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Abstract—Soft robots are designed to be highly com-
pliant to reduce the risk of injury or damage to humans
and the environment. This compliance can lead to large
deformations when handling payloads, significantly alter-
ing the operation of the robot. The stiffness of a soft
robot, actively tuned or passively influenced by inputs (e.g.,
pneumatic pressures), is an important state variable, yet
difficult to measure directly for the control of a soft robot. In
this letter we propose a novel physics-informed approach
to online estimation of the stiffness and shape of a soft
manipulator under a payload, based on measurements that
are readily available (e.g., positions of five points on the
manipulator, or the position and orientation of the tip).
The same approach is also adapted for estimating the
payload when the stiffness is known. The proposed method
is illustrated and supported with experimental results on
a soft pneumatic actuator. In particular, it is shown to
produce more accurate shape estimate than a commonly
adopted piecewise constant curvature (PCC) model (which
cannot produce a stiffness estimate), with an average error
57% smaller than the PCC method. The stiffness values
estimated are also shown to be consistent and fall within
the expected physical range.

Index Terms—Soft robotic arm, modeling, online estima-
tion, stiffness estimation.

[. INTRODUCTION

OFT robotics is an increasingly developing field due to

the importance of safe and delicate handling of materials
and interactions with humans. The softness of the baseline
materials allows for utilization of soft robots in fields such
as fruit harvesting and non-invasive surgery [1]. The low
stiffness of soft robots, which enables safe operation, also
introduces the drawback of effects such as hysteresis [2]
or causing significant nonlinearities and deformation when
manipulating objects or experiencing external forces. This
necessitates complex models to fully capture the shape of
a soft manipulator. Representing the entire shape of the
robot is an important requirement for tasks such as path
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planning. Some of these models discretize the soft robot (in
particular, a soft robotic manipulator) into a series of points
for path planning and obstacle avoidance [3], while others
treat the shape of the manipulator as a continuous parametric
function [4]. In order to calculate this shape, multiple methods
have been developed. With known physical parameters of the
soft manipulator, such as the length and stiffness, the shape
can be reconstructed with a variable curvature as a Cosserat-
rod [5]. Other methods utilize built-in stretchable and bendable
sensors to measure the curvature and reproduce the shape [6],
[7]. The end orientation of the manipulator plays an important
role in producing an accurate shape and representation of the
manipulator. Some works utilize vision systems with markers
on the tip to measure the end orientation [8], while others use
electromagnetic sensors to do so [9].

While the shape of the manipulator is important for tasks
such as path planning, the associated parameters that underlie
the specific shape are also important for the control of
the manipulator (see examples involving reinforcement learn-
ing [10] and model predictive control [11]). A key example
of such parameters is the stiffness, which plays an important
role in the deformation and load-bearing capability of a soft
actuator [12]. The stiffness can be actively tuned via different
mechanisms [13]. It can also change as a result of applied
control input; for example, the pressure input values can
influence the stiffness of a pneumatic actuator. Measuring the
stiffness of the manipulator in real time, however, is difficult.
The effects of stiffness are commonly correlated with the
weight of the payload that the manipulator is handling. Various
techniques have been developed to estimate the stiffness of
soft manipulators. For example, the work in [14] attempts to
measure the relative increase in stiffness with respect to the
base stiffness to reduce the effects of an external payload but
does not produce an absolute value for the stiffness. Other
methods utilize the deviations from normal operations during
maneuvers [15], the effects observed at different poses [16],
and changes in orientations before and after attaching a
payload [17]. However, these methods require a comparison
of the robot at different points in time and cannot produce
a real-time stiffness estimate from a single set of position
measurements.

This letter aims to establish an effective and computationally
efficient method for estimating the stiffness and shape of a soft
robotic manipulator based on measurements easily attainable.
This letter was motivated by the authors’ previous work in [18]
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where the configuration variables (including stiffness) of the
manipulator were characterized as functions of the pneumatic
pressure inputs, and the coefficients of such functions are
estimated based on data fitting. In particular, the stiffness
value for a given set of inputs was measured manually by
pulling the manipulator and measuring the resulting force
and displacement. This letter, however, removes some of the
assumptions involved in [18] and uses a physics-informed
approach to estimate in real-time the relevant configuration
variables for shape and stiffness with a small amount of
data. Specifically, a model capturing the soft beam physics is
incorporated to produce the shape predictions under a given
set of configuration variables.

This letter has the following contributions that are not
present in our previous work or in the literature. First,
two methods are presented for calculating the parameters
of the soft manipulator based on a single set of position
measurements from the soft manipulator. The values for these
parameters represent physical properties of the manipulator
such as the length and actuation moment and are shown to
be effective in recreating the shape of the manipulator, and
thus implied to be accurate estimates. Whereas the previous
work [18] used a constant curvature shape to identify param-
eters and then applied external loads, this letter identifies the
parameters from a variable curvature shape already accounting
for external payloads, making it more physically sound.
Utilizing these values would allow for easier and more precise
implementation of data-driven modeling and feedback control.
Second, a method for estimating the stiffness value of the soft
manipulator given a known payload is presented with a single
frame of positional data, as opposed to previous works [15],
[16], [17], [18] requiring multiple positional measurements.
The proposed methods also provides physical values for the
stiffness compared to a relative stiffness value as in [14].
This method is thus applicable for robotic manipulators with
variable stiffness, such as those with pneumatic actuation or
stiffness-tuning mechanisms. The stiffness estimate is shown
to be consistent with different payload weights under the
same set of control inputs. Third, a method for estimating
the payload of the soft robot when the stiffness is known
is presented. The proposed methods are all supported with
experimental results conducted on a pneumatic actuator with
payloads.

Il. APPROACH TO SHAPE MODELING AND ESTIMATION
A. Variable Curvature Model and Its Computation

The piecewise constant curvature (PCC) model separates a
soft robotic arm into individual segments composed of arcs
of a circle. This approach is popular due to its simplicity.
It is often valid for typical actuation mechanisms in soft
robotics, such as soft manipulators actuated by cables or
pneumatic pressure, when gravity or external forces can be
ignored. Due to the actuation effect being uniform along a
given section of the robot, one can assume that the generated
actuation moment is uniform, which would result in a constant
curvature for that section, assuming a soft robot with a

Side View

Payload

Fig. 1. Parameters of the soft robot bending from side view of the
bending plane.

consistent bending stiffness, EI, along the length, such as in a
cylindrical manipulator. Specifically, one has:

dw  M(s)

k(S) = W F, NS [0, L], (1)

where k(s) describes the curvature at point s, s is the arclength
parameter, L is the total length of the section, d?w/dx>
describes the second derivative of the deflection, w, with
respect to the initial length coordinate, x, M(s) is the moment
at point s, and EI is the bending stiffness of the manipulator
defined by Young’s Modulus, E, and the second moment of
area, I. As evident from (1), with a constant actuation moment
M(s) = My, the curvature will be constant in the absence
of other forces. This assumption is substantiated with further
results presented in Section IV-A.

When gravity and external forces are incorporated into the
total moment the soft manipulator can be treated as an arc
with variable curvature as implied by (1). To describe the
shape of the manipulator, the following information needs
to be available: pp and Qp, representing the position and
orientation at the base, respectively; the bending direction
¢; w(0), indicating the initial deflection at py which can be
assumed to be 0; M(s), EI, and L. These values collectively
form the parameters of the manipulator.

Some of the aforementioned variables, such as pg and Qy,
can be assumed to be known. Other variables, such as EI and
L, are constants that need to be identified. M(s) consists of
the moment generated by actuation (independent of s) and the
moments generated by external forces. For example, moments
produced by a payload, Mp(s), and by the weight of the
manipulator itself, M,,(s), are described as follows:

Mp(s) = Fsin@(L) (L) — w(s)] ®)
L

My (s) = / VL—Vsinw(s))[w(L)—w(s)]ds, 3)

o(s) = / " k(s)ds 4)
0

m@:/xmmmm. (5)
0
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In these equations, F is the weight of a point payload,
0(s) is the bending angle relative to the base at point s along
the manipulator, and W is the weight of the manipulator, as
illustrated in Fig. 1. Using (4), it is possible to reconstruct the
3D shape of the manipulator along the arclength as follows:

dx .
— = cos(¢) sin(0(s)),

ds

dy . .

— = sin(g) sin(6(s)),

ds

dz = cos(8(s)). ©)
ds

The external moments change the curvature of the manipula-
tor, thereby affecting its bending. Simultaneously, the moments
themselves are also affected by the bending of the manipulator.
In order to circumvent this issue of circular coupling, we
propose an iterative procedure for computing the shape, for
a given uniform actuation moment, when subject to weight
or external forces. First, one computes the constant curvature
shape corresponding to the actuation moment, assuming the
absence of the weight or external forces. Then, given the
previously obtained shape, one evaluates the external moments
due to the weight or external forces, which are incorporated
to produce updated curvature function as in (1). This process
can be repeated iteratively until it converges to a stable
curvature function. This convergence will occur when the
overall bending angle, 6(L), does not exceed 180° during the
iteration, which ensures that the moments generated in (2) and
(3) are always positive. This condition can be achieved under
sufficiently high stiffness.

B. Parameter Estimation

The goal of the estimation is to find values for the actuation
moment My, the bending direction ¢, the stiffness EI, and the
actuator length L, so that the model shape, evaluated from
(1)-(6), matches the available measurements under a given set
of control inputs and external forces. We here write the model
parameters as X = (Mo, ¢, EI, L).

First, we consider the case of measuring the posi-
tions of K; > 2 points on the manipulator, denoted as
St =@1,...,pk,), withp; € R3, i=1, ..., K1, representing
the measured position of the manipulator at arclength s; > 0.
These points will be used for estimating the model parameters,
X. Let Ax denote the manipulator shape represented by X,
through the modeling process described in the preceding sub-
section, i.e., Ax(s) denotes the model-predicted 3D position
of the point with arclength s. The optimal parameter X* is
then found through:

K

X* =argmin Y _ cil Ax(si)) — pill» (7)
X

i=1
where ¢; > 0O represents the weight placed on the error at
the i-th location—for example, one would put larger weight
on points closer to the base since they would have larger
influences on the manipulator configuration. In our later exper-
iments, the points are uniformly spaced along the manipulator,

siz% and we use Ci=i
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Fig. 2. Flowchart of the proposed method.

Next, we consider the case of only measuring the end-
point position p, and bending angle 6, at arclength s.. Let
Oy, denote the model-predicted endpoint bending angle. The
optimal parameter X* is then found through:

X* = argmin [ Ax(se) = Pells + C|Ox.e = | (8)

where C is chosen to weigh the importance of the two cost
terms. One potential value for C is L/2m, normalizing the
maximum error of the two values. In this letter, the method
with measurements of points along the manipulator (i.e., (7))
is denoted as the full points method, while the approach using
the tip position and orientation (i.e., (8)) is termed the end
orientation method. A flowchart depicting these processes is
shown in Fig. 2. To evaluate the accuracy of the estimated
manipulator shape, we use an error formula analogous to (7),
where the used measurements (ground truth) could differ from
those used in parameter estimation.

The methods presented above rely on estimates of the
parameters to generate the prediction of positions for a set
of points of interest, for a given set of control inputs and
payload. If one assumes that the stiffness is known under a
given set of control inputs (for example, estimated via the
aforementioned methods using (7) or (8)), the same approach
can be adapted to estimate the payload, where the set of
parameters to be estimated will include the payload value
instead of the stiffness.

Ill. EXPERIMENTAL SETUP

In this section the experimental setup used to validate
the model and parameter estimation is discussed. The soft
robot utilized for these experiments is a single-segment, three
chamber pneumatic soft manipulator with a diameter of 4 cm,
a length of 20 cm, and a weight of 200 g. The manipulator
was placed within an Opti Track motion tracking system
with 10 cameras arranged to observe the entire surface of
the manipulator during actuation and capable of accurately
tracking the shape of the robot during actuation to 0.5 mm.

The robot was equipped with four sets of motion tracking
markers to calculate the set of ground truth points (K| = 4).
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Fig. 3. Experimental setup of the soft manipulator.

TABLE |
MODEL PROCESSING TIME

Method Mean (s) | Max (s) | STD (s)
Proposed Full Points 0.236 0.776 0.121
End Orientation 0.123 0.342 0.033
Full Point CC 0.025 0.041 0.005

The markers were placed around the circumference of the
robot with the plane formed by the markers used to calculate
the orientations of the base and tip points. Each point was
transformed so that the base of the manipulator was placed
at the origin, and the initial orientation was aligned with the
z-axis. During experiments, the robot was actuated using 15
unique pressure combinations across the three chambers to
collection motion tracking data with and without any payload
ranging from 150 g to 230 g in 20 g increments, resulting
in a total of 6 datasets for each pressure control input. For
this initial data set, we processed the data to calculate the
positional percent error of the manipulator from all points,
as defined by the summation in (7), along with the stiffness
estimate. Subsequently, an additional dataset was obtained at
the same pressure control inputs with payload weights varying
from 140 g to 240 g that were not included in the initial
dataset. This second set of data was used to evaluate the
weight estimation of the model shown in Section IV-C. The
experimental setup is visually represented in Fig. 3.

The data processing was conducted using the fmincon
function in MATLAB to perform the minimization process.
The processing was executed on a Windows desktop equipped
with 16GB of RAM and an Intel i5-7600K processor. The
proposed methods are compared to two baseline models. The
first is the PCC model (which degenerates to CC for a single
segment) that attempts to minimize the same cost function as
the full points method from the summation in (7). The second
is a PCC model that only has knowledge of the endpoint
and uses the unique set of parameters to reach this point.
The calculation times of the compared methods are shown in
Table I. The endpoint CC has a trivial solution and is solved
nearly instantaneously thus not included. It is evident from the
processing times that the full points CC method is significantly
faster than the two proposed methods as it does not iteratively
calculate the moment. Between the two proposed methods, the
end orientation method is faster than the full points method.
This disparity is attributed to the reduced complexity of the
minimization function in the end orientation method. However,
both processes are sufficiently fast to be practical for online
applications.

Full Point Method End Orientation Method

0.15 - . 015
0.1 ' 0.1
0051 A 0.05 -
0 1 T T T 0 u T T T m
0 005 -01 -0.15 0 -005 -01 -0150
m m

Full Point CC Method Endpoint CC Method

Fig. 4. (Top) Reconstructed shape in blue line vs measured points in
red stars and end orientation as line between the end red and black star.
(Bottom) Full point method overlayed on soft robot.

TABLE Il
SHAPE ESTIMATION PERCENT ERRORS
Model Mean Max STD | No Load

Error Error Error

Full Points 2.94% 5.17% | 0.68% | 2.06%
End Orientation | 5.47% 9.07% | 1.49% | 2.96%
PCC All Points 6.84% 10.4% | 2.05% | 3.40%
PCC End Point 7.70% 12.6% | 2.55% | 3.50%

IV. RESULTS

A. Shape Estimation Results

The results from the experimental setup described in
Section III are discussed here. The effectiveness of each
method to produce an accurate shape reconstruction is calcu-
lated through the summation in (7) and is given in Table II.
A set of reconstructed shapes and the corresponding physical
bending shape from an experiment with a payload of 230 g
are shown in Fig. 4.

The data demonstrates promising results regarding the effec-
tiveness of the proposed methods. Both methods outperformed
the PCC model in shape estimation. When comparing the
proposed models to their corresponding PCC models with
knowledge of the same points, the full points method exhibited
a 57% improvement over the PCC model, while the end
orientation method showed an average improvement of 41%.
These results are similar to those presented in [14] where
implementation of stiffness in the model reduced the error of
the open-loop control by up to 50%. It is also promising that,
for every single dataset, the proposed methods consistently
outperformed the PCC methods. The proposed methods show
similar results to soft robots equipped with internal sensors
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Fig. 5. Stiffness measurements under identical baseline (minimum)

pressure inputs.

such as those presented in [6] with a 4.45% tip error and [7]
with ~7% end angle error. Additionally, the error under
no load also acts as validation for the assumption that the
manipulator follows the PCC assumption without any external
forces. Although the effects of gravity on the manipulator are
still present under no load, the moment generated by gravity is
relatively small compared to that induced by a payload. Since
the errors for the PCC model are significantly smaller than
those observed under load conditions, they can be considered
as effective representations of the shape and contribute to
validating the assumption.

B. Stiffness Estimation Results

The stiffness estimation of the manipulators was also cal-
culated for every datapoint. Unlike the shape estimation, there
are no ground truth values to compare the estimations to as the
stiffness of the manipulator is variable based on the pneumatic
pressure input. A theoretical stiffness value can be computed
based on the design of the manipulator and the material prop-
erties, but it does not consider the effect of pneumatic inputs.
Instead of comparing against an absolute stiffness value, the
stability of stiffness estimate across different payloads is
observed. If the stiffness estimate is accurate, it should remain
relatively consistent across various payloads with the same
actuation input. Therefore, to evaluate the effectiveness of the
model, the variances in the stiffness estimates are compared.
Additionally, when the robot is not carrying a payload, the
effects of the external moments are minimal relative to loaded
conditions. Consequently, the stiffness estimates for the robot
without a payload are highly sensitive to measurement values,
making it impractical to obtain an accurate stiffness measure-
ment unless the manipulator is carrying a payload. Therefore,
we consider only the datasets where the robot is handling
a payload. The results of these estimates are presented in
Table III, with a representation of the measured stiffness values
under different minimum baseline pressure inputs of the three
chambers presented in Fig. 5.

The relative variance in the stiffness values is quite low for
the tested data. Additionally, for the full points method, there
is a general increase in the stiffness values as the baseline

Known vs Estimated Weight

240
® True Weight _*
2K Estimated Weight
220 i %
=
=
2

180 % % *ﬁ

*
140 i %K

140 160 180 200 220 240
Weight (g)

Fig. 6. Applied weights (red circles) vs estimated weights (blue stars).

TABLE Il
STIFFNESS ESTIMATION RESULTS
mN/(m?**rad) | Avg STD | Max STD | Relative STD
Full Points 2.9 4.2 7.71%
End Orientation 6.7 19.5 17.76%

pressure increases, as expected. This helps confirm that the
model provides an accurate estimation for the stiffness. The
full points method has a lower stiffness estimate than the end
orientation method and the theoretical base stiffness of the
manipulator. This can be attributed to the manipulator not
being held completely rigidly in place and thus having some
initial bending angle that affects the points near the base. Since
the full points method is more sensitive to the error near the
base, it lowers the stiffness to compensate.

C. Payload Estimation Results

The final set of data was used to estimate the payload for
the manipulator with a given stiffness. The same control inputs
from the first set of data were used, and the stiffness estimates
from the initial datasets were employed to establish stiffness
values for the payload estimation. Due to higher variance in
the end orientation method, only the full points method was
utilized for weight estimation. The resulting payload estimates
exhibited an average error of 9.7 g with a maximum error
of 29.9 g and an average percent error of 4.97% of the total
weight. A plot of the known vs estimated payload across the
15 experiments is shown in Fig. 6.

The weight estimation yields satisfactory results, especially
considering that the stiffness estimate is derived from previous
experiments. The estimates present similar results to those
in [15], with payloads sorted in ranges of 50 g, and present
better results than those in [17] which had a 20% relative error
in payload estimation. With the full points model, it becomes
feasible to obtain a reasonable payload weight estimate based
on the shape alone.

V. CONCLUSION

We presented a new physics-informed approach to estimat-
ing the parameters of a soft manipulator to reproduce its shape.
It was built upon a validated assumption that the manipulator

Authorized licensed use limited to: Michigan State University. Downloaded on January 20,2024 at 16:51:27 UTC from IEEE Xplore. Restrictions apply.



3590

IEEE CONTROL SYSTEMS LETTERS, VOL. 7, 2023

follows a constant curvature shape in the absence of external
forces as an initial state for an iterative moment calculation,
and external forces will cause a change in curvature relative
to their generated moments. Two methods were proposed
for parameter estimation: one leveraging information from
multiple ground truth points on the robot, and another utilizing
only the tip position and orientation. Both methods also allow
for estimation of the stiffness of the manipulator with a known
payload, and for the full points method, estimation of the
payload of the robot under actuation inputs with known stift-
ness. The methods were validated with experimental results
that showcased the efficacy of the models compared to the
constant curvature model. While the end orientation method
has a faster processing time, it is outperformed by the full
points method in all other metrics. The full points method not
only produces the most accurate shape, but also delivers low-
variance stiffness estimates and relatively accurate estimates
of the payload. This method is highly preferable in scenarios
where multiple positional values can be measured on the soft
robot.

While both methods performed better than the constant
curvature model, the end orientation method lags significantly
behind the full points method, which ideally should produce
similar results. One possible reason for this discrepancy lies in
the variance in positional data, which can lead to substantial
variations in orientation measurements generated by the planes
formed by these points, even with small changes in position.

Future work will include rigorous investigation into the
specific conditions and rates of convergence for the iterative
moment calculation, for a given set of configuration vari-
ables. Additional work involving further integration of the
models into soft robots is also possible. In this letter, only
external moments directly impacting or opposing the bending
direction were examined, as in the case of a single segment
oriented vertically. External moments not applied in the plane
of bending could be incorporated as some stretching and
shearing deformations on the soft robot, such as those in
a Cosserat Rod. Additionally, tests could be done in real-
time to validate the efficacy of the model to work in a more
dynamic environment. The model could also be implemented
for the case of multiple segments on a soft robot, where each
attached segment treats its adjacent segment as a set of external
moments and payloads.
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