

Demand-driven provisioning of Kubernetes-like
resources in OSG

Igor Sfiligoi1*, Frank Würthwein1, Jeff Dost1, Brian Lin2, and David Schultz2
1University of California San Diego, La Jolla, CA 92093, USA
2University of Wisconsin–Madison, Madison, WI 53715, USA

Abstract. The OSG-operated Open Science Pool is an HTCondor-based
virtual cluster that aggregates resources from compute clusters provided by
several organizations. Most of the resources are not owned by OSG, so
demand-based dynamic provisioning is important for maximizing usage
without incurring excessive waste. OSG has long relied on GlideinWMS for
most of its resource provisioning needs but is limited to resources that
provide a Grid-compliant Compute Entrypoint. To work around this
limitation, the OSG Software Team has developed a glidein container that
resource providers could use to directly contribute to the OSPool. The
problem with that approach is that it is not demand-driven, relegating it to
backfill scenarios only. To address this limitation, a demand-driven direct
provisioner of Kubernetes resources has been developed and successfully
used on the NRP. The setup still relies on the OSG-maintained backfill
container image but automates the provisioning matchmaking and
successive requests. That provisioner has also been extended to support
Lancium, a green computing cloud provider with a Kubernetes-like
proprietary interface. The provisioner logic has been intentionally kept very
simple, making this extension a low-cost project. Both NRP and Lancium
resources have been provisioned exclusively using this mechanism for many
months.

1 Introduction
The HTCondor batch workload management system [1,2] has long been used to aggregate
resources from many independent resource providers and is the core technology enabling
the Open Science Grid (OSG) [3] operated Open Science Pool (OSPool) [4]. HTCondor
architecture has very few hard requirements, allowing its services to operate in virtually
any environment, e.g., both with and without elevated privileges, and in restricted
network environments. Resource provisioning was, however, never a core competency
of the HTCondor stack, delegating that aspect to other software providers.

OSPool currently mostly relies on GlideinWMS [5] for its dynamic resource
provisioning needs. That said, GlideinWMS specializes in provisioning Grid computing

* Corresponding author: isfiligoi@sdsc.edu

EPJ Web of Conferences 295, 07014 (2024) https://doi.org/10.1051/epjconf/202429507014
CHEP 2023

 © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative
Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

resources, i.e. compute resources managed by independent batch workload management
systems behind a Grid-compliant Compute Entrypoint (OSG CE) [6].

In this work, we address the provisioning of distributed compute resources that are
not managed by a traditional batch system, with a focus on container-based systems. It
should be noted that the OSG Software Team has already developed a glidein container
image [7] that can be used to contribute resources to the OSPool, which has been
successfully used by some resource providers as a backfill solution. Our solution extends
that by adding demand-driven provisioning logic on top of that, allowing for OSPool
provisioning to work both as backfill and at regular priorities.

2 Provisioning Kubernetes-managed resources
Kubernetes [8] is a popular container-based resource management system that is getting
significant traction in both on-prem and Cloud environments. In particular, the US
National Science Foundation (NSF) has funded several on-prem systems that are at least
partially managed by Kubernetes, including the Pacific Research Platform (PRP) [9],
Expanse, Voyager and the Prototype National Research Platform (PNRP) [10]. Proper
integration of such resources in the OSG ecosystem is thus highly desirable.

An initial Kubernetes provisioner has been developed in PRP [11], but it was mostly
focused on supporting a few large communities, e.g., the IceCube and LIGO experiments.
In particular, the container image providing the HTCondor worker processes was built
starting from a base Operating System (OS) image and had to be customized for each and
every target user community.

This work [12] extends that implementation by adding support for the OSG glidein
container image. The big advantage of this approach is that the OSG-provided image
comes fully pre-configured, avoiding the image customization and maintenance effort
needed by the original implementation. The downside of this approach is slightly reduced
provisioner flexibility, but we found no showstoppers.

Fig. 1. Summary overview of the Kubernetes Provisioner architecture

EPJ Web of Conferences 295, 07014 (2024) https://doi.org/10.1051/epjconf/202429507014
CHEP 2023

2

2.1 Provisioning logic

The provisioning logic is based on an asynchronous polling mechanism and is demand-
driven. The provisioning process periodically queries both HTCondor and Kubernetes for
their relevant state, and if there are HTCondor jobs waiting for resources and no relevant
queued Kubernetes requests, additional Kubernetes resources are requested. Once a
Kubernetes-managed container starts, it contacts the HTCondor scheduling
infrastructure, which in turn sends the user job to be executed, as outlined in Figure 1. It
should be noted that conceptually this is very similar to the logic used by GlideinWMS,
just optimized for provisioning from a single Kubernetes pool.

The Kubernetes provisioner effectively only manages the up-scaling part of the auto-
scaling logic, by queuing more pods as needed. The provisioner never actively removes
any pods. All pods are configured with total lifetime and maximum idle time limits,
autonomously auto-terminating and thus implicitly managing the down-scaling. This
logic avoids race conditions inherent to the asynchronous nature of the logic and was
observed to work reasonably well in production environments.

Since HTCondor jobs in the OSPool are virtually never homogeneous, the Kubernetes
provisioner groups them by their requirements and requests dedicated Kubernetes
resources for each of the groups. This minimizes the waste incurred by the running
Kubernetes pods and allows the Kubernetes scheduler to optimally allocate its resources.
An overview of the logic is available in Figure 2.

Fig. 2. Overview of the clustered provisioning logic

Moreover, not all HTCondor jobs can or want to run on a specific Kubernetes cluster.
Neither are all the Kubernetes-managed resources suitable or available to the OSG
community. The provisioner thus allows for filtering of HTCondor jobs during its query
phase and for adding of additional requirements during Kubernetes pod submission. As
with most software, those additional restrictions are controlled through an admin-
provided configuration file. A simplified example of such a configuration can be seen in
Figure 3.

EPJ Web of Conferences 295, 07014 (2024) https://doi.org/10.1051/epjconf/202429507014
CHEP 2023

3

Fig. 3. A simplified example configuration file showcasing the provisioning restrictions

2.2 Integration with the OSG maintained container image

The container image used by the Kubernetes pods has three main functions:
1. provide the necessary software needed by the user jobs,
2. provide the HTCondor software distribution, and
3. properly configure HTCondor on startup.
By using the OSG-maintained glidein container image, the Kubernetes provisioner

software stack does not have to maintain the first two anymore. Most of the configuration
is also maintained by the OSG container image but must be dynamically patched at
runtime to inject the additional bits and pieces the Kubernetes provisioner relies on. This
adds the potential of the two getting out of sync, but so far it has not been a problem yet.

The major requirement of the dynamic patching is the propagation of provisioner-
specific attributes used for querying and matchmaking. On top of that, the provisioner
also uses a slightly different approach at passing secrets used in authentication, so the
HTCondor configuration in the image has to be patched accordingly; while it would have
been in principle possible to alter the provisioner secret handling, we decided it was less
disruptive to just patch the existing configuration.

2.3 Interaction between multiple Kubernetes users

The Kubernetes provisioner is generally oblivious to the activities of other Kubernetes
users in the system. The task of sharing the resources between those users is mostly
offloaded to the Kubernetes scheduler.

The major knob used by the provisioner is the priorityClassName of the submitted
Kubernetes pods, which regulates how those pods will be scheduled in relation to other
pods in the system. For example, in the National Research Platform (NRP) Nautilus
cluster, which contains both the PRP and PNRP nodes, the opportunistic2 class has the
lowest priority number of all the defined classes and allows for preemption, and is thus
used for backfill pods. On the other hand, regular-priority pods simply do not explicitly
specify any priorityClassName at all.

Additionally, the provisioner allows for setting of a quota through the configuration
setting max_submit_pods_per_cluster. This is especially useful for regular-priority, non-
preemptable pods, so a single user does not take over the whole cluster in the absence of
cluster-wide quota settings.

EPJ Web of Conferences 295, 07014 (2024) https://doi.org/10.1051/epjconf/202429507014
CHEP 2023

4

3 Extending the provisioner to Lancium cloud compute
Lancium is a green computing company that offered a significant amount of compute
resources to OSPool through its cloud computing platform. Unfortunately, at that time
its cloud offering used a custom interface, so one of the OSG resource provisioning tools
had to be extended to make use of it.

The Lancium cloud interface was container based and provided the usual batch-like
actions, e.g., query and submit. After close examination, we determined that the Lancium
semantics was rich enough to support our Kubernetes-focused provisioner, even though
the syntax was significantly different.

Our Kubernetes-focused provisioner is written in Python language, with Python
classes abstracting away the Kubernetes details from the provisioning logic. It was thus
relatively easy to implement an alternative class [13] that exposed the same interface but
interacted with Lancium instead because we used only the basic Kubernetes capabilities
in the original code.

4 Summary and conclusions
The Kubernetes-focused provisioner described in this work has allowed the OSG
communities, and in particular the OSPool, to successfully and effectively make use of
the NSF-funded Kubernetes-managed compute resources, e.g., the NRP. At the time of
writing, this provisioner was the only solution available to the OSG Consortium for
dynamically provisioning multi-tenant Kubernetes systems.

The work builds on top of the Kubernetes provisioner built as part of the PRP project,
but further integrates it with the OSG Software Stack. This both reduces code
maintenance and minimizes OSPool job failures due to configuration errors.
Nevertheless, other user communities are still supported using the original container
image approach.

Additionally, the provisioner has been shown to be easily extendible to support other
platforms with a Kubernetes-like interface, due to its minimalistic interface
requirements. This was proven by adding support for the Lancium cloud platform, which
has delivered a significant amount of resources to the OSPool.

This work was partially funded by the U.S. National Science Foundation (NSF) under grants OAC-
2030508, OAC-2112167, OAC-1826967, CNS-1925001, OAC-1841530, CNS-1730158, CNS-
2100237 and CNS-2120019.

References
1. D. Thain, T. Tannenbaum, and M. Livny, Distributed computing in practice: the

Condor experience. Concurrency Computat.: Pract. Exper., 17: 323-356. (2005)
https://doi.org/10.1002/cpe.938

2. HTCondor Home Page. Accessed August 2023. https://htcondor.org/
3. R. Pordes et al. The open science grid, J. Phys.: Conf. Ser. 78 012057 (2007)
4. Open Science Pool. Accessed August 2023. https://osg-

htc.org/services/open_science_pool.html

EPJ Web of Conferences 295, 07014 (2024) https://doi.org/10.1051/epjconf/202429507014
CHEP 2023

5

5. I. Sfiligoi et al., The Pilot Way to Grid Resources Using glideinWMS, 2009 WRI
World Congress on Computer Science and Information Engineering, pp. 428-432.
(2009) https://doi.org/10.1109/CSIE.2009.950

6. B. Bockelman, M. Livny, B. Lin, and F. Prelz, Principles, technologies, and time: The
translational journey of the HTCondor-CE, J. Comp. Sci. 101213. (2020)
https://doi.org/10.1016/j.jocs.2020.101213

7. Open Science Pool Containers. Accessed August 2023. https://osg-
htc.org/docs/resource-sharing/os-backfill-containers/

8. Kubernetes. Accessed August 2023. https://kubernetes.io
9. L. Smarr et al., The Pacific Research Platform: Making High-Speed Networking a

Reality for the Scientist, PEARC '18: Proceedings of the Practice and Experience on
Advanced Research Computing. 29 pp 1–8. (2018)
https://doi.org/10.1145/3219104.3219108

10. NRP, Accessed August 2023. https://www.sdsc.edu/services/hpc/nrp/index.html
11. I. Sfiligoi, T. DeFanti, and F. Würthwein, Auto-scaling HTCondor pools using

Kubernetes compute resources, In Practice and Experience in Advanced Research
Computing (PEARC '22). Association for Computing Machinery, New York, NY,
USA, Article 57, 1–4. (2022) https://doi.org/10.1145/3491418.3535123

12. GitHub: prp-htcondor-portal, Accessed August 2023. https://github.com/sfiligoi/prp-
htcondor-portal/tree/ospool_pool_base

13. GitHub: lancium-htcondor-portal, Accessed August 2023.
https://github.com/sfiligoi/lancium-htcondor-portal/tree/main

EPJ Web of Conferences 295, 07014 (2024) https://doi.org/10.1051/epjconf/202429507014
CHEP 2023

6

