 <0.001 

PC1_weather -0.22 0.081 -0.24 0.046 

PC2_weather -0.07 0.418 -0.07 0.416 
NHWA -0.2 0.139 -0.22 0.101 
NHBA -0.38 0.001 -0.4 0.001 
NHIA -0.17 0.01 -0.17 0.008 
TOM 0.17 0.359 0.16 0.354 
Gender ratio -0.16 0.163 -0.15 0.171 
Percentage age 0-17 yr 0.1 0.25 0.11 0.17 
Percentage age 65+ yr -0.07 0.384 -0.1 0.214 
Percentage adults with less 
than a high school diploma 

0.26 0.048 0.23 0.07 

Percentage adults with a 
bachelor's degree or 
higher 

0.29 0.047 0.3 0.035 
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Median household income 
2018 

-0.18 0.151 -0.21 0.079 

Unemployment rate 2018 0.05 0.456 0.05 0.459 
Fox News Lean 0.27 0.003 0.31 0.001 
GOP Advantage 2016 0.16 0.213 0.12 0.315 
PctTrump State 2016 -0.28 0.027 -0.3 0.015 
Trump approval 2020 -0.25 0.065 -0.21 0.113 
Population density per 
square mile 

-0.12 0.039 -0.14 0.019 

Extraversion 0.34 0.041 0.37 0.023 
Openness 0.19 0.175 0.23 0.097 
Agreeableness -0.56 <0.001 -0.59 <0.001 
Conscientiousness 0.36 0.001 0.36 <0.001 
Emotional Stability -0.23 0.021 -0.23 0.018 

  
The set of potential predictors were down-selected based on a forward stepwise regression 
procedure.  At each step, the variable that increased the fitness of the regression model the most 
was added to the selection.  An optimal set of variables that balanced the complexity of the 
model and the resulting R2 score was selected.  The set consists of 5 variables, namely, 
'PctTrump State 2016', 'PC1_weather', 'Fox News Lean', 'Percentage adults with a bachelor's 
degree or higher' and 'Percentage age 65+ yr', encompassing a range of demographic, political 
and environmental factors. 
 
There was not a lot of overlap between the variables obtained by this procedure and the ones that 
were significant in the multiple regression model discussed earlier.  In particular, none of the Big 
5 variables were selected.  We will examine this divergence in more detail using the R-PVA 
model in a later section. 
 
Regional Psychologically Valid Agents (R-PVAs) 
 
ACT-R is composed of modules, processing different kinds of content, which are coordinated 
through a centralized procedural module. The procedural module matches the contents of other 
module buffers and coordinates their activity using production rules.  R-PVAs rely on a subset of 
ACT-R mechanisms collectively called Instance-Based Learning47. For the R-PVAs presented in 
this paper, we rely on the declarative module, retrieval buffer, and blending buffer. In 
combination, they simulate how people retrieve knowledge and past experiences from long-term 
declarative memory. We use the PyACTUp48 simulation package. Knowledge and experience in 
the declarative module are represented formally in terms of chunks49,50. Chunks have activation 
levels that determine the probability and time course of chunk retrieval from memory. Chunk 
activations are real-valued quantities produced by subsymbolic mechanisms in ACT-R. These 
subsymbolic mechanisms reflect neural-like processes that determine the time course and 
probability of cognitive activity and behavioral performance.  Level of activation dictates 
retrieval probability and weighs how blended retrievals produce aggregate values over past 
experiences. 



 9 

 
We developed R-PVAs to learn and predict mask wearing, using various sets of predictor 
variables and the Rt time lag suggested by the Granger causality analysis.  In all analyses, the 
selected predictor variables were standardized z-scores and the data were aggregated at the state 
level. The time series covered the pre-vaccine rollout period of 4/24/2020 to 3/31/2021.  
 
For each R-PVA, we first trained a base model using only the static regional variables and a 10-
day initial segment of the mask wearing time series.  For each day and each state, the model 
learned a chunk instantiated with the mask wearing value and the values for all the predictors 
except Rt.  This was to establish an initial static baseline without considering the variations in Rt.  
This also provided the initial prediction of mask wearing on day 0.   
 
Note that even though each chunk was derived from the data from a single state, and some of the 
results presented were aggregated at the state level, the state identifier was not used as a 
prediction variable.  This allowed us to examine the more generalizable factors affecting mask 
wearing behavior rather than relying on idiosyncratic characteristics that might be attributable to 
each state.    
 
The norms established in the initialization served to bootstrap a new R-PVA with varying Rt 
values.  For each day in the time series, a prediction was made for each of the 50 states and 
compared to the actual mask wearing value.  10 new chunks, in proportion to the observed mask 
wearing percentage, were learned for each state, and we advanced to the next day.  The addition 
of new chunks every day constitutes a form of online machine learning and refinement of the 
model. 
 
In addition to the standard model, we also developed a model augmented with self-efficacy 
explicitly.  Self-efficacy is parameterized in terms of the intentional level of effort and the 
amount of boost received upon success of a trial.  A grid search was performed over the 
parameter space using a subset of the data to determine optimal values for the parameters.  The 
values obtained from the grid search (boost factor = 0.02, effort = 1.0, difficulty = 2.0, threshold 
= 1.5) were used in the R-PVAs in the subsequent experiments. 
 
Aggregated Results 
 
We compared the performance of several R-PVAs: (1) R-PVA-1: no static predictors (predicting 
only with Rt); (2) R-PVA-2: one static predictor, 'PctTrump State 2016', which was the variable 
with the largest effect on mask wearing based on the stepwise regression procedure; (3) R-PVA-
3: the five selected predictors; and (4) R-PVA-4: adding self-efficacy to the previous model.  n-
fold rolling origin cross-validation was used to compare and evaluate the predictions generated 
by the R-PVAs under these different settings and combination of variables.   
 
Table 2 shows the comparison between the four R-PVAs.   The data were the proportion of the 
population wearing masks in the 50 U.S. states over the first three waves of COVID-19. Both the 
average RMSE and R2 scores of the models improved as more variables were included, 
indicating that the selected features were helpful in characterizing the mask wearing behavior.  
The effect was particularly large transitioning from R-PVA-1 to R-PVA-2 by including one 
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static variable.  Successive inclusion of more predictors continued to improve the performance, 
although with smaller improvements in fit.  In addition, modelling self-efficacy in R-PVA-4 
improved the model performance over R-PVA-3, validating the utility of self-efficacy.  Figure 3 
shows the combined observed vs. predicted mask wearing proportions obtained from R-PVA-4, 
which is the best fitting model.  Overall, the model achieves a good fit of R2 = 0.93.   
 

Table 2.  Comparison of several R-PVA models  

 Number of Predictors (in 
addition to Rt) 

Self-Efficacy Average RMSE Average R2 

R-PVA-1 0 no 0.0942 0.2916 
R-PVA-2 1 ('PctTrump State 2016') no 0.0535 0.7714 
R-PVA-3 5  no 0.0403 0.8699 
R-PVA-4 5  yes 0.0312 0.9221 
 

 
 (a) (b)  

Figure 3.  (a) Predicted vs. observed proportion of population wearing mask each day from 
05/01/2020 to 03/31/2021 (the first three waves of COVID-19), using R-PVA-4, a model with 
self-efficacy and the 5 selected predictor variables (in addition to Rt). (b) Change in 
observed proportion of mask wearing versus change in predicted proportion.  

 
Results in High/Low Pro-Trump States 
 
To examine the results in more detail, we broke down the model outputs by state.  Our analysis 
agreed with previous work that suggested partisanship was strongly associated with adherence to 
physical distancing measures.44  The predictor with the largest effect on mask wearing based on 
the stepwise regression procedure was 'PctTrump State 2016'.  We conjectured that separating 
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the results into the dichotomy of states with high and low values for 'PctTrump State 2016' might 
provide further insight. 
 
The five states with the highest 'PctTrump State 2016' values were West Virginia, Wyoming, 
Oklahoma, North Dakota and Kentucky.  The five states with the lowest 'PctTrump State 2016' 
values were Maryland, New York, Hawaii, Vermont and California.  Figure 4 plots observed and 
R-PVA-4-predicted mask wearing proportion over time for these 10 states3. For convenience, we 
denote the highly pro-Trump states as highTrump states and the low pro-Trump states as 
lowTrump states. 
 

 
Figure 4.  Observed proportion of mask wearing and proportion predicted by R-PVA-4 for 
10 U.S. states over the first three waves of COVID-19.  The top row shows the lowTrump 
states (5 states with the lowest proportion voting for Trump in 2016) and the bottom row 
shows the highTrump states (5 states with the highest proportion voting for Trump in 
2016). 

The highTrump states had a lower mask wearing proportion than the lowTrump states.  In 
addition, in the highTrump states, the mask wearing proportion fluctuated but in general 
increased over time, whereas in the lowTrump states, the mask wearing proportion stayed 
relatively stable.  The latter might be partially due to the limiting effect of a higher initial mask 
wearing proportion, since there was not as much room to increase from an already high baseline. 
 
For the R-PVAs, in general the model predictions improved as more of the selected predictor 
variables were included (R-PVA 1-2-3) and with the addition of the self-efficacy process (R-
PVA-4).  The first model (predicting using only Rt) tended to undershoot in the lowTrump states 
and overshoot in the highTrump states.  In the two exceptions in which R-PVA-1 did not 
overshoot (West Virginia and Kentucky, both highTrump states), R-PVA-2 performed noticeably 
worse than the other models, including even R-PVA-1 with no static predictor variables.  This 
suggested that perhaps the R-PVAs had learned that 'PctTrump State 2016' had a dampening 
effect on mask wearing, and thus including this variable in R-PVA-2 sometimes lowered the 

 
3 Note that the scale varies between plots.  This makes some of the plots look more hectic (e.g. NY in the later 
plots).  
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predicted mask wearing values more than needed.  (See Supplementary Materials for the 
predictions of the R-PVA 1, 2 and 3.)   
 
Probing the R-PVA Models 
 
Once an R-PVA model is built, we can probe it with novel combinations of features to make 
predictions about other features, not necessarily mask wearing.  Figure 5 shows an example of 
mask wearing predicted from a range of values of 'PctTrump State 2016', under different 
mismatch penalties for the blending of partially-matched memory chunks.  These penalties are 
controlled by a mismatch penalty parameter, MP (see the Methods section). As the mismatch 
penalty, MP, increases, the activation levels become more concentrated in the better-matched 
memory chunks, giving rise to a closer fit.  In general, the predictions of the probings show a 
decrease in mask wearing as Trump support increases, which matches the trend observed in the 
actual data.  Even though the data did not extend to the very low and high values for 'PctTrump 
State 2016', the model was able to predict values of mask wearing that seem intuitively 
reasonable for the whole range of hypothetical 'PctTrump State 2016' values.   

 

 
Figure 5.  Probing the model with hypothetical values of predictors and different penalties 
for partial matching.   

The Big 5 Personality Model 
 
Earlier we observed that the Big 5 Personality features were significant in the multiple regression 
analysis but not selected with the stepwise regression procedure.  To examine this in more detail, 
we constructed a R-PVA model with self-efficacy and using the Big 5 variables (and Rt).  We are 
interested in this model because it is purely based on measurements of what are considered basic 
stable psychological traits. We hypothesized that some of these traits could have different effects 
in states with different mask wearing norms.  For instance, an agreeable person would prefer a 
homogeneous environment.  They might be more inclined to wear a mask if mask wearing is 
prevalent in their surroundings, but this same person might be more inclined not to wear a mask 
if mask wearing is scarce in their surroundings.   
 
Figure 6 shows the observed and predicted values using this Big 5 R-PVA model for the 
lowTrump and highTrump states.  The average RMSE = 0.0463 and R2 =  0.8286.  This model 



 13 

performed somewhat worse than the comparable model using the selected variables (R-PVA-4); 
however it still accounts for a large proportion of the variance. 
 
The Big 5 features performed better in the highTrump states than in the lowTrump states (see 
Supplementary Material Figure S7). It appears that the relationship between the Big 5 traits and 
mask wearing does differ to some extent.  For instance, Agreeableness is negatively correlated 
with mask wearing in the highTrump states but not much in the lowTrump states.  Perhaps these 
differences in responses to the Big 5 traits might make them less useful for modelling mask 
wearing by themselves in the R-PVA.  However, richer versions of R-PVAs (e.g., R-PVA-4) can 
be trained and probed with various combinations of demographic, psychographic, and physical 
variables characterizing regions.  
 

 
Figure 6.  Observed proportion of mask wearing and proportion predicted by an R-PVA 
with self-efficacy and using Big 5 Personality trait data for 10 U.S. states over the first 
three waves of COVID-19.  The top row shows lowTrump states and the bottom row shows 
highTrump states. 

Discussion 
Human psychology plays a crucial role in disease transmission dynamics. Individuals’ diverse 
mindsets and capabilities change over space and time, leading to varying responses.  We employ 
Regional PVAs to address the need for population-scale computational cognitive models that 
accurately predict the complexity and heterogeneity of human behaviors that are key to 
modulating pathogen transmission. Our R-PVA approach is developed specifically to address the 
data related to behavior changes during pandemics in response to varying disease contexts and 
government policies.  
 
Our approach builds on decades of work on the ACT-R cognitive architecture and our recent 
development of Psychologically Valid Agents for modeling COVID-19 behavior change.  A 
previously unappreciated feature of the learning mechanisms of the computational cognitive 
architecture used in the R-PVAs is that they provide a way of capturing non-linear statistical 
relations between input features (demographic, psychographic, media diet, political leanings) and 
the behaviors of interest. We show how our PVA models can be used to identify the effects on 
mask wearing based on demographic, geographic, and psychographic variables. 
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Leveraging extensive COVID-19 data repositories and online social media, we have created 
Regional PVAs to simulate the behavior of regional U.S. populations during the pre-vaccination 
phase of COVID-19.  The PVA pipeline includes demographic, psychographic, epidemiological, 
behavioral, and information environment data about U.S. regions. These data are used to 
initialize agents and provide time-series inputs representing the pandemic context (e.g., local 
transmission rates). The PVAs iteratively assess the current context and make decisions (e.g., to 
wear a mask or not) over discrete time steps (e.g., every day). They are thus capable of 
predicting various regional time series data, e.g., the U.S. county- or state-level daily mobility 
patterns or daily mask wearing. These Regional PVAs offer a unique opportunity to explore 
demographic or psychographic factors related to behavior, using a variety of methods. Regional 
PVAs can be used as a novel data mining technique to understand possibly nonlinear relations 
between context and behavior. 

Methods 
Granger Analysis 
The Rt time series was shifted successively from 0 (no delay) to 60 days earlier.  Using the 
shifted Rt data and the mask-wearing data from the previous days to predict the proportion of 
mask wearing of the current day, the shortest lag with a significant difference at the 0.05 level, 
compared to using only the mask-wearing data for prediction, was taken to be the effective lag 
length. 
 
At the state level, the lags obtained did not exhibit a clear trend.  It was hypothesized that 
geographical granularity and urbanicity of the area could be additional factors.  We reanalyzed 
the data at the county level, with the addition of three population and urbanicity indicators: (1) 
population density from the 2010 US Census51, categorized into low (<= 500 persons/sq. mile), 
medium (> 500 and <= 1000/sq. mile) and high (> 1000/sq. mile); (2) 2013 NCHS Urban-Rural 
Classification Scheme 52 and (3) 2013 Rural-Urban Continuum Codes 53. Overall, for the 
counties, 7 days was the most common lag for Rt to make a significant difference in the 
prediction of mask-wearing.  Augmenting the county level data with the three 
population/urbanicity indicators gave similar results, suggesting that the time it takes for a 
change of Rt to elicit a behavioral response in mask wearing is ubiquitous.   
 
Feature Selection using Stepwise Regression 
We used one day of data at the mid-point of the time series (2020/10/11) for the evaluation.  
Starting with an empty set of variables, at each step a regression model was constructed with the 
current set of selected variables plus one of the unselected variables to predict mask-wearing.  
The unselected variable that resulted in the best average R2 in a 10-fold cross validation was 
added to the selected set. The successive scores were inspected and a cutoff of 5 variables was 
deemed the optimal balance between the number of variables and the resulting score.  The 5 
variables are 'PctTrump State 2016', 'PC1_weather', 'Fox News Lean', 'Percentage adults with a 
bachelor's degree or higher' and 'Percentage age 65+ yr'.  (See Supplementary Materials for the 
scores for each set of variables.) 
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The ACT-R Model and Regional Psychologically Valid Agents 
ACT-R has subsymbolic mechanisms that determine the dynamics of the R-PVAs. Equations 1-3 
define how the levels of activation of chunks in memory determine the probabilities of chunk 
retrieval.  
 
Blended retrieval determines the value V, based on the probability, Pi, of retrieval of value Vi, 
and the similarity of V to Vi: 
 

𝑉 = 	𝑎𝑟𝑔𝑚𝑖𝑛	 ∑ 𝑃!(1 − 𝑆𝑖𝑚(𝑉, 𝑉!))!
" (1) 

 
The probability of retrieval is 
 

𝑃! =	
#!" #⁄

∑ #!% #⁄
%

 (2) 

 
Where the activation, A, is 
 

𝐴! =	𝐵! +∑ MP%% ∗ Sim(f, V) +	Ɛ! (3) 
 
and s and e are noise factors, B is a base-level activation. MPf   is a mismatch penalty 
representing the dissimilarity between the representation of two values. Equation 4 defines how 
activation levels are increased by repeated experiences, or decay with time.  
 

 (4) 
where tj is the time since the tth storage or retrieval trial of chunk j, n is the number of trials, 0 < d 
< 1 is a decay parameter, and b is a constant. 
 
Chunks generally can be represented as an unordered feature-value list of the form 
 

{<feature1: value1>, <feature2: value2>, …, <featuren: valuen>} 
 
For the R-PVAs modelling mask wearing behavior, the chunks are of the form 
 

{<predictor1: value1>, …, <predictorn: valuen>, <mask_wearing: m>}, 
 
where m ∈ [0.0, 1.0] is the proportion of the state population wearing a mask. 
 
To make a prediction of the prototypical value of a feature given a (partial) set of predictor 
values, chunks that are similar to this chunk are retrieved and blended, weighted by a similarity 
function.  Our R-PVA models use the similarity function 
 

Sim(x, y) = 1/(1+exp(y-x))2, with y > x.   (5) 
 
For R-PVAs that model self-efficacy, two additional features are included: 
 

i

n

j

d
ji tB b+= å

=

- )ln(
1



 16 

{<predictor1: value1>, …, <predictorn: valuen>, <difficulty: d>, <effort: e>, <mask_value: m>}, 
 
where d is the difficulty of the task of mask wearing, and e is the amount of perceived effort to 
accomplish the task.  Self-efficacy is modelled as the difference between the difficulty and effort.  
For each success in accomplishing a goal (e.g., wearing a mask for a day in our scenario), self-
efficacy is boosted by  
 
           (1-m) * boost_factor * (exp( d-e) / (exp( d-e) + exp(e))) (6)  
 
where m is the mask wearing proportion, boost_factor is a small quantity that promotes the self-
efficacy upon success.  The threshold above which the intended effort would be too hard to 
attempt was set at the mean of the initial difficulty and effort.   
 
Norm Initialization of R-PVAs 
For the norm-initialization phase, we used the initial 10 days of our time series data.  For each 
state, the blended mask-wearing norm x was obtained using the predictor values from the first 10 
days in the time series.  10 new chunks in proportion to this value x were learned, such that, 
keeping the other variable values as given, a proportion of x of the chunks had a mask wearing 
value of 1.0 (wearing a mask), and the rest of the 10 chunks had a mask wearing value of 0.0 
(not wearing a mask).  In addition, two extreme chunks were also added, one corresponding to 
wearing a mask (1.0) when Rt is very high (2.0) and the other corresponding to not wearing a 
mask (0.0) when Rt is non-existent (0.0). 
 
Rolling Origin Cross-Validation 
Because of the sequential nature of the data, regular cross validation, with random assignment to 
folds, was not appropriate, as this would enable the prediction of a data point using future data 
points that should not have occurred yet.  We instead analyze the models using n-fold rolling 
origin cross-validation54, n being the length of the time series minus 1.  For the i-th fold, the data 
from the initial time sequence <t0, t1, ... ti-1> was used for training, and the data at time point ti 
was used for testing.  Each successive training data set was a longer time series and included the 
previous training set.   
 
Parameter Tuning 
We performed a grid search over the parameter space of effort and boost factor, with the value of 
difficulty fixed at 2.0.  We used only the data for two states, California and Wyoming, in the date 
range 2020/04/24-2020/06/30, corresponding to the first wave of COVID-19.  n-fold rolling 
origin cross-validation was used for scoring the models.  The best RMSE was 0.0369, for boost 
factor = 0.02 and effort = 1.0.  These boost factor and effort values were used in the R-PVAs 
where self-efficacy was modelled.  (See Supplementary Materials for the values obtained for 
each combination of parameter values.) 
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The datasets used and analyzed in this study were compiled from public sources described in the 
paper.  The compiled data and Jupyter notebooks used for analysis are available at the OSF 
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