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Abstract—Soft robots are designed to be highly com-
pliant to reduce the risk of injury or damage to humans
and the environment. This compliance can lead to large
deformations when handling payloads, significantly alter-
ing the operation of the robot. The stiffness of a soft
robot, actively tuned or passively influenced by inputs (e.g.,
pneumatic pressures), is an important state variable, yet
difficult to measure directly for the control of a soft robot. In
this letter we propose a novel physics-informed approach
to online estimation of the stiffness and shape of a soft
manipulator under a payload, based on measurements that
are readily available (e.g., positions of five points on the
manipulator, or the position and orientation of the tip).
The same approach is also adapted for estimating the
payload when the stiffness is known. The proposed method
is illustrated and supported with experimental results on
a soft pneumatic actuator. In particular, it is shown to
produce more accurate shape estimate than a commonly
adopted piecewise constant curvature (PCC) model (which
cannot produce a stiffness estimate), with an average error
57% smaller than the PCC method. The stiffness values
estimated are also shown to be consistent and fall within
the expected physical range.

Index Terms—Soft robotic arm, modeling, online estima-
tion, stiffness estimation.

I. INTRODUCTION

S
OFT robotics is an increasingly developing field due to

the importance of safe and delicate handling of materials

and interactions with humans. The softness of the baseline

materials allows for utilization of soft robots in fields such

as fruit harvesting and non-invasive surgery [1]. The low

stiffness of soft robots, which enables safe operation, also

introduces the drawback of effects such as hysteresis [2]

or causing significant nonlinearities and deformation when

manipulating objects or experiencing external forces. This

necessitates complex models to fully capture the shape of

a soft manipulator. Representing the entire shape of the

robot is an important requirement for tasks such as path
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planning. Some of these models discretize the soft robot (in

particular, a soft robotic manipulator) into a series of points

for path planning and obstacle avoidance [3], while others

treat the shape of the manipulator as a continuous parametric

function [4]. In order to calculate this shape, multiple methods

have been developed. With known physical parameters of the

soft manipulator, such as the length and stiffness, the shape

can be reconstructed with a variable curvature as a Cosserat-

rod [5]. Other methods utilize built-in stretchable and bendable

sensors to measure the curvature and reproduce the shape [6],

[7]. The end orientation of the manipulator plays an important

role in producing an accurate shape and representation of the

manipulator. Some works utilize vision systems with markers

on the tip to measure the end orientation [8], while others use

electromagnetic sensors to do so [9].

While the shape of the manipulator is important for tasks

such as path planning, the associated parameters that underlie

the specific shape are also important for the control of

the manipulator (see examples involving reinforcement learn-

ing [10] and model predictive control [11]). A key example

of such parameters is the stiffness, which plays an important

role in the deformation and load-bearing capability of a soft

actuator [12]. The stiffness can be actively tuned via different

mechanisms [13]. It can also change as a result of applied

control input; for example, the pressure input values can

influence the stiffness of a pneumatic actuator. Measuring the

stiffness of the manipulator in real time, however, is difficult.

The effects of stiffness are commonly correlated with the

weight of the payload that the manipulator is handling. Various

techniques have been developed to estimate the stiffness of

soft manipulators. For example, the work in [14] attempts to

measure the relative increase in stiffness with respect to the

base stiffness to reduce the effects of an external payload but

does not produce an absolute value for the stiffness. Other

methods utilize the deviations from normal operations during

maneuvers [15], the effects observed at different poses [16],

and changes in orientations before and after attaching a

payload [17]. However, these methods require a comparison

of the robot at different points in time and cannot produce

a real-time stiffness estimate from a single set of position

measurements.

This letter aims to establish an effective and computationally

efficient method for estimating the stiffness and shape of a soft

robotic manipulator based on measurements easily attainable.

This letter was motivated by the authors’ previous work in [18]
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where the configuration variables (including stiffness) of the

manipulator were characterized as functions of the pneumatic

pressure inputs, and the coefficients of such functions are

estimated based on data fitting. In particular, the stiffness

value for a given set of inputs was measured manually by

pulling the manipulator and measuring the resulting force

and displacement. This letter, however, removes some of the

assumptions involved in [18] and uses a physics-informed

approach to estimate in real-time the relevant configuration

variables for shape and stiffness with a small amount of

data. Specifically, a model capturing the soft beam physics is

incorporated to produce the shape predictions under a given

set of configuration variables.

This letter has the following contributions that are not

present in our previous work or in the literature. First,

two methods are presented for calculating the parameters

of the soft manipulator based on a single set of position

measurements from the soft manipulator. The values for these

parameters represent physical properties of the manipulator

such as the length and actuation moment and are shown to

be effective in recreating the shape of the manipulator, and

thus implied to be accurate estimates. Whereas the previous

work [18] used a constant curvature shape to identify param-

eters and then applied external loads, this letter identifies the

parameters from a variable curvature shape already accounting

for external payloads, making it more physically sound.

Utilizing these values would allow for easier and more precise

implementation of data-driven modeling and feedback control.

Second, a method for estimating the stiffness value of the soft

manipulator given a known payload is presented with a single

frame of positional data, as opposed to previous works [15],

[16], [17], [18] requiring multiple positional measurements.

The proposed methods also provides physical values for the

stiffness compared to a relative stiffness value as in [14].

This method is thus applicable for robotic manipulators with

variable stiffness, such as those with pneumatic actuation or

stiffness-tuning mechanisms. The stiffness estimate is shown

to be consistent with different payload weights under the

same set of control inputs. Third, a method for estimating

the payload of the soft robot when the stiffness is known

is presented. The proposed methods are all supported with

experimental results conducted on a pneumatic actuator with

payloads.

II. APPROACH TO SHAPE MODELING AND ESTIMATION

A. Variable Curvature Model and Its Computation

The piecewise constant curvature (PCC) model separates a

soft robotic arm into individual segments composed of arcs

of a circle. This approach is popular due to its simplicity.

It is often valid for typical actuation mechanisms in soft

robotics, such as soft manipulators actuated by cables or

pneumatic pressure, when gravity or external forces can be

ignored. Due to the actuation effect being uniform along a

given section of the robot, one can assume that the generated

actuation moment is uniform, which would result in a constant

curvature for that section, assuming a soft robot with a

Fig. 1. Parameters of the soft robot bending from side view of the
bending plane.

consistent bending stiffness, EI, along the length, such as in a

cylindrical manipulator. Specifically, one has:

k(s) =
d2w

dx2
=

M(s)

EI
, s ∈ [0, L], (1)

where k(s) describes the curvature at point s, s is the arclength

parameter, L is the total length of the section, d2w/dx2

describes the second derivative of the deflection, w, with

respect to the initial length coordinate, x, M(s) is the moment

at point s, and EI is the bending stiffness of the manipulator

defined by Young’s Modulus, E, and the second moment of

area, I. As evident from (1), with a constant actuation moment

M(s) = M0, the curvature will be constant in the absence

of other forces. This assumption is substantiated with further

results presented in Section IV-A.

When gravity and external forces are incorporated into the

total moment the soft manipulator can be treated as an arc

with variable curvature as implied by (1). To describe the

shape of the manipulator, the following information needs

to be available: p0 and O0, representing the position and

orientation at the base, respectively; the bending direction

ϕ; w(0), indicating the initial deflection at p0 which can be

assumed to be 0; M(s), EI, and L. These values collectively

form the parameters of the manipulator.

Some of the aforementioned variables, such as p0 and O0,

can be assumed to be known. Other variables, such as EI and

L, are constants that need to be identified. M(s) consists of

the moment generated by actuation (independent of s) and the

moments generated by external forces. For example, moments

produced by a payload, MP(s), and by the weight of the

manipulator itself, Mw(s), are described as follows:

MP(s) = F sin(θ(L))[w(L) − w(s)] (2)

Mw(s) =

∫ L

s

W

L
sin(θ(s))[w(L) − w(s)]ds, (3)

θ(s) =

∫ s

0

k(s)ds (4)

w(s) =

∫ s

0

sin(θ(s))ds. (5)
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In these equations, F is the weight of a point payload,

θ(s) is the bending angle relative to the base at point s along

the manipulator, and W is the weight of the manipulator, as

illustrated in Fig. 1. Using (4), it is possible to reconstruct the

3D shape of the manipulator along the arclength as follows:

dx

ds
= cos(ϕ) sin(θ(s)),

dy

ds
= sin(ϕ) sin(θ(s)),

dz

ds
= cos(θ(s)). (6)

The external moments change the curvature of the manipula-

tor, thereby affecting its bending. Simultaneously, the moments

themselves are also affected by the bending of the manipulator.

In order to circumvent this issue of circular coupling, we

propose an iterative procedure for computing the shape, for

a given uniform actuation moment, when subject to weight

or external forces. First, one computes the constant curvature

shape corresponding to the actuation moment, assuming the

absence of the weight or external forces. Then, given the

previously obtained shape, one evaluates the external moments

due to the weight or external forces, which are incorporated

to produce updated curvature function as in (1). This process

can be repeated iteratively until it converges to a stable

curvature function. This convergence will occur when the

overall bending angle, θ(L), does not exceed 180◦ during the

iteration, which ensures that the moments generated in (2) and

(3) are always positive. This condition can be achieved under

sufficiently high stiffness.

B. Parameter Estimation

The goal of the estimation is to find values for the actuation

moment M0, the bending direction ϕ, the stiffness EI, and the

actuator length L, so that the model shape, evaluated from

(1)–(6), matches the available measurements under a given set

of control inputs and external forces. We here write the model

parameters as X = (M0, ϕ, EI, L).

First, we consider the case of measuring the posi-

tions of K1 ≥ 2 points on the manipulator, denoted as

S1 = (p1, . . . , pK1
), with pi ∈ R

3, i = 1, . . . , K1, representing

the measured position of the manipulator at arclength si > 0.

These points will be used for estimating the model parameters,

X. Let �X denote the manipulator shape represented by X,

through the modeling process described in the preceding sub-

section, i.e., �X(s) denotes the model-predicted 3D position

of the point with arclength s. The optimal parameter X∗ is

then found through:

X∗ = arg min
x

K1
∑

i=1

ci‖�X(si) − pi‖2 (7)

where ci > 0 represents the weight placed on the error at

the i-th location—for example, one would put larger weight

on points closer to the base since they would have larger

influences on the manipulator configuration. In our later exper-

iments, the points are uniformly spaced along the manipulator,

si = iL
K1

and we use ci = 1
iL

.

Fig. 2. Flowchart of the proposed method.

Next, we consider the case of only measuring the end-

point position pe and bending angle θe at arclength se. Let

�X,e denote the model-predicted endpoint bending angle. The

optimal parameter X∗ is then found through:

X∗ = arg min
x

‖�X(se) − pe‖2 + C
∣

∣�X,e − θe

∣

∣ (8)

where C is chosen to weigh the importance of the two cost

terms. One potential value for C is L/2π , normalizing the

maximum error of the two values. In this letter, the method

with measurements of points along the manipulator (i.e., (7))

is denoted as the full points method, while the approach using

the tip position and orientation (i.e., (8)) is termed the end

orientation method. A flowchart depicting these processes is

shown in Fig. 2. To evaluate the accuracy of the estimated

manipulator shape, we use an error formula analogous to (7),

where the used measurements (ground truth) could differ from

those used in parameter estimation.

The methods presented above rely on estimates of the

parameters to generate the prediction of positions for a set

of points of interest, for a given set of control inputs and

payload. If one assumes that the stiffness is known under a

given set of control inputs (for example, estimated via the

aforementioned methods using (7) or (8)), the same approach

can be adapted to estimate the payload, where the set of

parameters to be estimated will include the payload value

instead of the stiffness.

III. EXPERIMENTAL SETUP

In this section the experimental setup used to validate

the model and parameter estimation is discussed. The soft

robot utilized for these experiments is a single-segment, three

chamber pneumatic soft manipulator with a diameter of 4 cm,

a length of 20 cm, and a weight of 200 g. The manipulator

was placed within an Opti Track motion tracking system

with 10 cameras arranged to observe the entire surface of

the manipulator during actuation and capable of accurately

tracking the shape of the robot during actuation to ±0.5 mm.

The robot was equipped with four sets of motion tracking

markers to calculate the set of ground truth points (K1 = 4).
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Fig. 3. Experimental setup of the soft manipulator.

TABLE I
MODEL PROCESSING TIME

The markers were placed around the circumference of the

robot with the plane formed by the markers used to calculate

the orientations of the base and tip points. Each point was

transformed so that the base of the manipulator was placed

at the origin, and the initial orientation was aligned with the

z-axis. During experiments, the robot was actuated using 15

unique pressure combinations across the three chambers to

collection motion tracking data with and without any payload

ranging from 150 g to 230 g in 20 g increments, resulting

in a total of 6 datasets for each pressure control input. For

this initial data set, we processed the data to calculate the

positional percent error of the manipulator from all points,

as defined by the summation in (7), along with the stiffness

estimate. Subsequently, an additional dataset was obtained at

the same pressure control inputs with payload weights varying

from 140 g to 240 g that were not included in the initial

dataset. This second set of data was used to evaluate the

weight estimation of the model shown in Section IV-C. The

experimental setup is visually represented in Fig. 3.

The data processing was conducted using the fmincon

function in MATLAB to perform the minimization process.

The processing was executed on a Windows desktop equipped

with 16GB of RAM and an Intel i5-7600K processor. The

proposed methods are compared to two baseline models. The

first is the PCC model (which degenerates to CC for a single

segment) that attempts to minimize the same cost function as

the full points method from the summation in (7). The second

is a PCC model that only has knowledge of the endpoint

and uses the unique set of parameters to reach this point.

The calculation times of the compared methods are shown in

Table I. The endpoint CC has a trivial solution and is solved

nearly instantaneously thus not included. It is evident from the

processing times that the full points CC method is significantly

faster than the two proposed methods as it does not iteratively

calculate the moment. Between the two proposed methods, the

end orientation method is faster than the full points method.

This disparity is attributed to the reduced complexity of the

minimization function in the end orientation method. However,

both processes are sufficiently fast to be practical for online

applications.

Fig. 4. (Top) Reconstructed shape in blue line vs measured points in
red stars and end orientation as line between the end red and black star.
(Bottom) Full point method overlayed on soft robot.

TABLE II
SHAPE ESTIMATION PERCENT ERRORS

IV. RESULTS

A. Shape Estimation Results

The results from the experimental setup described in

Section III are discussed here. The effectiveness of each

method to produce an accurate shape reconstruction is calcu-

lated through the summation in (7) and is given in Table II.

A set of reconstructed shapes and the corresponding physical

bending shape from an experiment with a payload of 230 g

are shown in Fig. 4.

The data demonstrates promising results regarding the effec-

tiveness of the proposed methods. Both methods outperformed

the PCC model in shape estimation. When comparing the

proposed models to their corresponding PCC models with

knowledge of the same points, the full points method exhibited

a 57% improvement over the PCC model, while the end

orientation method showed an average improvement of 41%.

These results are similar to those presented in [14] where

implementation of stiffness in the model reduced the error of

the open-loop control by up to 50%. It is also promising that,

for every single dataset, the proposed methods consistently

outperformed the PCC methods. The proposed methods show

similar results to soft robots equipped with internal sensors
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Fig. 5. Stiffness measurements under identical baseline (minimum)
pressure inputs.

such as those presented in [6] with a 4.45% tip error and [7]

with ≈7% end angle error. Additionally, the error under

no load also acts as validation for the assumption that the

manipulator follows the PCC assumption without any external

forces. Although the effects of gravity on the manipulator are

still present under no load, the moment generated by gravity is

relatively small compared to that induced by a payload. Since

the errors for the PCC model are significantly smaller than

those observed under load conditions, they can be considered

as effective representations of the shape and contribute to

validating the assumption.

B. Stiffness Estimation Results

The stiffness estimation of the manipulators was also cal-

culated for every datapoint. Unlike the shape estimation, there

are no ground truth values to compare the estimations to as the

stiffness of the manipulator is variable based on the pneumatic

pressure input. A theoretical stiffness value can be computed

based on the design of the manipulator and the material prop-

erties, but it does not consider the effect of pneumatic inputs.

Instead of comparing against an absolute stiffness value, the

stability of stiffness estimate across different payloads is

observed. If the stiffness estimate is accurate, it should remain

relatively consistent across various payloads with the same

actuation input. Therefore, to evaluate the effectiveness of the

model, the variances in the stiffness estimates are compared.

Additionally, when the robot is not carrying a payload, the

effects of the external moments are minimal relative to loaded

conditions. Consequently, the stiffness estimates for the robot

without a payload are highly sensitive to measurement values,

making it impractical to obtain an accurate stiffness measure-

ment unless the manipulator is carrying a payload. Therefore,

we consider only the datasets where the robot is handling

a payload. The results of these estimates are presented in

Table III, with a representation of the measured stiffness values

under different minimum baseline pressure inputs of the three

chambers presented in Fig. 5.

The relative variance in the stiffness values is quite low for

the tested data. Additionally, for the full points method, there

is a general increase in the stiffness values as the baseline

Fig. 6. Applied weights (red circles) vs estimated weights (blue stars).

TABLE III
STIFFNESS ESTIMATION RESULTS

pressure increases, as expected. This helps confirm that the

model provides an accurate estimation for the stiffness. The

full points method has a lower stiffness estimate than the end

orientation method and the theoretical base stiffness of the

manipulator. This can be attributed to the manipulator not

being held completely rigidly in place and thus having some

initial bending angle that affects the points near the base. Since

the full points method is more sensitive to the error near the

base, it lowers the stiffness to compensate.

C. Payload Estimation Results

The final set of data was used to estimate the payload for

the manipulator with a given stiffness. The same control inputs

from the first set of data were used, and the stiffness estimates

from the initial datasets were employed to establish stiffness

values for the payload estimation. Due to higher variance in

the end orientation method, only the full points method was

utilized for weight estimation. The resulting payload estimates

exhibited an average error of 9.7 g with a maximum error

of 29.9 g and an average percent error of 4.97% of the total

weight. A plot of the known vs estimated payload across the

15 experiments is shown in Fig. 6.

The weight estimation yields satisfactory results, especially

considering that the stiffness estimate is derived from previous

experiments. The estimates present similar results to those

in [15], with payloads sorted in ranges of 50 g, and present

better results than those in [17] which had a 20% relative error

in payload estimation. With the full points model, it becomes

feasible to obtain a reasonable payload weight estimate based

on the shape alone.

V. CONCLUSION

We presented a new physics-informed approach to estimat-

ing the parameters of a soft manipulator to reproduce its shape.

It was built upon a validated assumption that the manipulator

Authorized licensed use limited to: Michigan State University. Downloaded on January 20,2024 at 16:51:27 UTC from IEEE Xplore.  Restrictions apply. 



3590 IEEE CONTROL SYSTEMS LETTERS, VOL. 7, 2023

follows a constant curvature shape in the absence of external

forces as an initial state for an iterative moment calculation,

and external forces will cause a change in curvature relative

to their generated moments. Two methods were proposed

for parameter estimation: one leveraging information from

multiple ground truth points on the robot, and another utilizing

only the tip position and orientation. Both methods also allow

for estimation of the stiffness of the manipulator with a known

payload, and for the full points method, estimation of the

payload of the robot under actuation inputs with known stiff-

ness. The methods were validated with experimental results

that showcased the efficacy of the models compared to the

constant curvature model. While the end orientation method

has a faster processing time, it is outperformed by the full

points method in all other metrics. The full points method not

only produces the most accurate shape, but also delivers low-

variance stiffness estimates and relatively accurate estimates

of the payload. This method is highly preferable in scenarios

where multiple positional values can be measured on the soft

robot.

While both methods performed better than the constant

curvature model, the end orientation method lags significantly

behind the full points method, which ideally should produce

similar results. One possible reason for this discrepancy lies in

the variance in positional data, which can lead to substantial

variations in orientation measurements generated by the planes

formed by these points, even with small changes in position.

Future work will include rigorous investigation into the

specific conditions and rates of convergence for the iterative

moment calculation, for a given set of configuration vari-

ables. Additional work involving further integration of the

models into soft robots is also possible. In this letter, only

external moments directly impacting or opposing the bending

direction were examined, as in the case of a single segment

oriented vertically. External moments not applied in the plane

of bending could be incorporated as some stretching and

shearing deformations on the soft robot, such as those in

a Cosserat Rod. Additionally, tests could be done in real-

time to validate the efficacy of the model to work in a more

dynamic environment. The model could also be implemented

for the case of multiple segments on a soft robot, where each

attached segment treats its adjacent segment as a set of external

moments and payloads.
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