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Abstract

Accretion of debris seems to be the natural mechanism to power the radiation emitted during a tidal disruption
event (TDE), in which a supermassive black hole tears apart a star. However, this requires the prompt formation of
a compact accretion disk. Here, using a fully relativistic global simulation for the long-term evolution of debris in a
TDE with realistic initial conditions, we show that at most a tiny fraction of the bound mass enters such a disk on
the timescale of observed flares. To “circularize” most of the bound mass entails an increase in the binding energy
of that mass by a factor of ∼30; we find at most an order-unity change. Our simulation suggests it would take a
timescale comparable to a few tens of the characteristic mass fallback time to dissipate enough energy for
“circularization.” Instead, the bound debris forms an extended eccentric accretion flow with eccentricity ;0.4–0.5
by ∼two fallback times. Although the energy dissipated in shocks in this large-scale flow is much smaller than the
“circularization” energy, it matches the observed radiated energy very well. Nonetheless, the impact of shocks is
not strong enough to unbind initially bound debris into an outflow.

Unified Astronomy Thesaurus concepts: Black hole physics (159); Galaxy nuclei (609); Gravitation (661);
Hydrodynamics (1963); Stellar dynamics (1596)

1. Introduction

A tidal disruption event (TDE) takes place when a star that

has wandered into the vicinity of a supermassive black hole

(SMBH) is torn apart by the SMBH’s gravitational field. About

half of the stellar mass is left unbound and is ejected to infinity,

while the other (bound) half returns to the vicinity of the BH.

The end result is a flare of optical/UV, X-ray, and, at times,

radio emission.
During the last decades, TDEs have transformed from a

theoretical prediction (Hills 1988; Rees 1988) to an observa-

tional reality (Gezari 2021). With the use of numerous

detectors, ranging from ROSAT (and now eROSITA) in

X-rays to GALEX in the UV, and multiple telescopes in the

optical band, including systematic surveys like the Sloan

Digital Sky Survey (Blanton et al. 2017), ASAS-SN (Shappee

et al. 2014), Pan-STARRS (Kaiser et al. 2002), and, more

recently, the Zwicky Transient Facility (Bellm et al. 2019),

more than a hundred TDEs have now been detected. Upcoming

observations with the Rubin Observatory will provide an

overwhelming amount of data in the near future.
Although TDEs are of great interest in their own right, their

properties offer a wide range of opportunities to learn about

other astrophysical questions. They can reveal quiescent

SMBHs and possibly permit inference of their masses. They

present otherwise unobtainable information about nonsteady

accretion onto SMBHs and the conditions for jet launching. In

addition, understanding the rates of TDEs would reveal

valuable information concerning the stellar dynamics in galaxy
cores.
Early theoretical predictions pointed out that the bound

debris returns to the BH at a rate ∝t−5/3
(Rees 1988;

Phinney 1989). It was then speculated that, having returned,
matter quickly forms a disk whose outer radius is comparable
in size to the pericenter of the star’s original trajectory. With
such a small scale, the inflow time through the disk should be
so short that the light emitted by the disk would follow the
matter fallback, i.e., likewise at a rate ∝t−5/3. With a
characteristic temperature ∼105–106K, the emitted light would
be in the far-UV/EUV or soft X-ray band, and the peak
luminosity would be much larger than Eddington.
However, the observed luminosity rarely reaches the

Eddington luminosity for the expected SMBH masses. In
addition, when more TDEs were discovered in the optical, it
was realized that typical temperatures are a few 104K
(Gezari 2021), implying that the radiating area is much larger
than that of a small disk whose radial scale is similar to the
star’s pericenter. Moreover, the total energy radiated during the
flare period is generally 2 orders of magnitude smaller than the
energy expected if half the stellar mass had been efficiently
accreted onto an SMBH. In fact, it is an order of magnitude
smaller than the “circularization” energy that would have been
emitted during the initial formation of the small disk
envisioned. That the radiated energy is so small is sometimes
called the “inverse energy crisis” (Piran et al. 2015; Svirski
et al. 2017).
A possible explanation for the low luminosity and low

temperatures observed is that the energy produced by the
accretion disk is reprocessed by a radiation-driven wind ejected
from the disk itself (Strubbe & Quataert 2009). If this wind
carries a significant kinetic energy, it would also resolve the
“inverse energy crisis” (Metzger & Stone 2016; see, however
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Matsumoto & Piran 2021). An alternative possibility is that
matter does not circularize quickly and most of the observed
emission arises from self-intersection shocks at the apocenter
(Piran et al. 2015; Shiokawa et al. 2015; Krolik et al. 2016).
These shocks, which are expected to be strong at and shortly
after the time of maximum mass return, take place at
;O(103)rg from the BH (rg≡GM•/c

2 for BH mass M•) and
are consistent with the observed luminosity, temperature, line
width, and total energy generated (Ryu et al. 2020a).

The long-term fate of bound debris is less clear. Because it is
created on highly eccentric orbits, with only a small further
diminution in angular momentum, it may be able to fall directly
into the BH, releasing very little energy (Svirski et al. 2017).
Alternatively, when there has been time for the magnetorota-
tional instability (MRI) to build strong magnetohydrodynamic
(MHD) turbulence and for the gas to lose energy to radiation,
the debris may accrete gradually, while radiating efficiently
(Shiokawa et al. 2015).

Although it may be possible by observational means to
determine whether one of these two different scenarios occurs,
numerical simulations of the disruption and subsequent
accretion process may provide an alternative way to resolve
this issue. However, such simulations are hindered by the
extreme contrasts in the length and timescales involved.
Adding fully relativistic features that are critical for some of
the physics ingredients also poses technical challenges.

Aiming to clarify the many questions regarding the evolution
of the bound debris’ energy, angular momentum, and location,
in this work we present a fully relativistic numerical simulation
of a complete tidal disruption of a realistic 3Me star by a
105Me SMBH, in which we follow the system long enough to
see the majority of the bound mass return to the BH. Several of
these features have never previously appeared in a global TDE
simulation: a fully relativistic treatment, both in hydrodynamics
and stellar self-gravity; a main-sequence internal structure for
the star’s initial state; and its long duration. Our simulation
scheme does not include time-dependent radiation transfer;
instead, we make the approximation (for our parameters, well
justified for most of the debris mass) that the radiation pressure
is the value achieved in LTE and does not diffuse relative to
the gas.

The structure of the work is as follows: we define the
physical problem and present our numerical scheme in
Section 2. We discuss the results in Section 3 and their
implications in Section 4. In this latter section, we also compare
our results to previous work. We conclude in Section 5, where
we also discuss the possible observational implications of
this work.

2. The Calculation

2.1. Physics Problem

To provide a context for our choice of numerical methods
and parameters, we begin with a brief discussion of our
problem’s overall structure. We begin with a 3Me star (radius
Rå= 2.4 Re), whose internal structure is taken from a
MESA (Paxton et al. 2011) evolution to middle age on the
main sequence, the age at which the hydrogen mass fraction in
its core has fallen to 0.5. The star (initially placed at r; 900 rg
from the BH) approaches an SMBH of M•= 105Me on a
parabolic orbit with a pericenter distance of rp; 110 rg, just
close enough to be fully disrupted. Although the nominal tidal

radius r R M Mt •
1 3( )=   is ;370 rg for this BH mass and

stellar mass, the critical distance within which a star is fully
disrupted is given by Ψ(M•, Må

)rt, where the order-unity factor
Ψ encodes general relativistic corrections through its M•

dependence and stellar structure corrections through its Må

dependence (Ryu et al. 2020b).
As the star passes through pericenter, it begins to be torn

apart; the process is complete by the time its center of mass
reaches ∼7500rg. During the debris’ first orbit, its trajectory is
ballistic, with specific orbital energy E and specific angular
momentum J very close to that of the star’s center of mass.
Immediately after the disruption, the distribution of mass with
energy dM/dE is roughly a square wave and is approximately
symmetric with respect to E= 0. Although order-of-magnitude
arguments suggest that the half-width of the energy square
wave GM R r• t

2eD  , Ryu et al. (2020b) showed that this
estimate should be multiplied by an order-unity correction
factor Ξ(M•, Må), which depends on both M• and Må,
as it accounts for both relativistic and stellar internal structure
effects. For our parameters, Ξ≈ 1.64, so the energy half-width
is
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vicinity of the SMBH. The maximal mass return rate occurs
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The different scales involved are why the problem is a
difficult one for numerical simulation. Fluid travels through
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regions where the characteristic scale on which gravity changes
runs from ∼rg to ∼104rg, while the structure of the star varies
on a scale that is a fraction of R

å
∼ 15rg. Similarly, the

characteristic dynamical timescale ranges from ∼rg c
–1 to

∼106rg c
–1.

2.2. Code

To treat this problem, we perform a fully relativistic global
hydrodynamics simulation using a software package compris-
ing three core codes: PATCHWORKMHD (M. Avara et al., in
preparation), HARM3D (Noble et al. 2009), and a relativistic
self-gravity solver (Ryu et al. 2020c).

We use the intrinsically conservative general relativistic
MHD code HARM3D (Noble et al. 2009) to solve the equations
of relativistic pure hydrodynamics. This code employs the
Lax–Friedrichs numerical flux formula and uses a parabolic
interpolation method (Colella & Woodward 1984) with a
monotonized central-differenced slope limiter. Because of its
robust algorithm, it has been used for studying a wide variety
of SMBH accretion problems (e.g., Noble et al. 2009, 2012;
Shiokawa et al. 2015; Ryu et al. 2020b, 2020c). We take
radiation pressure into account by setting the pressure
p kT m aT 34¯r= + when the internal energy density
u kT m aT3 2 4( ) ¯r= + . Here, ρ is the proper rest-mass
density, m̄ is the mass per particle, and T is the temperature.
We can then define an equation of state with an “effective
adiabatic index” (Shiokawa et al. 2015) that varies between
γ= 4/3 and 5/3, depending on the ratio of the gas pressure and
radiation pressure.

Our self-gravity solver is described in detail in Ryu et al.
(2020c). In brief, it constructs a metric valid in the star’s center-
of-mass frame by superposing the potential found by a Poisson
solver operating in a tetrad frame defined at the center of mass
on top of the metric for the BH’s Kerr spacetime described in
the center-of-mass frame. Because this is a compact freefall
frame, the spacetime for the star and its close surroundings is
always very nearly flat.

The large contrasts in length and timescales noted earlier
make such a computation prohibitively expensive if the entire
range of scales is resolved in a single domain. To overcome this
difficulty, we introduce multiple domains with PATCH-

WORKMHD (M. Avara et al., in preparation; first application
in Avara et al. 2023). PATCHWORKMHD is an extension of the
original purely hydrodynamic PATCHWORK code (Shiokawa
et al. 2018) that both enables MHD and introduces a number of
algorithmic optimizations. Both versions create a multiframe/
multiphysics/multiscale infrastructure in which independent
programs simultaneously evolve individual patches with their
own velocities, internal coordinate systems, grids, and physics
repertories. The evolution of each patch is parallelized in terms
of subdomains; where different patches overlap, the infra-
structure coordinates boundary data exchange between the
relevant processors in the different patches. A further extension
of PATCHWORKMHD, specialized to problems involving
numerical relativity, is described in Bowen et al. (2020).

2.3. Domain Setup

During the first part of a TDE, a star travels through
extremely rarefied gas as it traverses a nearly parabolic
trajectory around the BH. This situation is a prime example
of the contrasts motivating our use of a multipatch system: the

characteristic lengthscales inside the star are much smaller than
those in the surrounding gas; in addition, self-gravity is
important inside and near the star, but not in the remainder of
the volume. Consequently, during this portion of the event, we
employ PATCHWORKMHD and apply it to two patches: one
covering the star, the other covering the remainder of the
SMBH’s neighborhood. Once the star is fully disrupted, there
is no further need for the star patch, and it is removed, its
content interpolated onto a single remaining patch, which
evolves the entire region around the SMBH.

2.3.1. The Star’s Pericenter Passage—Two-patch Simulation

This first stage begins with the initial approach of the star to
pericenter and ends when the star’s center-of-mass trajectory
reaches a distance from the SMBH ;20rt. It ends here because
the star is then fully disrupted. During this stage, a rectangular
solid Cartesian domain denoted Domain1 covers the volume
around the star; it is completely embedded in a larger spherical
coordinate domain denoted Domain2 that ultimately covers a
large spherical region centered on the SMBH.
Following the methods described in Ryu et al. (2020c), in

Domain1 we follow the hydrodynamics of gas with self-gravity
in a frame that follows the star’s center of mass. Initially, the
domain is a cube with edge length 5R

å
and the cell size in each

dimension is ;Rå/25. The orientation of this box relative to the
BH is rotated during the disruption in order to follow the
direction of the bulk of the tidal flow, which is easily predicted
from Kepler’s laws. As the debris expands, the cube is
adaptively extended with constant cell size to keep the debris
inside the domain for as long as possible.
As the debris expands, a fraction of the debris crosses

smoothly from Domain1 to Domain2, where we continue to
evolve it under the gravity of the SMBH without any gas self-
gravity. For Domain2, we adopt modified spherical coordinates
in Schwarzschild spacetime. That is, if the code’s three spatial
coordinates are (x1, x2, x3), they can represent spherical
coordinates (r, θ, f) through the relations

r e

h x h x

x

,

0.5 1.0 1
2.0

,

, 6

x

h
1 2 1

0
2

3

1

2⎡
⎣

⎛
⎝

⎞
⎠

⎤
⎦

( )

q p
q
p

f

=

= + + - -

=

where h1 and h2 are tuning parameters that determine the

vertical coordinate structure (h1; 0.03 and h2; 9) and θ0 is

the angle from the polar axis to the θ-boundaries. In this

coordinate system, the radial grid cells have a constant ratio of

cell dimension to radius, and the θ grid cells are concentrated

near the midplane. This coordinate system is suitable for

modeling systems that involve a wide range of radial scales and

contain a disk-like structure near the midplane.
To be computationally efficient, instead of fixing the size and

the tuning parameters throughout the simulation, we flexibly
adjust the size and the resolution of Domain2 so that it is large
enough to contain the entire debris, but we do not waste cells
on regions where there is no debris. This strategy reduces the
computational cost by a large factor. To ensure proper
resolution during the period of flexible domain size, we require
at least 15–20 cells per scale height in all three dimensions. In
addition, at all times during the two-patch evolution, we keep
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the cell sizes in the overlapping regions of both domains
comparable.

At its largest extent, Domain2 runs from r r40min g= to
r r18,000max g= . The maximum radius is chosen to be greater
than the apocenter of debris that would return to the BH within
a time 4t0; our simulation ran for 3t0. The minimum radius was
chosen by balancing two opposing goals: minimizing the mass
lost through the inner radial boundary, while maximizing the
time step so as to limit computational expense. Similarly, when
Domain2 has its largest volume, the polar angle extends from
θ0= 2° to π− θ0= 178°. The azimuthal angle f covers a full
2π when Domain2 is largest.

We adopt outflow boundary conditions at all boundaries of
Domain2. All the primitive variables are extrapolated to the
ghost cells with zero gradients. However, to ensure outflow, if
the extrapolated normal component of the fluid velocity in the
ghost cells is directed inward, it is set to zero. When this
domain is maximally extended azimuthally, we provide
boundary conditions to the processor domains having surfaces
at f= 0 and f= 2π by matching those with the same radial
and polar angle locations.

We show in Figure 1 the density distribution of the star
before the pericenter passage (the top left of the four small
panels), during the passage (the top right) and the debris after
the passage (the bottom panels) in the equatorial plane in the
two-domain simulation. The cyan box demarcates the boundary
of Domain1. These figures demonstrate how, as the star is
disrupted, the stellar debris crosses smoothly the interpatch
boundary between Domain1 and Domain2.

2.3.2. Single-domain Simulation

When only a tiny fraction of the star’s original mass remains
within Domain1, self-gravity becomes irrelevant (measured in
the star center-of-mass frame, the acceleration throughout

Domain1 due to self-gravity is 10% of the tidal acceleration),
and gradients in gas properties are no longer connected with Rå.
We therefore remove Domain1 and continue the simulation
using only Domain2. In this stage, it takes its maximum extent.
Shocks caused by the stream–stream intersection dissipate

the orbital energy into thermal energy, which results in the
vertical expansion of streams. The vertical coordinate system
used for the early evolution (Equation (6)) is not suitable for
resolving gas at a large height, as the resolution becomes
increasingly crude as z increases. To better resolve the gas at
high z, we reduce the concentration of θ cells to the midplane,
while leaving the r and f grids untouched. To do this, we
redefine θ(x2):

b x a b x atanh tanh 0.5 , 72 2( [ ( )] [ ( )]) ( )q a p= - + + +

where α=−(0.5π− θ0)/[tanh(b(−0.5− a))+ tanh(b(−0.5+ a))].

Here, a and b are a set of tuning parameters that determine the

vertical structure. At this stage, we fix the domain extent of

r and f. But we keep adjusting the domain extent and the

resolution of the vertical structure flexibly, whenever it is

necessary, to ensure sufficiently high vertical resolution (at

least 20 cells per vertical scale height) by properly choosing the

cell number (within 80−120), θ0 (2°–15°) and the tuning

parameters (a; 0.32–0.34 and b∼ 9.8).

3. Results

3.1. Overview

The star becomes strongly distorted as it passes through the
pericenter (see Figure 1) and then falls apart entirely as it
travels farther away from the BH. When its entire mass has
been dispersed, the orbital energy distribution of the debris
dM/dE is not confined within the order-of-magnitude estimate
of the energy distribution’s width Δò; it is about twice as wide

Figure 1. Successive moments in a full TDE simulated using two domains: the density distribution of the star before (1) and after (2) the pericenter passage, and the
debris after the pericenter passage (3 and 4) in the equatorial plane. The yellow dot in the big left panel indicates the BH. The cyan boxes in the four right panels depict
the boundary of Domain1. Once the star is disrupted, we increase the size of the box (from 2 to 3) to keep the debris inside Domain1, where the self-gravity is
calculated as much as possible. The panels are not drawn to scale.
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and has extended wings (Figure 2). The mass of bound gas

(E< 0) is ;0.48M
å
, slightly smaller than that of the unbound

gas (;0.52Må). The energy at which the peak mass return rate

(Figure 3) occurs is E;−1.64Δò, or Ξ= 1.64. If we assume

the debris follows ballistic orbits, the energy distribution

presented in Figure 2 may be translated into a mass fallback

rate as a function of time (Figure 3). The mass return rate peaks

earlier, by a factor of |Ξ|−1.5
; 0.5, than the traditional order-

of-magnitude estimate predicts, and the maximal fallback rate

is greater by a factor ;2.5.
After the bound debris goes out through its orbital apocenter

and returns to the region close to the BH, it undergoes multiple

shocks (initially near pericenter and apocenter) and finally

forms an eccentric flow, as illustrated in Figure 4 (see

Section 3.3 for more details).7 Near pericenter, strengthening

vertical gravity and orbital convergence compress the returning
debris, creating a “nozzle” shock (as predicted by Evans &
Kochanek 1989) visible at t 0.5t0. Over time, the shocked gas
becomes hotter and thicker. On the way to apocenter, the gas
cools adiabatically.8 Near apocenter, the previously shocked
outgoing debris collides with fresh incoming debris, creating
another shock (the “apocenter” shock). Previously shocked gas
close to the orbital plane is deflected inward toward the BH,
while the portion farther from the plane is deflected above and
below the incoming stream (see Section 3.4). These deflections
broaden the angular momentum distribution. A small part of
the debris loses enough angular momentum that it acquires a
pericenter smaller than the star’s pericenter. Other gas gains
angular momentum, which results in the nozzle shock front
gradually extending to larger and larger radii.

At t; (1− 2)t0, the debris in the apocenter region undergoes

a dramatic transition in shape, from well-defined incoming and

outgoing streams to an extended eccentric accretion flow. By

the time the return rate of the newly incoming debris declines,

the mass that had arrived earlier becomes large enough to

significantly disrupt the newly incoming debris’ orbit. The

space inside the apocenter region is then quickly filled with gas.

The outcome is an extended eccentric accretion flow

(e; 0.4− 0.5 at t; 3t0), most of whose mass resides at radii

∼103− 104rg (see Figure 5). At t; 3t0, only 2–3× 10−2
Me

can be found inside 2rp. By contrast, from t≈ t0 onward, nearly

all the thermal energy is found at small radii, a condition that

has consequences for the time dependence of escaping

radiation. Throughout the volume occupied by the debris,

radiation pressure dominates: it is generally larger than gas

pressure by a factor ∼103–104.
In other words, circularization is not prompt: the flow retains

significant eccentricity, and the great majority of the gas

remains at a distance 103–104rg? rp even after several

characteristic timescales. That this is so can also be seen from

another point of view. At t; 3t0, the total amount of dissipated

energy is only 10% of the energy, Ecirc≡GM•/4rp, required for
the debris to fully “circularize” into a compact disk on the

commonly expected radial scale of 2rp. Extrapolating this slow

energy dissipation rate to late times suggests that true

“circularization” would take a few tens of t0. As we will

discuss in detail in Section 4.1, the total dissipation rate is

roughly constant with time from t; 0.5t0 until the end of our

simulation at t; 3t0. Thus, there is no runaway increase in

dissipation of the sort suggested by Steinberg & Stone (2022).
The shocked gas expands outward quasi-symmetrically

(Figure 6). Because the intrinsic binding energy of the debris

is much smaller than Ecirc, the dissipated energy is large enough

to be comparable to the specific orbital energy. As a result, the

expanding material is marginally bound. The radial expansion

speed of the gas near the photosphere (r; 7000–10,000rg;

Figure 7) at t; 3t0 is 0.005–0.01c; 1500–3000 km s−1; the

associated specific energy is 10−4c2, comparable to the

intrinsic energy scale, ΔE.
Although we do not incorporate radiation transfer into the

simulation, we estimate the luminosity in post-processing (see

Section 3.6). The bolometric luminosity rises to

(6− 7)×1043 erg s−1 in t; t0; its effective temperature on the

photosphere is generally close to ∼2× 105K.

Figure 2. The energy distribution of debris at t ; 0.4t0. The vertical dashed
line (E/Δò = Ξ ; −1.64) shows the characteristic energy at which the fallback
rate peaks (see Figure 3).

Figure 3. The mass fallback rate M , using the energy distribution shown in

Figure 2. The rate and time are normalized by M M t30 0
 =  and t0,

respectively. The horizontal dashed line indicates the Eddington limit with
radiative efficiency of 0.01 and the diagonal dashed line a power law of t−5/3.

7
The density fluctuations visible in newly returning matter are likely

numerical artifacts; they are erased by the first shock the gas encounters and
have no subsequent influence.
8

We ignore here the effect of recombination, as this energy is negligible
compared with the orbital energy: even at apocenter, the ratio of gas kinetic
energy to recombination energy is ∼(GM*/R*)/Erecomb ∼ O(100).
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3.2. Formation of Shocks

It is convenient to divide the multiple shocks by approximate
location: pericenter or apocenter. The compression and heating
of the gas near the pericenter are depicted in detail in Figure 8.
When the incoming stream is narrow and well defined (the two
upper panels at t t0), the nozzle shock structure can be
described in terms of two components. As the different portions
of the returning stream converge, adiabatic compression raises
the temperature at the center of the stream. The shock itself
runs more or less radially across the stream, extending both
inward and outward from the stream center. However, at later
times (beginning at t t0), the structure becomes more
complex. The matter that has been deflected onto lower
angular momentum orbits circulates in the region inside rp and
develops a pair of nearly stationary spiral shocks. The shock
closest to the position of the nozzle shock stretches
progressively farther outward, reaching ∼2000rg by t; 2t0 (see
Figure 4). However, while the shock extends to greater radii, it
also loses strength. A similar progressive widening and
weakening of the nozzle shock was found by Shiokawa et al.
(2015).
Outgoing previously returned matter intersects the path of

newly arriving matter in the apocenter region because a
combination of apsidal rotation due to the finite duration of the
disruption and relativistic apsidal precession causes earlier and
later stream orbits to be misaligned (Shiokawa et al. 2015).
When the apocenter shock first forms, it is relatively close to
the BH (1000rg), because the very first debris to return has
orbital energy more negative than −ΔE. As the mass return
rate rises, its orbital energy also increases, so the debris
apocenter moves outward. However, even at t ; t0, when the
shock is located at r; 6000rg, it is found closer to the BH than
the apocenter distance corresponding to E=−ΔE, because the
outgoing stream has lost orbital energy to dissipation in the
nozzle shock. At still later times, the apocenter shock moves
farther inward, as the mean energy of the previously shocked
matter decreases further.
Some of the outgoing material, upon collision with the

incoming stream, is deflected both horizontally and vertically.
In the left panel of Figure 9, we show the temperature

Figure 4. The density distribution around the BH excision (yellow dot) in the
equatorial plane at four different times, t/t0 = 0.5, 1, 2, and 3. The extent of the
inset is 500rg.

Figure 5. Accumulated mass normalized by Må as a function of the distance
from the SMBH at t/t0 ; 0.5, 1, 2, and 3. The dashed black vertical line
indicates the pericenter distance of the original stellar orbit. The mass expelled
through the radial inner boundary at r = 40rg is included as if the accreted mass
is confined within r = 40rg.
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distribution in the equatorial plane at t ; t0. In the right panel,
one can see a clear boundary between the incoming stream
(with temperature T; 105K) and the outgoing stream (with
T 3× 105K). At this boundary, the outgoing stream is
deflected toward the SMBH.

The two panels of Figure 9 also reveal that, just as found in
Shiokawa et al. (2015), the apocenter shock splits into two
(called shocks 2a and 2b by Shiokawa et al.). Shock 2a occurs
where the outgoing stream encounters the incoming stream,
while shock 2b (visible in these figures as the surface on which
the outgoing gas temperature rises from ;3× 105K to
;1× 106K) occurs where one portion of the outgoing gas
catches up with another portion that has been decelerated by
gravity.

3.3. Debris Orbit Evolution

Undergoing multiple shocks, the debris becomes less
eccentric and thicker both in the orbital plane and vertically.
To be more quantitative, in Figure 10, we present the
spherically mass-weighted averages of E/Ecirc, angular
momentum l, eccentricity e, and the aspect ratio of the debris
h/r as functions of r at t/t0= 0.5, 1, 2, and 3. At t= 0.5t0, only
the debris with |E| 3Δò has returned or is returning, which
means only a few 10−2Me is within 4000rg, the apocenter
distance for |E|= 3Δò. At this point, the majority of the mass
within 4000rg is unshocked incoming debris; only the earlier
returned outgoing debris has been shocked once near the
pericenter. Consequently, all the mass-weighted quantities
primarily reflect the properties of the newly incoming gas. The
debris at rp r< 4000rg has |E|; 3Δò; 0.1Ecirc and angular
momentum very close to that of the original stellar orbit, giving
an eccentricity of almost unity: 1− e 0.06. Similarly, the
aspect ratio of the debris is ;0.2, comparable to the value
implied by Rå/rp; 0.1. At 0.5 t/t0 1, the shocks begin to
dissipate more energy. This results in a small fraction of the gas
dropping to orbital energy ∼− Ecirc and orbiting within rp.

However, the global orbital properties of the debris (r rp)
remain largely unchanged. By the second half of the
simulation, enough orbital energy has been dissipated to
reduce the orbital period of much of the gas by a factor of order
unity (i.e., as previously noted, the dissipated energy becomes
comparable to the orbital energy). The result is a structure close
to virialization: the mean orbital energy as a function of radius
is ≈−GMBH/2r.
A similar evolution occurs in the radial distribution of

angular momentum l. Until t; t0, the specific angular
momentum for nearly all the gas is essentially the same as
that of the star. At later times, however, the shocks have greatly
broadened the angular momentum distribution, and the gas has
sorted itself with higher angular momentum material located at
larger radii. It is, in fact, this broadening of the angular
momentum distribution that leads to the outward radial
extension of the nozzle shock noted in the previous subsection.
The combined changes in E and l lead to a decrease in
eccentricity from 0.8–0.9 at t; t0 to 0.4–0.5 at t; 2t0. The
aspect ratio changes rather little with time over the entire inner
region, r 2000rg: it rises only from ;0.2 to ;0.5. At larger
radii, it rises from ∼10−2 immediately after the disruption to
;0.5; like the inner region, this is accomplished by t; 2t0.
As mentioned in Section 3.1, progress toward circularization

can be thought of in terms of the rate at which orbital energy is
converted into thermal energy. Evaluating this rate in units of
Ecirc and t0 gives a measure of the circularization “efficiency”:

dU dt

M E t
. 8

gas rad

gas circ 0

∣ ∣
( )h º +

Here, Ugas+rad is the total thermal (gas + radiation) energy,

including thermal energy that has been carried out of the

simulation domain by gas flows; from t; 0.5t0 onward, its rate

of change is roughly constant at ;1.4× 1044 erg s−1,

integrating to total thermal energy ;2.2× 1050 erg at the end

of the simulation. Mgas is the total gas mass in the domain at

Figure 6. The azimuthally integrated density distribution at t/t0 = 0.5, 1, 2, and 3.
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Figure 7. The location of the thermalization photosphere (magenta curves) as seen by a distant observer plotted over the density distribution at f = 0 at t/t0 = 1, 2,
and 3 (top panels) and at f = 90°, 180◦, and 270◦ at t/t0 = 3 (bottom panels). We define the thermalization optical depth as t fft t , for τT (τff) the Thomson
(absorption) optical depths integrated radially inward from the outer boundary.
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Figure 8. The density (left panels) and temperature (right panels) distribution near the BH (yellow dot) at four different times. Note the stationary spiral shock
structure that appears around 2t0.
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r< 104rg. Conveniently, the mass within this region stays very

nearly constant over the duration of the simulation (see the top

panel of Figure 5), so the total rate of thermal energy creation is

very close to directly proportional to η. This “circularization

efficiency” as a function of time is shown in Figure 11.9 η rises

very rapidly during the time from t; 0.5t0 to t;t0, quickly

reaching a maximum ∼0.03. However, from t; t0 to the end of

the simulation, its value remains very nearly flat. If it were to

stay at that level until circularization was complete, the process

would take ;30t0.

3.4. Radial Motion

The outer bound of the region in which bound debris is
found expands quasi-spherically due to the combined effects of
the radiation pressure gradient built by shock heating and
deflection caused by stream–stream collisions. Figure 6
illustrates the azimuthally integrated density at four different
times, t/t0= 0.5, 1, 2, and 3. At t= 0.5t0, the outgoing gas that
had been heated by the nozzle shock forms a vertically thick
density structure within 3000rg. Later on, at t> 0.5t0, the
apocenter shock contributes further to the expansion of the gas.
At t 2t0, most of the mass that had been pushed outward
starts to fall back toward the SMBH.

However, in the outermost 1% of the flow, i.e., radii
7000–10,000rg, the gas continues moving outward with a
speed of 0.005− 0.01c; 1500–3000 km s−1 even at late times.
To test whether this is an incipient wind, we define unbound
gas by the total energy criterion E+ Etherm> 0, where E is the
orbital (kinetic and gravitational) energy and Etherm is the
thermal energy. We find almost no matter that has been made
unbound after the initial disruption at any time during our
simulation (i.e., up to 3t0). Figure 12 depicts E+ Etherm at
f= 0° (near the nozzle shock) and 180◦ (near the apocenter

shock) at t; 3t0. As already noted, although essentially all the

mass is bound, its specific binding energy is small. It is

therefore not straightforward to predict the final fate of the

expanding envelope based on the energy distribution measured

at a specific time: energy is readily transferred from one part of

the system to another, or from one form of energy to another.

However, because the fallback rate declines beyond 3t0, the

major energy source at later times would be effectively the

interactions of gas in the accretion flow that has formed. Hence,

the energy distribution in the outer envelope is unlikely to

evolve much over time. In addition, because we allow for no

radiative losses, the thermal energy content measured in the

simulation data, particularly in the outer layers, is an upper

bound to the actual value. This material’s most likely long-term

evolution is, therefore, a gradual deceleration followed by an

eventual fallback.
Moving gas carries energy. Defining the mechanical

luminosity by

L r d r v E E , 9r
mech

2
therm( ) ( ) ( )ò r= W +

W

we find (as shown in Figure 13) that the net Lmech integrated

over spherical shells is nearly always positive for t t0 and is

super-Eddington. The predominantly negative slope in Lmech(r)

at r 103rg and r 5000rg indicates that these regions are

gaining energy, while the relatively constant mechanical

luminosity at 103rg r 5× 103rg shows relatively insignif-

icant energy exchange in that range of radii.
In interpreting this radial flow of mechanical luminosity, it is

important to note that it is due to a mix of outwardly moving

unbound matter and inwardly moving bound matter. Both signs

of radial velocity are represented on almost every spherical

shell; in fact, the mass-weighted mean radial velocity is

generally inward with magnitude ∼300–1000 km s−1. Thus,

the regions gaining energy do so in large part, but not

exclusively, by losing strongly bound mass.

Figure 9. The temperature distribution (left) at t = t0 in the equatorial plane. The right panel shows a zoom-in of the region demarcated by the green box in the left
panel near where two streams collide. The arrows indicate the motion of gas. Notice the different color scales in the left and right panels.

9
Note that this definition of η differs from the one used by Steinberg & Stone

(2022), who compare the instantaneous energy dissipation rate to the
instantaneous fallback rate, dU dt M Egas rad fb circ

1∣ ∣( )h¢ = +
- .
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3.5. Matter Loss through Inner Radial Boundary

Figure 14 shows the rate at which mass falls through the
inner radial boundary at 40rg and leaves the computational

domain. This rate rises rapidly from t= 0 to t= t0, and from

then until t= 3t0 fluctuates about a nearly constant mean value

M0.035 0  . The total lost mass up to t; 3t0 is 0.025Må. This

is a factor ∼3 smaller than the rate, at t= 3t0, of mass loss

through a similarly placed inner cutout in the simulation of

Shiokawa et al. (2015).
Although the simulation provides no information about what

happens to this gas after it passes within r= 40rg, we can make

certain informed speculations. By computing its mass-weighted

mean specific energy and angular momentum, we find that its

mean eccentricity is ;0.7–0.8 and does not evolve over time.

Its mean pericenter and apocenter distances are 10− 15rg and

80–120rg, respectively. These values imply that the mass lost
through the boundary would not accrete onto the SMBH

immediately. In fact, if it follows such an orbit, it should

reemerge from the inner cutout. If it did so without suffering

any dissipation, it would erase the positive energy flux we find

at the inner boundary, which is due to bound matter leaving the

computational domain. On the other hand, if it suffered the

maximum amount of dissipation consistent with an unchanging

angular momentum and settled onto circular orbits inside 40rg,

it might release as much as ;1051 erg, more than enough to

unbind the rest of the bound debris, whose binding energy is
only ∼3× 1050 erg. However, this estimate of dissipation is an

Figure 10. The mass-weighted average of the specific orbital energy of debris (top left), angular momentum (top right), eccentricity (bottom left), and aspect ratio
(bottom right) for given r at t/t0 = 0.5, 1, 2, and 3. The dashed gray vertical lines in all panels indicate the pericenter distance of the original stellar orbit. The dotted
gray horizontal lines in some panels show different quantities: E = Δò (top left), initial angular momentum (top right), and Rå/rp (bottom right). The diagonal black
line in the top left panel shows a power law of r−1.

Figure 11. Circularization efficiency η, defined in Equation (8), as a function of
time. The red line shows the time average of η, estimated as

t dt t dt
t t

0 0
( ) ( )ò òh h= ¢ ¢ ¢.
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upper bound, and likely a very loose one, with the actual
dissipation far smaller. The locations of the shocks suffered by

this gas would be much nearer its apocenter at ∼100rg than its
pericenter, reducing the kinetic energy available for dissipation
by an order of magnitude or more. Oblique shock geometry, as
seen in the directly simulated shocks, sharply diminishes how

Figure 12. The distribution of the total energy E + Etherm, normalized by the local gravitational potential Egrav = − GM•/r, at f = 0° (left, near the nozzle shock) and
180◦ (right, near the apocenter shock) at t = 3t0.

Figure 13. Radial total energy (E + Etherm) flux integrated over a spherical
shell at given r, normalized by the Eddington luminosity LEdd, at four different
times. Positive values mean net positive (or negative) energy carried by gas
moving radially outward (or inward).

Figure 14. The rate at which gas is expelled through the inner radial boundary

at r = 40rg, divided by M0
 , as a function of t/t0.
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much kinetic energy is dissipated per shock passage. In
addition, if matter does fall onto weakly eccentric orbits with
semimajor axes <40rg, it will block further inflow, thereby
decreasing the net flow across the r= 40rg surface. Whatever
accumulation of gas occurs within 100rg is also unlikely to
have much effect on the bulk of the bound debris because, as is
visible in Figure 8, the radial range at which the bulk of the
returning gas passes through the nozzle shock moves steadily
outward over time, reaching 500rg by t= 3t0.

3.6. Radiation

To infer the bolometric luminosity of this event, we post-
process the simulation results. We first identify the thermaliza-
tion photosphere with the surface where 1T ff t t . Here, τT
(τff) is the Thomson (absorption) optical depth integrated
radially inward from the outer r boundary. The absorption cross
section is calculated using an OPAL table for solar metallicity.
The upper panels of Figure 7 show that the photosphere
expands quasi-spherically, which is expected from the radial
expansion of the outer debris. At t= t0, the photosphere is
quasi-spherical located at r; 4000–5000rg. It expands to
9000− 10,000rg at t= 2t0 and to ;12,000rg at t= 3t0. Given
the eccentric orbit of debris, the radius of the photosphere
depends on f at a quantitative level, even while its overall
shape is qualitatively round. To demonstrate the f dependence,
we show in the bottom panels of Figure 7 the density
distribution and the photosphere at four different azimuthal
angles, f= 0, 90◦, 180◦, and 270◦ at t= 3t0.

We then estimate the cooling time tcool at all locations inside
the photosphere as

t r
h r

c
u u1 , 10cool gas rad( )

( )
( ) ( )/

t
= +r

where hρ is the first-moment density scale height of the gas

along a radial path, τ is the optical depth (radially integrated) to

r, and ugas/urad is the ratio of the local internal energy density

to the radiation energy (a ratio that is often only slightly greater

than unity). We then estimate the luminosity by integrating the

energy escape rate over the volume within the photosphere, but

including only those locations for which tcool is smaller than the

elapsed time in the simulation. This condition accounts for the

fact that in order to leave the debris by time t, the cooling time

from the light’s point of origin must be less than t. The

resulting expression is

L
aT

t
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where a is the radiation constant.
The local effective temperature at each individual cell near

the photosphere is then calculated as Tph= [(dL/dA)/σ]
1/4,

where A is the surface area of the photosphere and σ is the
Stefan–Boltzmann constant. We estimate that the peak
luminosity is ;1044 erg s−1

;10LEdd, which occurs at t; t0.
This is roughly the mean rate of thermal energy creation during
the simulation. The photospheric temperature distribution at
t= 0.5t0 can be described as nearly flat within the range
×104K T 2× 105K, as shown in the left panel of
Figure 15. At t  t0, the distribution becomes narrower: the
distribution at t 2t0 has a single peak at T; (5− 6)× 104K.
In the right panel of Figure 15, we show the photospheric
temperature distribution as a function of observer direction at
t; 3t0. The temperature is 5–6× 104K over almost the entire
photosphere, except for a noticeably low-temperature spot at
f; π and θ= 0.5π, corresponding to the low-T incoming
stream.

4. Discussion

4.1. Circularization—Fast or Slow?

The pace of “circularization” has long played a central role
in understanding how TDE flares are powered. If it is rapid, i.e.,
takes place over a time t0, the debris joins a small (r rp)
accretion disk as soon as it first returns. In addition, accretion
takes place on a short timescale compared to t0, because the
orbital period on this scale is shorter than t0 by a factor
M M 10•

1 2 3( ) ~ -
 . Even after waiting ∼10 orbital periods for

MRI turbulence to saturate and then consuming many more
orbital periods to flow inward by magnetic stresses, the total
inflow is still short compared to t0. The dissipation rate at the
time of peak mass return would then be strongly super-
Eddington.
The result of our simulation, however, is that “circulariza-

tion” is actually very slow. We find that the returning debris

Figure 15. Left: the photosphere temperature distribution dL/dT at four different times t/t0 = 0.5, 1, 2, and 3. Right: the angular distribution of the temperature
at t = 3t0.
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forms a large cloud that stretches all the way from the
pericenter of the original stellar orbit to the apocenter of the
most-bound debris, a dynamic range ∼30–100. Throughout the
first 3t0 after disruption, only a small fraction of the debris
resides within the pericenter. The mass-weighted mean
eccentricity falls from ;0.9 to ;0.4–0.6 by t 2t0, but does
not decrease further from that time to until at least 3t0. Thus, by
this late time, the debris has neither achieved a circular orbit
nor been compressed within r∼ rp.

Such slow circularization is consistent with the low energy
dissipation rate. The thermal energy within the system is very
small compared with Ecirc, the energy that must be removed
from the bound debris’ orbital energy in order to fully
circularize it. Similarly, the circularization efficiency parameter
η suggests that several dozen t0 are required in order to
dissipate Ecirc of the energy (see Figure 11). Thus, we may
conclude that little circularization is accomplished during the
time in which most of the debris mass returns to the BH.

Our conclusions on this matter agree with the earlier findings
of Shiokawa et al. (2015), who used a somewhat cruder
computational scheme and less realistic conditions (these
authors considered a disruption of a white dwarf of 0.64Me

by a BH of 500Me). On the other hand, they differ with those
of Steinberg & Stone (2022), who analyzed the “circularization
efficiency” in terms of the heating rate per returning mass,
rather than our definition, the heating rate per returned mass
over a time t0. On the basis of tracking this definition of
circularization efficiency up to t= t0, they argued that it was
growing exponentially on a timescale ∼t0, so that full
circularization might be achieved quickly. Interestingly, our
definition of efficiency also grows rapidly with time during the
first t0; in this respect, we agree with Steinberg & Stone (2022).
However, we also find that it flattens out shortly after t0. Thus,
one possible explanation of the contrast in our conclusions
about the magnitude of energy dissipation is simply that our
simulation ran longer than theirs when measured in t0 units. It
is also possible that some of the differences in the results could
be attributed to differences in our physical assumptions.
Steinberg & Stone (2022) used a spherical harmonic oscillator
potential at r< 30 rg (private conversation with Elad Steinberg)
and a Paczynski–Wiita potential at larger radii, whereas we
used a Schwarzschild spacetime with a cutout at 40rg; they
described radiation transport by a flux-limited diffusion
scheme, whereas we included radiation only as a contribution
(often the dominant one) to the pressure. On balance, though,
because the gravity descriptions used are not very different on
the relevant lengthscales and the long cooling times in the
system severely limit radiative diffusion, these contrasts are
unlikely to explain this disagreement. Last, it is possible
that the difference in parameters (our MBH= 105Me and
M*= 3Me versus their MBH= 106Me and M*= 1Me) may
also play a role. Further simulations will be necessary in order
to test this possibility.

4.2. Energy Dissipation: Shocks versus Accretion

The physical assumptions in our simulation restrict the
creation of thermal energy to two mechanisms: shocks and
compressive work done within the fluid. There is no energy
release due to classical accretion because our equations contain
neither MHD turbulence nor phenomenological viscosity.
Nonetheless, we have demonstrated that shocks and compres-
sion can, without these other processes, generate enough

energy during a few t0 to power the observed luminosity of
TDEs. We estimate a photon luminosity during this period of
∼1044 erg s−1, and all of this energy was generated by shocks
and compressive work. As discussed in the previous subsec-
tion, we have demonstrated the absence of orbital energy loss
that is a prerequisite for forming a classical accretion flow.

4.3. Outflow

A third interesting finding is that we do not find a significant
unbound outflow emerging from the bound debris. Very nearly
all the bound material that has returned to the vicinity of the
SMBH remains bound by the end of our simulations. Although
we do see outward motion, its slow speed indicates that the
material remains bound (see Figure 12). It should therefore
eventually slow down and fall back.
This result places an even stronger upper bound on the

dissipated energy than the earlier result that there was too little
dissipation to circularize the matter, as the specific energy
needed to unbind the debris is significantly smaller than that
needed to circularize it around the original pericenter. Whereas
the circularization energy is ∼3× 1051 erg, the binding energy
is only ∼3× 1050 erg. That almost no initially bound debris is
rendered unbound is consistent with the observational limits on
outflows from both radio and optical TDEs (Matsumoto &
Piran 2021).
This conclusion, which is contrary to a number of

predictions (e.g., Jiang et al. 2016; Bonnerot et al. 2021;
Huang & Davis 2023), also casts some doubt on the possibility
(Metzger & Stone 2016) that the kinetic energy of an outflow is
the solution to the “inverse energy crisis” mentioned earlier.
When the source of heating is shocks, we find negligible
transport of energy to infinity associated with outflows.
Interestingly, although Steinberg & Stone (2022) do find an
unbound outflow, its mechanical luminosity is only
;1.6× 1042 erg s−1 if the outflow velocity they quote,
7500 km s−1, is its velocity at infinity. This is such a small
fraction of the heating rate that even this sort of wind does not
play a significant role in the energy budget. Moreover, even if
all the mass lost through our inner boundary were quickly
accreted in a radiatively efficient manner, as we have already
estimated, the associated heat produced would be only a factor
of 4–5 greater than the thermal energy generated by shocks in
the first 3t0 after the disruption. In this sense, we have also
placed a strong limit on the ability of a wind dependent upon
accretion energy to carry away a large quantity of energy.

4.4. The Ultimate Fate of the Bound Debris

Our simulation ends at 3t0 with nearly all the bound debris
∼103–104rg from the BH spread over a large eccentric cloud.
The question naturally arises: what happens next? Extrapolat-
ing from their qualitatively similar results, Shiokawa et al.
(2015) suggested that after the usual time of ∼10 orbital
periods necessary for the saturation of MHD turbulence driven
by the MRI, the gas would accrete in more or less the fashion
of circular accretion disks.
Since that work, it has been shown (Chan et al. 2018, 2022)

that, indeed, the MRI is a genuine exponentially growing
instability in eccentric disks and, in its nonlinear development,
creates internal magnetic stresses comparable to those seen in
circular disks. However, its outward transport of angular
momentum may, in the context of eccentric disks, cause the
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innermost matter to grow in eccentricity, while outer matter, the
recipient of the angular momentum removed from the inner
matter, becomes more circular (Chan et al. 2022).

If this is the generic result of MRI-driven turbulent stresses
in an eccentric disk, accretion might be radiatively inefficient,
as matter can plunge directly into the BH if it has sufficiently
small angular momentum (Svirski et al. 2017). The condition
for this to happen is for the angular momentum transport to be
accompanied by very little orbital energy loss. It is then
possible for fluid elements of very low angular momentum to
fall ballistically into the SMBH after having radiated only a
small amount of energy. In this case, the system will dim
rapidly after the thermal energy created by shocks has diffused
out in radiation.

However, it remains to be determined whether this is, in fact,
the situation in TDE eccentric accretion flows. If, instead, the
work done by torques associated with angular momentum
transport is substantial, a compact, more nearly circular,
accretion disk eventually forms. This disk will then behave
much more like a conventional accretion flow, radiating soft
X-rays until most of the disk mass has been consumed.

If the energy lost per unit of accreted mass comes anywhere
near the ∼0.1c2 of radiatively efficient accretion, the total
energy radiated over this prolonged accretion phase could be
quite large: 0.1Måc

2
≈ 1053 erg. However, sufficiently long

accretion timescales might keep the luminosity relatively low.
There is some observational evidence for such radiation on
multiyear timescales, both in X-rays (e.g., Jonker et al. 2020;
Kajava et al. 2020) and UV (e.g., van Velzen et al. 2021;
Hammerstein et al. 2023). In these long-term observations, the
luminosity declines gradually enough (∝t−1

) to make the total
energy radiated logarithmically divergent.

A related question is posed by the matter that passed through
our inner radial boundary. To the extent that some portion of it
does dissipate enough energy to achieve a near-ISCO orbit,
there is the possibility of significant energy release in excess of
what was seen in our simulation. In fact, in order to generate
soft X-ray luminosities comparable to those often seen
(∼1044 erg s−1 at peak), all that is required is a mass accretion
rate ∼3× 10−3

Må/t0. Thus, if ∼0.3 of the matter passing
through our inner boundary were able to accrete onto the BH, it
might be able to account for the X-ray luminosity sometimes
seen, given an optically thin path to infinity. For the parameters
of our simulation, there appears to be little or no solid angle
through which such a path exists (see Figure 7), but, as shown
by Ryu et al. (2020a), the ratio tcool/t0 falls to O(1) when
M• 106Me. Consequently, radiative cooling might make the
flow geometrically thinner for larger-M• events, permitting
X-rays emitted near the center to emerge during the time of the
optical/UV flare. Alternatively, for those cases that, like our
simulation, have relatively long cooling times, X-ray emission
may become visible only after a significant delay relative to the
optical/UV light, a delay that has been observed in several
TDEs (Gezari et al. 2017; Kajava et al. 2020; Hinkle et al.
2021; Goodwin et al. 2022).

4.5. Comparison with Ryu et al. (2020a)

Ryu et al. (2020a) introduced a parameter inference method
TDEMASS for M• and Må, built on the assumption that optical
TDEs are powered by the energy dissipated by the apocenter
shock. In this method, one assumes that the peak luminosity
and temperature occur at t; 1.5t0, when the most-bound debris

collide with the incoming stream at the apocenter. Using our
numerical results to determine the two parameters of TDEMASS

(setting c1, the ratio of the photospheric radius to the apocenter
distance, to 1.2 and the solid angle of the photosphere to 4π),
we find that the luminosity and temperature at the peak of the
bolometric lightcurve would be 3× 1044 erg s−1 and 70,000 K
(see Equations (1), (2), (6), and (9) of Ryu et al. 2020a).
These values can be compared with the estimates derived

from our cooling time method, L≈ 1044 erg s−1 and
T≈ 60,000 K, measured at t; 1.5t0. The contrast in luminosity
may be a consequence of an assumption made in the method of
Ryu et al. (2020a): that the heating due to shocks is radiated
promptly. Although this is a reasonable approximation for
M• 106Me, our simulation has shown that when M• is as
small as ∼105Me, cooling is significantly retarded (in fact, Ryu

et al. 2020a pointed out that t t M Mcool 0
5 2

•
7 6 4 9µ X -

 ).
Although our simulation suggests that this method may require
some refinement in the range of small SMBH masses, overall,
whether with or without the corrections suggested by the
detailed numerical simulation, the peak luminosity is in the
range of optical/UV-bright TDEs. The temperature estimated
from the simulation is larger by only a factor of 1.2, which is
reasonable given the approximate treatment of the radiation in
our scheme.

5. Conclusions

Following the energy often provides a well-marked path
toward understanding the major elements of a physical event. It
is especially useful for TDEs, because one might define their
central question as “How does matter whose initial specific
orbital energy is ∼10−4c2 dissipate enough energy to both
power the observed radiation and then, in the long run, fall into
the black hole?”
This question can be made more specific by pointing out certain

milestones in energy. In a typical TDE flare, ∼3× 1050 erg is
radiated during its brightest period, although in a number of cases
an order of magnitude more is radiated over multiple-year
timescales (e.g., van Velzen et al. 2021; Hammerstein et al.
2023). The immediately post-disruption binding energy of the
bound gas in the simulation described here is very similar to this
number, 2× 1050 erg. The energy required to circularize all the
bound gas is 1.5 dex larger, 7.5× 1051 erg. Last, the energy that
might be liberated through conventional relativistic accretion of all
the bound material is ∼3× 1053 erg.
Comparing the results of our simulation—∼1.5× 1050 erg

radiated over a time 3t0 long and final gas binding energy less
than a factor of 2 greater than in the initial state (3× 1050 erg)—
to these milestones points to a number of strong implications.
First, and most importantly, the radiation we estimate as

arising from our simulation is very close to the typical radiated
energy during the brightest portion of the flare. In other words,
the hydrodynamics we have computed, in which shocks
dissipate orbital energy into heat, succeed in matching the
most important quantity describing TDE flares.
Second, over this period, the binding energy of the debris

does not change appreciably. It immediately follows from the
virial theorem that the scale of the region occupied by the
debris likewise does not change appreciably. The only
modification that might be made to this conclusion is that
radiation losses would increase the binding energy by a factor
of ∼1.5–2. The area of the photosphere is determined by the
scale of the region containing the bound debris.

15

The Astrophysical Journal, 957:12 (16pp), 2023 November 1 Ryu et al.



Third, swift “circularization,” that is, confinement of the
bound debris to a circular disk with outer radius ∼rp, does not
happen. This process requires the bulk of the debris to increase
its binding energy by a factor ∼30; this did not happen.

Fourth, radiatively efficient accretion of most of the debris
mass onto the BH certainly did not happen. If this had
occurred, the mass remaining on the grid would be substan-
tially smaller, and the energy released would have rendered the
remaining mass strongly unbound, as it corresponds to a total
dissipated energy ∼103× larger than seen.

Last, we have also found that, contrary to some expectations,
essentially no debris gas that was bound immediately after the
disruption was rendered unbound by shock dynamics.
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