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Abstract

FatPlants, an open-access, web-based database, consolidates data, annotations, analysis results, and visualizations of lipid-related genes,
proteins, and metabolic pathways in plants. Serving as a minable resource, FatPlants offers a userfriendly interface for facilitating studies into
the regulation of plant lipid metabolism and supporting breeding efforts aimed at increasing crop oil content. This web resource, developed
using data derived from our own research, curated from public resources, and gleaned from academic literature, comprises information on
known fatty-acid-related proteins, genes, and pathways in multiple plants, with an emphasis on Glycine max, Arabidopsis thaliana, and Camelina
sativa. Furthermore, the platform includes machine-learning based methods and navigation tools designed to aid in characterizing metabolic
pathways and protein interactions. Comprehensive gene and protein information cards, a Basic Local Alignment Search Tool search function,

similar structure search capacities from AphaFold, and ChatGPT-based query for protein information are additional features.

Database URL: https://www.fatplants.net/

Introduction

Vegetable oils are an energy-dense renewable feedstock for
chemicals and fuels and are an essential component of the
human diet [1]. It is estimated that by 2050, the current veg-
etable oil production will need to double to meet societal
needs [2, 3]. To date, increases in plant seed oil production
through engineering or breeding have been reported but often
failed to meet expectations [3-7]. Such efforts have often
resulted in unintended consequences, including reduced seed
shelf life and germination rate, and adverse effects on nega-
tively impacted protein content. Lipid metabolism is a highly
branched metabolic network that produces both membrane
lipids and storage oils [2, 3, 8], and takes place across multiple
organelles [9]. The regulatory nodes and metabolic bottle-
necks [10, 11] that affect seed oil and protein accumulation

are only partially characterized at the genetic and biochemical
levels [8]. Hence, improving plant seed oil will require
extensive effort. Such a challenge would benefit from a web
portal equipped with analysis and visualization tools for fatty-
acid-related proteins, which would comprehensively archive
data and accelerate the process of knowledge discovery and
crop design for biologists. Easy access to built-in analysis tools
is also needed to empower researchers to develop and test
hypotheses and design crops with value-added compositions.

Web resources are starting to emerge that have been devel-
oped to describe plant acyl-lipid metabolism or curate fatty-
acid-related data, but frequently they are limited in scope and
out of date. For example, Lipidbank [12], Seed Oil Fatty Acids
Database [13], and LIPIDAT [14] are no longer maintained or
updated; ARALIP [8], a widely used plant lipid-related protein
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database, focuses on Arabidopsis thaliana only; LIPIDMAPS
[15] lacks integrated pathway knowledge; PlantFAdb [16] and
Plant Lipid Databases [17] concentrate on the chemophysical
properties and structures of lipids only. The growing research
needs in plant lipids call for the development of a new plat-
form that can provide comprehensive coverage of oilseed
plants, genes, and knowledge in this area, and can continue
to grow and improve with facile incorporation of community

input.

To assist researchers in studying plant fatty acid metab
olism efficiently, we developed a one-stop-shop web resource,
FatPlants. Protein data has been manually curated and entered
relevant to fatty acid metabolism in Glycine max (soybean),
A. thaliana (Arabidopsis), and Camelina sativa (Camelina)
from Uniprot [18], TAIR [19], SoyKB [20], KBcommons [21]
LIPIDMAPS [15, 22], PlantFAdb [16], CamRegBase [23], and
ARALIPS [8]. Molecular information on the fatty acid com-
position, chemical structures, and chemophysical properties
from OPSIN [24] provides an in-depth description. For each
protein record, general annotations from UniProt [18], includ-
ing postmodification regions or sites, have been collected. For
each specific species, we have included the cross-linked identi-
fiers for different databases and the external links so that users
can easily redirect to those databases. Sequences, annota-
tion, and description are provided together with the structure
information of those fatty-acid-related proteins.

Following data curation, we established a user-friendly
searchable database augmented with visualization tools.
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Figure 1. The data schema and functionalities of FatPlants.
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FatPlants offers a suite of analysis features, including sequence
or structure similarity searches. Users can submit a protein
sequence to our database and obtain a list of similar proteins.
Alternatively, the structure similarity method allows users to
provide a protein sequence, and FatPlants returns proteins
with the most analogous 3D structures based on AlphaFold
API [25]. Functional analysis is facilitated by mapping fatty-
acid-related proteins to pathway databases. We have manually
converted images of fatty-acid-related pathways from aca-
demic literature into interactive graphs using machine learn-
ing, enabling users to explore protein or gene elements of
lipid metabolism in depth. This feature allows regular updates
with the latest fatty-acid-related pathways from recent liter-
ature. FatPlants provides links to protein—protein interaction
(PPI) and Gene Ontology (GO) enrichment networks for fatty-
acid-related genes. A unique feature we have integrated into
FatPlants is the utilization of the ChatGPT API, enabling users
to obtain specific protein information interactively. In essence,
FatPlants serves as a comprehensive platform for plant fatty-
acid-related data, knowledge, and analysis, with user-friendly
search and analysis tools to facilitate understanding of the
underlying biological frameworks.

Materials and methods
Data acquisition and curation

Our datasets were collected from three primary data sources,
described in Fig. 1: ARALIP centered data, searchable
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Table 1. A summary of acyl-lipid metabolism data collection from different
databases

Camelina
sativa

Arabidopsis

thaliana Glycine max

6602

ARALIP
centered
UniProt

TAIR

SoyKB
LIPIDMAPS
CamRegBase
Total (Filtered)

822 712
1559
1718
N/A
2447
N/A
6546 (3440)

223

N/A

N/A

N/A

9810

10845 (8581)

422
N/A
389
N/A
N/A
7413 (5606)

The total number represents the raw data we collected from the database
source, and the filtered number shows how many proteins are left after
our filtration schema. The N/A indicates that species are unavailable in the
specific database.
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data from protein databases, and in-house and published
experimental data. The ARALIP data containing fatty acid-
centric enzyme/gene data from Arabidopsis was utilized by
searching homologs in Camelina and soybean, resulting in
712 genes in Camelina and 568 in soybean. We searched
for proteins in the UniProt database with keywords including
‘lipid’ and “fatty acid’ in three species: G. max, A. thaliana, and
C. sativa, and conducted the same keyword search in the TAIR
database. For Arabidopsis, we collected 2447 fatty-acid-
related proteins of Arabidopsis from LIPIDMAPS. Regarding
physical and chemical properties data, we have collected 495
entries from PlantFAdb. The keywords ‘lipid’ and “fatty acid’
were used to search for genes with UniProt and the soybean
Gene Model V9.00 in SoyKB. To perform data filtration, we
mapped all the identifiers to UniProt ID and removed
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features.



redundant and unannotated proteins. A total of 3440 fatty-
acid-related proteins were obtained for Arabidopsis and 5606
for soybean (Table 1). Fatty-acid-related protein data for
Camelina could not be collected due to a lack of annotation.
Therefore, a homology search against CamRegBase was per-
formed to find the fatty-acid-related proteins of Camelina by
using Arabidopsis data.

The protein list was used to retrieve the structure data
from the Research Collaboratory for Structural Bioinformat-
ics Protein Data Bank [26]. The PPI data were collected from
the STRING database [27] and visualized in networks by
direct or indirect interactions with intermediate nodes. The
GO hierarchical annotations were retrieved from the GO [28]
database and enriched and visualized in the network. Fatty-
acid-related proteins were mapped to the Kyoto Encyclopedia
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of Genes and Genomes (KEGG) pathway database. In addi-
tion, a collection of fatty-acid-related pathway pictures from
the literature [29-33] were visualized as an interactive map

using our in-house machine-learning image understanding
tool [34].

Database and web interface implementation

FatPlants provides a user-friendly interface for data access
and retrieval. It is implemented by a frontend Single-Page-
Application architecture using Angular 10.0. The application
interacts with users dynamically to update the current web
page. In the backend, we have developed a document-oriented
database based on Firestore 9.1.3. As shown in Fig. 1, the
entire dataset is stored in Firebase with extensive authenti-
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cation and a dynamic log system. FatPlants is deployed on
Firebase. All backend functions associated with the Linux
environment or outside APIs were implemented as Google
Cloud Functions to accelerate the response time and reduce
server latency. For feature development, the JavaScript library
of Cytoscape [35] was used to visualize all network data
and the Linux version of Basic Local Alignment Search Tool
(BLAST) to build a sequence search function. In an inno-
vative approach to enhance the accessibility of information,
we integrated the ChatGPT API into our platform. This
allows users to interactively retrieve specific protein infor-
mation using natural language queries, thereby simplifying
the process of data mining. Previously developed tools for
structural prediction and pathway image recognition were
incorporated to enable lipid characterization [25, 34]. In addi-
tion, to provide a smooth user experience of usage, FatPlants
was validated on different browsers, such as Google Chrome,

O Triacylglycerol

D-quinovosyl)

Edge, and Safari. It is also suitable for iOS and Android mobile
devices.

Results

As an overview of the main content at our site, we include
2341 acyl-lipid metabolism proteins for A. thaliana, 1232 for
G. max, and 623 for C. sativa. These data have extensive
information about their properties, functions, descriptions,
and modification domains. Chemical information is provided
for a total of 495 fatty acids. Twelve PPI networks of Ara-
bidopsis and 10 GO-enrichment networks can be visualized
based on different metabolic pathways. Currently, 15 auto-
recognized pathways have been retrieved from the latest pub-
lished papers. Since the search function is linked to the KEGG
and Protein Data Bank databases, users can study additional
data via FatPlants.



Web interface and usage

FatPlants offers a user-friendly web interface, enabling users
to conveniently browse, search, and retrieve data on fatty-
acid-related proteins. Six functional header menus are situated
on the top navigation bar—‘Home’, ‘Data’, ‘Search’, ‘Net-
works’, and ‘Tool’—designed to facilitate easy access to the
database. The ‘Home’ page provides a concise overview of our
database and its three primary functions. Users can explore
the principal datasets via the ‘Browse’ menu. On the main
data page (Fig. 2a), FatPlants offers a selection panel for
users to switch between species and fatty acids. Leverag-
ing the Angular framework, we developed an instant filter
search function within data tables. Users can search for any
protein by submitting identifiers, gene names, or gene descrip-
tions. Each protein is linked to its corresponding database

Q FatF;lants
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using unique identifiers. For every specific protein, we provide
a detailed information page encompassing key identifiers,
functional annotation, functional sequence domain, and the
protein function description. The ‘Ask ChatGPT’ button
offers an additional avenue for users seeking in-depth knowl-
edge about a specific protein. Furthermore, the ‘Homologs’
section indicates related homologous proteins in other species
(Fig. 2b).

One-stop search

To accommodate the possibility that proteins might have
multiple identifiers (UniProt ID, RefSeq ID, etc.), we have con-
structed an internal identifier mapping dictionary. This dictio-
nary incorporates seven classes of widely used IDs: UniProt
ID, Protein Name, Gene Symbol, EMBL ID, EnsemblPlants
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Figure 6. An example of a manually drafted pathway (oxylipin metabolism pathway).

ID, STRING ID, and Locus ID. Any identifier entered will
automatically link to a specific protein in our database. The
core analysis features of FatPlants include a one-stop-search
function based on a sequence similarity search, similar to
BLASTP, and a structure similarity search algorithm utiliz-
ing the AlphaFold APIL Users can effortlessly search for a
given protein against the FatPlants fatty-acid-related protein
database to find similar sequence or structure results and visu-
alize them in a 3D model (Fig. 3). Moreover, a pathway

mapping function is available through the KEGG API As
depicted in Fig. 3a, the one-stop search function accepts
both sequences and identifiers as input. The default page
displays a summary result, including the most structurally
similar 3D model, identifier list, and sequence. Users can tog-
gle between three different result types from the side panel.
Figure 3b presents a structure similarity result table gener-
ated by Alphafold API. The Blast results display all candidate
matches from the FatPlants data collection (Fig. 3¢). On the
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‘Search’ page. (b) Search result for 'DGAT2’ on the '‘Data’ page by selecting the target species (Arabidopsis).

pathway mapping result page, graphs depict all pathways
involving the input protein (marked by the red boxes), as
provided by the KEGG API (Fig. 3d).

Network viewers

The proteins in FatPlants can also be visualized in the con-
text of PPI networks based on the STRING database [27]. We
present all PPI networks in terms of their locations within the
metabolic network. Figure 4a provides a PPI example in the
fatty acid metabolism category. Users can easily browse the
PPI network by selecting the desired pathways and clicking
a network node to explore the protein’s functional descrip-
tion in the bottom table. The fatty-acid-related protein GO
enrichment network can be visualized through an enrich-
ment network page to capture the enrichment connection
between ontology terms. Users can search any specific protein

using different identifiers to retrieve the ontology information.
An example of a lipid biosynthetic process involving seven
other GO terms enrichment (monocarboxylic acid biosyn-
thetic process, isoprenoid metabolic process, organic acid
biosynthetic process, carboxylic acid biosynthetic process, ter-
penoid biosynthetic process, isoprenoid biosynthetic process,
and terpenoid metabolic process) is presented in Fig. 4b as an
example.

Custom pathway viewer

Within the custom pathway viewer page, users can manu-
ally submit pathway graphs from fatty-acid-related research
papers. Leveraging our in-house machine learning image
understanding tool [34], these submitted pathway graphs are
transformed into interactive pathway maps, where genes/pro-
teins are linked to entries in FatPlants. We currently showcase
15 graphs as trial datasets [29-33]. Figure 5 provides an
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example of this tool’s functionality. Protein elements that can
be interacted with are highlighted in red when hovered over,
and all recognized proteins are cataloged in a table on the
page. Users can access detailed information from the FatPlants
database or the comprehensive protein records in the UniProt
database. This tool enables FatPlants to integrate the latest
fatty acid pathway research, capturing key interactions with
crucial proteins. In addition to the machine learning-based
pathway graphs, we have a set of manually drafted path-
way graphs. It presents a graphical representation inspired by
ARALIP [8] (Fig. 6).

A use case example

Diacylglycerol O-acyltransferase 2 (gene symbol DGAT?2) is
involved in triacylglycerol synthesis. It catalyzes the acyla-
tion of the sn-3 hydroxy group of sn-1,2-diacylglycerol using
acyl-CoA. To find related information on this gene, a user
can perform a partial search on the ‘Search’ page by entering
‘DGAT’ to obtain a list of hits, as shown in Fig. 7a. The user
can select a hit of interest to explore more information, such
as protein structure and similar sequences. The user can also
search for DGAT?2 on the ‘Data’ page by selecting the target
species (Arabidopsis in this case), which leads to a unique hit,
as shown in Fig. 7b.

Conclusions and future work

FatPlants is a comprehensive and systematic fatty-acid-related
protein database resource. It can help users understand plant
oil synthesis and breeders improve oil content. Users can
also leverage Al assistance to gain deeper insights into spe-
cific proteins. FatPlants provides several network-based data
representations and visualization tools to explore fatty-acid-
related protein functions and relationships. By integrating
different tools, the one-stop search can help users retrieve the
corresponding information efficiently and comprehensively.

For future work, this data repository and a suite of visual-
ization and analysis tools will be continuously updated with
new data collected from oilseed research, particularly for
important emerging crops such as Camelina and pennycress,
two related Brassicaceae species that are not as well-developed
as Arabidopsis. User feedback will guide new analysis or visu-
alization tools to explore the fatty-acid-related protein data.
To take advantage of our in-house image understanding tool,
a Web-based pipeline will be developed for users to submit
fatty-acid-related pathway figures. The pipeline will automat-
ically parse the figures into pathway components and their
relationships. In addition, we are implementing an internal
API to collect the latest plant lipid publications on PubMed
so that FatPlants can be updated accordingly. We will also use
some large language models, such as ChatGPT, to help identify
more relevant data/knowledge sources for FatPlants.
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