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Abstract
Background: Predicting phenotypes from genetic variation is foundational for fields as diverse
as bioengineering and global change biology, highlighting the importance of efficient methods to
predict gene functions. Linking genetic changes to phenotypic changes has been a goal of
decades of experimental work, especially for some model gene families including light-sensitive
opsin proteins. Opsins can be expressed in vitro to measure light absorption parameters,
including λmax - the wavelength of maximum absorbance - which strongly affects organismal
phenotypes like color vision. Despite extensive research on opsins, the data remain dispersed,
uncompiled, and often challenging to access, thereby precluding systematic and comprehensive
analyses of the intricate relationships between genotype and phenotype.
Results: Here, we report a newly compiled database of all heterologously expressed opsin genes
with λmax phenotypes called the Visual Physiology Opsin Database (VPOD). VPOD_1.0 contains
864 unique opsin genotypes and corresponding λmax phenotypes collected across all animals from
73 separate publications. We use VPOD data and deepBreaks to show regression-based machine
learning (ML) models often reliably predict λmax, account for non-additive effects of mutations on
function, and identify functionally critical amino acid sites.
Conclusion: The ability to reliably predict functions from gene sequences alone using ML will
allow robust exploration of molecular-evolutionary patterns governing phenotype, will inform
functional and evolutionary connections to an organism’s ecological niche, and may be used
more broadly for de-novo protein design. Together, our database, phenotype predictions, and
model comparisons lay the groundwork for future research applicable to families of genes with
quantifiable and comparable phenotypes.

Key words: Machine learning; Regression, Compiled database; Genotype-phenotype
relationships; Predicting phenotypes; Spectral sensitivity; Color-vision; Opsins; Imputation

Key Points
• We introduce the Visual Physiology Opsin Database (VPOD_1.0), which includes 864 unique animal opsin
genotypes and corresponding λmax phenotypes from 73 separate publications.

• We demonstrate that regression-based ML models can reliably predict λmax from gene sequence alone, predict
non-additive effects of mutations on function, and identify functionally critical amino acid sites.

• We provide an approach that lays the groundwork for future robust exploration of molecular-evolutionary
patterns governing phenotype, with potential broader applications to any family of genes with quantifiable and
comparable phenotypes.
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Introduction
Although critical to progress in drug and vaccine design [1–3], responses to climate

change [4–8], and bioengineering [4,9–11], accurately predicting gene function from sequences
remains a significant challenge. While there are many ways to elucidate genotype-phenotype
relationships experimentally, including deep mutational scanning, and in-vitro heterologous
expression with phenotyping, these techniques are often tedious and cost-prohibitive, especially
when applied to broad comparative studies of gene families. In addition, accurately predicting
the phenotype of a protein using computational methods alone is challenging because of data
gaps and the sheer complexity of possible relationships between genes and phenotypes, including
epistasis and the non-additive effects of different mutations. Machine learning (ML) is gaining
traction for its potential broad biological applications, accessibility, and faster speeds, especially
in biological contexts where phenotype data are abundant and quantifiable. Here, classical
regression and classification algorithms are sometimes used to train models for phenotype
predictions using genotype-phenotype data [12,13], while deep learning models can be used to
integrate heterogeneous multi-layered omics and environmental data for establishing higher
dimensional genotype-phenotype connections [14,15] or de-novo protein design [16]. In broader
biological contexts, ML models often inform laboratory experiments to predict directional
evolution of diseases and their variants [17–19] or to automate image sorting and animal
identification from camera trap data [20–22]. In all cases, ML models can be iteratively
improved as data gradually accumulates, making them a worthwhile long-term investment.

Decades of laboratory work have led to significant progress in understanding the genetic
basis of phenotypic changes for model gene families such as opsins. Opsins are a family of
G-protein Coupled Receptors (GPCR) which bind to a chromophore and absorb photons. Opsins
have crucial roles in many organismal functions, including circadian rhythms, phototaxis, and
image-forming color vision. A critical opsin phenotype is spectral sensitivity - the range of
wavelengths to which a gene or organism is sensitive. The main parameter of opsin spectral
sensitivity is λmax, the wavelength of light (in nm) with maximal absorbance [23]. Common
methods of characterizing spectral sensitivities and λmax include organ-level electroretinograms
(ERG) [24–26], cell-level microspectrophotometry (MSP) [27–31], and purification of
heterologously expressed opsins followed by spectrophotometry. Different opsins are tuned by
changes in amino acid sequences to respond to different wavelengths of light, and many previous
studies have expressed experimentally mutated opsins and measured spectral sensitivities to
establish genotype-phenotype connections [32–36]. Although other factors sometimes affect
spectral responsiveness, opsins provide a rare case where an intrinsic molecular function extends
rather directly to organismal phenotypes, especially those involving color sensitivity. Despite
opsins being a well-studied system with an extensive backlog of published literature, previous
authors expressed doubts that sequence data alone can provide reliable computational predictions
of λmax phenotypes [37–40]. Furthermore, only the non-animal, microbial, or Type-1 (T1) opsins
[41,42] have been cataloged and used to examine genotype-phenotype predictive power of ML
models. The extensive data on animal opsin genotype-phenotype associations remains
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disorganized, decentralized, often in non-computer readable formats in older literature, and
under-analyzed computationally.

Here, we report a genotype-phenotype database for animal opsins called the Visual
Physiology Opsin Database (VPOD). We used standard literature searches to compile all
heterologously expressed animal opsin genes with spectral sensitivity measurements. We used
this newly compiled and harmonized database to evaluate ML methods for connecting genotypes
and phenotypes. We created eleven subsets of the overall database to examine factors that impact
the reliability and performance of ML models and compared ML predictions to phylogenetic
imputation [43,44]. We also examined whether ML can predict intragenic epistasis, and we
predicted amino acid sites particularly important for changing λmax. Using our database of 864
unique opsin sequences and corresponding λmax values, we show ML models trained on opsin
data accurately predict the λmax of opsins from genetic data alone [highest R2 =0.968 with a
lowest mean absolute error (MAE) of 6.56 nm], especially when ample and diverse training data
are available. ML also predicts some known effects of epistatic mutations on λmax. Finally, ML
models identify several sites that cause shifts in λmax (e.g., ‘spectral tuning sites’) and sites known
to be structurally important, even in the absence of mutant data in training. These results support
the use of ML as a reliable and efficient predictor of λmax for previously uncharacterized opsins,
as a tool for identifying candidate spectral tuning sites and epistatic interactions, and as a more
general method for linking gene sequences and phenotypes.

Methods
Compiling a genotype-phenotype database for animal opsins

We collected λmax data for opsins using typical literature review/search methods,
documented in the ‘litsearch’ table of the VPOD database to record search engine, keywords,
and date of access. We cataloged all usable papers with λmax data in the ‘references’ table of
VPOD, recording DOI and a key to link to the search that found the paper. We documented the
details of heterologous expression experiments in the ‘heterologous’ table, including species,
GenBank accession number for the sequence, mutation(s) (if applicable) using a
machine-readable notation, λmax, cell type for expression (e.g., HEK293, COS1, etc.), protein
purification method, type of spectrum (e.g., dark or difference spectrum), and a key to link to the
corresponding literature source. We input opsin genetic data in an ‘opsins’ table, recording opsin
gene family names (e.g., long-wave sensitive=LWS, short-wave sensitive=SWS1, etc.). We also
included specific ‘gene names’ (where applicable), phylum, class, species information, accession
number, DNA sequence, amino acid sequence, and the database from which sequences were
retrieved (e.g., NCBI). We recreated all mutant and chimeric (e.g. one or more transmembrane
domains of the mutant copied from a different sequence to replace the original) opsin sequences
based on literature descriptions using a pair of Python scripts (mutagenesis.py and chimeras.py)
available on our GitHub (https://github.com/VisualPhysiologyDB/visual-physiology-opsin-db).
We added all heterologously expressed opsins from the literature to the current version of VPOD,
which we call VPOD_1.0. We refer to heterologous data as a data subset named VPOD_het_1.0,
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which will allow for future additions to the database to link specific opsin sequences to λmax

values established with microspectrophotometry or other methods.

Training ML models with deepBreaks
We performed all data pre-processing, including data extraction, sequence alignments,

and formatting, in the Jupyter notebooks ‘opsin_model_wf_windows.ipynb’ or
‘opsin_model_wf_mac.ipynb, available on GitHub. We used two multiple sequence alignment
methods, MAFFT [45] and MUSCLE [46], and a version of both alignments with a Gblocks [47]
refinement (for a total of four alignments), all set to their default parameters to begin to test the
sensitivity of model performance to different alignments. We then trained various ML models
employing a custom version of deepBreaks [48], an ML tool designed for exploring
genotype-phenotype associations. deepBreaks takes aligned genotype data (DNA, RNA, Amino
Acid) and some measure(s) of corresponding continuous or categorical phenotype data as input
to train ML models. deepBreaks uses one-hot encoding to convert amino acid sequences into
numerical values. One consequence of this encoding is any amino acids at a given position in the
alignment, which are not present at that position in any training data, will be treated equivalently
as unseen. For example, cases of only A and V at a highly conserved site in the training set that
are presented with a sequence with T at that site will be considered as no A and no V. The
models cannot distinguish the input whether it's T or other unseen amino acids at that site. The
results produced by deepBreaks encompass a compilation of 12 regression ML models [48],
showcasing ten metrics of cross-validation performance (ranked by R2) and a report derived from
the top-performing models, which ranks amino acid positions by their relative importance to the
model (from 0.0-1.0, with 1.0 being a site with the highest relative importance) for the phenotype
in question (λmax). We evaluated the performance of algorithms based on their relative ranks to
look for patterns in which algorithms performed better for different data subsets and approaches.
deepBreaks also produces a set of distribution box plots (default is 100) to visualize phenotypes
(λmax) associated with a particular amino acid identity at a site of interest, ordered alphabetically.

Understanding model performance using different subsets of the database
We created eleven data subsets with varying levels of taxonomic and gene family

inclusivity (Table 1) to test which factors most impact the reliability/performance of ML
methods. We used naming conventions that include versioning to improve reproducibility and
reliability of individual datasets and models. For example, one subset combines ultraviolet and
SWS opsins, which we named VPOD_uss_het_1.0. Our convention is to name the subset (in this
case USS = ‘Ultraviolet and Short-wave Sensitive’ opsins); name the source of phenotype data
(heterologous = het), and record the version number of the dataset (1.0). We also created subsets
for medium- and long-wave sensitive opsins (VPOD_mls_het_1.0) and all rod (Rh1) and rod-like
(Rh2) opsins (VPOD_rod_het_1.0). Other subsets use species taxonomy, one for vertebrates
(VPOD_vert_het_1.0) and another for invertebrates (VPOD_inv_het_1.0). For taxonomic
subsets, we considered all sequences from phylum Chordata as ‘vertebrates’ and the rest as
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'invertebrates’. Another subset excludes all mutant opsin sequences, called ‘wild-types’
(VPOD_wt_het_1.0). A final named subset is the whole data set (VPOD_wds_het_1.0).

Using various subsets of data, we performed a number of experiments to better
understand the performance of ML models in predicting λmax. First, to better understand how
training data relate to model performance, R2 , and training data size, we gradually increased the
size of training datasets, using the WDS, Vertebrate, WT, and Rod subsets separately, by adding
between 15-50 randomly selected sequences at a time, repeating the process three times per data
split (Table S1). We then analyzed the fit between the size of training data sets (x-axis) and
model performance (y-axis), comparing six non-linear models with AIC to find the model that
best explains the observed variation (Figure S2). Second, to understand if ML could predict
known phenotypic changes due to experimental mutations, we queried the top performing WT
model (which lacks data from artificially mutated sequences) using all experimentally mutated
opsins to predict their phenotypes. We plotted these results using matplotlib [49] to visualize
characteristics of poorly predicted outliers (e.g., taxonomic bias or sensitivity to mutations which
caused large shifts in λmax from the WT). Third, we examined the ability of our models to predict
λmax of thirty invertebrate opsins not in VPOD_1.0 because they are only known from
physiological studies (Table S3, Figure S4). Here, we collected data both characterized by
single-cell microspectrophotometry (MSP) or electroretinogram methods and with expression
localized to cell-type by in-situ-hybridization (ISH), to link λmax to a specific opsin (the sequences
and metadata can be found in ‘msp_erg_raw.txt’ and ‘msp_erg_meta.tsv’, while the resulting
predictions can be found under the ‘msp_tests’ folder on our GitHub repository). Finally, we
directly compared predictive capabilities of models trained on different data subsets by randomly
selecting and removing the same 25 wild-type ultraviolet or short-wave sensitive opsins from the
training data of the WDS, Vertebrate, WT, and UVS/SWS models before training and querying
the model with those same sequences following training (Table S3, Figure S5).

Comparing Machine Learning and Phylogenetic Imputation
We compared performance of ML models to phylogenetic imputation, which estimates

phenotypes using phylogenetic information [43,44]. Phylogenetic imputation uses maximum
likelihood (we will not abbreviate maximum likelihood as ML to avoid confusion with machine
learning), assuming Brownian Motion to predict missing phenotypes using a phylogenetic tree,
assuming more closely related species or sequences have more similar phenotypes. For the
phylogeny, we constructed opsin gene trees in phyML [50], assuming the ‘WAG’ substitution
model [51] and a proportion of 0.029 invariable sites, Gamma as a rate across sites model, and
four substitution rate classes. We randomly removed 50 opsin sequences, and their corresponding
λmax values from each of the training datasets used to train our ML models (with the exception of
the smaller MWS/LWS and invertebrate datasets, in which we only removed 15), then estimated
the removed λmax values using phylogenetic imputation. We used the phylogenetic imputation
sub-module of the phytools R package [52] for performing imputation. We compared imputed
and actual λmax using regression. Imputation seemed sensitive to input alignment, perhaps caused
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by very short or zero length branch lengths in the phylogeny, as we could only complete
imputation with phytools after removing uninformative and heavily gapped regions with
Gblocks. To allow direct comparisons of regressions between imputation and ML, we created
ML training-data alignments using MAFFT, MUSCLE, and Gblocks in the same way as for
imputation and had ML to predict the λmax for the same set of sequences that were used to the
phylogenetic imputation method (Table S6).

Testing ability of ML to account for intragenic epistasis
Functional predictions are often misled by epistasis [37], so we tested the ability of our

WDS models to predict the effects of epistatic mutations by randomly selecting three double
mutants with previously demonstrated epistatic effects from training data in which double
mutants, each single mutant, and wild type sequence are all characterized by heterologous
expression. The three epistatic double mutants are all derived from bovine rhodopsins:
D83N_A292S, F261Y_A269T, and A164S_A269T. We removed the double mutants from the
training dataset but retained single mutants to retain base effects of each single mutation and test
whether the model treats the mutations as additive or epistatic. We hypothesized that the many
instances of multi-mutant sequences with epistatic effects in the training set would allow the
model to account for some level of intragenic epistasis. In a best case scenario, the model
predicts both the magnitude and direction of non-additivity correctly. We then ran a separate test
where we removed the same double mutants plus their corresponding single mutants so we could
observe whether the WDS model would still predict epistatic effects from wild type data alone.
We subsequently repeated this same process for the WT and Vertebrate models (Table S7).

Identifying known spectral tuning sites
In addition to predicting λmax, we wanted to identify amino acid sites with strong effects

on the phenotype, called spectral tuning sites for opsins. To do so, deepBreaks produces an
‘importance report’ of the relative importance of amino acid positions within the sequence
relative to the phenotype. This report is generated for each of the top three performing models,
with the addition of a column which calculates the ‘mean relative importance’ value of an
individual position. We automated the translation of these feature representations of amino acid
positions compared to bovine rhodopsin for the sake of interpretability. We also included the
amino acid residue identity at each corresponding position, and whether it is in one of the opsin
transmembrane domains (TMD). We used this to provide us with a standardized context for
analysis of the most significant positions highlighted by the models which we could use to
back-reference against the list of characterized mutants and spectral tuning sites in our database.
We analyzed the importance report for each model to see what positions it highlighted as most
important, with an extra emphasis placed on the output for the WT models since it was the least
likely to be biased by the presence of already-known mutant data (Table S8).
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Results
Data Description: A genotype-phenotype database for animal opsins

VPOD_1.0 is a new database, available on GitHub and in DataONE that currently
includes all heterologously expressed animal opsins. We refer to a subset of the database with
only heterologous data as VPOD_het_1.0, although for version 1.0, this is synonymous with the
entire database. VPOD_het_1.0 relies on 68 publications, mainly primary sources, with dates
ranging from the 1980’s to 2023. The database contains opsin sequences and phenotype data
from 166 unique species (counting 35 reconstructed ancestors), including fishes, amphibians,
reptiles, mammals, crustaceans, and bivalves. Altogether, VPOD_het_1.0 contains 864 unique
opsin sequences and corresponding λmax values. This includes 318 unique WT opsins and 546
unique experimentally mutated opsins. Of the mutants, 73 are ‘chimeric’, meaning one or more
transmembrane domains of the mutant are copied from a different opsin to replace the original.
Phylogenetically, VPOD_het_1.0 is mainly vertebrate opsins (n = 721), with only 143 unique
invertebrate opsins. The vertebrate opsins consist of 113 UVS opsins, 167 SWS opsins, 8 MWS
opsins, 83 LWS opsins, 237 Rhodopsin (Rh1), and 113 Rhodopsin-like (Rh2) opsins.
Phenotypically, VPOD_het_1.0 spans a range of λmax values from 350-611 nm. The highest
concentration of phenotype values are between 350-375 nm and 475-525 nm (Figure 1), due to
the literature bias favoring characterization of UVS/SWS opsins and rhodopsins (Rh1).

Figure 1. Histogram distributions of Vertebrate
and Invertebrate Opsin Light Sensitivity Data -
λmax - from VPOD_het_1.0 with a scaled
Kernel Density Estimate (KDE) curves overlaid
to better visualize the general shape and
characteristics of our λmax distributions. Note an
obvious data bias for vertebrate opsins,
especially those with λmax values between
350-375nm and 480-510 nm, probably due to
focal research on UVS and Rh1 opsins.
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The data used for model training strongly impacts accuracy
Several models trained with different subsets of data predicted λmax with high accuracy

(Table 1). The top-performing models from these subsets were also consistently produced using
the same five algorithms, including the Gradient Boosting Regressor (GBC)[63,64], Bayesian
Ridge (BR)[65,66], Light Gradient Boosting Machine (LGBM)[67], Random Forest (RF)[68],
and Extreme Gradient Boosted Machine (XGB)[69]. For example, VPOD_vert_het_1.0 - trained
with all vertebrate wild-type, mutant, and chimeric opsins - had the highest
10-fold-cross-validation (CV) R2 (0.968) and lowest mean absolute error (MAE) (6.56 nm) of
any models we compared (Figure 2). Similarly, VPOD_wds_het_1.0, trained with the whole
dataset, had very high R2 (0.947) and low MAE (7.47 nm). The two data subsets also shared the
same five top performing models (GBC, BR, LGBM, RF, and XGB). In addition,
VPOD_wt_het_1.0 - trained without mutants and only wild type data - had a similarly high R2

(0.902) and a low MAE (10.3 nm) when predicting unseen wild type data. Overall, this ‘wild
type-only’ model also fared well, even when predicting mutant data not included in the model
(Figure 3). At the same time, many instances where mutations caused large shifts in λmax (>10
nm) were not well-predicted by the wildtype-only model, as indicated by large residual values
for the predictions of these mutant sequences (Figure 3). Some models, namely those with less
than ~200 training sequences, were far less able to accurately predict λmax. For example,
VPOD_mls_het_1.0 – trained only on the 91 MWS/LWS opsins of vertebrates – and
VPOD_inv_het_1.0 – trained only on 144 invertebrate opsins - were among the lowest R2 (0.677
and 0.814 respectively) of all models we compared (Table 1). Comparatively, when we trained
ML models on the previously published Karyasuyama type 1 opsin dataset we call
Karyasuyama_T1_ops [41], it produced models with similar performance to the invertebrate
model, with a moderate R2 (0.804) and MAE (9.41) (Table 1). The similar levels of performances
between T1 and invertebrate models were unexpected, especially considering it has a training
dataset five times larger than the invertebrate model. One possible explanation is that the very
old age of T1 opsins might have led to a higher complexity of genotype-phenotype associations
that are not yet well sampled enough to allow good predictions.

Data availability improves predictive power, with performance thresholds and plateaus
depending on the genetic diversity of the training data. Accuracy in predicting λmax for our
models trained on more genotypically and phenotypically diverse subsets of data (WDS,
Vertebrate, WT) improves as a function of the number of sequences in a dataset, and shows an
initial plateau (R2 = ~0.80-0.90) of diminishing returns around 120-200 sequences, and continues
to taper off above 200 sequences (Table S1, Figure S2). For all data subsets, we found the
relationship between number of sequences in a dataset and model performance best fits a
reciprocal model, which is suitable when the dependent variable plateaus as the independent
variable grows larger. We found the coefficients of the reciprocal equations to be different
between subsets and to increase in negative magnitude with a decrease in taxonomic/genetic
diversity (the Rod model holding the largest negative value of -44). These equations do not
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account directly for taxonomic, genetic, or phenotypic diversity, as the number of genes is on the
x-axis. Therefore, one should be cautious about applying them to predict model performance
based on training data size alone.

Although the Rod, UVS/SWS, and MWS/LWS datasets together comprise the training
data for the vertebrate model (our highest performing model, R2 = 0.968), the individual models
trained by these data subsets performed worse than predicted by the trend between number of
sequences and model performance observed for the WDS, Vertebrate, and WT subsets (S1, S2).
For example, the Rod model, with 352 sequences, should have resulted in a model with an R2

around 0.900-0.960 based on the trendlines for the WDS and Vertebrate datasets (S1, S2) but
resulted in an R2 = 0.831.
Table 1. Performance Metrics Across Opsin Subsets and Top Performing Models.

Name Data Subset Version # Seqs
Top ML

Algorithm bR2

aMAE
[nm]

MAPE
[%] bMSE RMSE

Whole Dataset VPOD_wds_het_1.0 864 LGBM 0.947 7.47 1.71 207 13.8

All Wild Types VPOD_wt_het_1.0 318 Bayesian
Ridge 0.902 10 2.18 297 16.5

All Mutants VPOD_mut_het_1.0 546 LGBM 0.951 7.89 1.86 194 13.4

Vertebrates VPOD_vert_het_1.0 721 LGBM 0.968 6.56 1.49 111 10.3

WT Vertebrates VPOD_wt_vert_het_1.0 274 GBC 0.961 5.46 1.18 82.1 8.36

Invertebrates VPOD_inv_het_1.0 143 LGBM 0.814 14.7 3.22 614 23.1

Rods VPOD_rod_het_1.0 352 Bayesian
Ridge 0.834 3.51 0.71 27.7 5.04

WT Rods VPOD_wt_rod_het_1.0 157 GBC 0.783 3.57 0.72 31.9 5.11

MWS/LWS VPOD_mls_het_1.0 91 XGB 0.677 8.77 1.82 317 15

UVS/SWS VPOD_uss_het_1.0 280 GBC 0.821 8.02 2.06 200 13.6

WT UVS/SWS VPOD_wt_uss_het_1.0 66 Adaboost 0.865 7.79 1.87 152 10.6

T1 Opsins Karyasuyama_T1_ops 884 Random
Forest 0.804 9.41 1.76 186 13.5

aMean absolute error (MAE) is in relation to the absolute error λmax predictions and interpreted in the same units of
‘nm’. bR2 or mean square error (MSE) are often interpreted as direct measures of comparing/analyzing model
performance and used as training loss terms of the objective function - which measures how well the model fits the
training data. One has to often balance between this and the regularization term, which controls the complexity of
the model. Thus, a high performance is both simple and predictive; a tradeoff referred to as the ‘bias-variance’
tradeoff.

When predicting λmax of thirty unseen wild-type invertebrate opsins, almost every model
performed rather poorly, with exception of the WT model (n = 30, R2 = 0.887, MAE = 17.5)
(Table S3, Figure S4). The best performing model produced by the sparsely populated
‘Invertebrate’ dataset could only predict unseen invertebrate opsins with an R2 of 0.837 and
MAE of 26.3 nm (Table S3. Figure S5). Until the models are trained with more invertebrate
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(r-opsin) data, we do not put high confidence in the estimates of λmax. In contrast, when tested on
their ability to predict the λmax for WT SWS opsins, the Vertebrate model (R2 = 0.914, MAE =
7.89) outperformed the predictive power of the WDS (R2 = 0.833, MAE = 10.2), WT (R2 =
0.773, MAE = 9.86) and SWS (R2 = 0.788, MAE = 11.6) models, respectively (S3, S5). In other
words, the Vertebrate model is both the overall top performing model and the most accurate
model for predicting the λmax of SWS opsins.

Figure 2. ML model predictions on whole Vertebrate opsin dataset, n = 721, R2 = 0.968, MAE = 6.68nm, MAPE
= 1.52. Sequences were iteratively and randomly selected to be withheld from the training dataset (n=50) to act as
unseen test data. This was repeated until all sequences had been sampled once. Mutant predictions in which the
absolute difference between the ‘known’ and ‘predicted’ λmax are <10nm are represented by gray dots. All
predictions in which the absolute difference between the ‘known’ and ‘predicted’ λmax are >10nm are represented
by colored dots. Yellow dots represent WT predictions, mutants with only a single mutation are green, mutants
with greater than one mutation are light-blue, and chimeric opsins are dark-blue. The light-gray bar surrounding
the trend-line represents a 95% confidence interval. Inset: Box-plot distribution of prediction error for different
opsin data-types from the top performing Vertebrate opsin ML model to better visualize our sources of error.
Note, the median for each box-plot hovers around 0nm. Single mutations have the largest spread of error, but this
is most likely due to the high abundance of that data-type over all others.
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Figure 3. Scatter-plot of Wild-Type Model’s λmax predictions for 547 mutant opsins, with an R2 of 0.860, MAE of
12.36 nm, and MAPE of 2.91%. Mutant predictions in which the absolute difference between the ‘known’ and
‘predicted’ λmax are <10nm are represented by gray dots. All predictions in which the absolute difference between
the ‘known’ and ‘predicted’ λmax are >10nm are represented by colored symbols, further separated by Invertebrate
(Squares) and Vertebrate (Circles) opsins. Mutants with only a single mutation are green, mutants with greater
than one mutation are light-blue, and chimeric opsins are dark-blue. Mutations which caused a shift of >10nm
from the WT are outlined in purple. The light-gray bar surrounding the trend-line represents a 95% confidence
interval.

ML predictions of λmax are comparable to phylogenetic imputation
Both ML and phylogenetic imputation were often accurate predictors of λmax (Table S6).

When using the same test data, ML models usually outperformed phylogenetic imputation,
however slightly (S6), albeit using far less computational time, ML using on the order of minutes
to calculate models and imputation using on the order of hours to generate opsin phylogenies.
The MWS/LWS dataset was the only instance where phylogenetic imputation (R2 = 0.784)
largely outperformed ML (R2 = 0.512). We found our implementation protocol for phylogenetic
imputation to require removing aligned sites with extensive gaps using Gblocks, probably
lessening impacts on imputation of very short branch lengths. We also used the same alignments
for training ML to create direct comparison to imputation results. Interestingly, there was a slight
but noticeable decrease in ML performance following Gblocks treatment for the Invertebrate,
MWS/LWS, and UVS/SWS datasets (Table S6). The R2 of the MWS/LWS model dropped from
0.677 to 0.645, while the Invertebrate model dropped from 0.814 to 0.797 (Table S6). ML
performance remained relatively consistent for the WT, Vertebrate, WDS, SWS/UVS, and Rod
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models, with only a slight reduction in R2 (< 0.01) and slight increase in MAE (+/-1nm) for the
WT model. The observed disparity in ML performance following Gblocks processing could be
attributed to the reduced amount of features in a dataset by removing aligned sites.

ML often predicts the effects of epistatic mutations
The WDS successfully predicted three out of three instances of epistasis (Table S7) using

sequences that were removed from the training data before using the model to predict known
epistatic phenotypes. For double mutant D83N_A292S, the model predicted 485.2nm, which was
0.2 nm off the known λmax of 485 nm. If the WDS model believed the sites were additive, the
resulting λmax based on adding shifts of single mutants would have been 477.5 nm. Second, for
mutant F261Y_A269, the model predicted 520.0nm, for which the known λmax was 520 nm. An
additive prediction would have been a λmax 524nm. Third, for mutant A164S_A269T the model
predicted a λmax of 515.5 nm, where the known λmax was 514 nm. This is a special case in which
the double mutant experiences a form of epistasis where the effect of mutation A269T (λmax =
514) masks the shift otherwise caused by mutation A164S (λmax = 502). Thus, the model seems to
have correctly predicted an instance of epistasis in which one mutation masks the effect of
another. We believe these results are strong evidence of the model’s eventual capabilities to
predict and potentially incorporate the intricacies of intragenic epistasis reliably.

We also queried the WT model with these same double mutants to test the importance of
mutant sequences in informing the model on epistatic interactions. However, without any mutant
data at all, the WT model did not display the same abilities to predict epistasis in any instance.
For the double mutant D83N_A292S, the model predicted neither the individual mutations nor
the double mutant would have a significant effect on λmax, and all were predicted to be 499.9 nm.
For double mutants F261Y_A269 and A164S_A269T, the WT model successfully predicted all
individual mutations would cause a red shift, although F261Y and A269 were >3nm off their
known λmax, but incorrectly treated the mutational effects as additive for the double mutant (Table
S7).

Even without information in the training data on the effect of the single experimental
mutations of a pair of experimental mutations with known epistatic effects, we could accurately
predict epistasis, as long as that sequence variation was present in the training data from wild
type sequences. We removed the single mutants F261Y and A269T from the training data. The
WDS model predicted a λmax of F261Y as 508.4 nm: 1.6 nm off from the known λmax of 510 nm.
The model predicted a λmax of 510.8 nm for mutant A269T: 3.2 nm off its known λmax of 514 nm.
In short, the model predicted the correct direction of phenotypic shift for the single mutants, and
while the magnitude of the resulting shifts was not precisely predicted, a 2-4 nm difference
between the known and predicted λmax value is still less than the MAE of 7.47nm for the WDS
model. As for the double mutant F261Y_A269, the model yet again predicted a λmax of 520 nm,
even without the direct genotype-phenotype information provided by the single mutants.
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ML predicts tuning sites from Wild-Type sequences alone
The full WT model and its few variants (SWS and Rod WT models) predict several

previously characterized ‘spectral tuning sites’ - functionally demonstrated to change λmax - even
with no information on mutants used in the training data (Figure 4, Table S8). For the primary
WT model alone we found 15 of the top 25 amino acid sites, ranked by relative importance to the
model (all ≥ 0.40), were spectral tuning sites previously characterized by mutagenesis and
heterologous expression (Table S8). For example, the especially well-characterized position 308
(p308), known for its role in tuning LWS opsins, and considered to be one of the five key sites in
characterizing LWS opsins under the ‘Five-Site Rule’ [53], had the highest relative importance
value of 1.0 when using the full WT model, indicating the amino acid identity at p308 is
especially important for predicting λmax. In another example, the full WT model highlighted
p181, a phylogenetically conserved counterion in the retinal-opsin Schiff base interaction for all
non-vertebrate opsins [54]. Additionally, the transition from E to H at p181 (E181H) is a
characteristic of the red-shifted vertebrate LWS opsins [32], easily visualized in Figure 4C.
When predicting λmax of bovine rhodopsin with mutation E181H, the WT model predicted a
red-shift compared to wild type, as observed with the natural evolution of the LWS opsin lineage.
The WT SWS/UVS model similarly highlighted p113, a site functionally characterized as the
counterion in the retinal-opsin Schiff base interaction for all vertebrate opsins. Moreover, even
the WT Rod model, trained on a mere 157 sequences, identified p292 (S8), another
well-characterized and highly conserved spectral tuning site for vertebrate rhodopsins [55–57],
as the site with highest relative importance to its predictions of rhodopsin λmax.
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Figure 4. (A) Bar graph of relative importance by position generated via ‘BayesianRidge’ ML Regression
Model trained on the WT opsin dataset. We interpret positions with higher relative importance as having a
larger effect or weight on λmax prediction. Positions 181, 261 and 308 are highlighted because they are among
the highest scoring sites and have all been previously characterized as functionally important to opsin
phenotype and function. (B, C, & D) These distribution box plots provide a visualization for which amino
acid (aa) residues at a particular site are associated with different ranges of lambda max at a site of interest,
ordered alphabetically, not by frequency (left to right).

Discussion
To better understand methods to connect genes and their functions, a fundamental goal of

biology, we initiate VPOD, a database of opsin genes and corresponding spectral sensitivity
phenotypes, as a model system for genotype-phenotype interactions. Here, we used VPOD_1.0 to
examine the ability of ML models to predict functions of opsin genes, predict intragenic
epistasis, and identify amino acid sites critical for functional changes. In all cases, ML shows
promise, especially when given enough training data.
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The important relationship between data availability and predictive power
The predictive power of λmax is generally high when using ML for opsins and it improves

with a greater amount and variety of data, albeit with diminishing returns. In particular, the
number of opsin genes, their genetic diversity, and the relationship between genetic and
phenotypic differences are all critical in determining predictive power. Particularly illustrative of
these ideas are our analyses with and without experimentally mutated opsins. Even though we
might conceive of all wild type data as natural mutants chosen by evolution, experimentally
induced mutations are particularly important by often changing just one amino acid that
drastically changes phenotype. As such, we found that including mutant data usually improved
predictive power and conversely, predicting some phenotypes from laboratory mutagenesis was
sometimes difficult without including other mutant data in model training. Nevertheless, the
genotype-phenotype landscape may be sampled well-enough using high numbers of only wild
type genes, as evidenced by the small difference in performance when adding mutant data to the
wild type subset of well-sampled vertebrate opsins (Table 1). In contrast, adding mutant data to
the sparsely sampled invertebrate opsins made a big difference. Here, using only wild type data
(ignoring all mutants) led to some very inaccurate predictions, especially of large phenotypic
shifts caused by experimental mutagenesis of invertebrate opsins (Figure 3), suggesting the
genotype-phenotype space is still undersampled for invertebrates. Therefore, targeting
invertebrate (rhabdomeric) opsins should be a high priority for new additions to VPOD.

A large diversity of training data is also critical for reliably predicting intragenic epistasis
– the non-additive effects on a phenotype of interactions between two or more mutations within a
gene – which is common [10,37,39,40,58,59] and an obstacle to connecting genotypes and
phenotypes [37,60–62]. Our most complete datasets (whole dataset and vertebrate data)
identified known cases of intragenic epistasis, but our models trained without experimental
mutagenesis data did not. Similarly to the overall predictive power of λmax above, predicting
epistasis probably requires sufficient variation at interacting sites, which seems especially
enhanced by experimentally mutated genes.

Variation in the availability of genotype-phenotype data for training not only impacts
predictive power of phenotype, but also the converse; the ability to predict amino acid sites that
change λmax. Several models, including those trained with the whole data set (WDS), Vertebrate,
and wild type (WT) data were able to successfully predict previously characterized spectral
tuning sites. This is less surprising for models trained with WDS and Vertebrate datasets, due to
the prevalence of data, even including mutants in the training data from experiments which
specifically targeted sites thought by researchers to be functionally informative. Yet even without
any targeted mutational data, three model variants using only wild type data predicted
experimentally well-characterized spectral tuning/functional sites, including sites important to
the stability of the opsin-chromophore interaction (P181 and P113). This demonstrates the strong
potential for ML models to identify amino acid sites that govern phenotype, leading to
predictions of candidate spectral tuning sites (CSTS), which can be confirmed with mutagenesis
experiments [36,56] if not done so already.
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ML algorithm type contributes to the predictive power of ML models.

While probably not as important as the training data used, the ML algorithm itself also
impacts predictive power. All five of the best performing ML algorithms (GBC, BR, LGBM, RF,
and XGB) are variants of the decision tree model architecture (Table S9), and three out of five,
including GBC, LGBM, and XGB, are ‘gradient boosted’ decision tree based ML algorithms.
The gradient boosted algorithms all share the same general principles of gradient boosting
[63,70] including the use of ensembles of ‘weak learners’, usually decision trees, which work
sequentially and ‘gradient descent’ when minimizing a loss function, to improve ML model
performance. While LGBM generally performed best for predicting phenotype, it was not as
effective in predicting the epistatic effects of mutations, where GBC and XGB showed the
highest performance. This suggests that while LGBM excels in general phenotype prediction, the
details of GBC and XGB may be better suited for epistasis prediction. The difference likely
arises from the unique aspects of each algorithm's model training and settings of
hyperparameters. XGB and LGBM differ from GBC by the addition of a regularization term to
the objective function and in the process of ensemble tree construction during model training:
GBC and XGB use level-based tree fitting while LGBM uses leaf-based tree-fitting. One
consequence of leaf-based tree construction is that due to its faster convergence/training time, it
can be more prone to overfitting, as it constructs trees on a ‘best-first basis’ with a fixed number
of n-terminal nodes. This creates a model that often performs well but may overgeneralize,
missing finer grained collinearities and interdependencies, which would be important for
predicting epistasis. As such, our models might be improved by fine-tuning hyperparameters
(e.g., learning rate, max-depth, and number of estimators), and the choice of which model to use
will depend on the end goals of the analysis.

The assumptions of our method and limitations of ML extrapolation.
Understanding the limitations and assumptions inherent in predictive modeling is vital for

accurately interpreting animal color sensitivity from opsin sequences, especially considering the
impact of various factors on sensitivity beyond the opsin itself across multiple levels of
biological organization. At the cell level, we assume that λmax measured in cell culture (e.g.,
HEK293, COS cells) is the same as in living photoreceptor cells. We also assume the
photopigment uses 11-cis-retinal, as all heterologously expressed opsins in VPOD were
reconstituted using this chromophore. However, this assumption is violated in some organisms
because they use 13-cis-retinal as the in-vivo chromophore [71–73], which is associated with a
red-shift in λmax [32,71]. At the organ-level, filters such as oil droplets in bird eyes [74–77],
pigments in butterfly eyes [78], or a combination of transmissive filter and narrow band reflector
in mantis shrimp larval eyes [79], each may selectively influence light reaching photoreceptor
cells and therefore animal color sensitivity. Finally, organismal responses to light involve neural
processes, so even if an organism possesses the physiological ability to detect certain
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wavelengths, it still may not have a use for that ability. Similar considerations for all these
assumptions will apply when using ML to infer other functions from other genes. In fact, many
genes are more susceptible than opsins (but see [80]] showing the pressure of ocean depth may
slightly affect λmax phenotypes) to changes in pH, temperature, and other environmental factors
[81], such that databases compiling these gene functions should also record these parameters for
use in training ML models.

Perhaps the most important caveat of using ML models to accurately predict phenotype
or functional sites is that we assume there is a genotype-phenotype association that we can fit to
a function and that our models were trained using ample data to capture these associations. Based
on the non-linear fit between size of training data set, and model performance, we estimate that
including about 200 sequences (and corresponding λmax) from a taxonomically and
phenotypically diverse range still provides improvements to model performance. Above 200
sequences, there is still improvement, but at a diminishing rate consistent with a reciprocal model
(Table S1, Figure S2). When using ML for predicting functionally important sites, the addition of
experimental mutants to training data that cause large phenotypic changes could heavily bias
which sites are selected as ‘most important’ and potentially mask the importance of other sites.
Here again, providing a diverse set of genotype-phenotype data should allow for the discovery of
new functional sites, even when including known mutants in the training data with large
phenotypic effects. Additionally, not all mutations will have the same effect on different
sequences, especially if they are genetically distant; making it important to consider the level of
genetic diversity used to train a model when extrapolating to find potentially important
functional sites (i.e., if identifying tuning sites for rhodopsins, then using a dataset of only
rhodopsins would likely be the best approach, but if data is sparse or if looking for sites that may
largely impact spectral tuning across opsin subfamilies, a genetically and phenotypically broad
dataset may be better).

Conclusion
Using opsin sequence data with deepBreaks, we were able to train regression-based ML

models to reliably predict λmax, often accounting for non-additive effects of mutations on function
(intragenic-epistasis), and identifying amino acid sites critical for function. We expect future
work will improve these already promising results even further through at least two general
directions. First, adding more data to VPOD will improve results, especially adding invertebrate
(rhabdomeric opsins) data, as technical knowledge improves for expressing these genes [35]. In
addition, phenotypic data – besides the in-vitro heterologous expression targeted here – is
expansive, including λmax measurements from single-cell microspectrophotometry and
electroretinograms, but will take considerable effort to link these phenotypes to specific opsin
genes. Second, our models can be improved to take advantage of more information. One
important addition should be inclusion of physicochemical properties of the amino acids [82], as
implemented with success on a small scale of only 26 amino acid positions of microbial opsins to
predict red-shifted phenotypes for optogenetics [83]. Additionally, information on protein
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structure could be particularly important, such as the distance of an amino acid from the binding
pocket of the chromophore [84]. While there are only a few solved crystal structures for opsins
[85,86] to provide such data, indirect techniques like homology modeling [87] or neural
network-base structural prediction [88] might be usable. Other information about opsins could
also be predictive, such as which G-protein the opsin signals to, allowing prediction of which
amino acids dictate G-protein specificity. Opsin kinetics [e.g. 89], or even the habitat depth at
which the animal lives in the ocean, which not only influences light environment but also alters
which amino acids are used in opsins [90], could improve predictive power of the ML models.

Potential Implications
Given the high performance demonstrated in this paper, current models are already robust

enough to allow several applications. First, predicting λmax will often be useful, especially for
vertebrate opsins. For example, ML could provide an estimate of λmax in a hogfish, whose skin
expresses an opsin with unknown absorption and where λmax has implications for a conceptual
model of chromatophore expansion [91]. Second, estimates of λmax from opsin sequences formed
part of an argument that changes in gene expression, not sequence, adapted Amazon fishes to
local light environments [92]. On broader taxonomic scales, predictions of λmax from opsin
sequences could expand studies of adaptation, molecular, evolution and constraint in comparison
to light environments [93]. Another application could be protein design for optogenetics - the use
of genetic light sensors to induce and study expression or response pathways [94–96] - including
those associated with embryogenesis [97,98], stress and depression([99–101], or neuronal
diseases [102,103]. Finally, our models could be used to simulate molecular evolution under a
realistic genotype-phenotype landscape. One shortcoming presently for such simulations is that
our models are not trained with non-functional opsins, so even non-functional genes would be
predicted to have functional λmax values. A solution could be to add large-scale mutagenesis data
to the training set, such as that from deep mutational scanning [104]. As the VPOD database
expands, there will be many applications for ML, and similar techniques can also be applied to
other gene families such as luciferases [16,105,106].

Availability of Supporting Source Code and Requirements

 Project name: The Visual Physiology Opsin Database (VPOD)
 Project home page: https://github.com/VisualPhysiologyDB/visual-physiology-opsin-db
 Operating system(s): Windows, MacOS, and Linux
 Programming language: Python
 Other requirements: Conda 4.9.2, deepBreaks 1.1.2, GBlocks 0.91b, MAFFT 7.520-1,

MUSCLE 3.8.31, mySQL workbench 8.0.36, Python 3.9
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Data Availability

The data set(s) supporting the results and all other code used in this article are available in the
‘Visual Physiology Opsin Database’ GitHub repository, [cite unique persistent identifier] and at
the ‘Visual Physiology Opsin Database’ GigaDB repository, [pending acceptance] .
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