

IceCube experience using XRootD-based Origins
with GPU workflows in PNRP

David Schultz1*, Igor Sfiligoi2, Benedikt Riedel1, Fabio Andrijauskas2, Derek Weitzel3, and
Frank Würthwein2
1University of Wisconsin–Madison, Madison, WI 53715, USA
2University of California San Diego, La Jolla, CA 92093, USA
3University of Nebraska-Lincoln, Lincoln, NE 68588, USA

Abstract. The IceCube Neutrino Observatory is a cubic kilometer neutrino
telescope located at the geographic South Pole. Understanding detector
systematic effects is a continuous process. This requires the Monte Carlo
simulation to be updated periodically to quantify potential changes and
improvements in science results with more detailed modeling of the
systematic effects. IceCube’s largest systematic effect comes from the
optical properties of the ice the detector is embedded in. Over the last few
years there have been considerable improvements in the understanding of
the ice, which require a significant processing campaign to update the
simulation. IceCube normally stores the results in a central storage system
at the University of Wisconsin–Madison, but it ran out of disk space in 2022.
The Prototype National Research Platform (PNRP) project thus offered to
provide both GPU compute and storage capacity to IceCube in support of
this activity. The storage access was provided via XRootD-based OSDF
Origins, a first for IceCube computing. We report on the overall experience
using PNRP resources, with both successes and pain points.

1 Introduction
The IceCube Monte Carlo simulation compute workflows have traditionally relied on
GridFTP file transfers to deliver the outputs back to central storage servers approximately
6PB in size, located at the University of Wisconsin–Madison (UW). Unfortunately, that
storage area got close to being out of disk space in late 2022, so an alternative temporary
storage location was needed for some of the produced outputs until new disk storage could
be purchased.
The most computationally intensive part of the IceCube simulation workflow is a photon

propagation code [1], which greatly benefits from running on GPUs. The Prototype National
Research Platform (PNRP) Kubernetes cluster [2-3] is one of the largest GPU-providing
compute resources for IceCube, but has never provided long-term storage areas to IceCube
before. Given the storage shortage at UW, IceCube decided to investigate what PNRP had to
offer.

* Corresponding author: david.schultz@icecube.wisc.edu

EPJ Web of Conferences 295, 11011 (2024) https://doi.org/10.1051/epjconf/202429511011
CHEP 2023

 © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative
Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

PNRP is a globally distributed infrastructure and operates several storage areas in
different parts of the globe. The available storage areas were, however, managed using the
XRootD software [4] and configured as Open Science Data Federation (OSDF) Origins [5-6],
which IceCube had no prior experience with. We thus had to modify the IceCube workflow
to use this alternative mechanism.

2 Changes needed to the IceCube workflow
IceCube uses HTCondor [7] as its batch workload management system. At the time of this
exercise, IceCube jobs would explicitly move data inside their jobs using a home-grown
wrapper script, relying on HTCondor only for compute resource scheduling and propagation
of X509-based credentials used by GridFTP.
There were two major changes required to make use of the OSDF Origins on PNRP. First,

the tools used to access XRootD-based OSDF Origins are different from the ones needed to
access GridFTP servers. Second, the authentication is based on SciTokens [8] instead of
X509 credentials. Between the two, the changes to the IceCube wrapper scripts would have
been non-trivial.
Recent versions of HTCondor have added native support for OSDF Origin endpoints, so

we decided to forego the wrappers and rely on native HTCondor file transfer capabilities
instead. This added some additional complexity to both the HTCondor infrastructure as well
as to the IceCube’s HTCondor job submission procedures, which we outline below.

2.1 SciToken handling

HTCondor has the capability of issuing its own SciTokens credentials, by means of its CredD
process [9]. We thus configured the IceCube’s HTCondor instance accordingly and worked
with the PNRP OSDF team on establishing the needed trust relationship. The relevant
HTCondor config section used is available in Figure 1.
LOCAL_CREDMON_PROVIDER_NAME = scitokens
JOB_TRANSFORM_NAMES = $(JOB_TRANSFORM_NAMES) AddSciToken
JOB_TRANSFORM_AddSciToken @=end
[Requirements = (JobUniverse =?= 5 && ifThenElse(isUndefined(NeedsOSDF),

False, NeedsOSDF));
 Eval_Set_OAuthServicesNeeded = strcat("scitokens ",

OAuthServicesNeeded ?: "");]
@end
Change this to match the OSDF issuer name
LOCAL_CREDMON_ISSUER = https://chtc.cs.wisc.edu/icecube
LOCAL_CREDMON_TOKEN_AUDIENCE = ANY
Change this for the paths your token should write into,
relative to the IceCube root
LOCAL_CREDMON_AUTHZ_TEMPLATE = read:/production write:/production
LOCAL_CREDMON_PRIVATE_KEY = /etc/condor/.secrets/scitokens_private.pem
Change this to match the key ID generated
LOCAL_CREDMON_KEY_ID = 7672

Fig. 1. HTCondor SciTokens config

With the proper HTCondor infrastructure in place, any job submitted to this HTCondor
instance was issued a short-lived SciTokens credential, which was automatically copied to
each running job and renewed as-needed by HTCondor.
One interesting change with the switch from x509 to SciTokens is that ownership of files

is more nebulous, since tokens give permission to read/write but don’t control ownership. In
this case, this area can be considered owned by the IceCube collaboration, though there was

EPJ Web of Conferences 295, 11011 (2024) https://doi.org/10.1051/epjconf/202429511011
CHEP 2023

2

only a single writer allowed (a single user on the HTCondor submitter). This is fine for a
temporary setup, but would need more consideration for other use cases.

2.2 HTCondor job submission changes

In addition to the simplification of the job wrapper script, the next major change to IceCube’s
workflow was the addition of input and output file locations in each job’s submission
description itself. This is achieved by using the ‘osdf://’ prefix in the HTCondor file transfer
URL [10] and by explicitly restricting jobs to resources that support this transfer type, by
adding ‘regexp("osdf",HasFileTransferPluginMethods)’ to the job requirements. The
comparison of the original and updated workflows is outlined in Table 1.

Table 1. Summary comparison of the original and updated IceCube’s workflow.

Original workflow Updated workflow
1. IceCube framework refreshes

x509 credential (if needed)
2. Job submission to HTCondor

by IceCube framework
3. HTCondor transfers x509 credential

with job
4. Job transfers input files via GridFTP
5. Job runs simulation code
6. Job transfers output files via GridFTP
7. Job completion.

1. Job submission to HTCondor
by IceCube framework

2. HTCondor generates SciToken refresh
and access tokens
(if they do not exist)

3. HTCondor refreshes SciTokens
periodically (even while job is idle)

4. HTCondor transfers SciToken access
token with job

5. HTCondor transfers input files using
OSDF plugin and XRootD

6. Job runs simulation code
7. HTCondor refreshes SciTokens, and

sends updated access token to job
8. HTCondor transfers output files using

OSDF plugin and XRootD
9. Job completion.

The definition of the file transfer location at submission time had, however, one major

unforeseen side effect: we had to explicitly partition the jobs between the various OSDF
Origins operated by PNRP. Since two of the Origins were co-located with large GPU clusters,
located at the University of Nebraska-Lincoln (UNL) and Massachusetts Green High
Performance Computing Center (MGHPCC), we forced all output from jobs running at those
GPU resources to go to the co-located Origins, to both maximize throughput and minimize
latency. Output from jobs running on all other resources went to the Origin at the San Diego
Supercomputing Center (SDSC). This fixed partitioning did add some overhead to the
IceCube’s operations load, requiring individual dataset submissions for each one, but it was
not a showstopper.

3 Usage experience
Since this was one of the first PRNP workflows using OSDF storage and HTCondor-issued
SciTokens, the setup took several weeks of adjusting small details on both sides (storage and
submit point) until it worked consistently.
Once finalized, it has been stable, although there were some pain points around the

storage interface. For example, when there were transfer errors, it wasn’t clear what had
failed or why. Additionally, there seems to be an occasional delay between job submission

EPJ Web of Conferences 295, 11011 (2024) https://doi.org/10.1051/epjconf/202429511011
CHEP 2023

3

and token generation that can result in a rejected job submission by HTCondor, as the delay
is longer than the submit timeout window of 1 minute.
Nevertheless, the CPU and GPU computing side of PNRP was nearly flawless in

execution, with very low error rates less than 1%, well below what IceCube typically
experiences in its regular computing setup.

3.1 Data produced

The setup was finalized in December 2022 and the simulation jobs ran until May 2023.
During that time IceCube consumed approximately 1.2M CPU core hours and 450k GPU
hours, and produced about 160 TB of data, almost equally distributed among the three sites,
as shown in Figure 2.

Fig. 2. Storage per site, cumulative.

The resources available on PNRP to IceCube were not uniform, with occasional spikes
followed by periods of inactivity, as shown in Figure 3. Each OSDF Origin typically received
less than 2 TB of data per day, but there were occasional peaks exceeding 3 TB per day. The
detailed file transfer data are available in [11].

Fig. 3. Storage per site, binned by day.

4 IceCube science motivation
The IceCube Neutrino Observatory [12] is the world’s premier facility to detect neutrinos
with energies above 1 TeV and an essential part of multi-messenger astrophysics. IceCube is
composed of 5160 digital optical modules (DOMs) buried deep in glacial ice at the
geographical south pole. Neutrinos that interact close to or inside of IceCube produce
secondary particles, often a muon. Such secondary particles produce Cherenkov (blue as seen

EPJ Web of Conferences 295, 11011 (2024) https://doi.org/10.1051/epjconf/202429511011
CHEP 2023

4

by humans) light as they travel through the highly transparent ice. Cherenkov photons
detected by DOMs can be used to reconstruct the direction and energy of the parent neutrino.
Since the detector is built into a naturally existing medium, i.e., glacial ice, there was a

priori only limited information regarding the optical properties of the detector, so a lot of
Monte Carlo simulation data is needed to properly calibrate the employed instruments. The
optical properties of the glacial ice greatly affect the pointing resolution of IceCube.
Improving the pointing resolution has two effects in this case: greater chance to detect
astrophysical neutrinos and better information sent to the community. While IceCube can
detect all flavors and interaction channels of neutrinos, about two-thirds of the flux reaching
IceCube will generate a detection pattern with a large angular error. And this angular error is
mostly driven by systematic effects. Similarly, different optical models have a great effect on
the reconstructed location of an event in the sky. The comparatively minute field of view of
partner observatories and telescopes requires IceCube to provide as accurate as information
as possible.
Moreover, understanding detector systematic effects is a continuous process. This

requires the Monte Carlo simulation data to be updated periodically to quantify potential
changes and improvements in science results with more detailed modeling of the systematic
effects. Over the last few years there have been considerable improvements in the
understanding of the ice, which require a significant processing campaign to update the
simulation. The workflow run on PNRP was part of one such processing campaign.

5 Summary and conclusions
The storage provided by the PNRP project was a great asset for IceCube, allowing them to
continue their simulation compute when their native storage areas become temporarily full.
The new services did, however, come with an initial startup cost, as IceCube has never used
XRootD-based OSDF Origins before.
To minimize development work, IceCube switched from embedded, in-job file transfers

to explicit, workload-managed, HTCondor file transfers. This slightly changed their
operational model, with the major downside being the need for explicit, submit-time
partitioning of the jobs between the target storage locations. Nevertheless, the resulting setup
was very stable, with near-perfect stability in compute resource usage, well above what
IceCube typically experiences in its regular computing setup. In the future, we will
investigate transparent storage location selection in order to avoid this manual partitioning.
The PNRP storage service performance was excellent, with only a few occasional,

transient transfer errors. Each OSDF Origin typically received less than 2 TB of data per day,
with occasional peaks exceeding 3 TB per day. In total, IceCube produced about 160 TB of
data over the course of about 5 months.
Overall, IceCube is very satisfied with the experience and will consider the PNRP OSDF

Origins in the future, if additional temporary storage is needed again.

This work was partially funded by the U.S. National Science Foundation (NSF) under grants OAC-
1826967, OAC-1541349, OPP-2042807, OAC-2030508, OAC-2112167 and CNS-1730158.

References
1. D. Chirki, Photon tracking with GPUs in IceCube. Nucl. Inst. and Meth. in Phys. Res.

Sec. A, Vol. 725, 141-143. (2013) https://doi.org/10.1016/j.nima.2012.11.170
2. NRP, Accessed August 2023. https://www.sdsc.edu/services/hpc/nrp/index.html

EPJ Web of Conferences 295, 11011 (2024) https://doi.org/10.1051/epjconf/202429511011
CHEP 2023

5

3. National Research Platform, Accessed August 2023.
https://nationalresearchplatform.org

4. L. Bauerdick et al., Using Xrootd to Federate Regional Storage, J. Phys.: Conf. Ser.
396 042009 (2012) https://doi.org/10.1088/1742-6596/396/4/042009

5. D. Weitzel et.al., Data Access for LIGO on the OSG. In Proceedings of the Practice
and Experience in Advanced Research Computing 2017 on Sustainability, Success and
Impact (PEARC17). Association for Computing Machinery, New York, NY, USA,
Article 24, 1–6. (2017) https://doi.org/10.1145/3093338.3093363

6. CVMFS – Nautilus Documentation, Accessed August 2023. https://ucsd-
prp.gitlab.io/userdocs/storage/cvmfs/

7. D. Thain, T. Tannenbaum, and M. Livny, Distributed computing in practice: the
Condor experience. Concurrency Computat.: Pract. Exper., 17: 323-356. (2005)
https://doi.org/10.1002/cpe.938

8. A. Withers et al., SciTokens: Capability-Based Secure Access to Remote Scientific
Data. In Proceedings of the Practice and Experience on Advanced Research
Computing (PEARC '18). Association for Computing Machinery, New York, NY,
USA, Article 24, 1–8. (2018) https://doi.org/10.1145/3219104.3219135

9. A. Withers et al., SciTokens: Demonstrating Capability-Based Access to Remote
Scientific Data using HTCondor. In Proceedings of the Practice and Experience in
Advanced Research Computing on Rise of the Machines (learning) (PEARC '19).
Association for Computing Machinery, New York, NY, USA, Article 118, 1–4. (2019)
https://doi.org/10.1145/3332186.3333258

10. Submitting jobs without a shared file system: HTCondor ‘s File Transfer Mechanism.
Accessed August 2023. https://htcondor.readthedocs.io/en/v10_0/users-manual/file-
transfer.html

11. GitHub raw data: CHEP23-xrootd-NRP-data, Accessed August 2023.
https://github.com/WIPACrepo/CHEP23-xrootd-NRP-data

12. M. G. Aartsen et al., J. Inst. 12 P03012 (2017) https://doi.org/10.1088/1748-
0221/12/03/P03012

EPJ Web of Conferences 295, 11011 (2024) https://doi.org/10.1051/epjconf/202429511011
CHEP 2023

6

