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We recently showed that if a massive (or charged) body is put in a quantum spatial superposition, the mere

presence of a black hole in its vicinity will eventually decohere the superposition. In this paper we show that,

more generally, decoherence of stationary superpositions will occur in any spacetimewith a Killing horizon.

This occurs because, in effect, the long-range field of the body is registered on the Killing horizon which, we

show, necessitates a flux of “soft horizon gravitons/photons” through the horizon. The Killing horizon

thereby harvests “which path” information of quantum superpositions and will decohere any quantum

superposition in a finite time. It is particularly instructive to analyze the case of a uniformly accelerating body

in a quantum superposition in flat spacetime. As we show, from the Rindler perspective the superposition is

decohered by “soft gravitons/photons” that propagate through the Rindler horizon with negligible (Rindler)

energy. We show that this decoherence effect is distinct from—and larger than—the decoherence resulting

from the presence of Unruh radiation. We further show that from the inertial perspective, the decoherence is

due to the radiation of high frequency (inertial) gravitons/photons to null infinity. (The notion of gravitons/

photons that propagate through the Rindler horizon is the same notion as that of gravitons/photons that

propagate to null infinity.) We also analyze the decoherence of a spatial superposition due to the presence

of a cosmological horizon in de Sitter spacetime. We provide estimates of the decoherence time for such

quantum superpositions in both the Rindler and cosmological cases. Although we explicitly treat the case of

spacetime dimension d ¼ 4, our analysis applies to any dimension d ≥ 4.

DOI: 10.1103/PhysRevD.108.025007

I. INTRODUCTION

Consider a stationary spacetime in which an experimen-
talist, Alice, is present. Alice’s lab is stationary, and she has
control of a charged or massive body (hereinafter referred
to as a “particle”). She sends her particle through a Stern-
Gerlach apparatus or other device that puts her particle in a
quantum superposition of two spatially separated states.1

She keeps these spatially separated components stationary
for a time T and then recombines them. Will Alice be able
to maintain the coherence of these components, so that,

when recombined, the final state of her particle will be
pure—or will decoherence have occurred, so that the final
state of her particle will be mixed?
Ordinarily, any decoherence effects will be dominated by

“environmental influences,” i.e., additional degrees of
freedom present in Alice’s lab that interact with her particle.
We assume that Alice has perfect control of her laboratory
and its environment so that there is no decoherence from
ordinary environmental effects. However, for a charged or
massive particle, Alice cannot perfectly control the electro-
magnetic or gravitational field, since her particle acts as a
source for these fields and some radiation will be emitted
during the portions of her experiment where she separates
and recombines her particle. Nevertheless, in Minkowski
spacetime, if her lab is stationary in the ordinary, inertial
sense, she can perform her experiment in a sufficiently
adiabatic manner that negligible decohering radiation is
emitted. In principle, she can keep the particle separated for
an arbitrarily long time T and still maintain coherence when
the components are recombined.
In a recent paper [14], we showed that the above

situation changes dramatically if a black hole is present
in the spacetime—even though the experiment is carried
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1Quantum spatial superpositions of massive bodies have been
of recent interest in both theoretical as well as proposed
experimental probes of fundamental properties of quantum
gravity, e.g., [1–13].
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out entirely in the black hole’s exterior. In effect, a black
hole horizon harvests “which path” information about any
quantum superposition in its exterior, via the long-
range fields sourced by the superposed matter. We showed
that this results in the unavoidable radiation of entangling
“soft photons or gravitons” through the horizon that
carry the “which path” information into the black hole.
Consequently, the mere presence of the black hole implies a
fundamental rate of decoherence on the quantum super-
position.2 Although the rate of decoherence will be small if
the black hole is far away, the coherence decays exponen-
tially in the time, T, that the spatial superposition is
maintained. Thus, in any spacetime with a black hole,
there will be essentially complete decoherence within a
finite time.3

The purpose of this paper is to generalize the results
of [14] to spacetimes with Killing horizons, i.e., spacetimes
with a Killing vector field such that there is a null surface
to which the Killing field is normal (see, e.g., [15]
for a discussion of properties of Killing horizons). The
event horizon of a stationary black hole is a Killing
horizon [16–18], so spacetimes with Killing horizons
encompass the case of stationary spacetimes that contain
black holes. However, there are many cases of interest
where Killing horizons are present without the presence of
black holes. One such case is that of Minkowski spacetime,
where the Rindler horizon is a Killing horizon with respect
to the Lorentz boost Killing field. Another such case is de
Sitter spacetime, where the cosmological horizon is a
Killing horizon. We will show that in these cases, a spatial
superposition that is kept stationary (with respect to the
symmetry generating the Killing horizon) will decohere in
a manner similar to the black hole case. We will also
provide an estimate of the maximum amount of time during
which coherence can be maintained.
The case of the Rindler horizon is particularly instruc-

tive. The relevant symmetry here is that of Lorentz boosts,
so Alice’s lab will be “stationary” if it is following orbits of
Lorentz boosts, which are uniformly accelerating world-
lines. Our analysis based upon radiation through the
Rindler horizon shows that decoherence of a uniformly
accelerating spatially separated superposition occurs
because of the emission of “soft” (i.e., very low frequency)
gravitons or photons, where the frequency is defined
relative to an affine parameter on the Rindler horizon.
As we shall show, the decoherence effect of this radiation of
soft gravitons or photons is distinct from the (smaller)
decoherence effect resulting from the presence of Unruh
radiation. To gain further insight, we also analyze the

decohering radiation in the electromagnetic case from the
inertial point of view, using the Liénard-Wiechert solution
to determine the radiation at future null infinity. As we shall
show, the decohering photons are of high frequency at null
infinity.
In Sec. II we provide a general discussion of the

decoherence of a quantum superposition due to radiation
in a stationary spacetime. In Sec. III we consider the
decoherence of a uniformly accelerating superposition,
analyzing it from both the Rindler and Minkowski view-
points. We also show that this decoherence is distinct
from (and larger than) the decoherence effects due to
the presence of Unruh radiation. In Sec. IV we analyze
the decoherence in de Sitter spacetime associated with the
cosmological horizon. We will work in Planck units where
G ¼ c ¼ ℏ ¼ kB ¼ 1 and, in electromagnetic formulas, we
also put ϵ0 ¼ 1, but we will restore these constants in our
formulas that give estimates for decoherence times. Lower
case Latin indices represent abstract spacetime indices.
Upper case Latin indices from the early alphabet corre-
spond to spatial indices on horizons or null infinity.

II. DECOHERENCE DUE TO RADIATION IN A

STATIONARY SPACETIME

In this section, we will give a general analysis of the
decoherence of a spatial superposition in a stationary
spacetime due to emission of radiation by the body. Our
analysis applies both to the decoherence of a charged body
due to emission of electromagnetic radiation and to the
decoherence of a gravitating body due to emission of
linearized gravitational radiation. The analyses of these two
cases are very closely parallel. In order to avoid repetition,
we will analyze only the electromagnetic case in detail, but
near the end of this section, we will state the corresponding
results in the linearized gravitational case, which can be
obtained straightforwardly by replacing the vector potential
Aa with the perturbed metric hab, the charge-current ja with
the stress-energy Tab, etc.
Consider a charged particle4 in a stationary spacetime.

We assume that the particle is initially in a stationary state.
The particle is then put through a Stern-Gerlach (or other)
apparatus, resulting in it being in a superposition state5

jψi ¼ 1
ffiffiffi

2
p ðjψ1i þ jψ2iÞ ð2:1Þ

where jψ1i and jψ2i are normalized states that are spatially
separated after passing through the apparatus. The particle

2In QED, this effect applies only to superpositions of charged
particles. However, since all matter sources gravity, the quantum
gravitational decoherence applies to all superpositions.

3This maximal coherence time for superpositions in the
exterior can be much smaller than the evaporation time of the
black hole.

4As already indicated above, the “particle” need not be an
elementary particle but could be a “nanoparticle” or any other
body whose only relevant degree of freedom for our analysis is its
center of mass.

5For simplicity, we have assumed that we have a 50-50
superposition of jψ1i and jψ2i, but this assumption is not
necessary.
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is then recombined via a reversing Stern-Gerlach (or other)
apparatus and returns to a stationary state. We are particu-
larly interested in the case where, between separation and
recombination, jψ1i and jψ2i are kept stationary for a long
period of time, T, but we do not make any such assumption
in this section. We wish to estimate how much decoherence
due to emission of electromagnetic radiation will have
occurred by the time of recombination.6

A key assumption that we shall make is that the
fluctuations in the charge-current operator ja in the states
jψ1i and jψ2i are negligibly small over the scales of interest
so that we can treat the charge current in each of these states
as c-number sources in Maxwell’s equations, given by ja

1
¼

hψ1j jajψ1i and ja
2
¼ hψ2j jajψ2i, respectively. In the initial

and final stationary eras, jψ1i and jψ2i are assumed to
coincide spatially (though they may differ in other char-
acteristics, such as spin) so that ja

1
¼ ja

2
at very early and

very late times.
In order to proceed further, we must specify the initial

state of the electromagnetic field. Since, prior to going
through the Stern-Gerlach apparatus, the charge is assumed
to be stationary, at early times we may subtract the
“Coulomb field” Cin

a of the charge, i.e., at early times
we may consider the electromagnetic field observable

Ain
a ¼ Aa − Cin

a 1; ð2:2Þ

where Cin
a is the (assumed to be unique) stationary classical

solution to Maxwell’s equations with the early-time sta-
tionary charged particle source ja

1
¼ ja

2
and Aa is the vector

potential operator. We need not assume any specific choice

of gauge for Ain
a . Then Ain

a satisfies the source-free
Maxwell’s equations at early times, and we may extend
its definition to all times by requiring it to satisfy the
source-free Maxwell equations everywhere.
The initial state of the electromagnetic field may be

specified by giving the “radiation state” of Ain
a . The choice

of this state depends on the physical situation being
considered. If the spacetime were globally stationary—
i.e., if the stationary Killing field were everywhere timelike,
so, in particular, there are no Killing horizons—it would be
natural to assume that the initial state of the radiation is the

stationary vacuum state, i.e., the ground state relative to the
time translations. For the case of a black hole spacetime, it
would be correspondingly natural to assume that the initial
state of the radiation is that of the Unruh vacuum, since for
a black hole formed by gravitational collapse, the state of a
quantum field is expected to approach the Unruh vacuum
after the black hole has “settled down” to a stationary state.
For the case of Minkowski spacetime, we take the initial
state of the radiation to be the ordinary (inertial) Minkowski
vacuum. For de Sitter spacetime, we take the initial state of
the radiation to be the de Sitter invariant vacuum7 for the
electromagnetic field [20]. We denote the initial state of the
radiation in all of the above cases by jΨ0i.
In each of the above cases, jΨ0i is a pure, quasi-free (i.e.,

Gaussian) state. It follows (see, e.g., [22] or Appendix A
of [15]) that we can construct a one-particle Hilbert space
Hin and corresponding Fock space F ðHinÞ wherein jΨ0i
plays the role of the vacuum state and the field operator Ain

a

is represented on F ðHinÞ by

Ain
a ðfaÞ ¼ iaðKσfÞ − ia†ðKσfÞ: ð2:3Þ

Here fa a divergence-free8 test function, σf denotes the

advanced minus retarded solution to Maxwell’s equations
with source fa, and K∶S → Hin denotes the map taking the
space S of classical solutions to their representatives in
the one-particle Hilbert space Hin. The commutator of the
creation and annihilation operators in Eq. (2.3) is given by

½aðKσfÞ; a†ðKσgÞ� ¼ hKσfjKσgi1; ð2:4Þ

where hKσfjKσgi is the inner product on Hin, which is

given by a natural generalization of the Klein-Gordon inner
product to electromagnetic fields.
For the case of a globally stationary spacetime in the

stationary vacuum state, Kσf corresponds to taking the
positive frequency part of σf with respect to the time

translations generating the stationary symmetry. For the
case of a stationary black hole in the Unruh vacuum state,
Kσf corresponds to taking the positive frequency part of σf
with respect to affine time on the past horizon and with
respect to Killing time at past null infinity. For Minkowski
spacetime in the inertial Minkowski vacuum, Kσf corre-

sponds to taking the positive frequency part of σf with

respect to inertial time translations. Equivalently, Kσf, in

this case, corresponds to the solution obtained by taking the
positive frequency part of the restriction of σf to any null

hyperplaneN (i.e., any Rindler horizon) with respect to an

6The decoherence of Alice’s particle can be experimentally
determined as follows. We assume that Alice’s particle initially
has spin in the positive x-direction and thus is in a 50-50
superposition of z-spin after passing through the initial Stern-
Gerlach apparatus. After recombination, Alice measures the
x-spin of her particle. If coherence of the superposition
Eq. (2.1) has been maintained, then (assuming that Alice has
made appropriate corrections if there are any phase differences
between the paths) the spin will always be found to be in the
positive x-direction. On the other hand, if any coherence has been
lost, the particle will not be in a state of definite spin, and the spin
will sometimes be found to be in the negative x-direction. By
repeating the experiment many times, Alice can, in principle,
determine the decoherence to any desired accuracy.

7A de Sitter invariant vacuum state does not exist for the
massless scalar field [19] but such a state does exist for the
electromagnetic field [20] and linearized gravitational field [21].

8Restriction of the smearing to divergence-free test functions is
necessary and sufficient to eliminate the gauge dependence of Ain

a

(see, e.g., P.101 of [22]).
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affine parametrization of the null geodesics generating N .
For de Sitter spacetime in the de Sitter invariant vacuum,
Kσf corresponds to the solution obtained by taking the

positive frequency part of the restriction of σf to any

cosmological horizon with respect to an affine parametri-
zation of the null geodesics generating that horizon.
Under the above assumption that the charge currents of

jψ1i and jψ2i can be treated as c-number sources, the
electromagnetic field Ai;a in the presence of the charge in

state jψ ii for i ¼ 1, 2 is given in terms of the source-free

field Ain
a by [23]

Ai;a ¼ Ain
a þ Gret

a ðjbi Þ1; ð2:5Þ

where Gret
a ðjbi Þ denotes the classical retarded solution for

source jbi . In particular, since the field Ain
a is in state jΨ0i,

the correlation functions of the electromagnetic field Ai;a

for jψ ii are given by9

hAi;a1
ðx1Þ…Ai;an

ðxnÞi ¼ hΨ0j½Ain
a1
ðx1Þ þ Gret

a1
ðjbi Þðx1Þ1Þ�

…½Ain
an
ðxnÞ þGret

an
ðjbi ÞðxnÞ1Þ�jΨ0i:

ð2:6Þ

Equation (2.6) is valid at all times. However, at late
times—i.e., to the future of any Cauchy surface Σ corre-
sponding to the time at which recombination has occurred—
we can again subtract off the common stationary Coulomb
field, Cout

a , of ja
1
¼ ja

2
to obtain the source-free field10 Aout

i;a

that describes the radiation at late times for the states jψ ii,

Aout
i;a ¼ Ai;a − Cout

a 1: ð2:7Þ

By Eq. (2.6), at late times, the correlation functions of Aout
a

are given by

hAout
i;a1

ðx1Þ…Aout
i;an

ðxnÞi ¼ hΨ0j½Ain
a1
ðx1Þ þAi;a1

ðx1Þ1Þ�
…½Ain

an
ðxnÞ þAi;an

ðxnÞ1Þ�jΨ0i;
ð2:8Þ

where

Ai;a ¼ Gret
a ðjbi Þ − Cout

a : ð2:9Þ

Note that Ai;a is a classical solution of the source-free

Maxwell equations in the late-time region.

The correlation functions Eq. (2.8) on any late-time
Cauchy surface are precisely those of the coherent state

jΨii ¼ e−
1

2
kKAik2 exp ½a†ðKAiÞ�jΨ0i; ð2:10Þ

where the norm is that of the one-particle inner product of
Eq. (2.4). Thus, the coherent state jΨ1i describes the “out”
radiation state corresponding to charged particle state jψ1i
and the coherent state jΨ2i describes the “out” radiation
state corresponding to charged particle state jψ2i. The joint
“out” state, jϒi, of the particle-radiation system is given by

jϒi ¼ 1
ffiffiffi

2
p ðjψ1i ⊗ jΨ1i þ jψ2i ⊗ jΨ2iÞ: ð2:11Þ

Therefore, the decoherence of jψ1i and jψ2i due to
emission of electromagnetic radiation is given by

D ¼ 1 − jhΨ1jΨ2ij: ð2:12Þ

We wish to evaluate D.
By the general formula for the inner product of coherent

states, we have

jhΨ1jΨ2ij ¼ exp

�

−
1

2
kKðA1 −A2Þk2

�

: ð2:13Þ

Now, in the late-time era, A1;a −A2;a is just the difference

between the classical retarded solutions with sources ja
1

and ja
2
,

A1;a −A2;a ¼ Gret
a ðjb

1
Þ −Gret

a ðjb
2
Þ ¼ Gret

a ðjb
1
− jb

2
Þ: ð2:14Þ

Consider the coherent state associated with Gret
a ðjb

1
− jb

2
Þ in

the late-time era. We refer to photons in this state as
entangling photons. By the general properties of coherent
states, the expected number, hNi, of entangling photons is
given by

hNi≡ kK½Gretðj1 − j2Þ�k2: ð2:15Þ

Thus, we have

jhΨ1jΨ2ij ¼ exp

�

−
1

2
hNi

�

ð2:16Þ

so

D ¼ 1 − jhΨ1jΨ2ij ¼ 1 − exp

�

−
1

2
hNi

�

ð2:17Þ

and we see that the necessary and sufficient condition for
significant decoherence (D ∼ 1) is hNi ≳ 1.
We summarize the results that we have obtained above as

follows. Under the assumptions we have made above, in

9
It is understood that each of the xk variables should be

smeared with a divergence-free test vector field fak .
10Note that Ain

a did not have a subscript “i” whereas Ai;a and
Aout
i;a do carry such subscripts. This is a consequence of the fact

that we are working in the “in” representation—i.e., the Heisen-
berg representation on the Hilbert space F ðHinÞ—so Ain

a does not
depend on the sources, but the other fields do.
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order to calculate the decoherence, D, of the particle due to
radiation, we carry out the following steps:
(1) We obtain the expected charge current, ja

1
and

ja
2
, for the particle in states jψ1i and jψ2i of the

superposition.
(2) We calculate the classical retarded solution,

Gret
a ðjb

1
− jb

2
Þ for the difference of these charge

currents, which is a source-free solution at late
times, since ja

1
¼ ja

2
at late times.

(3) We calculate the one-particle state KGretðj1 − j2Þ
corresponding to Gret

a ðjb
1
− jb

2
Þ at late times. In the

various cases, this corresponds to the following:
(i) For a globally stationary spacetime initially in the
stationary vacuum state, this one-particle state is the
positive frequency part of the solution with respect
to the time translations generating the stationary
symmetry; (ii) For the case of a stationary black hole
initially in the Unruh vacuum, the one-particle state
is the positive frequency part of the solution with
respect to affine time on the past horizon and with
respect to Killing time at past null infinity; (iii) For
Minkowski spacetime initially in the Minkowski
vacuum, the one-particle state is the positive fre-
quency part of the solution with respect to inertial
time or, equivalently, the positive frequency part
with respect to affine time on any Rindler horizon;
(iv) For de Sitter spacetime initially in the de Sitter
invariant vacuum, the one-particle state is the pos-
itive frequency part of the solution with respect to
affine time on any cosmological horizon.

(4) We compute the squared norm, kK½Gretðj1 − j2Þ�k2,
of this one-particle state at late times. This quantity
is equal to the expected number of entangling
photons, hNi. The decoherence due to radiation is
then given by

D ¼ 1 − exp

�

−
1

2
kK½Gretðj1 − j2Þ�k2

�

: ð2:18Þ

As previously stated, the above analysis extends
straightforwardly to the linearized gravitational case,
where the perturbed metric, hab, is treated as a linear
quantum field propagating in the background classical
stationary spacetime. To compute the decoherence
due to gravitational radiation in this case, we carry out
the above steps, replacing Aa by hab and the charge-
current ja by the stress-energy tensor Tab. The retarded

solution Gret
a ðjbÞ for Maxwell’s equations is replaced

by the retarded solution Gret
abðTcdÞ for the linearized

Einstein equation. The map K∶S → Hin is again obtained
as in item (3) above and the inner product on Hin is again
given by a natural generalization of the Klein-Gordon
inner product to linearized gravitational fields. The
decoherence due to gravitational radiation is then given
by the analog of Eq. (2.18).

The above analysis applies for any motion of the
components of Alice’s superposition. We are primarily
interested in the case where, during a time interval T1, Alice
puts a particle of charge q (or mass m) into a spatial
superposition, where the distance between the components
of the particle wave function is d. She then keeps this
superposition stationary in her lab for a time T. Finally, she
recombines her particle over a time interval T2.
In Minkowski spacetime in the case where Alice’s lab is

inertial,Gret
a ðjb

1
− jb

2
Þwill be nonzero at null infinity only at

the retarded times corresponding to the time intervals T1

and T2. A rough estimate of the number of entangling
photons was obtained in [3] using the Larmor formula for
radiation in these eras, which, in natural units, yields

hNi ∼ q2d2

½minðT1; T2Þ�2
ðMinkowski; EMÞ: ð2:19Þ

The corresponding result in the linearized gravitational
case is [3]

hNi ∼ m2d4

½minðT1; T2Þ�4
ðMinkowski; GRÞ: ð2:20Þ

Therefore, if Alice recombines her particle sufficiently
slowly that T1; T2 ≫ qd in the electromagnetic case or

T1; T2 ≫ md2 in the gravitational case, then she can
maintain the quantum coherence of her particle. In par-
ticular, Alice can keep the components of her particle
separated for as long a time T as she likes without
destruction of the coherence.
As shown in [14], the situation is quite different if a black

hole is present. In the electromagnetic case, even if
T1; T2 ≫ qd so that a negligible number of entangling
photons is emitted to infinity, there will be entangling
radiation emitted into the black hole. For large T, the
number of entangling photons increases with T as11

hNi ∼M3q2d2

D6
T ðblack hole; EMÞ; ð2:21Þ

where M is the mass of the black hole, D is the proper
distance of Alice’s lab from the horizon of the black hole,
and we assume thatD≳M. The corresponding result in the
linearized gravitational case is

hNi ∼M5m2d4

D10
T ðblack hole; GRÞ: ð2:22Þ

Thus, the coherence of Alice’s particle will always be
destroyed within a finite time.

11In the analysis of [14], we used the fact that the Unruh
vacuum is well approximated by the Hartle-Hawking vacuum at
low frequencies near the horizon of the black hole.

KILLING HORIZONS DECOHERE QUANTUM SUPERPOSITIONS PHYS. REV. D 108, 025007 (2023)

025007-5



In the next two sections, we will apply the above analysis
to the cases of Rindler spacetime and de Sitter spacetime.
Although wewill explicitly analyze only the Rindler and de
Sitter cases, it will be clear from our analysis of the next
two sections—as well as our analysis in [14]—that it can be
applied to any Killing horizon, provided only that the initial
“vacuum state” jΨ0i of the electromagnetic and/or linear-
ized gravitational field corresponds to one-particle states
that are positive frequency with respect to affine time on the
future Killing horizon.

III. RINDLER HORIZONS DECOHERE QUANTUM

SUPERPOSITIONS

We now consider the case of Minkowski spacetime12

with Alice’s lab uniformly accelerating with acceleration a.
Specifically, we take Alice’s lab to follow the orbit

t ¼ 1

a
sinhðaτÞ; z ¼ 1

a
coshðaτÞ ð3:1Þ

of the boost Killing field

ba ¼ a

�

z

�

∂

∂t

�

a

þ t

�

∂

∂z

�

a
�

: ð3:2Þ

Here we have normalized ba such that baba ¼ −1 on the
worldline of Alice’s laboratory. Thus, ba is the four-
velocity of Alice’s laboratory and τ is the proper time in
her lab. We introduce the null coordinates

U ≡ t − z; V ≡ tþ z ð3:3Þ

and the corresponding vector fields

na ≡ ð∂=∂VÞa; la ≡ ð∂=∂UÞa; ð3:4Þ

which are globally defined, future-directed null vector
fields that satisfy lana ¼ −1. In terms of these coordinates,
the Minkowski spacetime metric is

η ¼ −dUdV þ dx2 þ dy2 ð3:5Þ

and the boost vector field is given by

ba ¼ a½−Ula þ Vna�: ð3:6Þ

The boost Killing field is null on the two “Rindler
horizons,” i.e., the two null planes U ¼ 0 and V ¼ 0,
which divide Minkowski spacetime into four wedges. The
orbits of the boost Killing field are future-directed and
timelike within the “right Rindler wedge” WR which is the

region U < 0 and V > 0. Thus, the “right Rindler wedge”
WR—where Alice performs her experiment—is a static,
globally hyperbolic spacetime where the notion of “time
translations” is defined by Lorentz boosts.
We refer to the null surface U ¼ 0 as the future Rindler

horizon and denote it asHþ
R . On the region V > 0 ofHþ

R , it
is useful to introduce the coordinate v by

V ¼ V0e
av; ð3:7Þ

where V0 is an arbitrary constant. Then, for V > 0 on Hþ
R ,

we have

bajHRþ
¼ aV

�

∂

∂V

�

a
�

�

�

�

HRþ

¼
�

∂

∂v

�

a
�

�

�

�

HRþ

: ð3:8Þ

Since ð∂=∂VÞa on the horizon is tangent to the affinely

parametrized null geodesic generators ofHþ
R , we refer to V

as the “affine time” on Hþ
R , whereas we refer to v as the

“boost Killing time” on Hþ
R .

A. Decoherence due to radiation of soft photons/

gravitons through the Rindler horizon

We are now in position to apply the results of Sec. II to
the Rindler case. We will first analyze the electromagnetic
case and then give the corresponding results in the
gravitational case.
We assume that the electromagnetic field is initially in

the Minkowski vacuum state. We assume that Alice
possesses a charged particle that is initially stationary (with
respect to the boost Killing field) in her (uniformly
accelerating) lab. She then creates a quantum spatial
superposition which is held stationary (with respect to
the boost Killing field) for a proper time T and is then
recombined. We wish to know the degree of decoherence of
Alice’s particle due to emission of radiation. We may
directly apply the analysis of Sec. II to answer this question.
The future Rindler horizon Hþ

R (U ¼ 0) does not meet
the technical requirements of being a Cauchy surface for
Minkowski spacetime, since there are inextendible timelike

curves that remain in the past ofHþ
R as well as inextendible

timelike curves that lie in the future of Hþ
R . However, as

argued in [24], it is effectively a Cauchy surface for
determining evolution of solutions to the wave equation.
This is most easily seen in the conformally completed

spacetime, where Hþ
R is the past light cone of a point

p ∈ Iþ except for the single generator that lies on Iþ and it
also is the future light cone of a point on p0 ∈ I− except for
the single generator that lies on I−. Data on the full past
light cone of p would determine a solution to the past of

Hþ
R and data on the full future light cone of p0 would

determine a solution to the future ofHþ
R , thereby determin-

ing a solution everywhere in Minkowski spacetime.
However, for solutions with appropriate decay, the data

12We explicitly treat the case of 4 spacetime dimensions,
but our analysis generalizes straightforwardly to all higher
dimensions.
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on the missing null geodesic generators of Iþ and I− can

be determined by continuity from the data on Hþ
R .

Consequently, data onHþ
R suffices to uniquely characterize

solutions with appropriate decay. Consequently, the “out”
states jΨ1i and jΨ2i of the radiation are completely

determined by data on Hþ
R . Note that this contrasts sharply

with the black hole case, where one would need data on
both the future event horizon and future null infinity to
characterize the “out” state of radiation.
The decoherence of Alice’s particle due to radiation is

given by Eq. (2.17). In order to evaluate this, we first
consider a classical point charge of charge q in the “right
Rindler wedge” WR that is stationary with respect to the
boost Killing field and lies at proper distance D from the
bifurcation surface of the Rindler horizon. Such a charge
will be uniformly accelerating with acceleration a given by

a ¼ 1

D
; ð3:9Þ

as depicted in Fig. 1. The explicit solution for such a
stationary charge in the Rindler wedge has long been
known [25–30]. The only nonvanishing component of the

electromagnetic field in the region V > 0 of Hþ
R is

EU ≡ Fabl
anb ¼ 2a2q

πð1þ a2ρ2Þ2 ; ð3:10Þ

where ρ2 ≡ x2 þ y2. Electromagnetic radiation through the
Rindler horizon is described by the pullback, EA, of the

electric field13 Ea ¼ Fabn
b to Hþ

R , where the capital Latin
indices from the early alphabet denote spatial components in
the x and y directions. Since EA ¼ 0 on the horizon for a
uniformly accelerated charge, onemay say that a charge held
stationary in Alice’s lab does not produce any radiation as

determined on Hþ
R—even though a uniformly accelerated

charge radiates (inertial) energy to future null infinity.14

Now consider the case where the point charge is
initially uniformly accelerating with acceleration a at a
proper distance D ¼ 1=a from the bifurcation surface
of the Rindler horizon. The charge is then moved in the
z-direction15 to a different orbit of the same boost Killing
field, so that it has uniform acceleration a0 and lies at proper
distance D0 ¼ 1=a0 from the Rindler horizon. After the

charge has reached its new location, the electric field onHþ
R

is again given by Eq. (3.10), but its value, E0
U, will be

different from its value at early times. Maxwell’s equations

on Hþ
R imply that

DAEA ¼ ∂VEU; ð3:11Þ

whereDA is the derivative operator on theR
2 cross sections

of the horizon and capital Latin indices from the early
alphabet are raised and lowered with the metric, δAB, on the
cross sections. Eq. (3.11) implies that EA ≠ 0 whenever
∂VEU ≠ 0, so there will be radiation through the horizon as
the charge is being moved. Most importantly, it implies that

DA

�
Z

∞

−∞

dVEA

�

¼ ΔEU; ð3:12Þ

where ΔEU ¼ E0
U − EU is the change in the radial electric

field between the charge at positions D0 and D. Now, in a
gauge where Aan

a ¼ 0 on the horizon, the transverse (i.e.,
x − y) components of the electric field are related to the
corresponding components of the vector potential by

EA ¼ −∂VAA: ð3:13Þ

Since the transverse components of the Coulomb field of a
static charge vanish, we may replace the vector potential AA

by the “Coulomb subtracted” vector potential AA defined
by Eq. (2.9), so we have

EA ¼ −∂VAA: ð3:14Þ

FIG. 1. Alice’s laboratory undergoes uniform acceleration a in
the z-direction in Minkowski spacetime and thus follows an orbit

of a boost Killing field. The future Rindler horizon Hþ
R is a

Killing horizon for this boost Killing field. The future-directed

null vector nb ¼ ð∂=∂VÞb points along the horizon, while

lb ¼ ð∂=∂UÞb is transverse to it. D is the proper distance from
Alice’s lab to the horizon.

13
The electric field as measured by an observer with 4-velocity

ub is Fabu
b. Although nb is null rather than timelike, it is natural

(and standard) to use the terminology “electric field” for Fabn
b on

the horizon.
14A uniformly accelerating charge has a nonvanishing inertial

energy current flux Tabt
a through both Hþ

R and Iþ, where ta

denotes a Minkowski time translation. However, the flux of
“boost energy” Tabb

a vanishes at both Hþ
R and Iþ.

15
We consider a z-displacement for simplicity. Similar results

would hold if the charge were displaced in the x or y directions.
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It then follows immediately from Eq. (3.12) that the
difference, ΔAA, between the final and initial values of
AA is given by

DAðΔAAÞ ¼ −ΔEU; ð3:15Þ

independently of the manner in which the charge is moved
from D to D0. Equation (3.15) is an exact mathematical
analog of the electromagnetic memory effect at null
infinity [31]. For the explicit solution Eq. (3.10), we have

ΔEU ≈
−4qda3ð1 − a2ρ2Þ

πð1þ a2ρ2Þ3 ; ð3:16Þ

where d ¼ D0 −D and we have assumed that

d ≪ D ¼ 1

a
: ð3:17Þ

From Eq. (3.15), we find that ΔAA points in the ρ̂-direction
and has magnitude

jΔAAj ¼ ΔAρ ∼
qda3ρ

ð1þ a2ρ2Þ2 : ð3:18Þ

The key point is that even though EA ¼ 0 at both late and
early times, AA does not return to its original value at late
times, and the change,ΔAA, in the vector potential between
late and early times is determined only by the initial and
final positions of the charge.
We now consider the quantized radiation through the

horizon resulting from the displacement of the charge,
assuming that, after the displacement, the charge is held at
its new position, D0, forever. For the Fock space associated
with the Minkowski vacuum state, the mapK∶S → Hin that
associates one-particle states to classical solutions is given
by taking the positive frequency part of the classical
solution with respect to inertial time, with the inner product
on Hin given by the Klein-Gordon product. For the

electromagnetic field on Hþ
R in a gauge where Aan

a ¼ 0

on Hþ
R , the “free data” on Hþ

R is the pullback, AA, of the
vector potential. For two classical solutions with data A1;A

and A2;A on Hþ
R , the inner product of their corresponding

one-particle states is given by [15,32]

hKA1jKA2iHþ
R
¼ 2

Z

R
2

dxdy

Z

∞

0

ωdω

2π
δABÂ1;AÂ2;B;

ð3:19Þ

where ÂAðω; xBÞ is the Fourier transform of AAðV; xBÞ
with respect to the affine parameter V. By the same
reasoning as led to Eq. (2.15), the expected number of

photons on Hþ
R in the coherent state associated to any

classical solution AA is simply

hNi ¼ kKAk2
Hþ

R

; ð3:20Þ

where the norm is defined by the inner product Eq. (3.19).
However, since ΔAA ≠ 0, the Fourier transform,

ÂAðω; xBÞ, of AA diverges as 1=ω as ω → 0. It follows
that the integrand of the expression for the norm given
by the right side of Eq. (3.19) also diverges as 1=ω as
ω→ 0, so the integral is logarithmically divergent. Thus,

kKAk2
Hþ

R

¼ ∞. Therefore, if Alice displaces a charged

particle to a different orbit of the boost Killing field and the
particle remains on this new uniformly accelerated trajec-
tory forever, an infinite number of “soft horizon photons”
will be radiated through the Rindler horizon16 regardless of
how quickly or slowly this process is done.
The above infrared divergence is an exact mathematical

analog of the infrared divergences that occur at null
infinity in QED for processes with nonzero memory (see
e.g., [35–39]). Note that infrared divergences at null infinity
arise only in d ¼ 4 spacetime dimensions. The reason for
this is that in d dimensions, radiation falls off at infinity in

null directions as 1=rd=2−1, whereas Coulomb fields and

associated memory effects fall off as 1=rd−3, so it is only in
d ¼ 4 dimensions that memory effects occur at radiative
order [36,40]. By contrast, radial Coulomb fields will
penetrate a Killing horizon in all spacetime dimensions
(see Ref. [41] for the case of a Schwarzschild black hole)
and a displacement of a charge will result in a change in the
radial Coulomb field in all dimensions. As analyzed above,
this will result in radiation through the horizon in all
dimensions high enough for the field in question to admit
radiation (i.e., d ≥ 3 for electromagnetism and d ≥ 4 for
gravity). Consequently, the logarithmic divergence in
Eq. (3.20) occurs in all spacetime dimensions that admit
radiation.17

Now suppose that Alice displaces the particle a
z-distance d ≪ D ¼ 1=a from D to D0 ¼ Dþ d as above,
but instead of leaving the particle atD0 forever, she leaves it
there for proper time18 T and then returns it to D. In this
case, the transverse components of the vector potential,AA,

16These “soft horizon photons” are closely related to the “soft
hair” discussed by Hawking, Perry, and Strominger [33] in the
case of black hole horizons (see also [34]). However, while
Hawking, Perry, and Strominger considered effects of matter
falling into a black hole, our “soft radiation” arises from the
displacement of matter sourcing a long range field outside of a
horizon. Note that in the case of a black hole, the “soft radiation”
of Alice’s experiment increases the entanglement of the black
hole with its exterior.

17Indeed, there would also be infrared divergences for a
particle that sources a massive field, since the Yukawa field
of the particle will also penetrate the horizon.

18We have normalized the boost Killing field ba so that Killing
time equals proper time on the orbit at D with acceleration a.
Since we assume d ¼ D0 −D ≪ D, Killing time and proper time
are also (nearly) equal on the orbit at D0. Thus, T is also the
elapsed Killing time that Alice keeps the particle at D0.
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return to their initial values at late times, so there is no
“memory effect” at the horizon. Correspondingly, there are
no infrared divergences in the expected number of photons

that propagate through Hþ
R . Nevertheless, if T is very large

then the expected number of photons hNi will be corre-
spondingly large. To see this, we note that if, for conven-
ience, we work in a gauge where AA ¼ 0 initially, then
during the era at which the particle is at D0, AA will be
given by the right side of Eq. (3.18). If we keep the manner
in which the particle is moved fromD toD0 as well as from
D0 to D fixed but take T to be very large, the asymptotic
behavior of the norm Eq. (3.19) will be dominated by the
low-frequency contribution from the era of time T that the
particle is displaced. The logarithmic divergence at ω ¼ 0

that would occur if the particle remained at D0 forever is
now effectively cut off at frequency ω ∼ 1=V, where V

denotes the affine time duration on the horizon Hþ
R over

which the particle remains at D0. We obtain

hNi ¼ kKAk2HR
∼ q2d2a2 ln

�

V

min½V1; V2�

�

; ð3:21Þ

where V1; V2 ≪ V are the durations of affine time over
which the particle is displaced from D to D0 and from D0

back toD, so that 1=min½V1; V2� provides an effective high-
frequency cutoff. However, the affine time V on the horizon
is related to boost Killing time on the horizon by

V ¼ V0 expðavÞ ð3:22Þ

and the boost Killing time v corresponds to the proper time
T in Alice’s lab. Thus, we obtain

hNi ∼ q2d2a3T ðRindler; EMÞ: ð3:23Þ

Therefore, no matter how slowly the particle is displaced, it
is forced to radiate a number of “soft Rindler horizon
photons” through the Rindler horizon that is proportional to
the time T that the particle remains on the displaced
trajectory.
We are now in a position to fully analyze Alice’s

experiment. Alice’s lab is uniformly accelerating with
acceleration a in Minkowski spacetime. She puts her
particle of charge q into a superposition of states separated
by z-distance d ≪ 1=a and keeps these components sta-
tionary in her lab for a proper time T. She then recombines
the components and determines their coherence.19 By the
analysis of Sec. II, the decoherence is given by Eq. (2.18).

However, for large T, the calculation of kK½Gretðj1 − j2Þ�k2
corresponds precisely to the calculation we have given
above of the number of photons radiated through the
Rindler horizon when a charge is displaced for a time T.
Thus, we obtain

kK½Gretðj1 − j2Þ�k2 ∼ q2d2a3T: ð3:24Þ

In other words, for large T, Alice’s superposition
will decohere due to radiation of “soft Rindler horizon
photons”, as

D ¼ 1 − expð−ΓradTÞ ð3:25Þ

where the “decoherence rate” Γrad, is given by

Γrad ¼ q2d2a3: ð3:26Þ

Thus, restoring the constants c, ℏ, and ϵ0, Alice’s particle
will decohere within a time

TD ∼
ϵ0ℏc

6

a3q2d2
ðRindler; EMÞ ð3:27Þ

∼ 1033 years

�

g

a

�

3

·

�

e

q

�

2

·

�

m

d

�

2

: ð3:28Þ

Thus, if Alice’s lab uniformly accelerates at one g in flat
spacetime and she separates an electron into two compo-
nents one meter apart, she would not be able to maintain

coherence of the electron for more than 1033 years.
A similar analysis holds in the gravitational case20 where

Alice separates a massive body with mass m across a
distance d and maintains this superposition for a time T. In
the gravitational case, the “electric part” of the perturbed

Weyl tensor Eab ¼ Cacbdn
cnd plays an analogous role to

the electric field Ea in the electromagnetic version of the
Gedankenexperiment. For a uniformly accelerating point
mass, the only nonvanishing component of the electric part

of the Weyl tensor on Hþ
R is EUU ¼ Cacbdl

anclbnd.
Gravitational radiation on the horizon is described by the

pullback, EAB, of Eab, which vanishes for the static point
mass. However, the process of quasistatically moving the

static point mass involves a change in EUU on Hþ
R . The

(once-contracted) Bianchi identity on the horizon yields

DAEAB ¼ ∂VEUB; DAEUA ¼ ∂VEUU; ð3:29Þ

which implies that

DADBEAB ¼ ∂
2
VEUU ð3:30Þ

which is closely analogous to Eq. (3.11). As in the
electromagnetic case, if a uniformly accelerating point
mass is quasistatically moved there is necessarily gravita-

tional radiation through Hþ
R .

19The coherence can be determined as described in footnote 6.

20In the gravitational case, additional stress energy will be
needed to keep Alice’s particle in uniform acceleration. We will
ignore the gravitational effects of this additional stress energy.
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To determine the number of “Rindler horizon gravitons”
emitted we quantize the linearized gravitational field. For a
metric perturbation hab in a gauge where habn

a ¼ 0 and

δABhAB ¼ 0, the “free data” on Hþ
R is hAB. A “particle” in

the standard Fock space associated to the Poincaré invariant
vacuum is then a positive frequency solution with respect to
affine parameter V and the inner product on the one-particle
Hilbert space is given by a direct analog of Eq. (3.19) with
the vector potential AA replaced with the metric perturba-
tion hAB, namely

hKh1jKh2iHþ
R
¼ 1

8

Z

R
2

dxdy

Z

∞

0

ωdω

2π
δABδCDĥ1;ACĥ2;BD:

ð3:31Þ

Finally, EAB is related to the metric perturbation hAB by

EAB ¼ −
1

2
∂
2
VhAB: ð3:32Þ

Equations (3.30) and (3.32) directly imply that a permanent
change, ΔEUU ≠ 0, in the U −U component of the electric

part of the Weyl tensor onHþ
R implies a permanent change,

ΔhAB ≠ 0, in the perturbed metric on Hþ
R between early

and late times. In the quantum theory, as in the electro-
magnetic case, this implies a logarithmic infrared diver-

gence in the number of gravitons emitted throughHþ
R in the

process where a uniformly accelerating charge is moved to
a new orbit of the same boost Killing field and then remains
at the new position forever.
The analysis of Alice’s experiment proceeds in a similar

manner to the electromagnetic case. Alice does not main-
tain the relative separation of her wave function forever but
closes her superposition after a proper time T. As before,
the number of entangling gravitons emitted to the Rindler
horizon is logarithmically growing in affine time and
therefore linearly growing in the proper time duration T
of Alice’s experiment. We obtain

hNi ∼m2d4a5T ðRindler; GRÞ: ð3:33Þ

Thus, restoring constants, we find that the Rindler horizon
decoheres the quantum superposition of a uniformly
accelerating massive body in a time

TGR
D ∼

ℏc10

Gm2d4a5
ðRindler; GRÞ ð3:34Þ

∼ 2 fs

�

MMoon

m

�

2

·

�

RMoon

d

�

4

·

�

g

a

�

5

: ð3:35Þ

Therefore, if the Moon were accelerating at one g and
occupied a quantum state with its center of mass super-
posed by a spatial separation of the order of its own radius
then it would decohere within about 2 femtoseconds.

Of course, it would not be easy to put the moon in such
a coherent quantum superposition.
Note the acceleration of a stationary observer outside of a

black hole who is reasonably far21 (D≳M) from the event

horizon is a ∼M=D2. If we substitute a ¼ M=D2 in
Eqs. (3.27) and (3.34), we obtain Eqs. (2.21) and (2.22),
respectively. Therefore, it might be tempting to believe that
what is important in all cases is the acceleration of Alice’s
lab. However, this is not the case. In particular, if we replace
the black hole by an ordinary star (and if there are no
dissipative effects in the star), then there will not be any
analogous decoherence effect, even though the acceleration
of Alice’s lab is the same as in the case of a black hole.
Furthermore, as we shall see in Sec. IV, decoherence effects
associated with the cosmological horizon occur in de Sitter
spacetime even for nonaccelerating observers. It is the
presence of a Killing horizon that is the essential ingredient
for the fundamental rate of decoherence of quantum
superpositions as described in this paper.
We now consider another potential cause of decoherence,

namely Unruh radiation.

B. Decoherence due to scattering of Unruh radiation

The Minkowski vacuum state restricted to a Rindler
wedge is a thermal state at the Unruh temperature

T ¼ a

2π
ð3:36Þ

relative to the notion of time translations defined by the
Lorentz boost Killing field ba, Eq. (3.2). Thus, the super-
position state of Alice’s particle will be buffeted by this
thermal bath of Unruh radiation. Scattering of this radiation
will cause some decoherence of Alice’s particle. Indeed,
since this decoherence should occur at a steady rate
while the superposition is kept stationary (and thus the
decoherence will be proportional to T), one might even
suspect that scattering of Unruh radiation could be the same
effect as found in the previous section but expressed in a
different language. The purpose of this subsection is
to show that this is not the case, i.e., decoherence due to
scattering of Unruh radiation and decoherence due to
radiation of “soft” photons/gravitons through the horizon
are distinct effects. Furthermore, we shall show that, for
reasonable parameter choices, the decoherence rate due to
the scattering of Unruh radiation is smaller than the
decoherence rate due to emitted radiation as obtained in
the previous section. We will consider only the electro-
magnetic case in this subsection.

21It should be emphasized that the estimates made in [14] that
yielded Eqs. (2.21) and (2.22) assumed that Alice’s lab is
reasonably far from the black hole. If Alice’s lab is extremely
close to the black hole (i.e., at a distance D ≪ M from the
horizon), then the black hole analysis would reduce to the Rindler
case analyzed here.
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The decoherence rate of a spatial superposition due to
collisions with particles in an environment has been
analyzed in [42–45], and we will adapt this analysis to
obtain a rough estimate of the decoherence caused by the
scattering of Unruh radiation. As in Eq. (2.1), Alice has a
particle of charge q in a state jψi ¼ ðjψ1i þ jψ2iÞ=

ffiffiffi

2
p

,
where jψ1i and jψ2i are spatially separated by a distance d.
Since we require d ≪ 1=a [see Eq. (3.17)] and since the
typical wavelength of Unruh photons at temperature
Eq. (3.36) is λ ∼ 1=a, we are in the scattering
regime where λ ≫ d. In an elastic scattering event between
Alice’s particle and a photon in the Unruh radiation, the
final outgoing state of the photon will depend upon
which branch of the superposition the photon scattered
off of. Let jχ1i denote the outgoing state of the Unruh
photon for scattering off of jψ1i and let jχ2i denote
the outgoing state for scattering off of jψ2i. Decoherence
will occur to the extent to which these outgoing states
of the scattered Unruh photon are distinguishable,
i.e., D ¼ 1 − jhχ1jχ2ij.
In order to obtain a rough estimate of the decoherence

resulting from a single scattering event, we consider the
corresponding Minkowski process of the scattering of a
photon of momentum p off of an inertial superposition
separated by d, with d ≪ 1=p. Assuming that the charged
particle states jψ1i and jψ2i are identical except for
their location, the scattered photon states jχ1i and jχ2i
should differ only by the action of the translation operator

e−iP⃗·d⃗, i.e.,

jχ2i ≈ e−iP⃗·d⃗jχ1i; ð3:37Þ

where P⃗ denotes the photon momentum operator.
Expanding the exponential, we obtain the following
rough estimate of the decoherence resulting from a single
scattering event involving a photon of momentum p

1 − jhχ1jχ2ij ∼ p2d2; ð3:38Þ

where we have ignored any dependence on the angle
between the incoming momentum p⃗ and the separation

d⃗. We will take Eq. (3.38) as our estimate of the
decoherence of Alice’s particle resulting from the scattering
of a single Unruh photon of “Rindler momentum”

p (i.e., of energy ϵ ¼ p with respect to the boost Killing
field ba).
The total decoherence rate due to scattering of Unruh

radiation is then given by

Γscatt ∼ d2
Z

∞

0

dpp2ϱðpÞσðpÞ; ð3:39Þ

where ϱðpÞ is the number density of photons at momentum
p [so ϱðpÞ is also the incoming flux of photons] and σðpÞ is

the scattering cross section. For a thermal distribution of
photons22 we have

ϱðpÞ ∼ p2

ep=T − 1
: ð3:40Þ

We take σ to be given by the Thomson cross section

σ ¼ 8π

3

q4

ð4πmÞ2 ; ð3:41Þ

where m is the mass of Alice’s particle. Putting this all
together, our estimate of the decoherence rate due to
scattering of Unruh photons is

Γscatt ∼
q4d2a5

m2
ðRindler; EMÞ: ð3:42Þ

Comparing Eq. (3.42) to the rate of decoherence, Γrad

due to the emission of soft photons given by Eq. (3.26),
one can immediately see that the effects are distinct. In
particular, Γrad has no dependence on the mass, m, of
Alice’s particle, whereas Γscatt does depend on m on
account of the mass dependence of the scattering cross
section. The ratio of these decoherence rates is given by

Γscatt

Γrad

∼
q2a2

m2
¼

�

q=m

D

�

2

: ð3:43Þ

Now, q=m is the “charge radius” of Alice’s particle and, as
argued in [3], it represents a fundamental lower bound to
the spread of a charged particle due to vacuum fluctuations
of the electromagnetic field. Therefore, in order that jψ1i
and jψ2i not overlap, we must have d > q=m. Since
d ≪ D, we conclude that

Γscatt

Γrad

≪ 1; ð3:44Þ

i.e., the contribution to decoherence from the scattering
of Unruh radiation is negligible compared with the
decoherence due to emission of soft photons through the
Rindler horizon.
A similar analysis holds for a charged particle super-

position outside of a black hole. It is worth noting, that the
decoherence effects due to scattering of Hawking radiation
will decrease with distance, D, from the black hole only as

1=D2 for large D, giving

Γscatt ∼
q4d2

m2M3

1

D2
ðblack hole; EMÞ: ð3:45Þ

22The factor of p2 in the numerator of Eq. (3.40) arises from the
density of states in Minkowski spacetime. We ignore here any
differences between the Minkowski and Rindler densities of states.
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On the other hand, by Eq. (2.21) the decoherence effects of
radiation of soft photons through the horizon decreases

with D as 1=D6. Thus at sufficiently large D, the
decoherence effects due to scattering of Hawking radiation
will dominate. However, in this regime, both effects are
extremely small.

C. Decoherence from the inertial perspective

In our analysis of the decoherence of a spatial super-
position in the presence of a black hole [14] as well as in
our analysis of the decoherence of a spatial superposition in
Rindler spacetime given above in Sec. III A, it may appear
that we have introduced a radical new mechanism for
decoherence, namely radiation of soft photons and grav-
itons through a horizon. The main purpose of this sub-
section is to show that, in fact, the decoherence we derived
in the Rindler case can also be obtained by entirely
conventional means. In the Rindler case, we are simply
considering a uniformly accelerating superposition in
Minkowski spacetime. The radiation of entangling photons
to infinity from such a superposition can be calculated in
the inertial viewpoint by standard methods, without intro-
ducing concepts such as a Rindler horizon. It is instructive
to calculate the decoherence from the inertial viewpoint
both in order to validate the results of Sec. III A as well as to
gain insight into how the emitted “soft photons” would be
interpreted by an inertial observer. As we shall see, the
entangling photons as seen by a faraway inertial observer
along the forward axis of acceleration will be “hard” even
though, from her point of view, Alice has performed the
experiment adiabatically. We will restrict our analysis in
this subsection to the electromagnetic case.
The Liénard-Wiechert solution for the potential of a

point charge in Minkowski spacetime following an arbi-
trary worldline XμðτÞ is, in Lorenz gauge,

AμðxÞ ¼ 1

4π

1

α

q

jx⃗ − X⃗ðtretÞj
dXμ

dt
ðtretÞ; ð3:46Þ

where

α≡ 1 − n̂ ·
dX⃗

dt
ðtretÞ and n̂ ¼ x⃗ − X⃗ðtretÞ

jx⃗ − X⃗ðtretÞj
: ð3:47Þ

For a uniformly accelerated trajectory with acceleration a,
we have

XμðτÞ ¼
�

1

a
sinhðaτÞ; 0; 0; 1

a
coshðaτÞ

�

: ð3:48Þ

In Bondi coordinates ðu; r; θ;ϕÞ with

u≡ t − r ð3:49Þ

the future light cone of an event at proper time τ on the
worldline Eq. (3.48) reaches null infinity at

au ¼ sinhðaτÞ − cos θ coshðaτÞ: ð3:50Þ

Electromagnetic radiation is described by the pullback of
the electromagnetic field, Eq. (3.46), to null infinity. Taking
the limit as r →∞ at fixed u, we obtain23

AAðu; θ;ϕÞ ¼
−q

4π

sinhðaτÞ sin θ
coshðaτÞ − cos θ sinhðaτÞ ðdθÞA; ð3:51Þ

where, in this subsection, capital indices from the early
alphabet denote angular components on the 2-sphere cross-
sections of Iþ. We will be concerned with the difference, at
fixed ðu; θ;ϕÞ, between the electromagnetic radiation of a
particle following the trajectory Eq. (3.48) and a particle
following a similar trajectory that is displaced in the
z-direction by a proper distance d ≪ 1=a and thus has

δa ¼ a2d: ð3:52Þ

We denote this difference by

Ad
Aðu;θ;ϕÞ≡AAðaþδaÞ−AAðaÞ≈δa

�

∂AA

∂a

�

u;θ

: ð3:53Þ

From Eq. (3.51), we obtain

Ad
A ¼ −

a2qd

4π

u sin θ

ðcoshðaτÞ − cos θ sinhðaτÞÞ3 ðdθÞA; ð3:54Þ

where Eq. (3.50) was used to compute ð∂τ=∂aÞðu;θÞ.
In her experiment, Alice starts with her particle in a

uniformly accelerating state. Over a proper time T1, she
separates it into two uniformly accelerating components
separated by a distance d as above. She keeps these
components separated for a proper time T, and she then
recombines them over a proper time T2. The difference
between the radiation fields of these components is
given by

AA ≡A1;A −A2;A ¼ FðτÞAd
A; ð3:55Þ

where the smooth function F is such that FðτÞ ¼ 0

for τ < −T1 and τ > T þ T2, whereas FðτÞ ¼ 1 for
0 < τ < T. The entangling photon content is then
given by

hNi ¼ kKAk2 ¼ 2

Z

S
2

dΩ

Z

∞

0

ωdω

2π
ÂAÂ

A; ð3:56Þ

23The vector potential is not smooth at Iþ in Lorenz gauge but
one can do an asymptotic gauge transformation such that Aa is
smooth at Iþ. Such a gauge transformation does not affect the
angular components AA at Iþ [36], so we can calculate AA using
our Lorenz gauge expression.
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where ÂAðω; θ;ϕÞ denotes the Fourier transform of
AAðu; θ;ϕÞ with respect to u, i.e.,

ÂAðω; θ;ϕÞ ¼
Z

∞

−∞

dueiωuAAðu; θ;ϕÞ: ð3:57Þ

We are interested in estimating hNi for large T.
In order to evaluate the Fourier transform integral, it is

useful to note that, at fixed a, we have

du

dτ
¼ coshðaτÞ − cos θ sinhðaτÞ ð3:58Þ

and

d2u

dτ2
¼ a2u: ð3:59Þ

It follows that

d

du

�

1

du=dτ

�

¼ 1

du=dτ

d

dτ

�

1

du=dτ

�

¼ −a2u

ðcoshðaτÞ − cos θ sinhðaτÞÞ3 : ð3:60Þ

Thus, we have

Ad
A ¼ qd sin θ

4π
ðdθÞA

d

du

�

1

du=dτ

�

ð3:61Þ

and

ÂA ¼ qd sinθ

4π
ðdθÞA

Z

∞

−∞

dueiωuFðτÞ d

du

�

1

du=dτ

�

: ð3:62Þ

Integrating by parts, we obtain

ÂAðω; xAÞ ¼ −
qd sin θ

4π
ðdθÞA

�

iω

Z

∞

−∞

dueiωu
FðτÞ
du=dτ

þ
Z

∞

−∞

dueiωu
F0ðτÞ

ðdu=dτÞ2
�

: ð3:63Þ

The second term in this equation contributes only during
the time intervals ð−T1; 0Þ and ðT; T þ T2Þ when Alice
opens and closes the superposition. For large T, its
contribution can be shown to be negligible compared with
the first term. Therefore, we have

ÂAðω; xAÞ ≈ −ðdθÞA
iωqd sin θ

4π
I; ð3:64Þ

where

I ≡

Z

∞

−∞

dueiωu
FðτÞ
du=dτ

: ð3:65Þ

To evaluate I, we approximate F by a step function in the
τ-interval ½0; T�. The corresponding interval, ½u0; uT �, in u is

u0 ¼ −
1

a
cos θ

uT ¼ 1

2a
½eaTð1 − cos θÞ − e−aTð1þ cos θÞ�: ð3:66Þ

Noting that

du

dτ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2u2 þ sin2 θ
p

ð3:67Þ

we obtain

I ≈

Z

uT

u0

du
eiωu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2u2 þ sin2 θ
p : ð3:68Þ

It can be seen that for large T, the dominant contribution to
I will come from small angles, θ ≪ 1. For aT ≫ 1, the
upper limit of the integral may then be approximated as

uT ≈
1

4a
eaTθ2 −

1

a
e−aT for θ ≪ 1

∼

(

0 for θ2=4 < e−aT

1

4a
θ2eaT for θ2=4 ≥ e−aT

: ð3:69Þ

For aT ≫ 1, the contribution to I from θ2=4 < e−aT can be
shown to make a negligible contribution to hNi, Eq. (3.56).
Therefore, we may approximate I as

I ∼ Θðθ2 − 4e−aTÞ
Z

expðaTÞθ2=ð4aÞ

−1=a

du
eiωu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2u2 þ sin2 θ
p ;

ð3:70Þ

where

ΘðxÞ≡
�

0 for x < 0

1 for x ≥ 0:
ð3:71Þ

For 0 < ω < 4ae−aT=θ2, we may bound I by replacing eiωu

by 1. The integral can then be evaluated explicitly, and it
can be shown that for aT ≫ 1, the contribution to hNi from
this frequency range is negligible. For ω > 4ae−aT=θ2, the

integrand is oscillatory for u > expðaTÞθ2=ð4aÞ, and, for
aT ≫ 1, we will make negligible error in our estimate of
hNi if we replace the upper limit of Eq. (3.70) by ∞. We
will also make a negligible error by replacing the lower
limit by 0. Thus, for aT ≫ 1, we may approximate I as
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I∼Θðθ2−4e−aTÞΘðω−4ae−aT=θ2Þ
Z

∞

0

du
eiωu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2u2þsin2θ
p :

ð3:72Þ

Evaluating the integral we obtain

I ∼
1

a
Θðθ2 − 4e−aTÞΘðω − 4ae−aT=θ2Þ

�

1

2
iπI0ðsin θω=aÞ

þ K0ðsin θω=aÞ −
1

2
iπL0ðsin θω=aÞ

�

; ð3:73Þ

where I0, K0 are Bessel functions and L0 is a Struve
function. This expression is highly suppressed for
ω > a=θ, so we can expand in θω=a and truncate the
function above ω ¼ a=θ to obtain,

I ∼ −
1

a
Θð1 − θω=aÞΘðθ2 − 4e−aTÞ

× Θðω − 4ae−aT=θ2Þ ln ðθω=aÞ: ð3:74Þ

Note that the restrictions ω < a=θ, and θ > 2e−aT=2 imply

a frequency cutoff at ω ∼ aeaT=2=2. By Eqs. (3.74) and

(3.64), the frequency spectrum of ÂA goes as ω lnðω=aÞ up
to this cutoff, i.e., the spectrum is “hard” and becomes
increasingly so for large T. This contrasts with the
increasingly “soft” spectrum on the Rindler horizon, which

goes as 1=ω down to a low frequency cutoff ∼1=V ∝ e−aT .
Thus, the “soft horizon photons” from the Rindler per-
spective are “hard” photons from the inertial perspective.
From Eq. (3.56) for hNi together with our expression

Eq. (3.64) for ÂA and the expression Eq. (3.74) that we
have just derived for I, we obtain

hNi ∼
�

qd

a

�

2
Z

dωdθ θ3ω3

�

ln
ωθ

a

�

2

; ð3:75Þ

where the region of ω − θ integration is determined by the
Θ-functions appearing in Eq. (3.74) as well as the geo-
metrical restriction θ ≲ 1. We can break up this region into
the portion with ω ≤ a and the portion with ω > a. Since
the region with ω ≤ a and θ ≲ 1 is bounded and the
integrand of Eq. (3.75) is bounded in this region, the
contribution to hNi from ω≲ a is bounded by a constant
that is independent of T. We may therefore discard this
contribution. In the region ω > a, the third Θ-function in
Eq. (3.74) is redundant, and the integration region is

a ≤ ω ≤ aeaT=2=2 ð3:76Þ

2e−aT=2 ≤ θ ≤
a

ω
: ð3:77Þ

For aT ≫ 1, we will make negligible error by replacing the
lower limit of θ by 0. We thereby obtain

hNi ∼
�

qd

a

�

2
Z

a expðaT=2Þ=2

a

dω

Z

a=ω

0

dθθ3ω3

�

ln
ωθ

a

�

2

:

ð3:78Þ

Making the change of variables from θ to

x ¼ ω

a
θ ð3:79Þ

we find that the θ-integral becomes

Z

a=ω

0

dθθ3ω3

�

ln
ωθ

a

�

2

¼ a

ω
a3

Z

1

0

dxx3ðln xÞ2 ∼ a4

ω
:

ð3:80Þ

Thus, we obtain

hNi ∼
�

qd

a

�

2

a4
Z

a expðaT=2Þ=2

a

dω

ω

∼ a2q2d2 ln½expðaT=2Þ�
∼ a3q2d2T: ð3:81Þ

This estimate agrees with Eq. (3.23).
Thus, we have succeeded—with considerable effort!—in

our goal of deriving the decoherence of Alice’s super-
position by entirely conventional means. It is notable how
much simpler the calculation of Sec. III Awas compared to
the calculation that we have just completed.

IV. COSMOLOGICAL HORIZONS DECOHERE

QUANTUM SUPERPOSITIONS

In this section, we apply our analysis to de Sitter
spacetime. The de Sitter metric in a static patch is given by

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2qABdx
AdxB; ð4:1Þ

where, in this section, xA are angular coordinates on the
2-sphere, qAB is the unit round metric on the 2-sphere, and

fðrÞ ¼ 1 − r2=R2

H; ð4:2Þ

where RH (the “Hubble radius”) is a constant. The
coordinate singularity at r ¼ RH corresponds to the “cos-
mological horizon”, which is a Killing horizon of the static
Killing field ð∂=∂tÞa. The relation between “affine time”, V,
and “Killing time”, v, on the future cosmological horizon is

V ¼ ev=RH : ð4:3Þ

The general analysis of Sec. II applies to the decoherence
of a static superposition in de Sitter spacetime. The
estimates of the decoherence due to emission of soft
photons and gravitons through the cosmological horizon
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when Alice keeps the superposition present for a time T can
be made in exact parallel with the analysis of Sec. III in the
Rindler case and [14] in the black hole case. The
only noteworthy new ingredient in de Sitter spacetime is
that the worldline r ¼ 0 is an orbit of the static Killing field
that is inertial, i.e., nonaccelerating. We now estimate the
decoherence of a spatial superposition created in Alice’s lab
at r ¼ 0 and thereby show that decoherence will occur even
though Alice’s lab is not accelerating.
By Gauss’ law, a point charge placed at r ¼ 0 will give

rise to a radial electric field EU on the future cosmological
horizon given by

EU ∼
q

R2
H

; ð4:4Þ

where EU ¼ Fabl
anb on the horizon with na ¼ ð∂=∂VÞa

tangent to the affinely parametrized null generators
of the horizon and l

a ¼ ð∂=∂UÞa a radial null vector
with nala ¼ −1. The change in the electric field on the
horizon resulting from a displacement of the charge to
r ¼ d ≪ RH is

ΔEU ∼
qd

R3

H

: ð4:5Þ

By paralleling the steps that led to Eq. (3.18) above, we find
that the change in the tangential components of the vector
potential at the horizon is

jΔAAj≡ ðR−2
H qABΔAAΔABÞ1=2 ∼

qd

R2
H

: ð4:6Þ

By paralleling the steps that led to Eq. (3.23)—assuming
that the electromagnetic field is initially in the de Sitter
invariant vacuum (see footnote 7)—we obtain the estimate

hNi ∼ q2d2

R3

H

T ðde Sitter; EMÞ: ð4:7Þ

Thus, restoring constants, the decoherence time due to the
presence of the cosmological horizon is

TD ∼
ℏϵ0R

3

H

q2d2
ðde Sitter; EMÞ: ð4:8Þ

Since d ≪ RH, the decoherence time will be much larger
than the Hubble time RH=c unless q is extremely large

relative to the Planck charge qP ≡
ffiffiffiffiffiffiffiffiffiffi

ϵ0ℏc
p

. Nevertheless,
we see that decoherence does occur despite the fact that
Alice’s lab is inertial.
A similar analysis applies in the gravitational case for a

spatial superposition of a massive particle in Alice’s lab at
r ¼ 0. In parallel with the derivation given in Sec. III A
above, we find

hNi ∼m2d4

R5

H

T ðde Sitter; GRÞ ð4:9Þ

which leads to a decoherence time

TGR
D ∼

ℏR5

H

Gm2d4
ðde Sitter; GRÞ: ð4:10Þ
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