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Abstract

Regional Psychologically Valid Agents (R-PVAs) are computational models representing
cognition and behavior of regional populations. R-PVAs are developed using ACT-R—a
computational implementation of the Common Model of Cognition. We developed R-PVAs to
model mask-wearing behavior in the U.S. over the pre-vaccination phase of COVID-19 using
regionally organized demographic, psychographic, epidemiological, information diet, and
behavioral data. An R-PVA using a set of five regional predictors selected by stepwise
regression, a psychological self-efficacy process, and context-awareness of the effective
transmission number, R;, yields good fits to the observed proportion of the population wearing
masks in 50 U.S. states [R? = 0.92]. An R-PVA based on regional Big 5 personality traits yields
strong fits [R?> = 0.83]. R-PVAs can be probed with combinations of population traits and time-
varying context to predict behavior. R-PVAs are a novel technique to understand dynamical,
nonlinear relations amongst context, traits, states, and behavior based on cognitive modeling.



The COVID-19 pandemic prompted global-scale changes in human behavior!. It also produced a
historically large set of natural experiments on behavior change due to variations in localized
disease context, governmental public health policies and mandates, and regional variations in
psychological and sociological makeup. In the early phases of the pandemic—prior to
widespread availability of vaccines—the main response options were non-pharmaceutical
interventions (NPIs) such as social distancing, mask wearing, and hand washing. This is because
human behavior plays a crucial role in mediating viral transmission?. Throughout history, people
have typically modulated their behavior to mitigate pandemic transmission rates®. Analysis of
mask wearing across countries* shows that people modulate their behavior, but the impact of
government mandates is weak to non-existent. A recent Royal Society report® concluded that the
“weight of evidence from all studies ...consistently, though not universally, reported that mask
wearing, and mask mandates were an effective approach to reduce infection.” The underlying
causal pathways of behavior change, and the effects of psychology and behavior on transmission,
remain poorly understood.

During the early phases of COVID-19, it was argued® that people’s awareness of case rates or
fatality rates appeared to be driving the modulation of protective behaviors, and that it was
awareness-driven behavior that produced the signature temporal phenomenon observed in
virtually all regions: the damped oscillation pattern of the effective reproductive number, R;, as
presented in Figure 1. At the beginning of a pandemic, there is a rapid increase in R;, followed
by an asymmetric decline, followed by oscillations around R; = 1. As noted previously,”?® this
oscillation is similar to that produced by a Proportional-Integral-Derivative control system in
which a controlling intervention (e.g., mask wearing) occurs in proportional response to the state
of the system (e.g., R;), although there may be lags between the awareness of the system state
and the response, and between the response and effecting a change. The lags may occur (for
instance) because of the pathogen incubation period, news time cycles, or the observation of
local social conditions.
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Figure 1. Dampened oscillation of R.. The values of R; are plotted against R, where 7 is in
days.
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Another factor driving the adoption and maintaining of NPIs is self-efficacy. Self-efficacy, in
essence, refers to an individual's belief in their ability to carry out actions required to achieve
specific goals. According to Bandura's Social Cognitive Theory of self-efficacy?, if individuals
perceive their goals as excessively challenging, they are less likely to attempt them. Generally,
higher levels of self-efficacy correlate with increased likelihoods of goal attainment.
Assessments of self-efficacy are closely linked to people's motivation to engage in demanding
activities, whether physical or cognitive. Vancouver!®!! observed that when self-efficacy is low
in comparison to a difficult task, it tends to be perceived as more strenuous, yet high motivation
can compensate for low self-efficacy, albeit within limits. This aligns with the Attributional
Theory of Performance!?, a variant of Motivational Intensity Theory'3, which suggests that
beyond a certain point, as task difficulty increases, people may not be motivated to invest effort,
leading to a fluctuating relationship between effort and perceived task difficulty. Self-efficacy
might account for the spiraling increase with time in mask wearing, as shown in Figure 2. That
is, as people successfully achieve goals, they gain self-efficacy.
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Figure 2. R;vs. proportion of mask wearing 7 days later. A spiraling increase in the
adoption of mask wearing can be observed in many cases as time progresses.

The responses of public officials in the early phases of the pandemic were guided, in part, by
epidemiological models that had abundant, very large, uncertainties around the effects of NPIs'#
17 and large regional heterogeneity'®!?, which has been attributed to a failure to address the
crucial role of socio-psychological-behavioral mechanisms?’. The U.S. National Academies of
Sciences, Engineering, and Medicine?! emphasized the importance of psychological science to
the mitigation of the spread of COVID-19. Human psychology matters in controlling the
dynamics of disease transmission, and people respond differently because they have different
mindsets and capabilities that vary over space and time. There is a need for population-scale
computational models that accurately predict the complexity and heterogeneity of human
behaviors that are key to modulating pathogen transmission. Advances in computational




cognitive modeling, artificial intelligence, and machine learning provide the opportunity to build
such models.??>2°

In this article, we present models based on the development of Psychologically Valid Agents
(PV As)?? that represent the behavior of regional populations in the U.S. over the pre-vaccination
phase of COVID-19. We call these Regional Psychologically Valid Agents (R-PVAs). For the
U.S. the availability of vast amounts of regionally organized (e.g., state, county) demographic,
psychographic, epidemiological, behavioral, and information environment data makes it feasible
to develop and test such models. Our work with PVAs?22%26 has relied on the development of
data pipelines combining demographic and psychographic data about U.S. regions and Natural
Language Processing of online social media that are used to initialize Regional PVAs and to
provide time series data about human behavior such as mask wearing. Similar large-scale models
could be significant in other societally important areas, such as response to natural disasters,
public health, climate change, civic discourse, diplomacy, economic policy, and cybersecurity.

Research on geographical psychology examines the spatial distribution of psychological features
and their relation to social, psychological, and behavioral phenomena?’. For instance, regional
differences in state-level or county-level Big Five personality scores are related to political,
economic, social and health outcomes?®, and big data methods processing social media can
identify regional personality scores related to entrepreneurship?®. Typically, relations between
regional psychological factors and outcomes are analyzed using variations of linear regression.

In contrast to prior work on geographical psychology, the Regional PV As presented here were
developed using the ACT-R architecture. ACT-R3%3! is a computational implementation of a
unified theory of cognition®2. A wide variety of cognitive architectures have been proposed, but
there is an emerging consensus regarding the central structures and processes in the form of a
Common Model of Cognition (CMC)?**. ACT-R provides a computational implementation of the
CMC. ACT-R is intended to be a model of individual-level cognition, and can be the basis of
highly individualized learning** and behavior-change interventions®. However, in other
examples, ACT-R models are often used to capture cognition at an aggregate level—e.g., the
average participant in a psychology experiment. Regional PVAs could be viewed as an
extension of this approach: as models that capture the psychological function and behavior of a
sample or population of people having some particular statistical mixture of attributes, beliefs,
knowledge and experience, responding to inputs from some context.

The ACT-R theory®¢ has evolved since the 1970s to address a wide variety of experimental
results on human problem solving, decision making, memory, learning, cognitive skill
acquisition, perception, and attention, as well as the fine-grained time course of neural processes.
The theory has been applied to a variety of domains including education, human-computer
interaction, and language learning®’-**. ACT-R is implemented as a simulation environment with
several software variants that can simplify its application to a specific domain or problem.
Practically, ACT-R is a computational cognitive architecture that supports the development of
models. A scientific understanding of behavior change in response to pandemics requires such
unified models and toolkits. The literature on behavior change is extensive, lacks coherence, and
needs mechanistic theory. Preliminary integrative models of behavior change have been



developed in ACT-R*+*°, which provide some promise of their utility to modeling behavior
change during a pandemic.

ACT-R can integrate self-efficacy and motivation intensity theories®*!. Such assumes that self-
efficacy and intended effort are fundamentally the result of memory processes. Past experiences
of efficacy at behaviors similar to a target goal are retrieved and blended to produce assessments
of self-efficacy and intended effort for the new goal. Given a pending decision to pursue a
behavioral goal, an assessment is made of the difficulty of achieving that goal. A blended
retrieval is performed to assess self-efficacy with respect to the behavioral goal, based on
memory of experiences on behaviors similar to the goal behavior. A judgment is made about the
intentional level of effort required to achieve the behavior, given the judged difficulty of the
behavior and assessment of efficacy towards that goal. It is assumed that the individual will put
in effort if it is less than a threshold. If the behavior is performed, then a new instance is learned.
That instance will be stored with a self-efficacy that includes the old self-efficacy value boosted
by the additional intentional effort expended. New successes on behaviors where the perceived
difficulty was high relative to self-efficacy will tend to improve self-efficacy with repeated
experience.

We selected a set of static regional variables from several sources representing data at the county
and state levels of the U.S. The sources included data aggregated by the Johns Hopkins
Coronavirus Resource Center*?*, regional Big 5 personality statistics?’, and a fused data set
used in a study of predictors of social distancing behavior.** Guided by previous machine
learning research on the same or similar data*, we selected a subset of variables to include in our

analysis (see Methods and Supplementary Materials).

In addition to the static regional variables, we selected and created a set of time series regional
variables. For each county and/or state, we combined survey data from the CovidCast and the
Covid States projects. The time series data is daily for the pre-vaccination rollout period of
4/24/2020 to 3/31/2021, which covers the time period of the first three waves of Covid-19 as
defined by Pew Foundation?. R; data at the state and county level was downloaded from
covidestim.org, a project of the Yale School of Public Health. Mask wearing data at the state
level was downloaded from CovidStates*$, which compiled the data from survey waves deployed
every three weeks. We created an imputation algorithm to combine that data with CovidCast
mask-wearing data. (See Supplementary Materials for more details on the data pipeline and
variables.)

Results

We present Regional PVAs of mask wearing behavior for the 50 states of the U.S. and show that
these models capture the signature phenomena of transmission awareness-driven mask wearing.
A change in a system is often not recognized instantaneously. It takes time for the awareness to
percolate throughout the population before people react to the new situation. We utilized
Granger causality analysis* to determine if there was a delay between a change in R, and a
change in the mask wearing behavior. The shortest lag with a significant effect was 7 days. We

2 https://www.pewresearch.org/politics/2022/03/03/the-changing-political-geography-of-covid-19-over-the-last-
two-years/.




thus offset the R; values in the data by 7 days to reflect this dependency in all subsequent
analyses.

Regression Analysis

We performed some exploratory analysis using regression models, to examine the relationship
between the variables in our data set and identify candidate variables that had a significant effect
on mask-wearing. We considered two variations of the R, predictor: (1) RA;= R;— 1, and (2)
RA%* = (R;— 1)* * sgn(R; — 1). The intuition for the transformations is that the phenomena in
Figure 1 suggest that transmission-reducing behavior increases as R; > 1 and decreases as R, < 1.
The feature RA; would capture a linear relationship with the deviations from the stable level R, =
1, that is, the strength of response is linearly related to the deviation. RA? would capture a
quadratic relationship. The untransformed but standardized R; was not included in the analysis
since it is identical to RA;except for a shift in the mean value.

Table 1 shows the coefficients and p-values of the predictors in the two cases. Both RA; and RA?
are significant predictors in their respective runs, with the effect of RA% being greater than RA,,
suggesting that larger deviations from the baseline have a larger influence on mask wearing. In
addition to several significant demographic and education variables, notably 'Fox News Lean'
and 'PctTrump State 2016' were both significant but with opposite effects. In addition, most of
the Big 5 personality variables were also significant and with relatively large effect sizes,
indicating personality traits could have considerable influence on mask wearing behavior.

Table 1. Mask wearing regressed on the static predictor variables, together with RA; and
RA? respectively. All regressions were random coefficients models analyzed using the
LMER package in R. We included states as a random coefficient predictor.

RA RA,

coefficient p coefficient p
Intercept -0.03 0.533 -0.04 0.4
RA: or RA* -0.24 <0.001 -0.32 <0.001
PC1_weather -0.22 0.081 -0.24 0.046
PC2_weather -0.07 0.418 -0.07 0.416
NHWA -0.2 0.139 -0.22 0.101
NHBA -0.38 0.001 -0.4 0.001
NHIA -0.17 0.01 -0.17 0.008
TOM 0.17 0.359 0.16 0.354
Gender ratio -0.16 0.163 -0.15 0.171
Percentage age 0-17 yr 0.1 0.25 0.11 0.17
Percentage age 65+ yr -0.07 0.384 -0.1 0.214
Percentage adults with less 0.26 0.048 0.23 0.07
than a high school diploma
Percentage adults with a 0.29 0.047 0.3 0.035
bachelor's degree or
higher




Median household income -0.18 0.151 -0.21 0.079
2018

Unemployment rate 2018 0.05 0.456 0.05 0.459
Fox News Lean 0.27 0.003 0.31 0.001
GOP Advantage 2016 0.16 0.213 0.12 0.315
PctTrump State 2016 -0.28 0.027 -0.3 0.015
Trump approval 2020 -0.25 0.065 -0.21 0.113
Population density per -0.12 0.039 -0.14 0.019
square mile

Extraversion 0.34 0.041 0.37 0.023
Openness 0.19 0.175 0.23 0.097
Agreeableness -0.56 <0.001 -0.59 <0.001
Conscientiousness 0.36 0.001 0.36 <0.001
Emotional Stability -0.23 0.021 -0.23 0.018

The set of potential predictors were down-selected based on a forward stepwise regression
procedure. At each step, the variable that increased the fitness of the regression model the most
was added to the selection. An optimal set of variables that balanced the complexity of the
model and the resulting R” score was selected. The set consists of 5 variables, namely,
'"PctTrump State 2016', 'PC1_weather', 'Fox News Lean', 'Percentage adults with a bachelor's
degree or higher' and 'Percentage age 65+ yr', encompassing a range of demographic, political
and environmental factors.

There was not a lot of overlap between the variables obtained by this procedure and the ones that
were significant in the multiple regression model discussed earlier. In particular, none of the Big
5 variables were selected. We will examine this divergence in more detail using the R-PVA
model in a later section.

Regional Psychologically Valid Agents (R-PVAs)

ACT-R is composed of modules, processing different kinds of content, which are coordinated
through a centralized procedural module. The procedural module matches the contents of other
module buffers and coordinates their activity using production rules. R-PVAs rely on a subset of
ACT-R mechanisms collectively called Instance-Based Learning*’. For the R-PV As presented in
this paper, we rely on the declarative module, retrieval buffer, and blending buffer. In
combination, they simulate how people retrieve knowledge and past experiences from long-term
declarative memory. We use the PyACTUp*® simulation package. Knowledge and experience in
the declarative module are represented formally in terms of chunks*->°. Chunks have activation
levels that determine the probability and time course of chunk retrieval from memory. Chunk
activations are real-valued quantities produced by subsymbolic mechanisms in ACT-R. These
subsymbolic mechanisms reflect neural-like processes that determine the time course and
probability of cognitive activity and behavioral performance. Level of activation dictates
retrieval probability and weighs how blended retrievals produce aggregate values over past
experiences.



We developed R-PV As to learn and predict mask wearing, using various sets of predictor
variables and the R, time lag suggested by the Granger causality analysis. In all analyses, the
selected predictor variables were standardized z-scores and the data were aggregated at the state
level. The time series covered the pre-vaccine rollout period of 4/24/2020 to 3/31/2021.

For each R-PVA, we first trained a base model using only the static regional variables and a 10-
day initial segment of the mask wearing time series. For each day and each state, the model
learned a chunk instantiated with the mask wearing value and the values for all the predictors
except R;. This was to establish an initial static baseline without considering the variations in R;.
This also provided the initial prediction of mask wearing on day 0.

Note that even though each chunk was derived from the data from a single state, and some of the
results presented were aggregated at the state level, the state identifier was not used as a
prediction variable. This allowed us to examine the more generalizable factors affecting mask
wearing behavior rather than relying on idiosyncratic characteristics that might be attributable to
each state.

The norms established in the initialization served to bootstrap a new R-PVA with varying R,
values. For each day in the time series, a prediction was made for each of the 50 states and
compared to the actual mask wearing value. 10 new chunks, in proportion to the observed mask
wearing percentage, were learned for each state, and we advanced to the next day. The addition
of new chunks every day constitutes a form of online machine learning and refinement of the
model.

In addition to the standard model, we also developed a model augmented with self-efficacy
explicitly. Self-efficacy is parameterized in terms of the intentional level of effort and the
amount of boost received upon success of a trial. A grid search was performed over the
parameter space using a subset of the data to determine optimal values for the parameters. The
values obtained from the grid search (boost factor = 0.02, effort = 1.0, difficulty = 2.0, threshold
= 1.5) were used in the R-PV As in the subsequent experiments.

Aggregated Results

We compared the performance of several R-PVAs: (1) R-PVA-1: no static predictors (predicting
only with R;); (2) R-PVA-2: one static predictor, 'PctTrump State 2016, which was the variable
with the largest effect on mask wearing based on the stepwise regression procedure; (3) R-PVA-
3: the five selected predictors; and (4) R-PVA-4: adding self-efficacy to the previous model. n-
fold rolling origin cross-validation was used to compare and evaluate the predictions generated
by the R-PV As under these different settings and combination of variables.

Table 2 shows the comparison between the four R-PVAs. The data were the proportion of the
population wearing masks in the 50 U.S. states over the first three waves of COVID-19. Both the
average RMSE and R? scores of the models improved as more variables were included,
indicating that the selected features were helpful in characterizing the mask wearing behavior.
The effect was particularly large transitioning from R-PVA-1 to R-PVA-2 by including one



static variable. Successive inclusion of more predictors continued to improve the performance,
although with smaller improvements in fit. In addition, modelling self-efficacy in R-PVA-4
improved the model performance over R-PVA-3, validating the utility of self-efficacy. Figure 3
shows the combined observed vs. predicted mask wearing proportions obtained from R-PVA-4,
which is the best fitting model. Overall, the model achieves a good fit of R? = 0.93.

Table 2. Comparison of several R-PVA models

Number of Predictors (in Self-Efficacy | Average RMSE | Average R’
addition to R))
R-PVA-1 |0 no 0.0942 0.2916
R-PVA-2 | 1 ("PctTrump State 2016') no 0.0535 0.7714
R-PVA-3 |5 no 0.0403 0.8699
R-PVA-4 |5 yes 0.0312 0.9221
R2 = 0.9221352640753178 R2 = 0.8931424817487706
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observed proportion of mask wearing versus change in predicted proportion.

Results in High/Low Pro-Trump States
To examine the results in more detail, we broke down the model outputs by state. Our analysis
agreed with previous work that suggested partisanship was strongly associated with adherence to

physical distancing measures.** The predictor with the largest effect on mask wearing based on
the stepwise regression procedure was 'PctTrump State 2016'. We conjectured that separating
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the results into the dichotomy of states with high and low values for 'PctTrump State 2016' might
provide further insight.

The five states with the highest 'PctTrump State 2016' values were West Virginia, Wyoming,
Oklahoma, North Dakota and Kentucky. The five states with the lowest 'PctTrump State 2016’
values were Maryland, New York, Hawaii, Vermont and California. Figure 4 plots observed and
R-PVA-4-predicted mask wearing proportion over time for these 10 states®. For convenience, we
denote the highly pro-Trump states as highTrump states and the low pro-Trump states as
lowTrump states.
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Figure 4. Observed proportion of mask wearing and proportion predicted by R-PVA-4 for
10 U.S. states over the first three waves of COVID-19. The top row shows the lowTrump
states (5 states with the lowest proportion voting for Trump in 2016) and the bottom row
shows the highTrump states (5 states with the highest proportion voting for Trump in
2016).

The highTrump states had a lower mask wearing proportion than the lowTrump states. In
addition, in the highTrump states, the mask wearing proportion fluctuated but in general
increased over time, whereas in the lowTrump states, the mask wearing proportion stayed
relatively stable. The latter might be partially due to the limiting effect of a higher initial mask
wearing proportion, since there was not as much room to increase from an already high baseline.

For the R-PV s, in general the model predictions improved as more of the selected predictor
variables were included (R-PVA 1-2-3) and with the addition of the self-efficacy process (R-
PVA-4). The first model (predicting using only R;) tended to undershoot in the lowTrump states
and overshoot in the highTrump states. In the two exceptions in which R-PVA-1 did not
overshoot (West Virginia and Kentucky, both highTrump states), R-PVA-2 performed noticeably
worse than the other models, including even R-PVA-1 with no static predictor variables. This
suggested that perhaps the R-PV As had learned that 'PctTrump State 2016' had a dampening
effect on mask wearing, and thus including this variable in R-PVA-2 sometimes lowered the

3 Note that the scale varies between plots. This makes some of the plots look more hectic (e.g. NY in the later
plots).
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predicted mask wearing values more than needed. (See Supplementary Materials for the
predictions of the R-PVA 1, 2 and 3.)

Probing the R-PVA Models

Once an R-PVA model is built, we can probe it with novel combinations of features to make
predictions about other features, not necessarily mask wearing. Figure 5 shows an example of
mask wearing predicted from a range of values of 'PctTrump State 2016', under different
mismatch penalties for the blending of partially-matched memory chunks. These penalties are
controlled by a mismatch penalty parameter, MP (see the Methods section). As the mismatch
penalty, MP, increases, the activation levels become more concentrated in the better-matched
memory chunks, giving rise to a closer fit. In general, the predictions of the probings show a
decrease in mask wearing as Trump support increases, which matches the trend observed in the
actual data. Even though the data did not extend to the very low and high values for 'PctTrump
State 2016', the model was able to predict values of mask wearing that seem intuitively
reasonable for the whole range of hypothetical 'PctTrump State 2016' values.
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Figure 5. Probing the model with hypothetical values of predictors and different penalties
for partial matching.

The Big 5 Personality Model

Earlier we observed that the Big 5 Personality features were significant in the multiple regression
analysis but not selected with the stepwise regression procedure. To examine this in more detail,
we constructed a R-PVA model with self-efficacy and using the Big 5 variables (and R;). We are
interested in this model because it is purely based on measurements of what are considered basic
stable psychological traits. We hypothesized that some of these traits could have different effects
in states with different mask wearing norms. For instance, an agreeable person would prefer a
homogeneous environment. They might be more inclined to wear a mask if mask wearing is
prevalent in their surroundings, but this same person might be more inclined not to wear a mask
if mask wearing is scarce in their surroundings.

Figure 6 shows the observed and predicted values using this Big 5 R-PVA model for the
lowTrump and highTrump states. The average RMSE = 0.0463 and R’ = 0.8286. This model
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performed somewhat worse than the comparable model using the selected variables (R-PVA-4);
however it still accounts for a large proportion of the variance.

The Big 5 features performed better in the highTrump states than in the lowTrump states (see
Supplementary Material Figure S7). It appears that the relationship between the Big 5 traits and
mask wearing does differ to some extent. For instance, Agreeableness is negatively correlated
with mask wearing in the highTrump states but not much in the lowTrump states. Perhaps these
differences in responses to the Big 5 traits might make them less useful for modelling mask
wearing by themselves in the R-PVA. However, richer versions of R-PVAs (e.g., R-PVA-4) can
be trained and probed with various combinations of demographic, psychographic, and physical
variables characterizing regions.
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Figure 6. Observed proportion of mask wearing and proportion predicted by an R-PVA
with self-efficacy and using Big S Personality trait data for 10 U.S. states over the first
three waves of COVID-19. The top row shows lowTrump states and the bottom row shows
highTrump states.

Discussion

Human psychology plays a crucial role in disease transmission dynamics. Individuals’ diverse
mindsets and capabilities change over space and time, leading to varying responses. We employ
Regional PVAs to address the need for population-scale computational cognitive models that
accurately predict the complexity and heterogeneity of human behaviors that are key to
modulating pathogen transmission. Our R-PVA approach is developed specifically to address the
data related to behavior changes during pandemics in response to varying disease contexts and
government policies.

Our approach builds on decades of work on the ACT-R cognitive architecture and our recent
development of Psychologically Valid Agents for modeling COVID-19 behavior change. A
previously unappreciated feature of the learning mechanisms of the computational cognitive
architecture used in the R-PV As is that they provide a way of capturing non-linear statistical
relations between input features (demographic, psychographic, media diet, political leanings) and
the behaviors of interest. We show how our PVA models can be used to identify the effects on
mask wearing based on demographic, geographic, and psychographic variables.
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Leveraging extensive COVID-19 data repositories and online social media, we have created
Regional PVAs to simulate the behavior of regional U.S. populations during the pre-vaccination
phase of COVID-19. The PVA pipeline includes demographic, psychographic, epidemiological,
behavioral, and information environment data about U.S. regions. These data are used to
initialize agents and provide time-series inputs representing the pandemic context (e.g., local
transmission rates). The PV As iteratively assess the current context and make decisions (e.g., to
wear a mask or not) over discrete time steps (e.g., every day). They are thus capable of
predicting various regional time series data, e.g., the U.S. county- or state-level daily mobility
patterns or daily mask wearing. These Regional PV As offer a unique opportunity to explore
demographic or psychographic factors related to behavior, using a variety of methods. Regional
PV As can be used as a novel data mining technique to understand possibly nonlinear relations
between context and behavior.

Methods

Granger Analysis

The R; time series was shifted successively from 0 (no delay) to 60 days earlier. Using the
shifted R; data and the mask-wearing data from the previous days to predict the proportion of
mask wearing of the current day, the shortest lag with a significant difference at the 0.05 level,
compared to using only the mask-wearing data for prediction, was taken to be the effective lag
length.

At the state level, the lags obtained did not exhibit a clear trend. It was hypothesized that
geographical granularity and urbanicity of the area could be additional factors. We reanalyzed
the data at the county level, with the addition of three population and urbanicity indicators: (1)
population density from the 2010 US Census>!, categorized into low (<= 500 persons/sq. mile),
medium (> 500 and <= 1000/sq. mile) and high (> 1000/sq. mile); (2) 2013 NCHS Urban-Rural
Classification Scheme 2 and (3) 2013 Rural-Urban Continuum Codes *3. Overall, for the
counties, 7 days was the most common lag for R, to make a significant difference in the
prediction of mask-wearing. Augmenting the county level data with the three
population/urbanicity indicators gave similar results, suggesting that the time it takes for a
change of R; to elicit a behavioral response in mask wearing is ubiquitous.

Feature Selection using Stepwise Regression

We used one day of data at the mid-point of the time series (2020/10/11) for the evaluation.
Starting with an empty set of variables, at each step a regression model was constructed with the
current set of selected variables plus one of the unselected variables to predict mask-wearing.
The unselected variable that resulted in the best average R in a 10-fold cross validation was
added to the selected set. The successive scores were inspected and a cutoff of 5 variables was
deemed the optimal balance between the number of variables and the resulting score. The 5
variables are 'PctTrump State 2016', 'PC1_weather', 'Fox News Lean', 'Percentage adults with a
bachelor's degree or higher' and 'Percentage age 65+ yr'. (See Supplementary Materials for the
scores for each set of variables.)
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The ACT-R Model and Regional Psychologically Valid Agents

ACT-R has subsymbolic mechanisms that determine the dynamics of the R-PVAs. Equations 1-3
define how the levels of activation of chunks in memory determine the probabilities of chunk
retrieval.

Blended retrieval determines the value V, based on the probability, P;, of retrieval of value V;,
and the similarity of V' to Vi

V = argmin ¥, P,(1 — Sim(V,V;))* (1)

The probability of retrieval is

eAi/S

Pi=—%7% (2)

je
Where the activation, A4, is

A; = B; + Y¢MP: + Sim(f, V) + €; (3)
and s and ¢ are noise factors, B is a base-level activation. MP; is a mismatch penalty

representing the dissimilarity between the representation of two values. Equation 4 defines how
activation levels are increased by repeated experiences, or decay with time.

B, = ln(zn:tf" )+ B,
= (4)

where ¢ is the time since the #” storage or retrieval trial of chunk j, 7 is the number of trials, 0 < d
<1 is a decay parameter, and S s a constant.
Chunks generally can be represented as an unordered feature-value list of the form

{<featurei: value;>, <feature,: value,>, ..., <feature,: value,>}
For the R-PV As modelling mask wearing behavior, the chunks are of the form

{<predictor: value;>, ..., <predictory: value,>, <mask wearing: m>},
where m € [0.0, 1.0] is the proportion of the state population wearing a mask.
To make a prediction of the prototypical value of a feature given a (partial) set of predictor
values, chunks that are similar to this chunk are retrieved and blended, weighted by a similarity
function. Our R-PVA models use the similarity function

Sim(x, y) = 1/(1+exp(y-x))?, with y > x. (5)

For R-PV As that model self-efficacy, two additional features are included:
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{<predictor: value;>, ..., <predictor,: value,>, <difficulty: 6>, <effort: e>, <mask value: m>},

where 0 is the difficulty of the task of mask wearing, and e is the amount of perceived effort to
accomplish the task. Self-efficacy is modelled as the difference between the difficulty and effort.
For each success in accomplishing a goal (e.g., wearing a mask for a day in our scenario), self-
efficacy is boosted by

(1-m) * boost_factor * (exp( 6-¢) / (exp( 6-¢) + exp(e))) (6)

where m is the mask wearing proportion, boost factor is a small quantity that promotes the self-
efficacy upon success. The threshold above which the intended effort would be too hard to
attempt was set at the mean of the initial difficulty and effort.

Norm Initialization of R-PVAs

For the norm-initialization phase, we used the initial 10 days of our time series data. For each
state, the blended mask-wearing norm x was obtained using the predictor values from the first 10
days in the time series. 10 new chunks in proportion to this value x were learned, such that,
keeping the other variable values as given, a proportion of x of the chunks had a mask wearing
value of 1.0 (wearing a mask), and the rest of the 10 chunks had a mask wearing value of 0.0
(not wearing a mask). In addition, two extreme chunks were also added, one corresponding to
wearing a mask (1.0) when R; is very high (2.0) and the other corresponding to not wearing a
mask (0.0) when R; is non-existent (0.0).

Rolling Origin Cross-Validation

Because of the sequential nature of the data, regular cross validation, with random assignment to
folds, was not appropriate, as this would enable the prediction of a data point using future data
points that should not have occurred yet. We instead analyze the models using n-fold rolling
origin cross-validation®, n being the length of the time series minus 1. For the i-th fold, the data
from the initial time sequence <fty, t;, .. t;.;> was used for training, and the data at time point ¢
was used for testing. Each successive training data set was a longer time series and included the
previous training set.

Parameter Tuning

We performed a grid search over the parameter space of effort and boost factor, with the value of
difficulty fixed at 2.0. We used only the data for two states, California and Wyoming, in the date
range 2020/04/24-2020/06/30, corresponding to the first wave of COVID-19. n-fold rolling
origin cross-validation was used for scoring the models. The best RMSE was 0.0369, for boost
factor = 0.02 and effort = 1.0. These boost factor and effort values were used in the R-PVAs
where self-efficacy was modelled. (See Supplementary Materials for the values obtained for
each combination of parameter values.)
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