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Abstract: Directed energy deposition (DED) has been widely used for component repair. In the
repair process, the surface defects are machined to a groove or slot and then refilled. The sidewall
inclination angle of the groove geometry has been recognized to have a considerable impact on
the mechanical properties of repaired parts. The objective of this work was to investigate the
feasibility of repairing various V-shaped defects with both experiments and modeling. At first, the
repair volume was defined by scanning the defective zone. Then, the repair volume was sliced to
generate the repair toolpath. After that, the DED process was used to deposit Ti6Al4V powder on
the damaged plates with two different slot geometries. Mechanical properties of the repaired parts
were evaluated by microstructure analysis and tensile test. Testing of the repaired parts showed
excellent bonding between the deposits and base materials with the triangular slot repair. 3D finite
element analysis (FEA) models based on sequentially coupled thermo-mechanical field analysis
were developed to simulate the corresponding repair process. Thermal histories of the substrate
on the repair sample were measured to calibrate the 3D coupled thermo-mechanical model. The
temperature measurements showed very good verification with the predicted temperature results.
After that, the validated model was used to predict the residual stresses and distortions in the parts.
Predicted deformation and stress results can guide the evaluation of the repair quality.

Keywords: component repair; directed energy deposition; additive manufacturing; damage; defor-

mation; residual stress

1. Introduction

Many metallic components are frequently subjected to severe working conditions
during service, such as alternating heavy loads, high temperature, high pressure, and wear,
which can easily cause defects on these parts. Frequent failures of these components can
lead to a severe drop in productivity and process efficiency. Repair or remanufacturing
damaged components provides solutions to increase their life economically with minimal
interruption in the production process. The typical repair process mainly involves two steps.
First, the irregular surface defects are machined by creating a V-shaped groove. Second,
suitable materials are deposited back into the damaged zone using welding or additive
manufacturing methods [1]. The laser-aided directed energy deposition (DED) process has
shown great applications in the field of component repair [2,3]. DED is a typical additive
manufacturing process that can create fully dense complex parts by directly melting
materials and depositing them on the workpiece layer-by-layer following a user-defined
tool path [4-7]. In this process, a high-power laser with a very small concentration area is
used to create a molten pool on the damaged parts. The filler material, usually powders,
experiences melting and cooling, and then solidifies to form the deposits. The deposits
are usually fully dense and can form an excellent bond with the base parts [8,9] and have
high mechanical properties, including tensile strength and fracture toughness [10,11]. For
component repair, DED outperforms conventional repair approaches, with the following
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advantages: (1) precise control of the heating and deposition rate over the geometry and
substrate; (2) better compatibility with many advanced materials; and (3) automation
capability [12-16].

In the pre-repair process, a V-groove down to the defects is first obtained by removing
the defects and surrounding materials so that the DED tools can access the damaged zone.
After that, the repair volume is defined, and the damage is then refilled by depositing
appropriate materials following the defined repair volume. In the DED process, a high-
energy laser beam emits the powder nonuniformly. This high-intensity laser can produce
complex thermal history and significant thermal residual stresses. Residual stress induced
by a high thermal gradient is likely to cause distortion, cracking, and fatigue failure and
impacts the quality of the repaired product. Many endeavors have been made to alleviate
the undesirable effects and hence reduce the defects of the finished part. It has been
recognized that V-groove geometry imposes a considerable impact on the mechanical
performance of finished parts. For example, Graf [17] has analyzed the feasibility of
laser metal deposition for refilling different V-groove shapes with both stainless steel and
Ti6Al4V by experiments. They reported that the V-groove should be wide enough to ensure
a successful rebuild without defects. Pinkerton [18] machined varied V-groove-shaped
defects on H13 tool steel substrates and then repaired the missing volumes using the
DED process. They concluded that a steep sidewall tilt angle cannot guarantee good
metallurgical bonding between the as-deposited material and damaged parts because of
the lower laser energy on the steep sidewall. Zhang et. al. [19] repaired three V-shaped
defects with varied sidewall inclination angles on H13 tool steel substrates with a cobalt-
based alloy. The microstructure and mechanical properties of rebuilt samples revealed that
materials can be successfully deposited on H13 tool steel, except for 90° sidewall damage
with a lack of fusion and many pores. Some works have tried to accomplish better repair
performance under slot geometry with various materials [20-23]. Paul et. al. [24] reported
that they were able to produce fully dense and crack-free WC-Co coatings on low carbon
steel with excellent interfacial bonding and much higher hardness. Zhang et al. [25-27]
repaired damaged compressor blades and damaged dies using the DED process. They
concluded that the sidewall inclination angle of the slot should be carefully determined to
obtain high-quality repair.

It is instructed that the sidewall tilt angle for V-groove geometry considerably affects
the bonding condition of the filler material and substrate since it affects how laser melts the
materials on the sidewall. However, there is no direct evidence to demonstrate the causality
in the current literature. A clear understanding of that causality helps to optimize the
sidewall inclination angle and hence produces good products. Therefore, it is of particular
importance to elucidate the fusion conditions and temperature distribution with metallur-
gical bonding. Previous studies mainly focused on microstructure and performance testing
analysis by experiments, finding that it is not easy to measure temperature evolution in
the melt pool. In this study, the temperature and stress evolution in the DED process
was tracked by both numerical and experimental analysis. With this information, the
effect of sidewall inclination angle on the emergence of defects in repaired parts can be
clearly understood. The thermal history and laser intensity in the DED process can also be
analyzed in order to optimize design or geometry.

The objective of this paper was to investigate the influence of V-groove geometry
sidewall angles on the properties of repaired parts through both experiments and numerical
modeling. In the experimental part of the study, to perform the repair, V-shaped defects
with different sidewall inclination angles were prepared on Ti6Al4V substrates. The repair
volume on each substrate was reconstructed by scanning the damaged region using a
3D scanner. After this, the repair toolpath was generated. Then, Ti6Al4V powders were
deposited on the damaged parts using the DED process. Subsequently, the repaired
parts were tested by microstructure analysis and mechanical testing. In the modeling
part of the study, 3D FEA models based on sequentially coupled thermo-mechanical field
analysis were developed to simulate the repair process. The simulation accurately predicted



the study, 3D FEA models based on sequentially coupled thermo-mechanical field analy-
sis were developed to simulate the repair process. The simulation accurately predicted
temperature and residual stress on the repaired parts. The distortion and residual stress
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reconstructed, the tool path was generated based on the missing volume. The missing
volume was sliced into 6 layers with a layer thickness of 0.5 mm. The tool path consists
of an outline contour and a zigzag infill pattern, which indicates that the laser scans the
outline first and then the zigzag pattern. The laser tracks for the two different damaged
geometries are schematically shown in Figure 1c,d.
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Table 3. Yield strength (YS) and ultimate tensile strength (UTS) of the repaired parts.
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Table 4. Input parameters for the numerical simulation.

Experimental Parameters Values
Power 650 W
Laser absorptivity 0.3
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Table 4. Input parameters for the numerical simulation.

Experimental Parameters Values
Power 650 W
Laser absorptivity 0.3
Effective scan speed 210 mm/min
Laser diameter 1 mm
Time step 0.1s

3.2. Thermal and Mechanical Analysis

The transient temperature distribution in the entire volume of the material can be
obtained from the 3D heat conduction equation [36]:

d(pcpyT) 9 , 0T d ,dT 9, 0T

where k is the thermal conductivity; p is the density; ¢, is the specific heat; all these
thermal-mechanical properties are temperature-dependent; T is the current temperature; Q
is the internal heat generation rate per unit volume; ¢ is the time; and x, y, and z are the
coordinates in the reference system.

The plate was clamped at the left and right surfaces. Both convection and radiation
conditions were considered in all external surfaces, which were applied to all free surfaces.
These heat transfer mechanisms are expressed as:

i = —kg% Fh(T - Tp) + eU(T4 - Tg) ?)
where T is the temperature of the workpiece, h is the heat transfer coefficient of natural
convection, which is assumed to be dependent on temperature and is presented in Table 5,
o is the Stefan-Boltzmann constant of 5.67 x 10~8 W/m?-K* and ¢ is the surface emissivity
of 0.3, and Ty is the ambient temperature, which is equal to the temperature at the initial
time of 25 °C. Moreover, heat conduction at the contact interface between the plate and
the clamping system is considered to account for the thermal inertia of the supporting
structure. By correlating simulated and experimental results, the heat transfer coefficient
used for Newton’s model is set to 100 (W/m?-°C).

Table 5. The convection heat transfer coefficient used in the simulation.

Tem}ﬁeé;‘t“re 25 200 400 600 800 1000 1500 2000
h (W/(m2-K)) 12 24 40 72 80 100 100 100

The stress equilibrium equation is written as [37,38]:
V.-oc=0 3)

where o is the second-order stress tensor, associated with the material behavior law.
The total strain € component, assuming small deformation thermo-elasto-plasticity, is
represented as [39]:
e=¢ +¢& ¢l (4)

where ¢, ¢/, and €' are the elastic strain, plastic strain, and thermal strain, respectively.
The isotropic Hooke’s law was used to model the elastic strain (&) in Equation (5). The
thermal expansion coefficient was adopted to calculate the thermal strain in Equation (6).
Elastic-plastic stain-stress behavior was described by a bilinear stress-strain curve starting
at the origin, with positive stress and strain values, which was defined by the elastic
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modulus E, Poisson’s ratio v, yield strength ¢, and tangent modulus G. This is called the
bilinear isotropic hardening (BISO) model in ANSYS software.
The mechanical constitutive law can be written as [39]:

o= Ce (5)

where C is the fourth-order material stiffness tensor and ¢ is the second-order elastic
strain tensor.
The thermal strain ¢ is given by [39]:

e = w-AT (6)

where « is the thermal expansion coefficient and AT is the temperature change in a certain
time duration.

3.3. Heat Source Model and Material Properties

In temperature field analysis, the heat flux density load with uniform power density
has been developed to model the heat input of the laser. The heat flux is applied to the
active element of the powder via an ANSYS APDL subroutine. The heat source was
considered a constant and uniformly distributed body heat flux, defined as:

aP
7Tr2t

Q= @)
where « is the laser absorption coefficient, set as 0.3 according to the experiments, P is the
power of the continuous laser, r is the radius of the laser beam, and ¢ is the layer thickness.

The thermophysical properties and mechanical properties were temperature-dependent
and identified in [35,40], as shown in Table 6.

Table 6. Thermo-mechanical properties of the Ti6Al4V.

Temperature (°C)

25 100 200 300 400 600 800 1200 1300 1600

Density, (kg/ m?)

4420 4406 4395 4381 4366 4336 4309 4252 4240 3920

Thermal conductivity,

7 745 8.75 1015 11.35 42 17.8 23 24 50
(W/(mK))

Specific heat, (J/(kgK)) 500 502 505 510 513 518 522 530 530 530

Thermal expansion 10 10 10 10 10 10 10 11 11 11

coefficient, (107°/K)

Poisson’s ratio

0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33

Elastic modulus, (GPa)

125 120 115 105 93 40 25 15 12 8

Yield strength, (MPa)

850 720 680 630 590 490 40 5 1 0.1

4. Results and Discussion
4.1. Temperature Evaluation

Figure 7 presents the simulated temperature distribution at each deposition in the
triangular defect case, where the laser is applied to the end of the 1st track in Figure 7a,
followed by the 16th and 21st tracks in Figure 7b,c, respectively. The deposition of the first
track generates a temperature of 1854 °C, and the substrate remains at a transient room
temperature. Measured from the zoom-in temperature contours, the depth of the area where
the temperature was higher than the melting point was 0.85 mm, as shown in Figure 7d
(the zone encompassed by the grey color depicted in the melt pool). It can be observed
that the melt depth was deep enough to enable fully metallurgical bonding between the
first deposited layer and the base substrate. The deposition of the 16th and 21st tracks
experienced temperatures of 2029 °C and 2284 °C, respectively, but higher temperatures
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The sum displacement and von Mises stress distribution after the deposition was
completed and after cooling to room temperature in the triangular case are illustrated
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Ti6Al4V powder particles were deposited on the damaged region using the DED
technique, following the repair toolpath. The microstructure analysis and tensile testing
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confirmed solid bonding along the interface for the triangular defect repair case. The
tensile test showed an average ultimate tensile strength of 1037 MPa for the repaired parts,
and samples fractured at the region of the deposits, not at the interface. However, for
repairing the sample with rectangular damage, the filler material did not bond well with
the substrate, causing a large number of pores.

3D finite element models based on sequentially coupled thermo-mechanical field
analysis were developed to simulate the corresponding repair deposition processes. Finally,
the average equivalent stresses and deformation in the triangular repair case showed low
values at the intersection between the base plate and the deposited tracks than those in
the rectangular repair case. The high equivalent stresses near the bottom deposition may
induce cracks or delamination in the rectangular repair case. The predicted deformation
and stress results will guide the evaluation of the quality of repaired parts based on repair
slot geometry.
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