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A B S T R A C T

Wireless sensor networks support decision-making in diverse environmental contexts. Adoption of these
networks has increased dramatically due to technological advances that have increased value while lowering
cost. However, real-time information only allows for reactive management. As most interventions take time,
predictions across these sensor networks enable better planning and decision making. Prediction models
across large water level and discharge sensor networks do exist. However, they have limitations in their
accessibility, automaticity, and data requirements. We present an open-source method for automatically
generating computationally cheap rainfall-runoff models for any depth or discharge sensor given only its
measurements and location. We characterize reliability in a real-world case study across 200,000 km2, evaluate
long-term accuracy, and assess sensitivity to measurement noise and errors in catchment delineation. The
method’s accuracy, computational efficiency, and automaticity make it a valuable asset to support operational
decision making for diverse stakeholders including bridge inspectors and utilities.
1. Introduction

Wireless sensor networks support decision making by diverse means
in varied environmental contexts. Real-time data helps people make
better decisions in the moment. Additionally, the historical records
these networks generate can improve understanding of a system’s be-
havior and inform long-term management. Adoption of these networks
has increased in the past several decades, largely due to technological
advances which have given these networks greater value and lower
cost (Bellini et al., 2022; Madushanki et al., 2019). Electronic com-
ponents including solar panels, microprocessor boards, connectivity
solutions, and sensors have become less expensive with better perfor-
mance and reliability (Shalf, 2020). Programming and networking IoT
devices is also easier than it used to be (Currie, 2021; Choi, 2021).
nce these networks are up and running, some tools exist to automate
ransforming measurement data into information through processing,
nalysis, and visualization (Krishnan and Wu, 2019; Feurer et al.,
022; Chakraborty and Kundan, 2021; Schmidt and Kerkez, 2023).
While adoption and ease-of-use have increased, many organizations still
experience significant barriers in deploying and maintaining wireless
sensor networks, as well as extracting insight from the data (Lin et al.,
2023).
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Furthermore, as the purpose of collecting data is producing in-
formation that improves decision making (Aven, 2010) and many
interventions take time (e.g., flood evacuations), there is greater value
in the sensor network if users also have access to predictions. Many
organizations also experience barriers here, as current methods for gen-
erating predictions are not highly automated or accessible (Krajewski
et al., 2017; Maidment, 2016).

Motivated by the increasing variability in precipitation (both
droughts and extreme storms) caused by climate change, we consider
sensor networks and predictive models for surface water. Water level
and flow sensor networks are typically used for flood warning sys-
tems (Kruger et al., 2016; Normand, 2021; Kalyanapu et al., 2023),
reservoir management, utility operation, and to inform ecological
conservation efforts (Mason et al., 2023). However, the adoption bar-
riers previously identified contribute to dramatic inequities in flood
protection. While flood mortality has decreased in high and mid-
dle income nations since 1975, mortality has increased in low-income
nations (Jonkman et al., 2024). The contribution of this work is a
rapid and automated prediction engine for water level and flow sensor
networks which could lower barriers in the availability of flood warning
systems. We also detail enhancements to an open-source framework for
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wireless sensor networks and a case study of this prediction engine serv-
ing bridge inspectors across 68 water level sensors spanning 200,000
km2 in the Midwestern United States (http://maps.open-storm.org/).

2. Background

Sensor network architectures and prediction engines enabling
broader adoption and thus enhancing equity in flood protection would
be designed for accessibility, automaticity, data-frugality, and noise
tolerance. Though supercomputers and highly-trained hydrologists are
available to build predictive models at some agencies, universities and
national research centers, this may not be true of the many utilities,
conservation agencies, and other organizations who use (or would
like to use) models built on wireless sensor network data. Expertise
and computational resources are even less available in the developing
nations far more strongly impacted by floods and droughts (Tshimanga
et al., 2016; Bubola, 2023; Marshall, 2023). An accessible solution
would lower barriers in expertise and expense, enabling adoption in
resource-constrained settings. An automated solution would bridge the
gap between raw sensor data and hydrologic models, thus enhancing
adoption by improving scalability, consistency, and speed of deploy-
ment. Data-frugality (Gadzinski and Castello, 2020) means generating
accurate and reliable models with little data. Many methods for rainfall-
runoff modeling (Kratzert et al., 2018; Boughton, 2007) rely on long,
clean records, while the data many organizations have is short and
noisy. Indeed, production of these long and clean records is in itself a
significant effort (Neal et al., 2011). This has tended to limit forecasts
to locations with long-term monitoring programs which have been in
place for many years, while end-users likely desire forecasts within the
first few months of deploying their sensor networks. Many excellent
and valuable frameworks exist for creating sensor networks and gener-
ating predictions, but they may have some drawbacks in accessibility,
automaticity, or data-frugality. A framework which had these qualities
would enhance flood protection equity by easing adoption of predictive
sensor networks in the low-income nations most adversely impacted by
droughts and floods (Jonkman et al., 2024).

The National Flood Interoperability Experiment produced near real-
time, high spatial resolution flood forecasting for 2.7 million locations
across the continental United States (Maidment, 2016). This work also
integrated these forecasts into inundation mapping and local emer-
gency response. However, it relied on process-based models developed
and tuned by expert hydrologists and took 10 min to run a single
timestep on a supercomputing cluster (Texas Advanced Computing
Center). It also integrated water level and discharge data exclusively
from the United States Geological Survey (USGS) streamgaging net-
work. The USGS streamgaging network produces high quality data at a
corresponding cost (Normand, 2021) of roughly ten times that of low-
cost alternatives (Bartos et al., 2018). While the process-based method
grounds results in first principles, this approach is not necessarily
accessible, automated, or data-frugal.

Researchers at the Iowa Flood Center (IFC) (Krajewski et al., 2017)
present an excellent and more accessible solution by using less ex-
pensive water level sensors (Kruger et al., 2016). The Iowa Flood
Center’s process-based model is atypical in that it is not calibrated to
the measurements of that sensor network.

‘‘Contrary to the dominant culture in the hydrologic model devel-
opment community and the past practice of the NWS (National
Weather Service), we claim that large-scale, high-resolution dis-
tributed models cannot be calibrated. There are simply too many
degrees of freedom and too many sources of uncertainty. Therefore,
tuning model parameters must be replaced with changing the model
components and/or structure’’. (Krajewski et al., 2017)
2

While this argument against calibration is compelling, manual re-
structuring of the model in lieu of calibration may make the IFC’s ap-
proach considerably less automated than some others. Like the National
Water Model, computations are run on multiple high performance
computing clusters.

If services such as the previous two are not available, scientists, utili-
ties and other organizations may opt to build their own sensor networks
and prediction engines. However, despite recent advances, building a
new sensor network is still difficult and expensive for organizations
not experienced with these tools and technologies. Design, fabrication,
and deployment of sensor networks requires resources and expertise
in embedded systems design, low-level programming, cloud services,
and manufacturing. Once measurements are transmitting, hosting and
quality control present new challenges.

Once a new network is operational, there are further difficulties in
developing prediction engines. Creating a new process-based model for
each sensor in a network is generally expensive in labor and computa-
tion (Lepore et al., 2013), though this could be data-frugal depending
on the approach. Creating a machine-learning model (Pandhiani et al.,
2020; Dazzi et al., 2021; Bartoletti et al., 2018) would be accessible and
automated so long as sufficient computational resources are available.
However, these approaches generally rely on much clean data — often
decades (Kratzert et al., 2018). Hybrid modeling combines process-
based modeling with data-driven approaches and often results in better,
more consistent results (Kapoor et al., 2023; Fathian et al., 2019).
However, developing hybrid models entails the expertise and compu-
tational expense of developing both a process-based and a data-driven
model. The model discovery approach developed in Dantzer (2023a)
fulfills our criteria in accessibility and data-frugality, but requires the
appropriate weather data to be provided.

Given the above challenges, automated solutions to enable highly
localized stream level and flood forecasts would integrate:

• Sensors that measure and report hydrologic variables of interest
• Storage and hosting solutions that efficiently scale with network
expansion

• Automated model discovery and calibration
• Automated data services to pull in physiographic and weather
data needed to train models and make predictions

• Visualization and alerting interfaces to present the forecasts and
alerts to users

3. Methods

Here, we present an end-to-end architecture, sensors included, for
automated hydrologic forecasting. Once a sensor is deployed, the sys-
tem automatically fuses the sensor data with physiographic features of
the landscape to train a forecast model. The architecture is comprised
of the following components (Fig. 1):

3.1 Open-source wireless sensors for the measurement of hydrologic
variables, specifically water levels. A cloud-hosted middleware, for
provisioning sensors, hosting timeseries measurements and metadata,
and providing quality control.

3.2 A hydrology-informed data mask that automatically aggregates
weather data for a given sensor location. A prediction engine that
automatically discovers models and writes forecasts to a server.

3.3 Visualization and alerting services for desktop and mobile con-
texts.

As the data mask and prediction engine (3.2) are the primary contri-
bution, this paper will focus on their formulation, implementation, and
evaluation. The other components of the architecture will be covered
more briefly while highlighting recent improvements. Note that this
architecture is highly modular and each component could be replaced
or customized with minimal impact on the other components. That is,
different sensors or communication methods could be used in place
of 3.1, and different visualization and alerting endpoints could be
substituted for 3.3.

http://maps.open-storm.org/
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Fig. 1. Network architecture. The open-storm stack augmented with a hydrologic data-masking service and modpods-driven prediction engine. Dashed arrows indicate data transfers.
.1. Open-source wireless sensor network

Open-storm (Bartos et al., 2018) has been providing open-source
esources to enhance the accessibility of wireless water sensor networks
ince 2014. Here we give an overview of the architecture and describe
everal recent enhancements to the embedded operating system, hard-
are, and cloud services used in the sensor network operated by the
igital Water Lab (DWL) at the University of Michigan.
Open-storm sensor nodes are custom low-power embedded com-

uters which connect to online databases using cellular networks. A
icrocontroller is programmed with a non-preemptive operating sys-
em which wakes the device from sleep, downloads instructions from
he server, records sensor readings and triggers control assets, transmits
ata to the server, and returns the device to sleep. The open-storm
rinted circuit board (PCB) was updated and accommodates diverse
ensors and actuators though a Cypress PSoC5LP microcontroller. The
ystem-on-chip (SoC) design allows control over analog and digital
omponents, enhancing the platform’s flexibility for integrating new
ensors and actuators. Connectivity is provided by a 4G/LTE-capable
elit cellular modem. Though many types of sensors and actuators
e.g., weirs, valves, soil moisture, optical rain) are available in the
pen-storm stack, this work focuses on nodes equipped with Maxbotix
ltrasonic range finders that measure the distance between the sensor
ode and the water surface. This depth-sensor configuration is the
efault and requires minimal user setup beyond specifying a server
ndpoint to transmit data to. In the Digital Water Lab network, those
istance readings are referenced to an elevation survey and reported to
nd-users as water depth above streambed or water surface elevation
elative to the NAVD88 datum (Fig. 2).
Table 1 includes a detailed cost breakdown of a Digital Water

ab depth sensor node. After including labor costs for assembly and
eployment, the complete wireless sensor node costs under 1,500 USD.
3

Much of the material cost does not come from the core functionality,
but from components that increase longevity and durability to decrease
operational costs. Indeed, a less robust version of the sensor node could
be assembled for about 300 USD by using the current microcontroller
board and cellular modem along with less expensive alternatives for
the enclosure, sensor, and power supply. The solar charging panels
and rechargeable lithium ion batteries are not the cheapest options
available for powering a microcontroller, but they have allowed many
devices to be deployed for multiple years without changing batteries.
Similarly, the structural steel and submersible enclosure keep the sensor
nodes protected, dry, and securely attached to poles and bridges. These
and other features of the sensor nodes enable a small lab to keep
maintenance costs near just 500 USD per year per site. Table 2 shows
that much of the cost of running the network comes from technician
visits to field sites to repair and replace sensor nodes. These operational
cost centers are the primary motivation for the extensive investment in
longevity and durability of each node shown in Table 1.

Using cellular networks is not a universal standard in wireless sensor
networks for water, as Wi-Fi, mesh, and LoRaWAN are also popular
protocols (Karegar et al., 2022; Montestruque et al., 2008; Pearson
et al., 2019). Principal critiques of using cellular for IoT applications
are its cost and power consumption. However, the sparse distribution
of the open-source sensors (average density of one per 2000 km2)
and deployment in rural and forested areas makes mesh and line-of-
sight protocols less practicable options. The high power consumption of
cellular can be accommodated by maintaining very low sleep currents
(μA) and short duty cycles (Bartos et al., 2018; Moreno et al., 2019).
The current iteration achieves a sleep current of 50 micro-amps at 3.7
V in its deep sleep mode. The enhanced power efficiency of the updated
system has led to some devices operating for over three years without
battery replacements.
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Table 1
Detailed cost breakdown for an open-storm depth sensor node at the time of writing. All values are in USD. For more details, see https://github.com/open-storm/docs.open-
storm.org/wiki/Parts-list.
Component Vendor Price per node Details

Printed circuit board & microcontroller Cypress PSoC 100.00 Custom-printed
Solar Panel Voltaic Systems 35.00 5 Watt 6 Volt (SKU: P105)
Battery Tenergy 68.99 I3.7V 156000 mAh, ID 31059
Cellular Modem Telit 100.00 Telit LE910
Enclosure and cable glands McMaster-Carr 181.61 ID: 7740K11 and 7310K11
Distance Sensor MaxBotix 119.95 MB7388
Structural McMaster-Carr 61.75 5 ft steel strut channel (3310T64)
Nuts, bolts, washers McMaster-Carr 30.00 Various

Total cost 697.30
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Table 2
Operational costs for the open-storm depth sensor node network at the time of writing.
All values are in USD.
Component Vendor Cost per node per year

Cloud hosting Amazon Web Services 32.38
Cellular Service Twilio/KORE 55.44
Technician Labor Internal 166.20
Management Labor Internal 57.24
Vehicle fuel and supplies Various 207.72

Total cost 518.98

Open-Storm’s hosting services are built around InfluxDB, a time
series-optimized database facilitating efficient data storage and re-
trieval. InfluxDB’s RESTful APIs allow for seamless interaction be-
tween sensors and external applications, supporting both data input
and output. InfluxDB is implemented in open source, but can now
also be purchased as a hosted commercial services on InfluxData.
com, which significantly reduces the server maintenance burden on
users. InfluxDB’s primary role is to store sensor data transmitted via
HTTP Post requests and enable adaptive sampling and real-time control
through cloud-stored device settings, accessible to sensor nodes during
server communication. This system supports bidirectional communica-
tion with field nodes and allows remote customization of measurement
and transmission frequencies, thereby reducing the need for site visits.
Actuator settings such as valve open percentage are controlled auto-
matically and remotely via the same method. Beyond environmental
monitoring, the sensor node is also equipped with internal diagnostics
tools that track the device’s operational health, including battery levels,
cellular signal strength, and network connection attempts. An optional
data quality module can also be activated to refine data and detect
sensor defects or obstructions (Schmidt and Kerkez, 2023). More details
regarding the nodes, available sensors and actuators, and the cloud
architecture are available at https://www.digitalwaterlab.org/build.

3.2. Prediction engine

Given its automaticity, computational efficiency, and data-frugality,
we build on the approach developed for rainfall-runoff modeling in
Dantzer (2023a). Here we generalize Model Discovery in Partially
Observable Dynamical Systems (modpods, Dantzer (2023b)) to the mul-
iple input case and develop software to automatically source the
ppropriate weather data given only a sensor’s location. This enables
utomated deployment of computationally efficient predictive models
iven only a sensor measurement record and that sensor’s location.
The modpods-based prediction engine takes in a depth or discharge

ime series (retrieved via RESTful API) and the corresponding sensor
ocation. Then, the contributing area is delineated and weather data
s sourced using publicly available datasets. Models are then trained.
nce a day, trained models are fed weather forecasts and the resulting
redictions are pushed to decision support dashboards. Computational
xpense is minimal as it takes thirty seconds to generate a one-week
4

rediction on a consumer laptop. While accuracy is evaluated using e
istorical data, we also present the use case of providing predictions
or 68 of the 100+ low-cost sensors within a network which spans
00, 000 km2 across the US state of Michigan (Fig. 1 or see http://maps.
pen-storm.org/). While the prediction engine is compatible with data
enerated from any kind of sensor, we present the case study network to
ase adoption by illustrating an open-source, end-to-end architecture.

.2.1. Data requirements
A digital elevation model of North America from USGS Hydrosheds

Lehner et al., 2011) is stored locally on a laptop. A coarse flow
irection grid with a resolution of 300 m is used because there is no
rocess-based modeling. The resolution need only be accurate enough
o sample the right weather data. Weather data (liquid precipita-
ion, snow depth, air temperature, and wind speed) are provided by
he open-source project Meteostat (Lamprecht, 0000). The end-user
eed only provide a time-series record of sensor measurements and
he location of the sensor. The measurements targeted for prediction
n this study are water level and discharge, but could be other pa-
ameters (e.g., Total Suspended Solids) which have precipitation- and
nowmelt-driven dynamics.

.2.2. Hydrology-informed data filtering
Using the sensor’s location and the Hydrosheds flow direction grid,

he contributing area of the catchment with pour point at the sensor
ocation is delineated using pysheds (Bartos, 0000). The flow distance
or each grid cell is then calculated and used to divide the catchment
Fig. 1, 3.2.2) into regions with short, medium, and long flow paths
o the sensor. These flow-distance regions will be used to aggregate
ainfall. Once the total catchment is delineated and the flow distance
egions are defined, the flow direction grid is no longer used. No
ther information about the catchment (e.g., average slope, landuse,
opographic roughness index) is used by the model.

.2.3. Spatially distributed rainfall and snowmelt
Evenly spaced points within each region are used to sample rainfall

ntensities at one-hour frequency. Those intensities are then averaged
cross each flow distance region. Snowfall is excluded because it gen-
rally does not immediately contribute to runoff. As weather stations
re not ubiquitous and climate models often have spatial resolution of
en kilometers or more (NOAA, 0000), small catchments will often have
dentical data between different flow-distance regions. In this case the
edundant data is omitted.
For estimating snowmelt, factors including albedo, insolation inten-

ity, and humidity are important (Colbeck, 1988). However, to keep
he model structure simple we coarsely represent the radiative and
dvective processes by making snowmelt a function of wind speed
nd air temperature per (Hasebe and Kumekawa, 1995). Because snow
epth is only available at a daily resolution through Meteostat, it is
inearly interpolated from daily to hourly frequency. As the underlying
ata is daily, the catchment is not segmented into flow distance regions
or snowmelt estimates and these are instead aggregated across the

ntire catchment.

https://github.com/open-storm/docs.open-storm.org/wiki/Parts-list
https://github.com/open-storm/docs.open-storm.org/wiki/Parts-list
http://InfluxData.com
http://InfluxData.com
http://InfluxData.com
https://www.digitalwaterlab.org/build
http://maps.open-storm.org/
http://maps.open-storm.org/
http://maps.open-storm.org/
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3.2.4. Model training
Here we provide a brief summary of the rainfall-runoff method we

use to take historical sensor measurements and public weather data and
automatically discover hydrologic forecast models. For details on the
original, single-input algorithm, please consult (Dantzer, 2023a).

The modpods model has two components: unit hydrographs describ-
ing the delay between rainfall or snowmelt and the impact on the sensor
measurement, and a differential equation that describes the magnitude
of those contributions. The unit hydrograph is a classic approach in
hydrology (Nash, 1959) that generates streamflow from precipitation
y assuming the catchment is a linear and time invariant dynamical
ystem (Singh et al., 2014). The differential equation incorporating
hese unit hydrographs has the form:
𝑑𝑞𝑜
𝑑𝑡

= 𝑓 (𝑞𝑜, 𝑝𝑜, 𝑇 (𝑝𝑜)) (1)

where 𝑞𝑜 is the observed water level or discharge, 𝑝𝑜 is the estimated
ainfall or snowmelt, 𝑑𝑞𝑜

𝑑𝑡 is the rate of change in water level or
ischarge, and 𝑇 (𝑝𝑜) is the transformation of 𝑝𝑜 corresponding to the
nit hydrograph learned for that input.
The differential equations are linear, quadratic, or cubic polynomi-

ls without interaction terms. The coefficients on 𝑝𝑜 and 𝑇 (𝑝𝑜) terms are
onstrained to be positive. The highest order autocorrelation (e.g., 𝑞3𝑜 in
cubic polynomial) is constrained to be negative to ensure the dynami-
al system is bounded-input, bounded-output (BIBO) stable (Hespanha,
009). Lower-order autocorrelations are permitted to be positive so that
ny fixed depth or baseflow can be correctly modeled as a nonzero
quilibrium of the system. For example, if a quadratic model has 𝑑𝑞𝑜

𝑑𝑡 =
+𝑎0𝑞𝑜 − 𝑎1𝑞2𝑜 + ⋯ there will be a stable equilibrium at 𝑞∗𝑜 = 𝑎0

𝑎1
. As an

example, one of the model configurations used in this study is a linear
differential equation without snow, which has the form:
𝑑𝑞𝑜
𝑑𝑡

= −𝑎0𝑞𝑜 + 𝑏0𝑝𝑟𝑎𝑖𝑛,𝑐𝑙𝑜𝑠𝑒 + 𝑏1𝑇𝑟,𝑐 (𝑝𝑟𝑎𝑖𝑛,𝑐𝑙𝑜𝑠𝑒) (2)

+ 𝑏2𝑝𝑟𝑎𝑖𝑛,𝑚𝑖𝑑 + 𝑏3𝑇𝑟,𝑚(𝑝𝑟𝑎𝑖𝑛,𝑚𝑖𝑑 )

+ 𝑏4𝑝𝑟𝑎𝑖𝑛,𝑓𝑎𝑟 + 𝑏5𝑇𝑟,𝑓 (𝑝𝑟𝑎𝑖𝑛,𝑓𝑎𝑟)

where 𝑇 () are transformations of the observed forcing correspond-
ing to the unit hydrographs learned for that input, and 𝑎𝑖, 𝑏𝑖 are
earned coefficients. The models are trained in two loops. The inner
oop optimizes the coefficients of the differential equation for a given
et of unit hydrographs. The outer loop changes the shapes of the
nit hydrographs to increase the training accuracy of the differential
quation as measured by the coefficient of determination (𝑅2).
These models have between 6 and 48 parameters describing the

oefficients of the differential equation and the shapes of the unit
ydrographs. This parsimony makes training cheap, reduces the length
f data record needed, and increases tolerance of noise. The representa-
ion as differential equations and unit hydrographs grounds the method
n basic concepts of hydrology. Our prior work (Dantzer, 2023a) and
his analysis (SI Figures 3, 6, 10, and 13) indicate a lack of the overfit-
ing characteristic of many machine learning approaches. As overfitting
s not a concern, no regularization or ensembling is performed.
In this work we have extended the approach in Dantzer (2023a)

o accommodate multiple inputs, making it more appropriate for ap-
lication in larger watersheds where spatial rainfall variability may be
mportant. The modpods engine is implemented in python and can be
eployed as a microservice (e.g., AWS lambda) or scheduled script on
small server or consumer laptop.

.3. Predictions and visualizations

For the open-source sensor network, all trained models are loaded
nce per day and given historical and forecast weather with which
o make a one-week prediction. A validation prediction over the past
eek is used to quantify the uncertainty of the prediction and generate
5

ounds around the central estimate corresponding to the mean and
aximum absolute percentage error over the validation interval. The
redictions and weather data are then pushed to the server and fetched
t the visualization endpoints (Fig. 2). To see example live dashboards,
lease visit https://www.digitalwaterlab.org/mdot.
The visualization interface built on Grafana (Fig. 2) is the pri-
ary way users interact with measurements and predictions. Grafana
s an open-source analytics and monitoring platform, known for its
bility to visualize and explore metrics from various data sources in
customizable dashboard format. It is widely used for tracking and
isualizing time series data, such as performance metrics and IoT sensor
ata. Grafana’s hosted services (Grafana.com) offer a user-friendly
olution, eliminating the need for installation and setup. This cloud-
ased approach simplifies the use of Grafana, allowing users to focus on
ata analysis and visualization without the complexities of managing
erver infrastructure. Grafana also features a built-in InfluxDB data
ource template which makes the generation of dashboards relatively
uick and easy. Alerts can also be easily configured and delivered via
hannels including email and SMS.

.4. Implementation and evaluation

The complete implementation of the modpods prediction toolchain,
ode to generate the figures in this paper, and pictures of sensor nodes
rom the Digital Water Lab network are freely shared (Dantzer, 2023c).
ome of the resources concerning the sewer system are redacted or
xcluded for privacy and infrastructure security protection. That library
epends on modpods, which we also share freely (Dantzer, 2023b).
he predictions are served from a laptop with 32 GB RAM and an
ntel(R) Core(TM) i7-1065G7 CPU @1.30 GHz 1.50 GHz processor.
esources concerning the sensor network are available at https://www.
igitalwaterlab.org/build.
To evaluate the accuracy that can be expected in the long term,

e use records of stage (water surface elevation) and discharge at
18 USGS streamgaging stations. It would be desirable to evaluate
he long-term prediction accuracy of the method on the same low-
ost sensor network in which it is currently implemented. However,
ccuracy evaluations of hydrologic models typically occur over at least
ne full year of data, while many of the sensors in the open-source
ensor network to which we are serving predictions have only been
eployed for several months. The shortest training record is 58 days,
hile the median is 455 days and the maximum is 1029 days. In light
f this, our evaluation of the architecture on the open-source sensor
etwork will be in computational expense (Table 4), training accuracy
Fig. 3), and network reliability.
Another point of evaluation is how sensitive the method is to noise

n the data record and errors in the catchment delineation. Combined
ewer systems provide a natural laboratory for these questions because
heir contributing areas are far more difficult to delineate than surface
aters and dry weather sewage flows constitute significant ‘‘noise’’
hen attempting to learn precipitation-driven dynamics. We use flow
nd depth data provided by a partner utility at 19 locations within
heir network. To align results with a highly automated use-case, data
reprocessing is minimal in all evaluations.
To better understand the impact of inaccuracies in rainfall on model

erformance, we augment the forcing data retrieved by the software
ool with additional rainfall data for both of the historical datasets. For
he USGS dataset this is precipitation measured at the gaging station,
hich approximates catchment-wide precipitation in small catchments.
or the sewer dataset, the extra rainfall data comes from two or three
ainfall gages identified by the utility as being relevant to the flow and
epth sensors.
We use Nash–Sutcliffe Efficiency (NSE) as our measure of perfor-
ance throughout as it is dimensionless, correlates well to visual fit,
nd is a common error metric in hydrology. NSE is one minus the

https://www.digitalwaterlab.org/mdot
http://Grafana.com
https://www.digitalwaterlab.org/build
https://www.digitalwaterlab.org/build
https://www.digitalwaterlab.org/build
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Fig. 2. Sample decision support dashboard. Estimated snowmelt and rainfall (across all flow-distance regions) are indicated on top of the graph in purple and blue respectively.
Historical water surface elevation is in green. Predictions with uncertainty estimates are provided in yellow.
ratio of the error variance of the model divided by the variance of the
observed time series:

𝑁𝑆𝐸 = 1 −
∑

(𝑄𝑜𝑏𝑠 −𝑄𝑚𝑜𝑑 )2
∑

(𝑄𝑜𝑏𝑠 −𝑄𝑜𝑏𝑠)2
(3)

A perfect model scores 1 while a model with error equal to the
variance of the observed time series scores 0. Of the three model
configurations trained (linear, quadratic, and cubic), the configuration
with the best NSE when simulating over the training record for a site
is chosen as the ‘‘final’’ model. Each model configuration is individu-
ally optimized for 𝑅2 on predicting the derivative, then training NSE
between the predicted and measured depth/discharge is used to select
the final model configuration. That final model’s NSE score on the
evaluation dataset is what is shown in Figs. 4 and 5, as well as the
I Figures. Though the equations for 𝑅2 and NSE are the same, the
istinction is made to clarify when training fit on derivative (𝑅2) or
imulation accuracy on measurement (NSE) are being discussed. Root
ean square error (RMSE) and mean absolute error (MAE) are also
resented (Tables 3, 5, and 7) to further contextualize results.

3.4.1. Evaluating the complete toolchain
Training accuracy is evaluated for 68 sensors within the open-

source network by forward-simulating the models given the initial
measurement and comparing to the data on which the model was
trained. Missing sensor measurements are linearly interpolated while
missing precipitation measurements are filled with zeros. The data is
then resampled to hourly resolution. Additionally, any constant offset
in stage or discharge is removed by subtracting the second percentile
from the entire record. To ensure the system is causal, forcing data is
shifted back one timestep relative to the response. If this is not done,
then responses may occur in the same timestep as their forcing for small
catchments. No other preprocessing is performed. The preprocessing for
the USGS experiment is the same. Because the forecasting step is fast,
computational expense is evaluated by training time. Network results
are presented in terms of up-time and financial efficiency.
6

3.4.2. Evaluating long-term accuracy in surface water systems
We apply the prediction engine to stage, discharge, and precipita-

tion observations from 118 USGS streamgaging stations at a 15-minute
timestep. The data is resampled to hourly frequency to match the finest
frequency available from the weather database (Lamprecht, 0000).
The locations span the continental United States are summarized in SI
Figures 1, 4, 8, and 11. Models are trained for between 3 and 12 years
and evaluated over one year. One year of rainfall and snowmelt is used
to wind up the models. The evaluation year always comes last. All data
falls between June 1, 2008 and June 1, 2023.

3.4.3. Evaluating sensitivity to noise and delineation errors
We also evaluate models trained on depth and discharge measure-

ments from 19 sensors in a combined sewer. Combined sewers provide
a fundamentally harder case for two primary reasons: (1) contributing
area is far less directly related to topography than for surface waters,
and (2) dry-weather flows significantly obscure the precipitation re-
sponse signal in the discharge. We included this dataset not only to
demonstrate utility to use cases outside of surface water gages, but also
to ‘‘stress test’’ the approach with more difficult catchment delineations
and noisier data.

One year of hourly data from January 1, 2021 to December 31,
2021 are retrieved from the Supervisory Control and Data Acquisition
(SCADA) system. One month (January) is used for windup, six months
(February through July) are used for training, and five months (Au-
gust through December) are used for evaluation. As in the previous
experiment, missing stage and discharge measurements are linearly
interpolated while missing precipitation measurements are filled with
zeros. Any constant offset in stage or discharge is removed by subtract-
ing the tenth percentile from the entire record. A larger percentile is
subtracted from the data because it is ‘‘noisier’’ due to dry-weather
sewage flows. To remove the constant offset in perfectly clean data,
one would subtract the minimum. As before, the forcing data is shifted
back one timestep relative to the response. No other preprocessing is
performed.
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3.4.4. Effect of additional rainfall data
In the USGS experiment, models are trained using only the meteo-

stat weather data as well as using both the meteostat weather data and
the rain gage at the streamgaging station. In the sewer experiment there
are three configurations: meteostat only, rain gages only, and meteostat
and rain gages.

4. Results and discussion

4.1. Network reliability and performance

While not the focus of this paper, we give a summary of the open
source sensor network deployment. This deployment was achieved
rapidly, as forty sensors were built and deployed by the first author and
two undergraduate students in the Summer of 2021. The hydrologic
sensor network and data services were energy efficient and reliable.
Sensor nodes consumed only 50 μA in their sleep state. The cellular
odem’s transmission, operating on a slow power cycle, was able to
ctivate within a minute. During transmission the current consumption
veraged 200 mA with a peak of 2 A. The network’s sustainabil-
ty was enhanced by solar power. With low power consumption, a
easurement cycle of 10 min, and transmission cycle of 60 min, the
evices were able to operate through a Michigan winter and recharge
he lithium ion battery consistently. Transmissions were reliable (95%
acket throughput) and aided by a buffering system in the devices
hat allowed for data to be sent later if connection failed during a
iven transmission attempt. There were a few network outages due
o an issue with the domain service provider, but not the sensors or
ata services themselves. Maintenance of the devices was infrequent
nd generally only required because of physical damage to the node
r sensor obstructions. The major challenge with the ultrasonic sensor
ata was noise caused by physical obstructions (e.g., plants and bridge
ecks) that blocked the sensor from making a measurement of water
evels. The automated quality control system (Schmidt and Kerkez,
023) allowed these issues to be detected and addressed by trimming
lants or adjusting the sensor’s location on the bridge. At the time
f writing, the complete wireless sensor package (sensors, hardware,
atteries, enclosures, etc.) could be built for under 1500 USD (parts
nd labor). We estimate the entire 100+ sensor network to cost less
han 100k USD per year to maintain.

.2. Low-cost sensor network training accuracy

The left side of Fig. 3 shows the cumulative density function of
raining Nash Sutcliffe Efficiency. The line indicates the percentile of
given NSE score, such that better overall performance lies in the
ottom right, while worse performance goes to the top left. As numeric
core metrics are always incomplete, the right side of the figure shows
elected simulations to contextualize these scores.
Training records vary from several years (25th percentile simula-

ion, Fig. 3) to under a year (maximum) and from relatively clean
maximum) to obstructed and noisy (median). It seems the models are
ufficiently complex to capture rainfall-runoff processes when sensor
ata is relatively clean and weather data is accurate (maximum). The
rediction engine is also resilient to high noise levels, still finding
reasonable representation of the dynamics even when the observa-
ions are corrupted with measurement noise (median). Models also
ehave predictably due to their first-principles-based construction. Per
orrespondence and conversation with Michigan Department of Trans-
ortation (MDOT) bridge inspectors, prediction accuracy (Fig. 2) is
ufficient at most sites to support their operational decision-making
f whether to plan to inspect or close a bridge during or after a
torm. During one particularly severe storm in the upper peninsula of
ichigan, a bridge inspector saw the predicted rise in river level and
rove out to temporarily remove the sensor node from the bridge to
revent it from being struck by woody debris.
7

r

Table 3
Error metrics for training simulations on the open-source sensor network corresponding
to Fig. 3.

NSE MAE (m) RMSE (m)

min −1.41 0.02 0.04
25% −0.02 0.07 0.09
median 0.25 0.12 0.18
75% 0.41 0.18 0.24
max 0.87 0.71 0.93

Table 3 gives further context for the results in Fig. 3 by providing
imensional error metrics MAE and RMSE. Simulation accuracy on the
raining data is generally good, as mean absolute error remains within
2 centimeters for the majority of sites. Some sites have very good fits,
s the minimum mean absolute error is only 2 centimeters, less than
n inch.

.3. Computational expense

Table 4 characterizes the training times for the models trained for
redictions on open-source sensors, as well as the USGS and sewer
xperiments. The number of data points in the training record strongly
etermines training expense. The USGS experiment used 3–12 years of
ourly data which is between 26 and 105 thousand points. The sewer
xperiment used six months of hourly data to train, which is about 4400
ata points. The Digital Water Lab models trained on between 2 and 34
onths of hourly data, which is 1500 to 24,800 data points.
The dimensionality of the models also varied. Some of the USGS

treamgaging stations had contributing areas small enough and climate
arm enough that only one liquid precipitation input was used for
orcing. In contrast, sewer experiments including both meteostat and
ain gage data had 7 or 8 forcing variables. Computational expense was
enerally greatest in the USGS experiment because of the length of the
ecord. Though dimensionality was higher in the sewer experiment, the
hort record resulted in quicker training.
Once the models were trained for the Digital Water Lab sensors,

unning the one-week prediction took about thirty seconds per site on a
onsumer laptop with 32 GB RAM and an Intel(R) Core(TM) i7-1065G7
PU @ 1.30 GHz 1.50 GHz processor. The computational expense for
raining and predicting on the open-source sensor nodes is minimal and
uggests good scalability and cost profiles.

.4. Long-term accuracy in surface water systems

The left side of Figs. 4 and 5 show the cumulative density function of
valuation Nash Sutcliffe Efficiency, while the right side shows selected
imulations to contextualize these scores.
The maximum accuracy simulation shows a good prediction of the

ischarge, demonstrating that model complexity is sufficient for at
east some catchments. The median and 25th percentile simulations
uggest much of the error may be due to inaccuracies in weather
ata. In the median simulation, rainfall and snowmelt seem to be over-
eported in August of 2022 and under-reported in the Spring of 2023.
hen forcing magnitude is correct, the model seems to model the
ynamics accurately (small storm in December of 2022). However, this
rror could also stem from insufficient representation of soil moisture
ynamics. Most of the error in the 25th percentile simulation occurs
hen rainfall data indicates a storm within the catchment, but the
ischarge record does not corroborate this (August–October 2022).
dditional results for this experiment are presented in SI Figures 1
hrough 14. These include plots similar to Fig. 4 for stage and discharge
ith and without raingages, site maps, and the returns to accuracy from
ncreased training period length. More error metrics characterizing this
xperiment are presented in Table 5.
We found no correlation (𝑅2 = 0.64%) between the training pe-
iod length and the evaluation NSE score (SI Figure 3). This suggests



Environmental Modelling and Software 180 (2024) 106137T.A. Dantzer and B. Kerkez

p
p

s
s

Fig. 3. Training water level models across a low-cost wireless sensor network. Training accuracy is shown for 68 locations within the wireless sensor network. The cumulative
robability distribution of Nash Sutcliffe Efficiency is shown on the left. On the right are measured and simulated stage in meters for sites with training accuracy at the 25th
ercentile, median, and maximum of NSE (−0.02, 0.25, and 0.87 respectively).
Table 4
Computational expense of training models [hours/sensor].

First Quartile Median Third Quartile Data Points (thousands) Max Inputs

USGS 1.51 3.99 9.28 26–105 6
Combined Sewer 0.14 0.26 0.47 4.4 8
Digital Water Lab 0.24 0.69 1.45 1.5–24.8 5
. g
d
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Table 5
Error metrics for evaluation simulations on USGS flow stations corresponding to Fig. 4

NSE MAE (m3/s) RMSE (m3/s)

min −26.8 0.05 0.26
25% −0.76 1.19 2.09
median −0.13 3.71 7.35
75% 0.15 10.68 17.11
max 0.78 167.1 261.35

models are quickly saturated, supporting the desire for a data-frugal
modeling approach. We believe this is due to the small number of
parameters (always less than 50) in these models. This result contrasts
with (Boughton, 2007) where datasets shorter than five years are
associated with considerably larger errors than longer records.

We are not aware of a benchmark toolchain providing the same
functionality to the system described in this work: receiving only
measurements and location and automatically creating and deploy-
ing a hydrologic prediction model. Despite the lack of close analogs,
we present performance of some representative hydrologic prediction
models in Table 6, while noting the substantial differences that make
a comparative analysis of accuracy difficult. A comprehensive and
direct accuracy comparison with state-of-the-art approaches is pro-
vided in Dantzer (2023a). However, that study details a single-input,
ingle-output model without the automated weather data retrieval
ervice.
8

Table 6 shows performance tends to be better under greater aggre-
ation of the time series and shorter prediction windows. Typically,
aily data is fit more easily than hourly as the aggregation through-
ut time reduces the variance in the time series. Despite this, the
ethod proposed here achieves better performance than the models
redicting daily flows evaluated in Fisaha Unduche and Zhu (2018).
Shorter prediction windows tend to have better error metrics than
longer windows because error accumulates throughout a simulation.
This is provided the time series does not vary so little that carrying
forward the last measurement (persistence) is an accurate estimator.
The accumulation of error over a simulation can be substantial, as
in Demir et al. (2022) where NSE scores decline from 0.97 at 6 h to just
0.6 when predicting 5 days out. The importance of accurate weather
data is visible in the 25th percentile simulation of Fig. 4 where several
storms which do not actually fall on the catchment (as judged by the
discharge measurements) are reported as falling within the catchment
using historical precipitation records. The accuracy limitations imposed
by imperfect knowledge of historical precipitation and the difficulty of
accurately forecasting weather are also noted in Krajewski et al. (2017).

4.5. Sensitivity to noise and delineation errors

Fig. 5 shows that maximum accuracy is similar to the surface
water case, indicating this approach has potential to be applied to
combined and separated sewer systems. The noise tolerance is visible as
predictions cut through the oscillations induced by dry-weather flows.
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Fig. 4. Predicting discharge at federal streamgages. Models predicting discharge without using station rain gages are evaluated at 118 streamgaging stations. The cumulative
density function of Nash Sutcliffe Efficiency is shown on the left. On the right are evaluation simulations of discharge in cubic meters per second for models at the first quartile,
median, and maximum of NSE (−0.76, −0.13, and 0.78 respectively).
Table 6
Comparative accuracy of hydrologic prediction models.
Citation Frequency Prediction Horizon Number of parameters Source of weather data Max NSE Median NSE

Demir et al. (2022) Table 4, Fig. 5 -
Ridge Regression

Hourly 5 days Not provided Manually curated 0.9 0.6

This work, Fig. 4 Hourly 1 year 6 to 48 Automatically derived from location 0.78 −0.13

Fisaha Unduche and Zhu (2018)
Table 5 - Performance across four
process-based models (WATFLOOD,
HSPF, HBV-EC, HEC-HMS)

Daily 10 years Varying Manually curated 0.48 −0.52

Kratzert et al. (2018) Entity-Aware
Long-Short Term memory network

Daily 10 years 12,936 Manually curated 0.97 0.74
Because these models are time invariant and not driven with dry-
weather flow data they are not designed to represent these time-driven
dynamics in the data and thus ignore them. This stands in contrast to a
machine-learning approach, which would have sufficient parameters to
attempt to fit any pattern which appears in the data. Here that would
be undesirable.

The median simulation shows consistent performance despite an
order of magnitude difference in the scale of flows. The model even
provides reasonable dynamics to fill the gap in measurement when a
sensor error occurs during a large storm. The 25th percentile simulation
shows a sensor where flows are primarily dry-weather and dynamics
do not seem to be precipitation-driven. SI Figures 15 through 22 show
performance under varying targets (flow or depth) and forcing data.

Table 7 shows the MAE and RMSE for the evaluation simulations of
the prediction models. Though performance is generally good, there is
an outlier in the maximum error simulation. This is due to the model
erroneously learning a very large baseflow.

Echoing the results of the previous section, it seems that models
quickly converge to reasonable approximations of the rainfall-runoff
dynamics in a catchment. The models shown in Fig. 5 have been trained
n only six months of data comprising about a dozen storms. Reason-
9

ble performance with a very limited training record stands in contrast
Table 7
Error metrics for evaluation simulations on combined sewer flow measurements
corresponding to Fig. 5.

NSE MAE (m3/s) RMSE (m3/s)

min −1E12 0.001 0.003
25% −1.48 0.04 0.074
median 0.07 0.36 0.72
75% 0.48 2.78 4.54
max 0.72 18464.16 51054.97

to popular machine-learning approaches (Boughton, 2007) prone to
overfitting or failing to converge to a reasonable representation of the
dynamics when data is not plentiful.

Though our principal goal in evaluating the method on a combined
sewer system was to assess sensitivity to noisy data and errors in
catchment delineation, the performance suggests utility in supporting
predictive control of urban drainage systems. Estimating future depths
and flows from rainfall forecasts (input modeling) is a primary difficulty

of applying model predictive control (Lund et al., 2018). This toolchain
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Fig. 5. Predicting discharge in a combined sewer. Models are evaluated in predicting flow using meteostat and raingage data at 19 sensor locations within the combined sewer
system. The cumulative density function of Nash Sutcliffe Efficiency is shown on the left. On the right are evaluation simulations of discharge in cubic meters per second for
models at the first quartile, median, and maximum of NSE (−1.48, 0.02, and 0.72 respectively).
presents an automated and computationally efficient method for pre-
dicting depths and flows at sensors upstream of control assets in an
urban drainage system.

4.6. Effect of additional rainfall and potential evapotranspiration data

We found that including additional rain gages had good returns
to accuracy in the aggregate, but decreased accuracy in some cases
(SI Figures 7, 14, 18, and 22). Fig. 4 does not use raingage data
while Fig. 5 does. Even with these rain gages included, we suspect
inaccuracies in weather data still constitute a large part of the re-
maining error as suggested in Krajewski et al. (2017). Error could
also be due to other factors including inaccuracy in the catchment
delineation, insufficient complexity in the model structure, or the need
for more forcing variables such as potential evapotranspiration (PET).
We did evaluate the inclusion of PET as a forcing variable and found
the performance improvement marginal. The marginal utility of PET
to prediction accuracy may be because much of the climate’s impact
on typical soil moisture levels is already captured in the nonlinear
recession rates. For example, ephemeral streams in arid areas may
have typically quicker recession rates than large streams in humid
areas with significant baseflow. This omission does however fail to
represent seasonal variations in soil moisture content which can lead
to significantly different storm responses (e.g., dry soil in late summer
opposed to wet soils early in the spring). Though we have found it to
have marginal predictive utility thus far, potential evapotranspiration
may improve results if incorporated in a different formulation. For
example, the model could be reformulated to have two outputs or
states (discharge and soil moisture) which also affect each other. A
similar idea is explored in Kirchner (2009). The automated method
for sourcing weather data given only the sensor’s location should be
sufficient for many applications, and external data can be easily pulled
into the model if it is found to improve performance.
10
5. Conclusions

We have presented an end-to-end toolchain for hydrologic fore-
casting, sensors included. Though the maximum accuracy results are
encouraging, consistency could be improved. This may be done by
using a finer digital elevation model at greater computational expense
for the initial delineation. This would not severely increase the com-
putational burden as the delineation only needs to occur once for
each site, not every day. Better parameterizing snowmelt with a more
nuanced process description could also yield better and more consistent
accuracy. More accurate weather data is also likely to improve accu-
racy. The spatially compact, severe, and unpredictable thunderstorms
characteristic of many temperate climates are particularly confounding.
Upstream river level measurements could also be included as additional
forcing to the model. This may reduce vulnerabilities to unobservability
and uncertainty in weather data, but could also over-parameterize the
model as upstream river levels are conceptually included in the weather
forcing transformation terms in Eqs. (1) and (2).

We are currently serving daily predictions to various users including
bridge inspectors, utilities, and conservation agencies. Usability studies
on the interface (Fig. 2) could assess and improve the decision-support
value provided by the network and forecasts. Lastly, most low-cost sen-
sors focus on water level, while stakeholders are often concerned with
discharge. Finding an automated and scalable approach for estimating
discharge rating curves could enhance this work by providing discharge
predictions wherever low-cost water level sensors can be deployed.

Existing prediction engines for large sensor networks have short-
comings in their accessibility, automaticity, and data-frugality. These
barriers prevent their extension to the low-resource communities most
adversely impacted by floods. We have presented a new software
tool that automatically generates computationally cheap rainfall-runoff
models given only a sensor’s measurement record and location. Perfor-
mance on surface waters and sewers compares favorably to benchmarks

and suggests this tool could be a valuable asset to support operational
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decision making. We also detail enhancements to an existing, open-
source framework for wireless sensor networks. This work has the
potential to enhance equity in flood protection by lowering barriers
in the financial expense and modeling expertise required to deploy
predictive wireless sensor networks.
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