Check for
Updates

Defining a canonical unit for accounting purposes

Fabio Andrijauskas
fandrijauskas@ucsd.edu
University of California - San Diego
La Jolla, CA, US

ABSTRACT

Compute resource providers often put in place batch compute sys-
tems to maximize the utilization of such resources. However, com-
pute nodes in such clusters, both physical and logical, contain sev-
eral complementary resources, with notable examples being CPUs,
GPUs, memory and ephemeral storage. User jobs will typically
require more than one such resource, resulting in co-scheduling
trade-offs of partial nodes, especially in multi-user environments.
When accounting for either user billing or scheduling overhead,
it is thus important to consider all such resources together. We
thus define the concept of a threshold-based "canonical unit" that
combines several resource types into a single discrete unit and use
it to characterize scheduling overhead and make resource billing
more fair for both resource providers and users. Note that the exact
definition of a canonical unit is not prescribed and may change
between resource providers. Nevertheless, we provide a template
and two example definitions that we consider appropriate in the
context of the Open Science Grid.

CCS CONCEPTS

« General and reference — Metrics; « Computer systems or-
ganization — Multicore architectures; Distributed architectures.

KEYWORDS

accounting, co-scheduling, canonical unit

ACM Reference Format:

Fabio Andrijauskas, Igor Sfiligoi, and Frank Wiirthwein. 2023. Defining
a canonical unit for accounting purposes. In Practice and Experience in
Advanced Research Computing (PEARC °23), July 23-27, 2023, Portland, OR,
USA. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3569951.
3597574

1 INTRODUCTION

Many research computing providers have to contend with user
demand that exceeds the available resources under their control.
Batch compute systems are thus the preferred resource manage-
ment system, as they allow for both high resource utilization and
fair sharing in multi-user scenarios.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PEARC °23, July 23-27, 2023, Portland, OR, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9985-2/23/07...$15.00
https://doi.org/10.1145/3569951.3597574

288

Igor Sfiligoi
isfiligoi@sdsc.edu
University of California - San Diego
La Jolla, CA, US

Frank Wiirthwein
fkw@ucsd.edu
University of California - San Diego
La Jolla, CA, US

High utilization and low user wait times are, however, often at
odds with each other, especially when user jobs require only a frac-
tion of the resources available in any compute node, either physical
or logical. Ideal packing of jobs may result in some classes of jobs
never being scheduled. Most resource schedulers thus balance job
priorities with resource utilization. It is in everyone’s interest to
keep resource utilization high, as that allows for most compute
jobs to complete over an extended period of time. There are many
ways to achieve that, both on the user and provider side, so proper
accounting of resource utilization and scheduling overhead is es-
sential for guiding the optimization process.

Accounting systems have been part of the batch ecosystem for
a long time, but they usually measure each resource type as an
independent metric. Different resource types, e.g., CPUs, GPUs,
memory and ephemeral storage, aka scratch space, are however not
independent. Every user job needs several of them, at the very least
some CPU cores and some amount of memory, and cannot be sched-
uled if any of them is not available. While independent-resource
accounting systems provide reasonable means to measure the usage
of such resources, they fall significantly short in characterizing the
scheduling overhead, i.e., why resources are not used at any point
in time.

We thus define the concept of a canonical unit, which we
use to define the true overhead, i.e., the per-node difference be-
tween available and allocatable resources. The canonical units are
expressed as integer numbers and are computed using a threshold-
based combination of all the resources of interest to the cluster
operator. We then proceed to describe how these concepts help
understand both scheduling trade-offs and improve the billing poli-
cies.

Note that the exact definition of a canonical unit is not prescribed
and may change between resource providers. Nevertheless, in this
paper we provide a template definition, alongside two example
definitions that we consider appropriate in the context of the Open
Science Grid (OSG) [3], one for CPU-only nodes and one for GPU
nodes.

Finally, we want to clarify that our main focus was in the context
of improving the accounting capabilities of OSG’s GRACC [4] in
the context of glideinWMS [5]. Nevertheless, the results presented
are general and should be applicable to many other systems and
deployments.

2 THE PARTIAL NODE SCHEDULING
PROBLEM

In recent years compute hardware has become faster mostly by
means of adding parallelism, with relatively minor improvements
in single threaded performance. While it is still possible to buy
and operate CPUs with only a few cores, many-core CPUs and

https://orcid.org/0000-0002-1254-8570
https://orcid.org/0000-0002-9308-5327
https://orcid.org/0000-0001-5912-6124
https://doi.org/10.1145/3569951.3597574
https://doi.org/10.1145/3569951.3597574
https://doi.org/10.1145/3569951.3597574
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3569951.3597574&domain=pdf&date_stamp=2023-09-10

PEARC °23, July 23-27, 2023, Portland, OR, USA

massively parallel accelerators, like GPUs, provide a more cost
effective solution.

Unfortunately, parallel software development is non trivial [2], so
a large fraction of scientific applications cannot make effective use
of all the resources in such beefy nodes. In order to properly support
such applications, the batch scheduling system has to partition the
node among several independent user jobs.

There are several possible ways to partition nodes, each with its
own benefits and drawbacks:

(1) At one extreme, one can procure identical hardware, evenly
partition each physical node in many smaller logical nodes
and then schedule such logical nodes as indivisible units. The
major drawback of such system is the inability of properly
serving large memory and parallel-ready applications, as
there are no large logical nodes in the system.

(2) At the other extreme, one can allow for nodes of different
sizes and partition each node during the matchmaking stage.
This maximizes the flexibility of the system during the boot-
strap phase, but can fast result in sufficient fragmentation
that only the smallest jobs ever get matched. One thus has
to employ at the node-level advanced scheduling techniques,
like reservations, typical of many-node HPC deployments
[1].

(3) The glideinWMS system employs an in-between solution. In
simplified terms, it periodically partitions the nodes using
one of the few pre-set configurations with a well defined
lifetime, based on the current needs of the jobs in the queues.
Those partitions are then further split as-needed during the
matchmaking phase, with the remaining logical node lifetime
being the only hard limit. As a side effect of this policy, the
system performs a forced defragmentation at each higher-
level partitioning interval.

In a typical multi-user environment, where queued jobs span a
wide range of requirements in multiple dimensions, all partitioning
schemes will result in some unused resources at least part of the
time. In the first extreme, it will be due to over-provisioning of
resources compared to job needs, due to the rigid nature of the re-
source splitting. In all other cases, the resources will be occasionally
idled due to scheduling constraints. Given the many scheduling
options, it is desirable to properly understand this resource under-
utilization, a.k.a the scheduling overhead.

Note that we are strictly restricting ourselves to the difference
between the sum of job requirements and available resources. We do
not consider the actual use of those resources by the processes inside
the user jobs themselves. While we acknowledge that’s important,
too, it is outside the scope of this document.

The currently typical accounting practice is to keep track of
each resource allocation separately and to average the values over
many nodes. While this does provide a great metric for how effec-
tively those resources are being used, it does not provide enough
information about the causes of the scheduling overhead.

The main problem of existing accounting systems is their in-
ability to discriminate between situations where only a subset of
resources on a node is underutilized and situations where all of the
resources on a node are under-utilized. Since jobs need all of their
requirements to be satisfied in order to run, keeping at least one

289

Fabio Andrijauskas, Igor Sfiligoi, and Frank Wiirthwein

resource type fully utilized at all times may be the best we can aim
for. For example, as shown in Figure 1, if the users have only a mix
of big-memory few-thread jobs and large-thread small-memory
jobs, it may be perfectly legit that some nodes have all memory in
use but only a few cores busy, while the others have all the cores in
use but a large fraction of the memory is not in use. What we want
to avoid is having both some cores and some memory unallocated
at the same time. Unfortunately, an accounting system measuring
CPU core and memory allocations independently at the cluster
level does not provide such insight.

Acceptable
Memor Memory
TTT T T TT T FTTTTTTT T
2 2
8[C S[C
D o)
ol ol
O|— O —
Memor ory
LI I e I rFrrrrrrrrri
n— (28 ol
oL Q=
8 S[C
o J S o)| SN
ol ol
O |— O |—
o mory
T T T TTTITrrIda TTTTTTTTTTT
() N —
g O
8 8=
) -
o ol
@) O—
Wasteful
o Memory
T TTTT T TTT1 FTTTTTTrTTT
8= o=
3[C 8[C
| o J S
2 2
O |— O |—

Figure 1: Examples of partial node occupancy.

3 DEFINING THE CANONICAL UNIT

In order to address the problem outlined in the previous section,
we thus define the concept of a "canonical unit", which we will use
as the largest discreet count representing "true overhead", i.e., the
per-node difference between available and allocated resources. The
canonical units are expressed as integer numbers and are computed
using a threshold-based combination of all the resources of interest
to the cluster operator.

Defining a canonical unit for accounting purposes

Note that we do not provide a prescribed way to define the thresh-
olds, leaving that to the discretion of the cluster operator, and even
allowing for different thresholds to be used for different partitions
of the cluster. While we acknowledge that this will make compari-
son between different clusters almost impossible, we believe such
flexibility is needed to maximize the insight a cluster operator gets
and to make the concept future-proof. Furthermore, nothing pre-
vents a cluster operator to account using different canonical unit
thresholds, e.g., one targeted and one more standardized, so in the
following sections we propose a few example threshold definitions
that we will consider for future more formal standardization.

Nevertheless, in order to make the text more readable, we use a
specific thresholds of "1 CPU core and 2 GB of memory" in Figure
2 to present a few examples:

o In the case where either all CPU cores or all memory of a
node is allocated, we treat that node as having 0 canonical
units of true overhead.

o In the case of a node where there are 3 CPU cores and 1 GB
of memory that have not been allocated to jobs, we treat that
node still as having 0 canonical units of true overhead. lLe.,
we ignore any leftovers that do not meet the thresholds.

o In the case of a node where there are 3 CPU cores and 4 GB
of memory that have not been allocated to jobs, we treat
that node as having 2 canonical units of true overhead. lLe.,
we stop once all the memory is allocated.

e In the case of a node where there are 3 CPU cores and 7 GB
of memory that have not been allocated to jobs, we treat
that node as having 3 canonical units of true overhead. Le.,
we stop when all the CPU cores are in use.

GBs of RAl GBs of RAM GBs of RAM
U)IIIIIIIIIU)IIIIIIIIIU)IIIIIIIII
< o o
S S o
= = g
O — O O

All cores in use AllRAM inuse 3 cores+ 1 GB left

0 units left 0 units left 0 units left

GBs of RAM GBs of RAM

(/] rrrrrrrrt [7)] TTTTTTTTT

o= o —

8= gk

= o=
: - [.

O_ O: =

3 cores + 7 GB left
3 units left

3 cores + 4 GB left
2 units left

Figure 2: Example use cases of true overhead using canonical
units, using "1 CPU core and 2 GB of memory" as the canoni-
cal unit thresholds.

290

PEARC ’23, July 23-27, 2023, Portland, OR, USA

3.1 Interpreting true overhead accounting

Using the canonical unit-based true overhead for accounting, it is
easy to see that only the last two example scenarios are undesir-
able. The same cannot be said for traditional, independent resource
accounting, which would have flagged all of them as undesirable.

The difference is even more pronounced when looking at ag-
gregate values across many nodes. In the context of Figure 2, the
traditional, independent resource accounting systems would be
unable to distinguish between a mix of the top use cases and a mix
of the bottom use cases, unlike a canonical unit-based true overhead
accounting system.

To maximize the interpretative power of canonical unit-based
true overhead accounting systems we also recommend the use of
histograms for aggregation purposes. On top of a pure quantita-
tive metric, a true overhead histogram would also allow for cross
correlation with job queues, enabling detection of situations where
resources are under-utilized while there are eligible jobs waiting
to be run. The same would be much harder to achieve using the
independent resource accounting, due to the interpretabillity limits
of multi-dimensional histograms.

As an example, the two bottom use cases in Figure 2 should ide-
ally only happen when there are no jobs waiting in the queues that
request less than 2 CPUs and 4 GB of memory, i.e. 2 canonical units.
If instead we can find such jobs, that would indicate scheduling
overhead that is likely tied to advanced scheduling throttles, like
reservations and defragmentation.

Note that we intentionally avoid the topic of job queue moni-
toring and accounting implementation. While they likely would
benefit from incorporating the notion of canonical unit, we consider
that topic outside the scope of this paper, although we may address
it in future research.

3.2 Usage accounting and true overhead
accounting interplay

The proposed canonical unit is essential for proper accounting of
true overhead, but cannot be used for resource usage accounting.
As mentioned in the previous section and in the examples, most
systems serve jobs that have a wide range of requirements, some
large in one dimension, others in a completely different one, mak-
ing them a bad fit for the rigid canonical unit framework. We are
thus not proposing any changes to the resource usage accounting
systems.

Moreover, we envision resource usage accounting systems to
coexist with the true overhead accounting systems, as they provide
complementary benefits. While a true overhead accounting system
provides insight into scheduling overhead proper, the main goal of
any batch system operator would still be to maximize the resource
usage for all the available resources.

3.3 Using true overhead for billing purposes

Most batch system operators charge their users for the resources
they consume, using a combination of allocations, priorities, quo-
tas and/or monetary compensation. When nodes cannot fully be
utilized due to a mismatch between hardware procurement and job
request strategies, someone has to take a loss.

PEARC °23, July 23-27, 2023, Portland, OR, USA

Using a pure resource usage accounting system users are only
charged for the resources that they requested, so the loss is fully
shouldered by the resource providers, since any leftovers logically
just go to waste. While users arguably like this situation, it may not
be considered fair by resource providers, as they may be foregoing
ideal packing to improve user experience in the form of lower
latencies and proper fair-share scheduling.

An alternative billing strategy is to always charge the cost of the
whole node to the users whose jobs run there, no matter how many
resources were requested by those jobs. While this strategy would
be ideal for resource provides, it is arguably not fair to the users, as
scheduling policies and related overheads are outside their control
sphere.

We thus define an intermediate billing scheme that we believe is
fair to both users and resource providers. In this alternate billing
scheme, the true overhead of each node is never charged to the
users, i.e. it is realized as a loss by the resource providers. Whatever
remains is then proportionally charged to the users whose jobs run
on that node.

As en example, let’s consider the jobs in Figure 2:

e In the top leftmost use case, there is no true overhead as all
CPUs are in use. But 30% of the memory was not requested.
So the two jobs will be billed for CPUs at 100% rate and for
memory at 143% rate (%).

o Similarly, the next use case to the right has no true overhead,
but 50% of the CPU cores are unused. The two jobs will thus
be billed for CPUs at 200% rate and for memory at 100% rate.

e The bottom rightmost use case has 3 canonical units of true
overhead, so those 3 CPU cores and 6 GBs of memory will
not be considered for billing purposes. That still leaves 10%
of unused memory, so the job will be billed for CPUs at 100%
rate and for memory at 111% rate (%).

We believe the above billing scheme is fair for the resource
providers, as they can control true overhead through provisioning
and scheduling policies.

And even though users may get charged more than what they
requested, we believe the billing is still fair to the users, assuming
that the billing policy was properly disclosed. The billed resources
do not include a scheduling overhead and have a tangible cost to
the resource providers, so we believe that it is fair to ask users to
pay for them. At fixed true overhead, resource providers do not
benefit from different packing mechanisms, so we argue that it is
fair to proportionally spread the cost among all running jobs.

4 TWO CANONICAL UNIT DEFINITIONS
APPLICABLE TO THE OPEN SCIENCE GRID

Based on our experience, resource providers typically procure hard-
ware using a balanced approach between different resource types.
The canonical unit thresholds should thus represent such procuring
logic.
In the Open Science Grid (OSG) communities, the two currently
most popular procurement strategies seem to be:
e For CPU-only nodes, procure 2 GB of memory for each CPU
core.
e For GPU nodes, procure as many GPUs that fit in the node,
with everything else being almost an afterthought.

291

Fabio Andrijauskas, Igor Sfiligoi, and Frank Wiirthwein

This thus translates in two distinct definitions of canonical unit
thresholds for the two partitions:

(1) For CPU-only nodes, we suggest using "1 CPU core and 2
GB of memory" as canonical unit thresholds.

(2) For GPU nodes, we suggest using "1 GPU chip" as the only
canonical unit threshold.

5 SUMMARY AND CONCLUSION

Understanding scheduling overhead in partial node scheduling se-
tups is highly desirable, as it can help improve resource utilization
without excessively affecting user experience. Traditional account-
ing systems do not provide the necessary information, so we pro-
pose a complementary accounting system based on the threshold-
based multi-resource canonical unit.

The main problem of existing accounting systems is their in-
ability to discriminate between situations where only a subset of
resources on a node is underutilized and situations where all of the
resources on a node are under-utilized. Since jobs need all of their
requirements to be satisfied in order to run, keeping at least one
resource type fully utilized at all times may be the best we can aim
for.

The canonical unit is the largest discreet count representing
true overhead, i.e., the per-node difference between available and
allocated resources. The canonical units are expressed as integer
numbers and are computed using a threshold-based combination of
all the resources of interest to the cluster operator. Those thresholds
are not prescribed and may vary between partitions of a cluster,
although we do provide a couple example threshold definitions that
we believe are applicable to OSG communities.

Canonical unit-based accounting systems can easily spot situa-
tions where multiple resource types are unused at the same time,
thus both guiding optimizations of scheduling policies on existing
resources and procurement of new resources.

The use of the canonical unit can also improve the fairness of
resource billing schemes, properly distributing the cost of under-
utilization between users and resource providers.

ACKNOWLEDGMENTS

This work was partially supported by the National Science Founda-
tion (NSF) grant OAC-2030508.

REFERENCES

[1] M Jette, C Dunlap, J Garlick, and M Grondona. 2002. SLURM: Simple Linux Utility
for Resource Management. https://www.osti.gov/biblio/15002962

[2] John L. Manferdelli, Naga K. Govindaraju, and Chris Crall. 2008. Challenges
and Opportunities in Many-Core Computing. Proc. IEEE 96, 5 (2008), 808-815.
https://doi.org/10.1109/JPROC.2008.917730

[3] Ruth Pordes, Don Petravick, Bill Kramer, Doug Olson, Miron Livny, Alain Roy,
Paul Avery, Kent Blackburn, Torre Wenaus, Frank Wiirthwein, Ian Foster, Rob
Gardner, Mike Wilde, Alan Blatecky, John McGee, and Rob Quick. 2007. The
open science grid. Journal of Physics: Conference Series 78 (jul 2007), 012057.
https://doi.org/10.1088/1742-6596/78/1/012057

[4] K Retzke, D Weitzel, S Bhat, T Levshina, B Bockelman, B Jayatilaka, C Sehgal, R
Quick, and F Wuerthwein. 2017. GRACC: New generation of the OSG accounting.
Journal of Physics: Conference Series 898, 9 (oct 2017), 092044. https://doi.org/10.
1088/1742-6596/898/9/092044

[5] Igor Sfiligoi, Daniel C. Bradley, Burt Holzman, Parag Mhashilkar, Sanjay Padhi,
and Frank Wurthwein. 2009. The Pilot Way to Grid Resources Using glideinWMS.
In 2009 WRI World Congress on Computer Science and Information Engineering,
Vol. 2. 428-432. https://doi.org/10.1109/CSIE.2009.950

https://www.osti.gov/biblio/15002962
https://doi.org/10.1109/JPROC.2008.917730
https://doi.org/10.1088/1742-6596/78/1/012057
https://doi.org/10.1088/1742-6596/898/9/092044
https://doi.org/10.1088/1742-6596/898/9/092044
https://doi.org/10.1109/CSIE.2009.950

	Abstract
	1 Introduction
	2 The partial node scheduling problem
	3 Defining the Canonical Unit
	3.1 Interpreting true overhead accounting
	3.2 Usage accounting and true overhead accounting interplay
	3.3 Using true overhead for billing purposes

	4 Two canonical unit definitions applicable to the Open Science Grid
	5 Summary and conclusion
	Acknowledgments
	References

