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Abstract. The IceCube Neutrino Observatory is a cubic kilometer neutrino 
telescope located at the geographic South Pole. Understanding detector 
systematic effects is a continuous process. This requires the Monte Carlo 
simulation to be updated periodically to quantify potential changes and 
improvements in science results with more detailed modeling of the 
systematic effects. IceCube’s largest systematic effect comes from the 
optical properties of the ice the detector is embedded in. Over the last few 
years there have been considerable improvements in the understanding of 
the ice, which require a significant processing campaign to update the 
simulation. IceCube normally stores the results in a central storage system 
at the University of Wisconsin–Madison, but it ran out of disk space in 2022. 
The Prototype National Research Platform (PNRP) project thus offered to 
provide both GPU compute and storage capacity to IceCube in support of 
this activity. The storage access was provided via XRootD-based OSDF 
Origins, a first for IceCube computing. We report on the overall experience 
using PNRP resources, with both successes and pain points. 

1 Introduction 
The IceCube Monte Carlo simulation compute workflows have traditionally relied on 
GridFTP file transfers to deliver the outputs back to central storage servers approximately 
6PB in size, located at the University of Wisconsin–Madison (UW). Unfortunately, that 
storage area got close to being out of disk space in late 2022, so an alternative temporary 
storage location was needed for some of the produced outputs until new disk storage could 
be purchased. 
The most computationally intensive part of the IceCube simulation workflow is a photon 

propagation code [1], which greatly benefits from running on GPUs. The Prototype National 
Research Platform (PNRP) Kubernetes cluster [2-3] is one of the largest GPU-providing 
compute resources for IceCube, but has never provided long-term storage areas to IceCube 
before. Given the storage shortage at UW, IceCube decided to investigate what PNRP had to 
offer. 
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PNRP is a globally distributed infrastructure and operates several storage areas in 
different parts of the globe. The available storage areas were, however, managed using the 
XRootD software [4] and configured as Open Science Data Federation (OSDF) Origins [5-6], 
which IceCube had no prior experience with. We thus had to modify the IceCube workflow 
to use this alternative mechanism. 

2 Changes needed to the IceCube workflow 
IceCube uses HTCondor [7] as its batch workload management system. At the time of this 
exercise, IceCube jobs would explicitly move data inside their jobs using a home-grown 
wrapper script, relying on HTCondor only for compute resource scheduling and propagation 
of X509-based credentials used by GridFTP. 
There were two major changes required to make use of the OSDF Origins on PNRP. First, 

the tools used to access XRootD-based OSDF Origins are different from the ones needed to 
access GridFTP servers. Second, the authentication is based on SciTokens [8] instead of 
X509 credentials. Between the two, the changes to the IceCube wrapper scripts would have 
been non-trivial. 
Recent versions of HTCondor have added native support for OSDF Origin endpoints, so 

we decided to forego the wrappers and rely on native HTCondor file transfer capabilities 
instead. This added some additional complexity to both the HTCondor infrastructure as well 
as to the IceCube’s HTCondor job submission procedures, which we outline below. 

2.1 SciToken handling 

HTCondor has the capability of issuing its own SciTokens credentials, by means of its CredD 
process [9]. We thus configured the IceCube’s HTCondor instance accordingly and worked 
with the PNRP OSDF team on establishing the needed trust relationship. The relevant 
HTCondor config section used is available in Figure 1. 
LOCAL_CREDMON_PROVIDER_NAME = scitokens 
JOB_TRANSFORM_NAMES = $(JOB_TRANSFORM_NAMES) AddSciToken 
JOB_TRANSFORM_AddSciToken @=end 
[ Requirements = (JobUniverse =?= 5 && ifThenElse(isUndefined(NeedsOSDF), 

False, NeedsOSDF)); 
  Eval_Set_OAuthServicesNeeded = strcat( "scitokens ", 

OAuthServicesNeeded ?: ""); ] 
@end 
# Change this to match the OSDF issuer name 
LOCAL_CREDMON_ISSUER = https://chtc.cs.wisc.edu/icecube 
LOCAL_CREDMON_TOKEN_AUDIENCE = ANY 
# Change this for the paths your token should write into, 
# relative to the IceCube root 
LOCAL_CREDMON_AUTHZ_TEMPLATE = read:/production write:/production 
LOCAL_CREDMON_PRIVATE_KEY = /etc/condor/.secrets/scitokens_private.pem 
# Change this to match the key ID generated 
LOCAL_CREDMON_KEY_ID = 7672 

Fig. 1. HTCondor SciTokens config 

With the proper HTCondor infrastructure in place, any job submitted to this HTCondor 
instance was issued a short-lived SciTokens credential, which was automatically copied to 
each running job and renewed as-needed by HTCondor. 
One interesting change with the switch from x509 to SciTokens is that ownership of files 

is more nebulous, since tokens give permission to read/write but don’t control ownership. In 
this case, this area can be considered owned by the IceCube collaboration, though there was 
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only a single writer allowed (a single user on the HTCondor submitter). This is fine for a 
temporary setup, but would need more consideration for other use cases. 

2.2 HTCondor job submission changes 

In addition to the simplification of the job wrapper script, the next major change to IceCube’s 
workflow was the addition of input and output file locations in each job’s submission 
description itself. This is achieved by using the ‘osdf://’ prefix in the HTCondor file transfer 
URL [10] and by explicitly restricting jobs to resources that support this transfer type, by 
adding ‘regexp("osdf",HasFileTransferPluginMethods)’ to the job requirements. The 
comparison of the original and updated workflows is outlined in Table 1. 

Table 1. Summary comparison of the original and updated IceCube’s workflow. 

Original workflow Updated workflow 
1. IceCube framework refreshes 

x509 credential (if needed) 
2. Job submission to HTCondor 

by IceCube framework 
3. HTCondor transfers x509 credential 

with job 
4. Job transfers input files via GridFTP  
5. Job runs simulation code 
6. Job transfers output files via GridFTP  
7. Job completion. 

1. Job submission to HTCondor 
by IceCube framework 

2. HTCondor generates SciToken refresh 
and access tokens 
(if they do not exist) 

3. HTCondor refreshes SciTokens 
periodically (even while job is idle) 

4. HTCondor transfers SciToken access 
token with job 

5. HTCondor transfers input files using 
OSDF plugin and XRootD  

6. Job runs simulation code 
7. HTCondor refreshes SciTokens, and 

sends updated access token to job 
8. HTCondor transfers output files using 

OSDF plugin and XRootD  
9. Job completion. 

 
The definition of the file transfer location at submission time had, however, one major 

unforeseen side effect: we had to explicitly partition the jobs between the various OSDF 
Origins operated by PNRP. Since two of the Origins were co-located with large GPU clusters, 
located at the University of Nebraska-Lincoln (UNL) and Massachusetts Green High 
Performance Computing Center (MGHPCC), we forced all output from jobs running at those 
GPU resources to go to the co-located Origins, to both maximize throughput and minimize 
latency. Output from jobs running on all other resources went to the Origin at the San Diego 
Supercomputing Center (SDSC). This fixed partitioning did add some overhead to the 
IceCube’s operations load, requiring individual dataset submissions for each one, but it was 
not a showstopper. 

3 Usage experience 
Since this was one of the first PRNP workflows using OSDF storage and HTCondor-issued 
SciTokens, the setup took several weeks of adjusting small details on both sides (storage and 
submit point) until it worked consistently. 
Once finalized, it has been stable, although there were some pain points around the 

storage interface. For example, when there were transfer errors, it wasn’t clear what had 
failed or why. Additionally, there seems to be an occasional delay between job submission 
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and token generation that can result in a rejected job submission by HTCondor, as the delay 
is longer than the submit timeout window of 1 minute. 
Nevertheless, the CPU and GPU computing side of PNRP was nearly flawless in 

execution, with very low error rates less than 1%, well below what IceCube typically 
experiences in its regular computing setup. 

3.1 Data produced 

The setup was finalized in December 2022 and the simulation jobs ran until May 2023. 
During that time IceCube  consumed approximately 1.2M CPU core hours and 450k GPU 
hours, and produced about 160 TB of data, almost equally distributed among the three sites, 
as shown in Figure 2. 

 
Fig. 2. Storage per site, cumulative. 

The resources available on PNRP to IceCube were not uniform, with occasional spikes 
followed by periods of inactivity, as shown in Figure 3. Each OSDF Origin typically received 
less than 2 TB of data per day, but there were occasional peaks exceeding 3 TB per day. The 
detailed file transfer data are available in [11]. 
 

  
Fig. 3. Storage per site, binned by day. 

4 IceCube science motivation 
The IceCube Neutrino Observatory [12] is the world’s premier facility to detect neutrinos 
with energies above 1 TeV and an essential part of multi-messenger astrophysics. IceCube is 
composed of 5160 digital optical modules (DOMs) buried deep in glacial ice at the 
geographical south pole. Neutrinos that interact close to or inside of IceCube produce 
secondary particles, often a muon. Such secondary particles produce Cherenkov (blue as seen 
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by humans) light as they travel through the highly transparent ice. Cherenkov photons 
detected by DOMs can be used to reconstruct the direction and energy of the parent neutrino. 
Since the detector is built into a naturally existing medium, i.e., glacial ice, there was a 

priori only limited information regarding the optical properties of the detector, so a lot of 
Monte Carlo simulation data is needed to properly calibrate the employed instruments. The 
optical properties of the glacial ice greatly affect the pointing resolution of IceCube. 
Improving the pointing resolution has two effects in this case: greater chance to detect 
astrophysical neutrinos and better information sent to the community. While IceCube can 
detect all flavors and interaction channels of neutrinos, about two-thirds of the flux reaching 
IceCube will generate a detection pattern with a large angular error. And this angular error is 
mostly driven by systematic effects. Similarly, different optical models have a great effect on 
the reconstructed location of an event in the sky. The comparatively minute field of view of 
partner observatories and telescopes requires IceCube to provide as accurate as information 
as possible. 
Moreover, understanding detector systematic effects is a continuous process. This 

requires the Monte Carlo simulation data to be updated periodically to quantify potential 
changes and improvements in science results with more detailed modeling of the systematic 
effects. Over the last few years there have been considerable improvements in the 
understanding of the ice, which require a significant processing campaign to update the 
simulation. The workflow run on PNRP was part of one such processing campaign. 

5 Summary and conclusions 
The storage provided by the PNRP project was a great asset for IceCube, allowing them to 
continue their simulation compute when their native storage areas become temporarily full. 
The new services did, however, come with an initial startup cost, as IceCube has never used 
XRootD-based OSDF Origins before. 
To minimize development work, IceCube switched from embedded, in-job file transfers 

to explicit, workload-managed, HTCondor file transfers. This slightly changed their 
operational model, with the major downside being the need for explicit, submit-time 
partitioning of the jobs between the target storage locations. Nevertheless, the resulting setup 
was very stable, with near-perfect stability in compute resource usage, well above what 
IceCube typically experiences in its regular computing setup. In the future, we will 
investigate transparent storage location selection in order to avoid this manual partitioning. 
The PNRP storage service performance was excellent, with only a few occasional, 

transient transfer errors. Each OSDF Origin typically received less than 2 TB of data per day, 
with occasional peaks exceeding 3 TB per day. In total, IceCube produced about 160 TB of 
data over the course of about 5 months. 
Overall, IceCube is very satisfied with the experience and will consider the PNRP OSDF 

Origins in the future, if additional temporary storage is needed again. 
 

This work was partially funded by the U.S. National Science Foundation (NSF) under grants OAC-
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