EPJ Web of Conferences 295, 04040 (2024) https://doi.org/10.1051/epjconf/202429504040
CHEP 2023

Microarchitecture: A useful tool to organize
machines in heterogeneous shared computing
environments

Gregory Thain'",and Igor Sfiligoi, 2

!'University of Wisconsin — Madison, Center for High Throughput Computing, Madison, WI, USA
2 University of California at San Diego, La Jolla, CA, USA

Abstract. The x86_64 instruction set architecture is not a single, consistent,
compatible interface to execute computer programs. Since the initial release
in 1999, every new generation has added new instructions, some of which
were later removed. Most of these new instructions are intended to improve
the performance of those programs which explicitly take advantage of them.
However, running such a program on older CPUs without appropriate
support, results in Linux SIGILL exception signal, which is difficult for end
users to diagnose. On the other hand, compiling scientific code for the least
common denominator ISA can leave significant performance on the table.
High Throughput systems, containing very large number of machines,
cannot require a single CPU version across hundreds of thousands of
machines operating in dozens of sites. The OSG Open Science Pool alone
consists of more than 20 different, subtly incompatible X86 64
implementations. In 2020, Intel, AMD and RedHat proposed new
terminology and partitioned these dozens of microarchitectures into a strict
hierarchy of four groups. The HTCondor Software Suite and the OSG now
have first class support for these microarchitectures. This paper discusses
the advantages for users and future work around microarchitecture support.

1 Introduction and motivation

The Open Science Grid (OSG)[1] is a collaboration consisting of more than one hundred
independent sites which choose to share computing resources with each other. In order to
maximize the capacity of the OSG, we intentionally choose to minimize our selectivity on
the types of computing resources that may join. This is unlike most High-Performance
Computing (HPC) or supercomputing sites, which support very homogenous hardware, often
with clusters of completely identical worker nodes, or at worst, only a small handful of
distinct types or generations of worker nodes. We have identified over twenty different
variants of the x86-64 architecture [2] in the OSG, from both Intel and AMD. Although there
is a least common denominator subset instruction set architecture (ISA) common to all these
implementations, each implements many different superset instructions sets. Executables

* Corresponding author: gthain@cs.wisc.edu

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative
Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

mailto:gthain@cs.wisc.edu

EPJ Web of Conferences 295, 04040 (2024) https://doi.org/10.1051/epjconf/202429504040
CHEP 2023

which take advantage of these instructions will fault with an illegal instruction error on those
machines which don’t support them, which is a bewildering result to naive users.

There are several ways to select the set of machine instructions in a program. The most
direct is to write some small performance-critical section in assembly or perhaps using direct
low-level compiler intrinsics that map one-to-one with machine instructions. This is a
method for experts and will not be otherwise covered in this paper. A just-in-time (JIT)
compiler, like found in many Java runtimes is an ideal solution, as the compiler, which only
runs on the target machine, knows the exact ISA that it will be running. This is infeasible,
as very few OSG users or scientific computing users in general run code based on a Java VM
language. The most common solution, and the one this work alludes to is to use a traditional
ahead-of-time compiler, like gcc, and pass it a compile-time flag to request a very specific
ISA (.e.g. gcc -march=haswell main.c).

1.1 The status quo ante and least common denominatorism

The easiest approach to the problem is to insist that all binaries run in the Open Science Pool
(OSPool) [3] be compiled for the oldest, universally-portable subset of the x86_64 ISA. This
has been the best practice since the founding of the OSG. However, there are three problems
with the least common denominator compiling tactic.

1.1.1 Lack of access to source or difficulty in recompiling from source

Most users in the OSG are domain researchers, not computing experts. Most researchers run
codes they have not personally compiled. Indeed, this is one of the benefits of the HTC
approach — the exact same codes that run on a researchers’ laptop can often run without any
modification on the HTC cluster, but the cluster runs a lot more of those codes concurrently
and independently. Forcing a user to learn how to obtain source code, configure, recompile
with the appropriate flags and deploy into their workflow would be a significant tax on their
research time, not to mention the need to test the correctness of the new build. Many codes
used by our researchers are not intended to be recompiled by the end user, as their authors
believe the best way to get their users running quickly is to provide them with precompiled
binaries.

1.1.2 Reduced performance when running on more capable platforms

Should a research build or acquire binary executables that can run universally on an x86_64
machine, there may be a significant performance penalty in doing so. As the peak clock
speeds of CPUs have plateaued, Intel and AMD increasingly rely on improving the
performance of their products by raising the instructions per clock (ipc). While some ipc
improvements can be made without changes to the ISA, many require the use of new, very
complex instructions. All of the benchmark results published by CPU vendors are run taking
advantage of any new instructions on CPUs. This is particularly true for every new
generation of vector instructions, from MMX to SSE to AVX and beyond. So, any
researcher’s program compiled for a least common denominator ISA will run at some
performance penalty. Depending on the workload, this penalty may be significant. It is not
uncommon for a program that uses the vector instructions heavily to run two to three times
faster than one that does not.

EPJ Web of Conferences 295, 04040 (2024) https://doi.org/10.1051/epjconf/202429504040
CHEP 2023

1.1.3 Increased energy consumption for suboptimal binaries

Directly related to performance is energy consumption. Even if the end user is not interested
in the performance of their code, a program using the vector instructions and thus running
significantly faster may consume proportionately less energy, an issue which is gaining more
visibility around the world, as data centers are seen to be a growing fraction of total global
energy consumption.

1.2 The problems with naming

Any given CPU has several names associated with it, and it is surprising difficult to select
which name family to promote to users of the OSG. The most well-known naming scheme
is the so-called marketing names, e.g., i3, i5, 17, 19 for most desktop/laptop Intel CPUs, Xeon
Gold, Xeon Scalable Processors for server Intel CPUs, and Ryzen and EPYC for AMD CPUs.
These names are not useful for our project, as they differ from vendor to vendor, and they
don’t unique describe the capabilities of a CPU. One generation of i5, for instance, will not
necessarily support the same instructions as the previous generation of i5. The
microarchitecture for each processor also has a code name, e.g., Haswell and Sandy Bridge
for Intel CPUs and Bulldozer for AMD CPUs. These are not as well-known as the marketing
name but have the opposite problem — there are many different microarchitecture code names
which can implement the same ISA, meaning that the code name is too specific in this use
case. Consider Figure 1, which shows the distribution of CPUs in the OSPool by code name.

Pool b

l/AMD CPU code names in OSPool
1 1595 42 321 :
4% " 27 162349 g9 gay
Yoo 1773

2356

3090

Figure 1: OSPool composition by code name.

2 Industry consensus: Microarchitecture

This naming and clustering of machine types is not a problem unique to HTC. Vendors of
Linux distributions, such as Red Hat, have very similar problems. They would like their
packages to run as efficiently as possible on the available hardware, but it is infeasible for
them to maintain, test, and distribute dozens of different builds for various CPU subtypes. In
July of 2020, Red Hat proposed [4] a clustering of all extant x86 64 cpu subtypes into three
“microarchitectures”, named x86-64-v2, x86-64-v3 and x86-64-v4, where progressively

EPJ Web of Conferences 295, 04040 (2024) https://doi.org/10.1051/epjconf/202429504040
CHEP 2023

higher “v” numbers denote more capability, and each set can execute any program targeted
a lower set. The level of “x86-64-v1” was not defined but is implied as “not even x86-64-
v2”. This proposal was quickly adopted by the cpu vendors [5], the compiler implementers
(who added -march=microarch flags to their compilers, and the Linux distributions.

Name Required Instructions

x86-64-v2 cx16, lahf Im, popent, sse4 1 sse4 2, ssse3
x86-64-v3 abm avx, avx2, bmil, bmi2, f16c, fma, movbe, xsave
x86-64-v4 avx512bw, avx512cd, avx152dq, avx512f, avx512vl

Figure 2: OSPool composition by microarchitecture.

The HTCondor Software Suite[6], which powers the OSG, added support in version
9.12.0, released in October of 2022 for this microarchitecture detection. At boot time, the
HTCondor condor_startd, which is responsible for the worker node, detects the
microarchitecture of the system it is running on, and advertises that as part of the slot classad.
This attribute, named Microarch, can then be used by administrators for measuring what part
of their pool has which microarchitecture, while the end users can use this attribute for
matching jobs to machines. For example, they can request that their job only land on
machines that support at least microarchitecture x86-64-v3, or perhaps exactly one
microarchitecture. With this clustering, the composition of the OS Pool is much clearer, as
shown in Figure 2.

With this new nomenclature, it is much easier to talk about the problem of
microarchitecture, to describe our pools, and to optimize execution speeds and energy usage
of our cluster. A couple of examples are given below.

2.1.1 A composite HTCondor resource selection example

To better illustrate the benefits of reseource selection based on microarchitecture, consider
an application that can make good use of both f16¢ and AVX2 instructions. Neither are part
of the original x86 64 ISA, so users running such an application will have to restrict to only
CPUs supporting those two extensions.

EPJ Web of Conferences 295, 04040 (2024) https://doi.org/10.1051/epjconf/202429504040
CHEP 2023

At the time of writing, there were about 90 different CPU models that supported those
extensions and about 40 CPU models that did not, so some kind of resource selection is
required. Note that about 10 models supported only one of the two extensions, but not both.

HTCondor has long had support for detection and reporting of some of the x86 64 ISA
extensions, including cx16, sse3/4, fl16¢, avx, avx2 and various avx512 flavors. The two
extensions of interest are reported as sas_fpl6c and has _avx?2 attributes in the slot classad.
The user could thus have selected the appropriate slots using these two attributes, i.e.
‘(has_fpl6c && has avx2)’. Using the new microarchitecture attribute, the selection
becomes ‘((Microarch=="x86_64-v3”) || (Microarch=="x86_64-v4™))’.

2.1.2 A previously unsupported HTCondor resource selection example

HTCondor does not support all of the x86_64 extensions, there are just too many of them.
Example missing ISA extensions are popent and bmil/2. If a user had an application that
relied on either of those, there was previously no obvious way to select slots that supported
them.

That said, most ISA extensions were introduced together by the CPU vendors, so selecting
on one of the HTCondor-supported API extension flags would most likely produce the
desired results, e.g. by using the has_avx2 attribute. This would however require the user to
do significant CPU model research, and is also not guaranteed to always work.

Using the microarch attribute, on the other hand, provides both easier documentation and
guaranteed presence of the desired ISA extension.

2.1.3 A software provider example

As previously noted, science users rarely compile from source the applications they use.
Instead, they tend to use pre-compiled binaries that have been produced by the software
providers.

Software providers typically have a vested interest in providing binaries that are as fast
as possible, but they have to balance that against both the need for compatibility with older
hardware platforms and the need for keeping the number of binary releases reasonably small.
The microarchitecture levels provide a great way to achieve that.

Having software binaries that are advertised as supporting a specific microarchitecture
brings the need for users to match the binary with the CPU in use. Either by filtering out
unsupported CPUs or by picking at runtime the right binary to execute. Having the
microarchitecture detected by the workload management system, i.e., HTCondor, this task
becomes very simple.

For example, the user (or the support personnel) can deploy the four binary versions of
the desired application in four separate directories, and then pick the right binary at runtime,
using the Microarch attribute provided by HTCondor [7].

3 Conclusions and future work

We have found that clustering our machines into the consensus industry terminology of
“microarchitecture” makes it clearer for users and administrators what class of machine exists
in the Open Science Pool, and the HTCondor ecosystem at-large. This also allows software
providers to better bin their binary executable releases, improving the performance of their
software on the most popular compute systems without the need for too many sub-versions.

An outstanding problem is that there is no easy method currently to detect which
microarchitecture a given binary was compiled for. Even the brute force method of

EPJ Web of Conferences 295, 04040 (2024)

CHEP 2023

disassembly and searching for certain instructions fails in the face of dynamic loading and
run-time switching on detected CPU type. We would like to see binaries that have been
explicitly compiled for a given microarchitecture noted as such in their ELF headers.

Also, we would like to see the use of the microarchitecture terminology normalized across
the HTC and HPC landscape, in order to help all users understand the technologies and
generations at work.

This work was supported by the National Science Foundation under Gant number 2030508.

References

1. R. Pordes et al. The open science grid, J. Phys. Conf. Ser., 78, 012057. (2007)
https://doi.org/10.1088/1742-6596/78/1/012057

2. Intel Corporation. Intel® 64 and IA-32 Architectures Software Developer's Manual.
Volume 2A4: Instruction Set Reference (2016)
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-
architectures-software-developer-vol-2a-manual.pdf

3. OSG. OSPool. (2006) OSG. https://doi.org/10.21231/906P-4D78

4. Florian Weimer, Accessed September 2023. https://lists.llvm.org/pipermail/llvm-
dev/2020-July/143289.html

5. H.J. Luetal. System V Application Binary Interface AMDG64 Architecture Processor
Supplement, September 5, 2023. https://gitlab.com/x86-psABIs/x86-64-ABI

6. M. J. Litzkow, M. Livny and M. W. Mutka, Condor-a hunter of idle workstations,
Proceedings. The 8th International Conference on Distributed, San Jose, CA, USA,
1988, pp. 104-111. (1988) doi: 10.1109/DCS.1988.

7. HTCondor Users’ Manual. Services for Running Job, Accessed September 2023.
https://htcondor.readthedocs.io/en/latest/users-manual/services-for-jobs.html

https://doi.org/10.1051/epjcont/202429504040

