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A B S T R A C T

A sudden surge of data has created new challenges in water management, spanning quality control, assimila-
tion, and analysis. Few approaches are available to integrate growing volumes of data into interpretable results.
Process-based hydrologic models have not been designed to consume large amounts of data. Alternatively,
new machine learning tools can automate data analysis and forecasting, but their lack of interpretability and
reliance on very large data sets limits the discovery of insights and may impact trust. To address this gap, we
present a new approach, which seeks to strike a middle ground between process-, and data-based modeling. The
contribution of this work is an automated and scalable methodology that discovers differential equations and
latent state estimations within hydrologic systems using only rainfall and runoff measurements. We show how
this enables automated tools to learn interpretable models of 6 to 18 parameters solely from measurements.
We apply this approach to nearly 400 stream gaging sites across the US, showing how complex catchment
dynamics can be reconstructed solely from rainfall and runoff measurements. We also show how the approach
discovers surrogate models that can replicate the dynamics of a much more complex process-based model,
but at a fraction of the computational complexity. We discuss how the resulting representation of watershed
dynamics provides insight and computational efficiency to enable automated predictions across large sensor
networks.
Plain language summary

As the water sector adopts more sensors, few tools are available to
deal with the resulting volumes of data. Experts have created valuable
watershed models, but calibrating the models is labor intensive which
limits use of real-time data. Machine learning can automate model
building, but the resulting outputs are difficult to interpret. This paper
presents a method that combines physics-based modeling with data to
automatically build rainfall runoff models. Because of how computa-
tionally cheap and simple the model is, it has great potential for use in
modeling and forecasting.

1. Introduction

Watershed data are increasingly available due to expanding sen-
sor networks. This sudden surge of measurements has created new
challenges in water management as quality controlling, processing,
and integrating these data requires a great deal of highly skilled la-
bor (Devia et al., 2015). Many process-based models were created in
the context of time series data scarcity and are therefore not readily
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amenable to data ingestion or data assimilation (Castelletti et al., 2012;
Francipane et al., 2012; Sorooshian et al., 2008; Silberstein, 2006). Ma-
chine learning approaches can automate data ingestion, Sarafanov et al.
(2021) and Olson and Moore (2016) but their opacity may limit insight
and stakeholder trust (Jajarmizadeh et al., 2012; Babovic and Ab-
bott, 1997a). Both approaches require large amounts of computational
power and data (Kumar et al., 2013; Wagena et al., 2020).

In light of these challenges, a parsimonious middle ground has
been sought between pure process-based and data-driven modeling,
posing the question: in the age of ever increasing new data, how can the
interpretability and comprehensibility of process-based models be preserved,
while taking advantage of the scalability of data-driven methods?

This paper introduces a new method to discover rainfall-runoff
equations strictly from raw sensor data. The contribution of this work
is an automated and scalable methodology, which discovers differential
equations and estimates latent states within hydrologic systems using
only rainfall and runoff measurements. These latent states represent
transient storage in the catchment such as increased soil moisture,
overland flow, and elevated groundwater levels. The novelty of the
approach lies in its ability to discover fundamental equations governing
hydrologic systems solely from data, while preserving the automaticity
of data-driven methods.
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2. Background

Prior efforts have pursued a combination of automaticity and in-
terpretability through modification of existing process-based models,
theoretical derivation, and explainable AI (XAI) (Devia et al., 2015;
ngelov et al., 2021; Jajarmizadeh et al., 2012; Babovic and Ab-
bott, 1997b). Process-based hydrologic models are often derived from
first principles and thus support interpretability, but their calibra-
tion and construction is highly manual. While XAI has made gains in
the interpretability of machine learning methods, the resulting model
parameters may still not be straightforwardly mapped to readily under-
stood hydrologic concepts. This may make it difficult to understand or
tune model behavior using domain knowledge (Angelov et al., 2021;
Tian et al., 2022).

Methodological and computational advances have led to significant
progress in hydrologic modeling, with the ability to represent more
granular process and complexities. Once a model is developed and
calibrated, it can be used to study scenarios by changing its many
parameters and inputs. Reformulating an existing computational model
can speed simulation, enable the use of tools not compatible with
the original form, or support the interpretation of model features for
domain understanding (Welch et al., 1995; Hespanha, 2018; Bartos and
erkez, 2021; Alex et al., 2020). If the original model was already
calibrated, these approaches need little additional data (Troutman
et al., 2017) or computational power (Santos et al., 2018). Even with
these barriers eliminated, a reliance on manual processes presents a
bottleneck (Wong and Kerkez, 2018) given the large data sets and
systems involved.

A tractable system of differential equations can also be used to rep-
resent catchment dynamics, and can be constructed by derivation from
first principles with appropriate simplifying assumptions (Kirchner,
2009). The interpretability and tunability of differential equation-based
models is good as these models are rooted in physics and estab-
lished domain principles. Modeling hydrologic systems using differ-
ential equations is also computationally efficient, particularly if the
derived algebraic relations have a closed-form solution (Jakeman and
Hornberger, 1993). However, implementation may be difficult due to
data requirements, time granularity, and limited automaticity. These
approaches are typically demonstrated on unusually long and clean
records provided from experimental catchments (Kirchner, 2009). They
also tend to focus on daily data, Song et al. (2019) which may not
be granular enough to support many important applications. Lastly,
appropriate simplifying assumptions may differ by catchment, which
makes data processing manual.

A principal advantage of machine learning-based methods is au-
tomaticity, but a core critique has focused on the ‘‘black box’’ na-
ture of the resulting models. In the field of XAI, techniques such
as dynamic mode decomposition (Schmid, 2022), Koopman operator
construction (Mauroy et al., 2020), and others (Juang and Pappa, 1985;
Ho and Kalman, 1966) offer structures ripe for mathematical interpre-
tation (Tian et al., 2022). However, this mathematical interpretability
may not relate tractably to physical characteristics of the system or
well understood hydrological concepts. Genetic programming has also
been a prominent approach within XAI (Babovic and Abbott, 1997a,b).
This approach seeks to develop governing equations directly from data
using an evolutionary approach (Babovic and Keijzer, 2002). More
recent work has explored embedding expert knowledge to improve the
accuracy and interpretability of the generated models (Babovic, 2009).
The Long Short-Term Memory (LSTM) networks used for rainfall-runoff
modeling in Kratzert et al. 2018 and 2019 provide some interpretability
through examination of the evolution of the cell states throughout
time (Kratzert et al., 2019, 2018). Work in Jiang et al. (2022) ex-
tended the interpretation of LSTMs to explicitly attribute flow peaks
to snowmelt or rainfall events and examine characteristic differences

between catchments. However, the models in Kratzert et al. (2019, o

2 
2018) have over 10,000 parameters which obscures the relation to
catchment characteristics.

Hybrid modeling combines process-based modeling with data-
driven approaches and often results in better, more consistent re-
sults (Kapoor et al., 2023; Fathian et al., 2019). One common approach
within this vein is training ML models on the errors or residuals
remaining between observations and process-based outputs (Schneider
et al., 2022). To the extent that the process-based model predicts the
observations, the results can be traced back to the model structure. That
is, when the residuals the ML component is correcting for are small,
interpretability is still similar to purely process-based models. Another
approach is using domain knowledge to decompose a large problem
into smaller subproblems which are easier to train data-driven models
on. For example, predicting effluent contaminant concentrations from
a resource recovery facility directly from the characteristics of the
input may be more difficult than building a network of smaller models
approximating intermediate processes within the facility. With this
approach it may also be clearer which processes are poorly modeled
and thereby causing error in the final prediction.

To illustrate the challenge of model selection via example, we
consider a measured storm in a mid-size city in the Midwestern United
States in the Summer of 2022 (Fig. 1). The hydrograph is generated
across 30 km2 of urbanized landscape and responds to rainfall events
with a large initial peak, smaller delayed peak, and nonlinear recession.
In pursuit of the ‘‘middle ground’’ we referred to in the introduction,
we would like to have an automatically generated model with sufficient
fidelity to represent these unusual dynamics, but which is still amenable
to inspection and tuning. ‘‘Out of the box’’ solutions could include
a machine-learning approach, which would need many more storm
observations and a high parameter space to capture these dynamics.
A process-based hydrologic model could capture these dynamics, but
would need to be calibrated across many physiographic inputs and
process parameters (infiltration, runoff, routing, etc.). Alternatively, a
model could be derived from first principles and manually increased in
complexity until the dynamics are adequately captured. To that end,
two approaches which may supply the automaticity and interpretabil-
ity we seek are unit hydrographs – well established, but limited in
their ability to capture complex dynamics – and differential equation
discovery.

The unit hydrograph approach reduces streamflow prediction to
a transformation of the rainfall time series by assuming watersheds
are linear and time invariant (LTI) dynamical systems (Bedient et al.,
2008). This is computationally efficient, handles delay well, and can
acceptably approximate watershed response in many cases. However,
this approach is generally unable to represent complex responses such
the example in Fig. 1. A unit hydrograph based on a gamma distribu-
tion (Ghorbani et al., 2017) can fit either the initial peak (Fig. 1, first
row, dot-dash red) or recession (Fig. 1, first row, dotted cyan), but not
both.

Alternatively, representing catchment response as a system of dif-
ferential equations would be computationally efficient and present a
model structure prevalent in the hydrology community. Model discov-
ery automatically generates differential equations from data, and has
been demonstrated for systems ostensibly more complex than water-
sheds (de Silva et al., 2020; Brunton et al., 2016). However, due to their
nstantaneous nature, differential equations cannot represent delayed
ausation (Fig. 1, second row).
Given these challenges, in the following section we introduce a new
ethodology (Fig. 1, third row) to recover the delay and dynamic
omplexity of watersheds solely from data, while providing the ability
o evaluate the resulting model structure and parameters in the context

f hydrologic domain knowledge.
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Fig. 1. Hybrid approach captures delay and complexity (USGS, 2016) Rainfall (blue) is the average of two rain gages located in and near the catchment of the stream. Discharge
(solid black) is modeled by: transforming rainfall using unit hydrographs (dot-dash red and dotted cyan, row 1), discovering a differential equation relating rainfall and discharge
(dot-dash magenta, row 2), and a new method combining these approaches (dot-dash green, row 3).
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3. Methods

In this study, we introduce Model Discovery in Partially Observable
Dynamical Systems (Dantzer, 2023b), which we also implement as an
open-source software tool. We present the single input, single output
hydrologic analogy of the method here for conciseness.

The delay between rainfall (𝑃 ) and runoff (𝑄) is typically thought
of in terms of time, but can also be conceptualized as a gap in observ-
ability. Though we perceive delayed causation, the processes between
rainfall and runoff (e.g., soil saturation, flow routing) are actually
instantaneous. It is our inability to fully observe the catchment that
gives the appearance of delay. Instead of finding the time-shift between
precipitation and discharge, we represent this delayed and diffused
causation by optimally estimating the unit hydrographs of the effective
subcatchments (unobserved states) within the watershed. We then learn
a differential equation relating these subcatchment unit hydrographs to
the measured hydrograph. Young’s data-based mechanistic modeling
approach has similar aims and results, but addresses partial observ-
ability by including pure delay terms in the differential equations used
to model the system (Young, 2012, 2006). Genetic programming ap-
roaches also tend to represent delay as ‘‘pure’’ or ‘‘advective’’ (Babovic
nd Abbott, 1997b).
Modeling the delay and dispersion between rainfall and runoff as

ntervening unobservable states has origins at least as old as Nash’s
uggestion (Nash, 1959) of a cascade of linear reservoirs to approx-
mate a unit hydrograph. Sugawara’s Tank model (Lee et al., 2020;
hadalawada et al., 2020; Herath et al., 2021b,a) has a different
opology, but evinces the same notion. The approach presented here
s similar, but more dynamically flexible and amenable to real-time
ata ingestion. The catchment is thought of as being composed of
ffective subcatchments (Fig. 2) that represent not geographic areas,
ut constituent processes such as surface runoff, tributary contribution,
r interflow. In our formulation, the only sources of data to estimate
3 
he parameters of these subcatchments are rainfall and streamflow.
e achieve this by transforming the rainfall forward to estimate the
nit hydrographs and then using those unit hydrographs to learn the
ifferential equation that governs the discharge.

.1. Watersheds as dynamical systems of subcatchments

We approximate the subcatchment unit hydrographs using a gamma
robability density function (Eq. (1)). This function has been used for
pproximating unit hydrographs in prior studies (Ghorbani et al., 2017;
adarajah, 2007; Haktanir and Sezen, 1990):

(𝑡 + 𝑑, 𝛼, 𝛽) =
𝛽𝛼𝑡𝛼−1𝑒−𝛽𝑡

(𝛼 − 1)!
(1)

where 𝛽 is the rate or inverse scale, 𝛼 is the shape, and 𝑑 is the
location. These parameters have interpretable meanings in the con-
text of hydrologic dynamics. Decreasing the 𝛽 parameter delays and
broadens the peak of the unit hydrograph. The 𝛼 parameter controls
symmetry about the peak (skewness). The delay parameter (𝑑) shifts
the transformation in time without affecting shape. The time to peak
is 𝑇𝑝 = 𝛼−1

𝛽 + 𝑑. Note that 𝛼 ≥ 1 in this study. The similar expression
𝑇50 = 𝛼

𝛽 + 𝑑 is the time at which half the total contribution has been
made. 𝑇50 can be thought of as the mean or center of gravity of the
transformations shown in dotted red and dotted yellow in Fig. 2.

The approximations of the subcatchment unit hydrographs are eval-
uated by how strongly they connect observed precipitation (𝑝𝑜) with
observed runoff (𝑞𝑜) through the following differential equation:
𝑑𝑞𝑜
𝑑𝑡

= 𝑓 (𝑞𝑜, 𝑝𝑜, 𝑇𝑖(𝑝𝑜)) (2)

here 𝑑𝑞𝑜
𝑑𝑡 is the instantaneous rate of change of water level or dis-

charge, 𝑇𝑖(𝑝𝑜) are the subcatchment unit hydrographs generated by
transforming the input rainfall 𝑝𝑜, and 𝑓 is some nonlinear function of
compatible dimension. 𝑓 is then constrained as follows: (1) constant
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Fig. 2. Recovering the subcatchment hydrographs. Subcatchments 1 (first column solid green) and 2 (second column solid purple) contribute to streamflow (third column solid
cyan). Only precipitation (impulse, not pictured) and streamflow are observed. The subcatchment unit hydrographs are approximated (dotted red first column and dotted yellow
second column) by transforming the precipitation. A differential equation is discovered (left column) to relate these subcatchment hydrographs to streamflow (third column dotted
orange). Iteration number and the coefficient of determination are indicated on the right. Row 1. The algorithm generates a starting guess for the first subcatchment. Row 2. The
algorithm finds an optimal representation of the system using a single subcatchment. Row 3. Accuracy is below desired, so the algorithm adds a second subcatchment (second
column dotted yellow). Row 4. The subcatchment hydrographs and the differential equation relating them to the streamflow are recovered.
bias terms are omitted because 𝑑𝑞𝑜
𝑑𝑡 is not a function of time, (2)

nteraction terms are omitted because the instantaneous interaction
etween rain and stage has no physically meaningful interpretation,
nd (3) only polynomial terms are included because they are sufficient
o capture the dynamics at the resolution we desire (Taylor’s Theorem).
his yields:
𝑑𝑞𝑜
𝑑𝑡

= 𝑃𝑞(𝑞𝑜) + 𝑃𝑝(𝑝𝑜, 𝑇𝑖(𝑝𝑜)) (3)

where 𝑃𝑞 and 𝑃𝑝 are polynomials excluding the zero order term. 𝑃𝑞
escribes the shape of the recession curve as it is the autocorrelation on
tage or discharge. 𝑃𝑝 describes the contributions of the instantaneous
recipitation 𝑝𝑜 and subcatchment unit hydrographs 𝑇𝑖(𝑝𝑜).
The most complex models trained in this study will have polynomial

rder three and two effective subcatchment unit hydrographs. They
ave the form:

𝑑𝑞𝑜
𝑑𝑡

=𝑎1𝑞𝑜 + 𝑎2𝑞
2
𝑜 + 𝑎3𝑞

3
𝑜 + 𝑏01𝑝𝑜 + 𝑏02𝑝

2
𝑜 + 𝑏03𝑝

3
𝑜 (4)

+ 𝑏11𝑇1(𝑝𝑜) + 𝑏12𝑇1(𝑝𝑜)2 + 𝑏13𝑇1(𝑝𝑜)3

+ 𝑏21𝑇2(𝑝𝑜) + 𝑏22𝑇2(𝑝𝑜)2 + 𝑏23𝑇2(𝑝𝑜)3

All results presented in this study will be produced by models
which are no more than this ordinary differential equation and six
unit hydrograph parameters that describe the shapes of 𝑇1 and 𝑇2. This
model configuration has 18 parameters. The differential equations are
integrated using the Explicit Runge–Kutta method of order 5 provided
by Scipy’s solve ivp function (Virtanen et al., 2020).

3.2. Approximating the subcatchment unit hydrographs using data

The Sparse Identification of Nonlinear Dynamics (SINDy) (de Silva
et al., 2020) algorithm is used to predict the derivative of the output
using Eq. (3). We denote 𝑥′𝑖 as the measured derivative and 𝑦′𝑖 as our es-
timate. The established SINDy implementation chooses the coefficients
of the differential equation (𝑃𝑞 and 𝑃𝑝) to maximize the coefficient of
determination (𝑅2) between the observed and predicted derivative.

max
𝑃 ,𝑃

[

1 −
∑

(𝑥′𝑖 − 𝑦′𝑖)
2

∑ ′ ′̄ 2

]

(5)

𝑞 𝑝 (𝑥𝑖 − 𝑥 )

4 
Finding optimal differential equation coefficients (𝑎𝑖, 𝑏𝑗) is the inner
loop. The outer loop is the optimization of the subcatchment unit
hydrographs (𝑇𝑖) shown in Algorithm 1. As there is no analytical
derivative this optimization is performed via compass search. The steps
proceed as follows:

(1): The algorithm starts with one subcatchment and evaluates
increasing numbers of subcatchments until the maximum number is
reached or the last one added less than 0.5% to the 𝑅2 score. If the
returns of the last one added are marginal, it is removed and the model
with one less subcatchment is returned as the final model. That is,
if the 𝑗th subcatchment produces marginal returns, the model with 𝑗
rainfall transformations is the last to be evaluated and a model with 𝑗−1
transformations is returned. If 𝑚 = 𝑚𝑚𝑎𝑥 delivers non-marginal returns
on accuracy, the model with 𝑚𝑚𝑎𝑥 subcatchments is returned. Note that
for this study we build models of one and two effective subcatchments
and evaluate both.

(2): An initial guess is chosen for the subcatchment unit hydrograph.
For records with more than one event (Fig. 3 and beyond) the first
transformation is Eq. (1) with parameters (𝛼, 𝛽, 𝑑) = (1, 1, 0) and addi-
tional transformations are broader peaks centered at timesteps 24, 48,
and so on. For records of only one event (Figs. 1 and 2), the starting
shapes are based on timesteps of maximum derivative in the output.
By identifying timesteps with large derivatives we are attempting to
identify distinct events or times of arrival in the delayed causation
between input and output. As identifying these times of arrival is less
clear when multiple driving events occur, a simpler heuristic is used in
that case.

(3): Larger 𝑠 corresponds to a larger perturbation. So the opti-
mization begins looking at large perturbations and converges to small
steps.

(4): Candidate unit hydrographs are generated by perturbing the
shape of the last iteration’s best performing transformation. The pertur-
bations are scaled by 𝑠. In this paper we evaluate eight perturbations,
but that number is not specific to this application. Rather, it is because
we define the optimization space to have four axes: one for each of the
three parameter values (𝛼, 𝛽, 𝑑) and a fourth which changes 𝛼 and 𝛽 at
the same time. This fourth direction changing 𝛼 and 𝛽 at the same time
makes the distribution wider or narrower without affecting its center
of mass.
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Fig. 3. Reduction of a process-based model. Models are evaluated at 178 junctions, comparing the predictions made by modpods to the process-based model’s output for the
esting storm. The cumulative density function of Nash Sutcliffe Efficiency is shown on the left. In the legend, p prefixes the polynomial order while t prefixes the number of
subcatchments. The ‘‘final’’ model selects the p and t configuration that resulted in the highest training NSE score for each junction. On the right are evaluation simulations of
junction depth in meters for models at the 25th percentile, median, and maximum of evaluation NSE (0.0, 0.68, and 0.99 respectively).
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(5): The 9 input transformations (8 perturbations and the best from
last time) are scored by how well the differential equation identification
procedure performs as measured by 𝑅2.

(6): The best performing input transformation is saved.
(7): If the best performing input transformation is the same as last

iteration, none of the perturbations were helpful. 𝑠 is reduced by the
factor 𝛼. If 𝑠 is now less than one, the algorithm will exit the loop at
(3). If the best performing input transformation is not the same as the
last iteration, a step was taken that did improve performance. In that
case, we return to (4).

Algorithm 1. Approximate Subcatchment Unit Hydrographs
1. 𝑓𝑜𝑟 (𝑚 = 1 ; 𝑚 = 𝑚 + 1 ;𝑚 ≤ 𝑚𝑚𝑎𝑥) ∶
2. 𝑐′𝑖−1 = 𝑐0 ; 𝑖 = 0
3. 𝑓𝑜𝑟 (𝑠 = 𝑠𝑜 ; ; 𝑠 > 1) ∶

4. 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝐶(𝑐′𝑖−1, 𝑠)

5. ∀𝐶 ∶ 𝑆𝑐𝑜𝑟𝑒𝑠 = max𝑃𝑞 ,𝑃𝑝

[

1 −
∑

(𝑥′𝑖−𝑦
′
𝑖 )
2

∑

(𝑥′𝑖−𝑥
′)2

]

6. 𝑐′𝑖 = 𝐶[𝑎𝑟𝑔𝑚𝑎𝑥[𝑆𝑐𝑜𝑟𝑒𝑠]] ; 𝑖 = 𝑖 + 1
7. 𝑖𝑓 (𝑐′𝑖 == 𝑐′𝑖−1) ∶ 𝑠 = 𝑎 ⋅ 𝑠

8. 𝐸𝑛𝑑 𝑖𝑓 𝛥𝑅2 < 𝛥𝑚𝑖𝑛 𝑓𝑟𝑜𝑚 𝑙𝑎𝑠𝑡 𝑚.
where:
𝑚 is the number of input transformations,
𝑐0 is the initial set of input transformations,
𝑐′𝑖 is the best performing set of input transformations for iteration 𝑖,
𝑖 is the iteration number,
𝑠 determines how far away the compass search looks,
𝑠𝑜 is the initial spread of the compass search,
𝑎 < 1 determines how quickly 𝑠 decays,
𝐶 is the 9 candidate transformation sets including the best from last
iteration,
𝛥𝑚𝑖𝑛 is the minimum accuracy increase from an additional
transformation.

A conceptual illustration of the algorithm is shown in Fig. 2. In the
figure, a synthetic hydrograph is the outflow from two ‘‘subcatchments’’
which are series of linear reservoirs. As the algorithm iterates, it
recovers the dynamics of the two subcatchments and combines them
using a differential equation to reconstruct the output hydrograph.
5 
Once Algorithm 1 terminates and the model is trained, the total number
of parameters is:

3𝑚 + 𝑞(2 + 𝑚) (6)

where 𝑚 is the number of input transformations (subcatchments) and
𝑞 is the order of the polynomial terms included in the differential
equation. Each input transformation (𝑚) adds three parameters that
describe the shape of the subcatchment unit hydrograph. Increasing
the polynomial order (𝑞) adds a term for the output autocorrelation,
instantaneous precipitation, and each precipitation transformation. As
an example, Eq. (4) is the most complex model trained in this study and
has six parameters describing the shapes of the two subcatchment unit
hydrographs and twelve coefficients in the differential equation for a
total of eighteen parameters. The simplest models are linear differential
equations with one effective subcatchment and have six parameters
total.

3.3. Evaluation and implementation

To evaluate our modpods approach, we first apply it in a simu-
ated setting to determine how well it can replicate dynamics that
re produced by a more complex, process-based model. We then ap-
ly the algorithm to discover models from measurements at 35 US
eological Survey (USGS) stream gages across the southern United
tates. To provide a comparison of performance, we also discover
odels at 348 sites within the Catchment Attributes and Meteorology
or Large-sample Studies (CAMELS) dataset. This dataset is particu-
arly valuable as it includes a large number of catchments of varying
limate, size, and topography. Additionally, benchmark rainfall-runoff
odels including process-based and machine learning techniques are
vailable (Addor et al., 2017b). Lastly, to interpret how model param-
ters relate to watershed characteristics and hydrologic signatures, we
nalyze correlations for the USGS and CAMELS datasets (Addor et al.,
017a).

.3.1. Performance metrics and interpretation analysis
We train models with polynomial orders of 1, 2, or 3, with 1

r 2 subcatchments, for a total of six model configurations. These
re denoted as ‘‘p-polynomial order, t-number of subcatchments’’. The
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complexity of the model structure is defined by p and t, which can be
thought of as hyperparameters. The only constraint on the coefficients
of the differential equation is that the highest order output autocorre-
lation term is negative. This is to ensure that finite forcing produces a
finite response.

The Nash–Sutcliffe Efficiency (NSE) – a common hydrologic error
metric – is used as the primary measure of performance during eval-
uation. Additional error metrics including MAE, RMSE, and various
bias measures are also included in the supplemental information. NSE
is defined as one minus the ratio of the error variance of the model
divided by the variance of the observed time series:

𝑁𝑆𝐸 = 1 −
∑

(𝑄𝑜𝑏𝑠 −𝑄𝑚𝑜𝑑 )2
∑

(𝑄𝑜𝑏𝑠 −𝑄𝑜𝑏𝑠)2
(7)

A perfect model scores 1 while a model with error equal to the
variance of the observed time series scores a 0. The NSE is measured
for all model configurations. To select the hyperparameters p and t we
choose the model configuration with the best training NSE for a given
site or junction. That is, out of the six possible model configurations,
we label the ‘‘final model’’ for each site or junction as the model
configuration with the best training NSE. While machine-learning ap-
proaches typically use a three-way data split (training, validation, and
testing), conceptual and process-based models often use a two-way
split (e.g., calibration and validation in Newman et al. (2017)). While
modpods is not a hydrologic model, the number of tunable parameters is
more similar to conceptual hydrologic models than to machine learning
approaches and we thereby use a two-way split. For example, the
number of tunable parameters in Newman et al. (2017) varies from
2 to 13, close to our range of 6 to 18 parameters. Several studies
have addressed the nuanced question of where and how to split data
into training (calibration) and testing (validation) sets (Maier et al.,
2023; Zheng et al., 2022; Chen et al., 2022). In this study our data
splits are always wind-up, then train, then test as this arrangement best
aligns with the use cases we anticipate detailed in the Future Directions
section.

Finally, we carry out a two-fold interpretation analysis. Firstly, we
correlate the final model parameters with physiographic features of
the catchment to infer how changes in catchment composition may
influence rainfall-runoff dynamics of the resulting modpods model.
Secondly, we interpret the final model in terms of its hyperparameters
to posit how the mathematical structure may be related to physical
features of the underlying catchment.

3.3.2. Implementation
The complete implementation of this toolchain, example notebooks

showing applications using several data sources, and code to generate
the figures in this paper are freely shared (Dantzer, 2023a). That library
depends on modpods, which we also share freely (Dantzer, 2023b).
All analyses took place on a laptop with 32 GB RAM and an Intel(R)
Core(TM) i7-1065G7 CPU @ 1.30 GHz 1.50 GHz processor.

4. Model reduction

4.1. Experiment setup

First, we apply our approach to data generated by a process-based
urban water model (McDonnell et al., 2020; Huber, 1985). The motiva-
tion is two-fold: (1) using a process model guarantees causality between
input and output, thus providing a controlled environment in which to
test the baseline performance of the approach, and (2) it demonstrates
a secondary benefit of the approach by performing model reduction
(surrogate modeling) and showing how complex process models can
be reduced to the formulation presented herein.

Focusing on an urban watershed in the Midwestern US, we replicate
the junction depths of an EPA Stormwater Management Model (EPA-
SWMM) with 420 storage nodes, 1200 junctions, and 1800 subcatch-

ments. The calibrated model was shared with us by a municipality and

6 
represents an urban stormwater system for roughly 100,000 people.
While EPA-SWMM may be simpler than some research-grade mod-
els, its explicit representation of important processes (evaporation,
infiltration, and nonlinear routing over a large network) makes it
sufficiently complex to test our method. The goal, as such, is not to
test the accuracy of the process model, but rather to evaluate if our
proposed framework can capture similar input–output dynamics, but
with reduced model complexity.

178 junctions are selected in the large urban watershed model. Two
five-day simulations of the full software model are run using synthetic
rainfall time series and the resulting water levels are recorded at a one-
minute timestep. We train our approach on one set of rainfall runoff
data for each junction, and then evaluate using the other set.

4.2. Reduction of a process-based hydraulic and hydrologic model

The left side of Figs. 3 and 4 shows the cumulative density function
of evaluation Nash Sutcliffe Efficiency computed in the analysis. Each
line indicates the percentile of a given NSE score, such that better per-
formance is positioned down and to the right while worse performance
is up and to the left. For visual interpretation, the right side of the
figure shows evaluation simulations for the ‘‘final’’ models at the 25th
percentile, median, and maximum of evaluation NSE.

As measured by NSE and visual inspection, our approach was able to
replicate the dynamics exhibited by the more complex physical model
(Fig. 3). When trained on just one storm, the algorithm accurately pre-
dicted the junction depth in a subsequent storm. Compared to existing
machine-learning based methods – which require large amounts of data
to implicitly learn the underlying dynamics – this relatively low data
requirement is a major benefit of the approach.

In general, as model complexity increases (higher order polynomials
and more input transformations), model performance increases as well.
However, there are tradeoffs in robustness and accuracy when choosing
amongst model configurations. The simplest models (those with smaller
p and t values, red, Fig. 3) are least likely to score NSEs below zero,
but also have the lowest ceiling of performance. The models with third
order polynomials (blue) achieve the best performance, but score below
zero more often during evaluation. A frequent mode of failure is shown
in the 25th percentile NSE simulation (Fig. 3, bottom right) where a
spurious fixed depth is learned.

These differences in performance are straightforwardly tractable to
the structure of the model. As recession limbs are seldom completely
linear, the second and third order polynomials are better able to capture
their shape. This may include learning a nonzero fixed depth as in the
25th percentile simulation in Fig. 4. In contrast, the linear models can
only represent recession limbs as exponential decays to zero. However,
this limitation does improve the consistency of the linear models, as
they are not able to learn spurious fixed depths as in the 25th percentile
simulation of Fig. 3. This tradeoff is visible where ‘‘p1t1’’ in solid red
crosses ‘‘p3t2’’ in dotted blue at an NSE of about 0.35. Selecting the
model with the best training NSE as the final model (black line Fig. 3)
seems to be an effective heuristic for taking advantage of the enhanced
accuracy of the nonlinear models when fit is good while defaulting to
simpler approximations when fit is worse.

While beyond the core focus of this paper, computational efficiency
and surrogate modeling are a secondary benefit of the approach. The
process-based model took two hours each to run the training and testing
storm events. In contrast, our models took about fifteen seconds to
predict the response to the testing storm after being trained. Training
all six model configurations took a median of one hour per junction.
While training is expensive, it only needs to be done once. As such,
our method may serve as a valuable surrogate modeling tool to either
complement complex process models in high-performance-computing
applications, or as a forecasting tool in real-time applications that
require rapid predictions. Results here are reminiscent of Young (2006),

where dominant mode analysis recovers 99.99% of the behavior of a
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Fig. 4. Predicting stream stage in real catchments. Models are evaluated at 35 gaging stations over nine months. The cumulative probability distribution of Nash Sutcliffe Efficiency
is shown on the left. In the legend, ‘‘p’’ prefixes the polynomial order while ‘‘t’’ prefixes the number of subcatchments. On the right are evaluation simulations of stage in meters
for models at the 25th percentile, median, and maximum of NSE (−0.60, −0.31, and 0.68 respectively).
5

U
w
a
a
m
c
f
c

a
p
T
c
b
f
w
T
s
s
s
a
a
a
w

r
S
m
c
b
d
a
S

e
T

more complex model with significantly fewer parameters. This result
reflects that in some highly parameterized process-based models ‘‘only
a few of the model parameters have a statistically significant effect on
the model output’’ (Young, 2006).

. Streamgaging data

.1. Experiment setup

We apply our approach on USGS precipitation and stream stage
bservations from 35 gaging stations at a 15-min timestep. These
aging stations are distributed across the southern continental United
tates with their locations and model performance summarized in SI
igure S3. Before applying the method to the more complex bench-
arking data set, this set of gaging locations was selected across the
outhern US to: (1) study the performance of the method under limited
mpact of snow melt, the representation of which is beyond the scope
f this paper, and (2) evaluate performance on minimally processed
easurements that may contain noise or other artifacts. We use stations
hat also measure precipitation at the same location. Since precipitation
t the pour point becomes a worse approximation of catchment-wide
recipitation as the contributing area increases, we chose catchments
ith a contributing area under 100 km2. As stage-discharge rating
urves are often unavailable for catchments this small, the analysis is
arried out on the stage (water level).
In pre-processing, any constant offset in stage measurements is

emoved by subtracting the minimum stage value over the record to
mprove discovery of the differential equations. Missing stage mea-
urements are linearly interpolated while missing precipitation mea-
urements are filled with zeros. No other pre-processing is performed.
odels are evaluated over nine months. The first three months of data
re used as windup to initialize the latent states and are excluded from
raining or testing. The dates and training record length are variable
ue to data availability. We examine data from January 1, 2005 to
anuary 1, 2023 and use at most 7 years of data total. To ensure the
ystem is causal, forcing data is shifted back one timestep relative to
he response.
7 
.2. Predicting stream stage in catchments

The cumulative density function of Nash–Sutcliffe Efficiency for 35
SGS gaging stations is shown in Fig. 4. Unlike in the prior analysis,
hich focused on a noise-free and causal physical model, the data
nalyzed here were collected in the field and are thus subject to noise
nd various perturbations. Considering that the algorithm identified
odels entirely from these raw measurements, this demonstrates how
omplex hydrologic dynamics may be automatically discovered entirely
rom data without the need to manually develop and calibrate a more
omplex process model.
The maximum NSE simulation is particularly notable, as it achieves
score of 0.68 on raw data with only 12 total parameters (third order
olynomial, one subcatchment) and no hydrology-specific constraints.
he median and 25th percentile simulations show the importance of
orrectly defining baseflow. Though we accounted for a constant offset
y subtracting the minimum value over the record, subtracting the
irst or second percentile may more effectively capture the stage to
hich streams decay, especially when diurnals or noise are present.
he median simulation also highlights the incompleteness of numeric
cores, as the model clearly has some predictive ability despite an NSE
core of less than zero. We attempted to exclude sites with significant
nowmelt, but other sources of variation (e.g. dam releases, diversions)
re likely present in the data. SI Table S1 summarizes performance
cross an array of common hydrologic error metrics. Mean absolute
nd root-mean square error are generally on the order of 10 centimeters
hile biases are almost always positive.
To determine how much data this method needs to generate accu-

ate models, we analyzed the correlation between Nash–
utcliffe Efficiency and length of the training record. We examined
odels trained with between one and six years of data and found no
orrelation (r = 0%) between model score and training record length
eyond one year. This lack of correlation may be due to how few
egrees of freedom these models possess. They may become ‘‘saturated’’
fter seeing as few as 10 storms. See supplementary information Figures
5 and S7 for more details.
Table 1 summarizes the correlations between linear models with one

ffective subcatchment (6 parameters) and watershed characteristics.
hese models have the form: 𝑑𝑞𝑜 = 𝑎 𝑞 +𝑏 𝑝 +𝑏 𝑇 (𝑝 ). Hydrologically
𝑑𝑡 1 𝑜 0 𝑜 1 1 𝑜
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Table 1
Correlation of model parameters with USGS metadata (with significance).
(𝑟, 𝑝) 𝑇𝑝 𝑇50 𝑏0 𝑎0 NSE

Areaa (0.54, 0.11) (0.47, 0.17) (−0.10, 0.79) (0.24, 0.5) (−0.6, 0.07)
Altitude (0.52, 0.01) (0.40, 0.06) (0.07, 0.37) (0.10, 0.54) (0.07, 0.69)
Latitude (0.21, 0.19) (0.07, 0.61) (−0.07, 0.12) (0.08, 0.71) (0.33, 0.08)
Longitude (−0.23, 0.36) (−0.13, 0.75) (−0.19, 0.6) (−0.14, 0.3) (0.09, 0.75)

𝑇𝑝 is the time to peak contribution of the unit hydrograph 𝑇1(𝑝𝑜).
𝑇50 is the center of mass of the unit hydrograph 𝑇1(𝑝𝑜).
𝑏0 is the coefficient multiplying instantaneous precipitation in the differential equation.
𝑎0 is the coefficient multiplying stage in the differential equation.
Bold entries are significant at 𝑝 = 0.10.
a USGS lists ‘‘Drainage Area’’ and ‘‘Contributing Drainage Area’’ as separate metadata entries. This analysis uses ‘‘Contributing
Drainage Area’’.
elevant characteristics available though the USGS REST API were
atitude, longitude, altitude, and drainage area. Tables 1 and 2 use the
simplest models so that all model parameters can be displayed in one
table.

As expected, there is a positive correlation between contributing
area and the delay (𝑇𝑝 and 𝑇50) in rainfall-runoff response. A negative
correlation with the coefficient multiplying instantaneous precipitation
(𝑏0) indicates that streams increasingly tend to take more than one
timestep (15 min) to respond as the contributing area increases. The
positive correlation with the stage coefficient (𝑎0) implies that larger
catchments have an autocorrelation on stage that is less negative. That
is, recession occurs more slowly in larger catchments. NSE scores are
worse in larger catchments as precipitation at the pour point becomes
an increasingly bad approximation of precipitation over the entire
catchment. As with any hydrologic modeling approach, applications at
larger scales will benefit from spatially distributed rainfall data.

The positive correlation between altitude and time to peak (𝑇𝑝) is
against expectations. This may be resolved by the positive correlation
between the coefficient multiplying instantaneous precipitation (𝑏0)
and altitude. In headwater catchments there may be a more instanta-
neous response to rainfall, so 𝑏0 is larger and the single subcatchment
unit hydrograph may be pushed out to represent more delayed contri-
butions. Given the wide variability in climate and topography across
the southern half of the continental United States the meaning of
the correlations with latitude and longitude are less clear. They are
included here for completeness. Due to the relatively small sample size
(n = 35), many correlations do not achieve statistical significance. Fur-
ther studies with larger sample sizes would be necessary to rigorously
support these correlations.

6. Benchmarking against process-based and machine-learning ap-
proaches

6.1. Experiment setup and benchmark description

We benchmark the performance of the proposed method on daily
data from 348 sites within the National Center for Atmospheric Re-
search (NCAR) CAMELS dataset spanning the continental United States.
Locations and model performance are summarized in SI Figure S8.
To that end, we use four well established process-based models as
well as a variation of Long Short-Term Memory Networks (Entity
Aware LSTM) (Kratzert et al., 2019). Entity Aware LSTM is chosen for
comparison as it is an established machine learning method with state
of the art performance. To train and evaluate, we follow the protocol
detailed in Kratzert et al. (2018) by using 269 days of windup, training
from October 1, 1999 to September 30, 2008 and evaluating from
October 1, 1989 to September 30, 1999 (Kratzert et al., 2018). We build
single input, single output models using surface water input (RAIM,
comprises liquid precipitation and snowmelt) as forcing and observed
runoff (OBS RUN) as the output (Newman et al., 2015). To ensure the
system is causal, forcing data is shifted back one timestep relative to
the response.
8 
The process-based benchmark models are the Sacramento Soil Mois-
ture Accounting Model (SAC-SMA), Variable Infiltration Capacity (VIC),
mesoscale Hydrological Model (mHM), and Hydrologiska Byråns Vat-
tenbalansavdelning (HBV). SAC-SMA has long been a key component of
the US National Weather Service’s River Forecast System and its source
code is publicly accessible (Bowman et al., 2017). Variable Infiltration
Capacity was developed in the early 1990s and has been used across
scales to analyze trends, forecast, and assess impacts from climate
change. Current notable uses include the University of Washington’s
drought monitoring program and forecasting systems (Hamman et al.,
2018). The mHM uses multiscale parameter regionalization to address
overparameterization, inadequate integration of spatial heterogeneity,
and nontransferability of parameters across space and time (Mizukami
et al., 2019; Samaniego et al., 2010). The HBV has been developed
at the Swedish Meteorological and Hydrological Institute since the
1970s (Seibert and Vis, 2012) and has been applied for many uses
including flash flood prediction (Grillakis et al., 2010).

6.2. Benchmarking using the CAMELS dataset

Fig. 5 benchmarks our modpods approach across 348 CAMELS
sites. Four process-based benchmarks, the EA-LSTM, and modpods
are plotted by their total number of parameters and requisite inputs.
Maximum NSE when predicting ten years of daily discharge is shown
as a measure of the upper bound of model fidelity. As illustrated in the
figure, our method has a relatively small parameter and input space
while achieving a maximum accuracy better than Variable Infiltration
Capacity (VIC) and similar to the rest of the process-based models. This
performance is achieved without any process-based constraints aside
from assuming the system is causal and produces finite responses to
finite forcings.

The most accurate result in Fig. 5 is the Entity Aware Long Short-
Term Memory Network (Kratzert et al., 2019, 2018). Long Short-Term
Memory networks are commonly applied to time series forecasting
problems as they do not suffer from the disappearing or exploding
gradients common in other neural networks (Jiang et al., 2022). In
the implementation depicted in Fig. 5, various random seeds and
ensembling are used to counteract overfitting. Each EA-LSTM model
has 1617 randomly initialized learnable parameters without obvious
analogs to physical processes. An ensemble of 8 members is used for
the prediction for a total of 12,936 parameters.

To contrast the parameter space of the approaches, we consider the
Sacramento Soil Moisture Accounting (SAC-SMA) Model coupled with
the Snow-17 routine to represent the process-based models (Burnash,
1973; Newman et al., 2015). Snow-17 uses an air temperature index to
calculate snow accumulation and ablation. SAC-SMA requires inputs of
potential evapotranspiration and water surface input. Stream-flow rout-
ing is by a two-parameter instantaneous unit hydrograph model. When
Snow-17 is coupled with SAC-SMA, 35 parameters are available for
calibration, 20 of which are calibrated in the benchmark results plotted
above. All of these parameters directly represent physical processes,
some of which are measurable.
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Fig. 5. Benchmarking on the CAMELS dataset. Maximum evaluation NSE across a number of data-driven and process-based approaches when predicting ten years of discharge
measurements.
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Our modpods models have between 6 and 18 parameters. These
parameters either describe the shape of a unit hydrograph or are coef-
ficients in a differential equation. The number of parameters is similar
to SAC-SMA, but 700x fewer than EA-LSTM. Further, modpods models
do not benefit from the constrained structure of explicitly process-
based models or the ingestion of forcing variables besides surface
water input, such as air temperature and potential evapotranspiration.
While modpods uses only surface water input to predict discharge, all
other models require at least potential evapotranspiration. Note the
logarithmic scale on the 𝑦 axis. While the EA-LSTM approach has the
best NSE, it also has orders of magnitude more parameters than other
approaches. While Fig. 5 illustrates common trade offs between model
complexity and performance, the complexity of modpods situates it
closer to the interpretable process-based models without sacrificing the
automaticity offered by data-driven approaches. Note also that though
the input transformations are referred to as ‘‘unit hydrographs’’ in this
hydrologic application of the tool, these input transformations are po-
tentially generalizable to other forms of causality in other domains. The
data-driven approach and dynamical systems representation contrast
with more complex process-based models in similar ways to the data-
based mechanistic approach developed by Young and colleagues (Young,
012).
Further details on comparative performance are provided in SI

able S2. Several metrics suggest this method has different systematic
rrors than other hydrologic models. While the benchmark models
end to have negative flow biases, modpods biases are almost always
ositive. As measured by 𝛼-NSE, modpods replicates the variability of
he observed timeseries more closely than any of the benchmarks, but
as bias (𝛽-NSE) two orders of magnitude larger than the benchmark
odels. This may indicate that a relatively large portion of the error
n the modpods models is due to a constant offset or baseflow, as in
he Median NSE simulation of Fig. 4. This would align with results
in Dantzer and Kerkez (2024) where definition of the percentile of flow
hich constitutes as baseflow is an important hyperparameter, ranging
rom 2% for natural streams to 10% for combined sewer systems which
ave dry weather flows. Models in this study take the minimum in the
imeseries to approximate baseflow, which appears to be unrealistically
ow.
The modpods models appear well saturated after training on a

ecade of data, with SI Figure S10 showing the difference between
raining and evaluation NSE. In this study, some models achieved better

SE during the testing period than the training period. This potentially a

9 
able 2
orrelation of model parameters with catchment characteristics..

𝑇𝑝 𝑇50 𝑏0 𝑎0
Runoff ratioa −0.09 −0.07 0.55 −0.01
FDC slopeb −0.14 −0.17 0.24 −0.22
High flow duration 0.19 0.27 −0.17 0.26
Fraction snow 0.26 0.35 0.00 0.24
Silt fraction −0.07 −0.10 0.05 −0.20
Mean precipitation (P) −0.16 −0.19 0.56 −0.10
Mean potential evapotranspiration (PET) 0.14 0.19 −0.22 0.14
Aridityc 0.25 0.30 −0.39 0.24

𝑇𝑝 is the time to peak contribution of the unit hydrograph.
𝑇50 is the center of mass of the unit hydrograph.
𝑏0 is the coefficient multiplying instantaneous water surface input in the differential
equation.
𝑎0 is the coefficient multiplying discharge in the differential equation.
a Runoff ratio is mean daily discharge divided by mean daily precipitation.
b FDC Slope is the slope of the flow duration curve between the log-transformed 33rd
and 66th percentiles.
c The aridity index is mean PET/P with PET estimated by the Priestley–Taylor
formulation calibrated for each catchment.

small data requirement contrasts with Kratzert et al. (2018) where
5 years of daily data is proposed as a lower bound of data require-
ents for the EA-LSTM. As such, while our approach is data-driven,
t could be deployed rapidly after observing relatively few storms (SI
igure S7). Additional results from this experiment are detailed in SI
igures S8 through S12.

.3. Correlations to catchment characteristics

To illustrate how model parameters relate to climate, topography,
nd common hydrologic signatures, Table 2 shows correlations be-
ween model parameters and catchment characteristics in the CAMELS
ataset. As in Table 1, we consider a linear model with one sub-
atchment that has a total of six parameters and report the Pearson
orrelation coefficient. We do not reproduce the full correlation table
s CAMELS includes over 50 metadata variables, but that information
s accessible via the repository.
The first two rows of Table 2 show logical correlations between
odel parameters and hydrologic signatures that could be considered
easures of ‘‘flashiness’’ in flows. Catchments with high runoff ratios
nd large flow duration curve (FDC) slopes have quick rises and falls
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in discharge. This is reflected by a quicker unit hydrograph (𝑇𝑝 and 𝑇50
smaller), a larger immediate contribution from water surface input (𝑏0
larger) and a quicker recession after storm events (𝑎0 more negative).

The next two rows are features associated with a slower, more
diffusive runoff response. High flow duration measures the average
duration of high flow events, which are periods with more than 9
times the median daily flow. Snowmelt is often (but not always) a
slower process than rainfall. These features correlate with: a slower
unit hydrograph (𝑇𝑝 and 𝑇50 larger), smaller immediate impact of
water surface input (𝑏0 smaller), and a slower recession trend (𝑎0 less
negative).

Concerning soils, the only clear trend is a flashier response in silty
catchments. The last three rows correlating parameters with climatic
conditions may be indicative of the effect of soil moisture deficit on
runoff generation. Some of the stronger correlations in this table and
the small number of parameters suggest that modpods models could be
estimated from catchment characteristics and then manually tuned by
experts. Alternatively, forecasted changes in climate could be translated
to model parameters in scenario analysis. Some other expected correla-
tions such as land use and contributing area were absent or inconsistent
with hydrologic principles. These expected correlations may have been
obscured due to the coarse timestep (daily), catchment-wide averaged
forcing, and shifting the data to ensure causality.

7. Interpretation, limitations, and future directions

7.1. General interpretation of resulting models

Once a modpods model is discovered automatically from data, the
resulting parameters and model structure can be used to infer proper-
ties of the catchment. The previous correlation analysis of this paper
indicates that model parameters are related to physiographic features,
which can be used to infer how changes in catchment composition may
influence rainfall-runoff dynamics of the resulting modpods model. In
process-based models, parameters can be changed to carry out scenario
analyses or watershed planning. While beyond the scope of this paper,
since resulting modpods parameters are correlated to physiographic
features, future correlation analysis could be used to explore how
catchment outflows may be affected by a changing landscape or to
make predictions in ungaged basins.

Once a final model is selected, the number of effective subcatch-
ments can be understood as a measure of the number or complexity of
constituent processes producing runoff within a catchment. SI Figures
S1, S4, and S9 show a roughly equal split between models with one
and two effective subcatchments. Some models only need instantaneous
precipitation and one effective subcatchment to adequately capture
runoff generation processes. This may reflect catchments with ho-
mogeneous landuse, slope, and soils. On the other hand, catchments
with strong diversity in slope and landuse may require more trans-
formations. For example, a catchment with areas of steep, impervious
surfaces as well as swamps would likely see distinct contributions
from these areas. However, the granularity of this interpretation is
limited by equifinality in the input–output behavior of watersheds.
Especially when the dynamics are described in so few parameters, it
may be difficult to discern how an increase in average catchment slope
affects runofff response differently than an increase in imperviousness.
This difficulty in uniquely identifying catchments from their precipi-
tation response has long been a prominent point of discussion in the
field (Beven, 2000; Sorooshian and Gupta, 1983).

There are also differences in performance amongst model config-
urations. Increasing the polynomial order allows additional degrees
of freedom in the shape of the recession curve. SI Figures S1, S4,
and S9 show that the overwhelming majority of sites achieve the best
performance using a third order polynomial. This reflects that a linear
exponential decay is not an accurate fit of the recession trend in most
catchments, as receding limbs generally have some nonlinearity.
 m

10 
7.2. Limitations

Limitations of this study include the precipitation data used, the
methods for defining baseflow, and the exclusion of important forc-
ing variables. Acquiring suitable precipitation data is a challenge of
implementing this approach, as it is for most approaches. The USGS
gaging station experiment used point precipitation measured at the
station, which is a poor approximation for the rain that falls on the
entire catchment. This is especially true for large catchments as the
pour point grows farther from the centroid with increasing contributing
area. Correctly defining the equilibrium of the system is vital to the per-
formance of any dynamical systems approach. The median simulation
from Fig. 4 and results in SI Table S2 show that more work is needed to
integrate rigorous and automated methods of estimating baseflow into
this modeling approach. Processes by which water leaves a catchment
besides discharge (e.g., evapotranspiration, deep groundwater storage)
are ignored in this study by excluding forcing variables such as po-
tential evapotranspiration and groundwater levels and not explicitly
considering more lasting differences between catchments such as soil
permeability. Though evapotranspiration rates and resulting soil mois-
ture content may be implicitly modeled in recession rates, including a
more comprehensive description of the water balance within the model
may improve accuracy and interpretability.

7.3. Future directions

With its automaticity, accuracy, and correlation to catchment fea-
tures, potential applications of this approach include low-cost predic-
tive models for sensor networks and, possibly, predictions in ungauged
catchments. The first application is detailed in Dantzer and Kerkez
(2024) which builds multi-input models forced by rain and snowmelt
data automatically sourced using the sensor’s location.

The correlations in Tables 1 and 2 between model parameters and
atershed characteristics suggest there may be potential for applying
his method to ungauged basins by building regressions between wa-
ershed characteristics and model parameters. As there are fewer than
wenty parameters in even the most complex models, experts could also
anually tune these models after regression until they are satisfied
hat the model’s behavior reflects their expectations of the ungauged
atchment. Ease in tuning and interpretation also suggest use as an
nstructional tool.
In Dantzer and Kerkez (2024) the accuracy returns from including

otential evapotranspiration were marginal. However, PET is clearly an
mportant driver in the water budget and different model formulations
ay incorporate this information more effectively and improve results.
or example, catchment-averaged soil moisture could be included as
n output state to better capture seasonal differences in initial ab-
tractions. As additional forcing variables are added to the model the
umber of parameters will increase. It will therefore likely be beneficial
o incorporate domain knowledge through constraints on the coeffi-
ients of the differential equation that reduce the degrees of freedom
nd lower the chances of overfitting. A more informed approach to
ata-splitting may also increase the transferability and performance of
odels developed using the method detailed herein (Guo et al., 2020;
hen et al., 2022).
The algorithm presented is provided with limited formal system the-

retic analysis. Decisions such as the sequence in which transformations
re added, starting guesses for the transformations, and the restrictions
n the differential equation discovery should be explored formally. The
haracteristics of the optimization such as its convexity are not explored
erein and may lead to improvements in computational efficiency.
uture studies could also examine application and interpretation of

odpods in domains outside hydrology.
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8. Conclusions

The purpose of this study was to demonstrate a new method com-
bining unit hydrographs with differential equation discovery to build
interpretable rainfall-runoff models automatically from precipitation
and stage data. Using the approach, the outputs of a large process-
based model were approximated accurately. Then, stage or discharge
were predicted at nearly 400 stream gauging stations. This approach
also provides a novel conceptual model of rainfall-runoff processes,
as individual parameters of the identified models can be explored
intuitively. Notable advantages of the data-driven approach include
a relatively small parameter and input space while maintaining max-
imum fidelity equal to existing process-based models. The computa-
tional efficiency and limited data requirements of this approach suggest
utility in providing predictions across large sensor networks.

Open research

[Software] - The United States Environmental Protection Agency’s
Stormwater Management Model is available for free download (Huber,
1985). We used the pyswmm interface to access results McDonnell et al.
(2020). All scripts used in analysis and figure creation are also freely
available (Dantzer, 2023a,b). This study does not use any proprietary
software and no registration or payment is required.

[Data] - Data for Figs. 1 and 4 and Table 1 are publicly available
from the United States Geological Survey (USGS, 2016). Alternatively,
the scripts generating these tables and figures automatically fetch the
data via REST API. The software model referenced in Fig. 3 was
privately shared with us by a municipality. As identifying information
is present in the model and stormwater networks are critical infrastruc-
ture, we are not able to freely share this information (Rossner et al.,
2020). The NCAR CAMELS dataset used for Fig. 5 and Table 2 is also
freely available (Addor et al., 2017b; Kratzert et al., 2019; Newman
et al., 2015; Kratzert et al., 2018; Addor et al., 2017a).
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