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Abstract—In this letter, we propose a novel technique, Back-
stepping Experience Replay (BER), that is compatible with ar-
bitrary off-policy reinforcement learning (RL) algorithms. BER
aims to enhance learning efficiency in systems with approximate
reversibility, reducing the need for complex reward shaping. The
method constructs reversed trajectories using back-stepping tran-
sitions to reach random or fixed targets. Interpretable as a bi-
directional approach, BER addresses inaccuracies in back-stepping
transitions through a purification of the replay experience during
learning. Given the intricate nature of soft robots and their complex
interactions with environments, we present an application of BER
in a model-free RL approach for the locomotion and navigation of
a soft snake robot, which is capable of serpentine motion enabled
by anisotropic friction between the body and ground. In addition,
a dynamic simulator is developed to assess the effectiveness and
efficiency of the BER algorithm, in which the robot demonstrates
successful learning (reaching a 100% success rate) and adeptly
reaches random targets, achieving an average speed 48% faster
than that of the best baseline approach.

Index Terms—Deep reinforcement learning, experience replay,
soft robot, snake robot, locomotion, navigation.

I. INTRODUCTION

A
S A promising decision-making approach, reinforcement
learning (RL) has drawn increasing attention for its ability

to solve complex control problems and achieve generalization
in both virtual and physical tasks, as evidenced in various appli-
cations, such as chess games [1], quadrupedal locomotion [2],
and autonomous driving [3]. Considering the inherent infinite
degrees of freedom of soft robots and their complicated inter-
actions with environments [4], RL approaches were adopted
for the control of complex soft robotic systems, such as soft
manipulators [5], [6] and wheeled snake robots [7].
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As a typical challenge for RL, especially in tasks where
complicated behaviors are involved, the learning efficiency suf-
fers from the relatively large search space and the inherent
difficulties of the tasks, which usually requires delicate reward
shaping [8] to guide the policy optimization and to constrain the
learning directions or the behavior styles. The RL agents have to
successfully reach their goals for efficient learning before getting
lost in numerous inefficient failure trials. Multiple strategies
were proposed to address the hard exploration challenge with
sparse rewards, including improving the exploration techniques
for more versatile trajectories from intrinsic motivations [9],
[10], [11], [12], and exploiting the information acquired from
the undesired trails [13], [14], [15].

Compatible with these techniques that might improve learning
efficiency, the motivation of BER proposed for off-policy RL is
the human ability to solve problems forward (from the begin-
ning to goal) and backward (from the goal to the beginning)
simultaneously, which is different from the standard model-free
RL algorithms that mostly rely on forward exploration. For
example, in proving a complicated mathematical equation, an
effective method is to derive the equation from both sides where
the information of both the left-hand side (beginning) and the
right-hand side (goal) is utilized, to which the reasoning process
and the mechanism of BER are similar.

In this paper, a BER algorithm is introduced that allows
the RL agent to explore bidirectionally, which is compatible
with arbitrary off-policy RL algorithms. It is applicable for
systems with approximate reversibility and with fixed or random
goal setups. After an evaluation of BER with a toy task, it is
applied to the locomotion and navigation task of a soft snake
robot. The developed algorithm is validated on a physics-based
dynamic simulator with a computationally efficient serpentine
locomotion model based on the system characteristic. Compre-
hensive experimental results demonstrate the effectiveness of the
proposed RL framework with BER in learning the locomotion
and navigation skills of the soft snake robot compared with other
state-of-the-art benchmarks, indicating the potential of BER in
general off-policy RL and robot control applications.

II. BACK-STEPPING EXPERIENCE REPLAY

A. Background

1) Reinforcement Learning: A standard RL formalism is
adopted where an agent (e.g. a robot) interacts with an envi-
ronment and learns a policy according to the perceptions and
rewards. In each episode, the system starts with an initial state
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s0 with a distribution of p(s0), and the agent observes a current
state st ∈ S ⊆ Rn in the environment at time step t. Then, an
action at ∈ A ⊆ Rm is generated to control the agent based on
the current policy π and st. Afterward, the system evolves to
a new state st+1 based on the action and transition dynamics
p(·|st,at), and a reward rt = r(st,at, st+1) is collected by the
agent for the learning before the termination of the episode.
During the training process, the RL agent learns an optimal
policy π∗ : S → A mapping states to actions that maximize
the expected return. The return is defined as the accumulated
discounted reward Rt =

∑∞
i=t γ

i−tri, where γ is a discount
factor.

The state value function V π(st) = E(Rt|st) represents the
expected return starting from state st following the current pol-
icy π, and the action value function Qπ(st,at) = E(Rt|st,at)
represents the expected return starting from the state st with
an immediate action at by following the current policy π. All
optimal policies π∗ share the same optimal Q-function Q∗,
according to the Bellman equation [16]:

Q∗(st,at) = E
s
′∼p(·|st,at)

[
r (st,at, s

′) + γmax
a

′∈A
Q∗ (s′,a′)

]

(1)
2) Deep Q-Networks (DQN) and Deep Deterministic Pol-

icy Gradient (DDPG): DQN is a model-free, off-policy RL
approach suitable for agents operating in discrete action
spaces [16]. It typically employs a neural network Q to ap-
proximate the optimal Q-function Q∗, selecting optimal actions:
a∗ = argmaxa∈A Q(st,a). Exploration is often facilitated by
the ε-greedy algorithm. To stabilize training, a replay buffer
stores transition data (st,at, rt, st+1) and is used to optimize
Q with a loss L = E(Q(st,at)− yt), where the target yt is
calculated by using a periodically updated target network Qtarg:
yt = rt + γmaxa∈A Qtarg(st+1,a), and using transitions in the
replay buffer.

DDPG [17] is an off-policy RL algorithm that simultaneously
learns a Q-function and a policy. DDPG interweaves the learning
process of an approximator toQ∗, with an approximator to select
a∗, offering a unique adaptation for continuous action scenarios.

B. Algorithm for BER

The above classical off-policy RL algorithms often face chal-
lenges with systems characterized by sparse rewards or challeng-
ing tasks with rewards hard to reshape. In such scenarios, RL
agents rarely achieve informative standard forward explorations
due to a low success rate in reaching goals in complex problems
without precise guidance [13]. To address these challenges,
we propose a novel Back-stepping Experience Replay (BER)
algorithm for tasks with different goals (Algorithm 1), designed
to enhance the learning efficiency of off-policy RL algorithms.
This is achieved by incorporating exploration methods in both
forward and backward directions.

The BER algorithm requires at least an approximate re-
versibility of the system. This means that from a standard tran-
sition (st,at, st+1), a back-stepping transition (st+1, ãt, st)
can be constructed, which is similar to a real transition
(st+1, ãt, sb,t) in the environment, i.e., sb,t ≈ st. The ac-
tion in the back-stepping transition is calculated as ãt =
f(st,at, st+1), where function f is dependent on the environ-
ment. The approximate reversibility is evaluated by a small upper

Fig. 1. Illustration of the Back-stepping Experience Replay, with navy and sky
blue solid lines representing forward and backward explorations, respectively.

bound K for all transitions during back-stepping:

‖sb,t − st‖ ≤ K · ‖st+1 − st‖,K < 1 (2)

There exists a perfect reversibility when K = 0 with a prob-
ably complex function f , while an approximate reversibility
might be achieved with a slightly larger K and a simpler and
solvable function f . It is important to balance the accuracy
and computational efficiency of f for effectively constructing
back-stepping transitions that preserve enough information for
the learning.

The idea of BER is simple yet effective: instead of solely rely-
ing on forward explorations (navy blue solid line in Fig. 1) from
initial states to goals, which depend heavily on the randomness of
forward trajectories to reach these goals, RL agents also navigate
backward from the goals to the initial states in the tasks (sky
blue solid line in Fig. 1). The standard transitions are sampled
from the standard forward and backward exploration trajectories
(solid lines in Fig. 1), where the initial states of themselves are in-
cluded. Then, the back-stepping transitions are calculated based
on the standard transitions to constitute the reversed trajectories
(dashed lines in Fig. 1), where the virtual goals are set to be the
original initial state in their corresponding standard trajectories,
such that the reversed trajectories are guaranteed to reach their
virtual goals and contribute to the learning efficiency.

During the explorations, the standard and the back-stepping
transitions are collected and stored in separate replay buffers
for training. A strategy St is used to sample the transitions
from the standard replay Rf with a probability Pt,f and from
the back-stepping replay Rb with a probability Pt,b, where
Pt,f + Pt,b = 1. For a system with imperfect reversibility, Pt,b

gradually drops to zero to purify the transition set for training
because of the inaccurate back-stepping transition. The details
of BER are shown in Algorithm 1. It should be noticed that the
operator � between the states and the goals also indicates the
modification of the sequential data (e.g., the history data) when
the back-stepping transitions are constructed.

The BER accelerates the estimation of Q-functions of the RL
agent by using the reversed successful trajectories to bootstrap
the networks. One interpretation of BER is a bi-directional
search method for standard off-policy RL approaches, with a
higher convergence rate and learning efficiency. The purification
strategy of the transitions for training needs to be carefully tuned
(e.g., tuning the probabilities Pt,f , Pt,b) and might be combined
with other exploration techniques, to reach an accurate policy
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Algorithm 1: Back-Stepping Experience Replay (BER).

learning in the end and avoid the limitations brought by the
bi-directional search method, e.g., non-trivial sub-optimum.

In the practical learning tasks, the accuracy and the complex-
ity of the function f : ãt = f(st,at, st+1), which calculates
the actions ãt in the back-stepping transitions (st+1, ãt, st),
need to be balanced. An accurate f yields better reversibility
(with smaller K in Eq. (2)) with more accurate back-stepping
transitions and brings less bias and noise, while f itself could
be computationally expensive or even unsolvable. On the other
hand, a moderate relaxation of the accuracy of f might boost
the efficiency of the calculation of back-stepping transitions,
when the larger bias and the noises brought by the approximate
reversibility (with larger K) are managed by the purification
mechanism in BER.

1) A Case Study of BER: To illustrate the effectiveness and
generality of BER, a general binary bit flipping game [13] with
n bits was considered as an environment for the RL agent, where
the state was the bit value array s = {si}

n
i=1 ∈ S , si ∈ {0, 1},

and the action was the index of the chosen bit a ∈ {1, . . ., n} =
A that was flipped. It was noticed that the game was completely
reversible and ãt = f(at) = at for any time step and transition.
The initial state s0 ∈ S and the goal g ∈ S were sampled
uniformly and randomly, with a sparse non-negative reward:
rt(s,a) = −[s 
= g]. The game is terminated once s = g.

Fig. 2. Training experiments of the bit flip game with different algorithms and
state dimensions. (a) Returns; (b) Success rates.

A simple ablation study was designed where a DQN and
a DQN with BER were used for training when n = 4, 6, 8.
The fully activated backward exploration and the use of back-
stepping transitions were stopped after 1 k epochs directly.
The experimental result (Fig. 2) showed that BER facilitated
an effective and efficient policy learning for a general DQN
approach, and contributed more when the problem became more
complex (i.e., n was larger).

III. BER IN MODEL-FREE RL FOR A SOFT SNAKE ROBOT

In this section, a locomotion and navigation task for a compact
pneumatic soft snake robot with snake skins in our previous
works [18], [19] is utilized to further evaluate the effectiveness
and efficiency of BER with a model-free RL approach, where
the robot learns both movement skills and efficient strategies to
reach different challenging targets.

A. Soft Snake Robot and Serpentine Locomotion

Compared with soft snake robots where each air chamber was
controlled independently [20], in this paper, a more compact
soft snake robot with snake skins [18] is considered. There are
only four independent air paths to generate the traveling-wave
deformation of the robot, which enables the robot to traverse
complex environments more easily by reducing the number of
pneumatic tubing. The body of the robot consists of six bending
actuators and each actuator is divided into four air chambers
(Figs. 3(a), 3(d)) that connect to four air paths (Fig. 3(b)). Four
sinusoidal waves with 90-degree phase differences and the same
amplitude can be used as references of pressures in air paths to
generate traveling-wave deformation (Fig. 3(c)), when the biases
of waves induce unbalance actuation for steering of the robot.

Serpentine locomotion is adopted for the movement of the soft
snake robot, where the anisotropic friction between the snake
skins and the ground propels the robot during the traveling-wave
deformation [21]. The artificial snake skins are designed with a
soft substrate and embedded rigid scales (Fig. 3(e)); see [19] for
more details.

To describe the serpentine locomotion of the robot, the dy-
namic model in [21] is adopted, where the body of the robot
is modeled as an inextensible curve in a 2D plane with a total
length L and a constant density ρ per unit length. The position
of each point on the robot at time t is defined as:

X(s, t) = (x(s, t), y(s, t)) (3)

where s is the curve length measured from the tail of the robot.
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Fig. 3. The overview of the soft snake robot with skins. (a) The soft snake robot with soft snakeskins; (b) The connection between air chambers and air paths;
(c) The actuation pressures for air paths; (d) The structure of one bending actuator; (e) The structure of soft snakeskin; (f) The simulation (sim) and experimental
(exp) results of the trajectory of the COM of the snake robot on a rough paper surface.

Fig. 4. The illustration of the soft snake robot with serpentine locomotion
approaching a target.

By utilizing a mean-zero anti-derivative I0 [22] (I0[f ](s, t)

=
∫ s

0 f(s′, t)ds′ − 1
L

∫ L

0 ds
∫ s

0 ds′f(s′, t)), the position X(s, t)
and the orientation θ(s, t) (the angle between the local tangent
direction and the X-axis of the inertial frame) of each point are

described as a function of the position X(t) and orientation θ(t)
(Fig. 4) of the center of mass (COM) of the robot:

X(s, t) = X(t) + I0[Xs](s, t) (4)

θ(s, t) = θ(t) + I0[κ](s, t) (5)

where Xs = (cos θ, sin θ) and κ(s, t) is the local curvature.

X(t) = 1
L

∫ L

0 X(s, t)ds, θ(t) = 1
L

∫ L

0 θ(s, t)ds. The curvature
κ(s, t) is related to the local pneumatic pressure via:

κ(s, t) = Kb ·∆p(s, t) (6)

where Kb is the proportional constant and ∆p(s, t) is the pres-
sure difference between the two air chambers at point s.

The anisotropic frictionffric between the snake skins and the
ground is described as a weighted average of the independent

components in different local directions (forward f̂ , backward

b̂, transverse t̂):
{
ffric = −ρg(μt(û · t̂)t̂+ μl(û · f̂)f̂)

μl = μfH(û · f̂) + μb(1−H(û · f̂))
(7)

where û represents the direction of the local velocity,μf ,μb, and

μt are the friction coefficients of the snakeskin in f̂ , backward b̂,
and t̂ directions, respectively. H(x) = (1 + sgn(x))/2, where
sgn is the signum function.

The dynamics of each point of the snake robot is determined
by Newton’s second law:

ρẌ = ffric + f inte (8)

where finte is the internal force in the robot body, which includes
internal air pressure, bending elastic force, etc., with observa-

tions:
∫ L

0 f inte = 0 and
∫ L

0 (X(s, t)−X(t))× f inte = 0.
Finally, the dynamics for the COM of the robot are derived

using the equation (3)–(8) with the observations offinte; see [22]
for more details.

Based on the dynamic model of the robot, which simplifies a
dynamic system for all points of the robot to a single dynamic
system for the COM of the robot, a simulator is designed with
proper discretizations and numerical techniques for RL training.
The simulation results matched the experimental results [19] of
the soft snake robot when different pressure biases were applied
for the robot’s steering (Fig. 3(f)), where the wavy trajectories
in the experiments were attributed to the limited number (25) of
the tracking markers in the tests.

B. RL Formulation of Locomotion and Navigation of the Robot

In this paper, the locomotion and navigation of the soft snake
robot are formulated as a Markov Decision Process (MDP) M
and solved with a model-free RL. The M is defined as a tuple
M = (A,S,R, T , γ):

1) Action space: Compared with a random Central Pattern
Generator (CPG) [7], more constrained sinusoidal waves
are used to generate a smoother traveling-wave deforma-
tion of the robot for better locomotion efficiency. Besides,
the learned controller of the robot is limited to avoid
high-frequency pressure changes, i.e., the RL agent is only
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able to generate an action to change the parameters of the
waveform at the beginning of each actuation period [0, T ]
that is same as the period of the sinusoidal waves, and one
episode consists of multiple connected actuation periods.
The sinusoidal pressure pi for i-th channel of the robot is
designed as:

pi = pm sin

(
c ·

2π

T
tr +

(i− 1) · π

2

)

+ bi,pre + (bi − bi,pre)
tr
T

(9)

where tr ∈ [0, T ] is the relative time in one actuation pe-
riod. pm and bi ∈ [0, bm] are the fixed magnitude and bias
of the sinusoidal waves for the i-th channel, respectively,
i ∈ {1, 2, 3, 4}. bi,pre is a one-step history of the wave
bias bi for the i-th channel with bi,pre = 0 at the initial
state. c ∈ {−1, 1} is a variable to control the propagation
direction of the traveling-wave deformation and thus can
change the movement direction of the robot.
The action space A of the RL agent for locomotion and
navigation of the robot is designed as:

a = {ba,1, ba,2, c} ∈ A (10)

where bi’s are constructed by ba,1 ∈ [−bm, bm] and ba,2 ∈
[−bm, bm]:

{
b1, b3 = max(0, ba,1),−min(0, ba,1)

b2, b4 = max(0, ba,2),−min(0, ba,2)
(11)

At the beginning of each actuation period, based on the
current policy, the RL agent observes the state and gen-
erates an action, which specifies the waveform of the
pressures in that period to propel the snake robot. The wave
design guarantees the continuity of the pressures across
different actuation periods to avoid impractical sudden
changes in the pressures and the robot’s body shape.

2) State space: A goal-conditioned state is used for the
learning of the RL agent for adapting to different random
targets. Specifically, a relative representation of the snake
robot’s position and orientation with respect to the target
is used as part of the state (Fig. 4):

s = {∆X,∆Y,∆θ, ba,1,pre, ba,2,pre} ∈ S (12)

where ∆X = xg −X , ∆Y = yg − Y denote the relative
position of the target to the COM of the snake robot,

∆θ = θg − θ ∈ (−π, π] represents the relative direction
of the target to the main direction of the robot, and
θg = arctan(∆Y/∆X) is the angle between the line from
the COM of the robot to the target and the X-axis, ba,1,pre
and ba,2,pre are two-step histories of the action ba,1 and
ba,2, respectively, with an initial setting of {0, 0}.
The velocities of COM of the robot are not included as part
of the state because the value of the Froude number Fr
[22] in serpentine locomotion of the snake robot is small,
indicating that the frictional and gravitational effects dom-
inate the inertial effect. Two-step histories (longer than one
step) are introduced to compensate for the omission of the
velocity state.

3) Reward function: The reward function r is pivotal for
the RL agent to learn the desired behaviors. The training
objective in this work is to drive the COM of the snake
robot to reach a random target as soon as possible, with

Fig. 5. (a). The approximate reversibility of the movement of the soft snake
robot with snake skins. (b). The fixed target and the sampling range of the random
targets.

a preference for serpentine locomotion where the robot
approaches the target along its main direction. Therefore,
the reward assigned to the agent at time t is designed as:

rt =

{
w1

∆Lt

∆L0

+ w2
2∆θr,t

π
+Rg, ∆Lt ≤ ε

w1
∆Lt

∆L0

+ w2
2∆θr,t

π
, else

(13)

where w1 and w2 are non-positive coefficients, Rg is a
large sparse positive success reward once the COM of the
robot enters a neighborhood of the target with a radius

of ε. ∆Lt =
√

∆X2
t +∆Y 2

t is the distance between the
COM of the robot and target at time t, and ∆Lt = ∆L0

when t = 0. The deflection ∆θr,t ∈ [0, π/2] is used in
the reward to allow the robot to approach the target in a
backward direction as well:

∆θr,t =

{
|∆θt|, −π/2 ≤ ∆θt ≤ π/2

π − |∆θt|, else
(14)

4) Transition probabilities: The transition probability,
T (s′|s, a), characterizes the underlying dynamics of the
robot system in the environment. In this study, we do not
assume any detailed knowledge of this transition prob-
ability while developing our RL algorithm. However, it
is noticed that some tests of the system are utilized in
validating the function f to construct back-stepping tran-
sitions with acceptable reversibility, which distinguishes
this approach from pure model-free approaches.

C. Experiments of RL Algorithms

1) Experimental Setups: The RL experiments for the loco-
motion and navigation of the snake robot were conducted in
a customized dynamic simulator which was developed based
on the aforementioned serpentine locomotion model (Section
III.A). The soft snake robot had a length of 0.5 m with a linear
density of 1.08 kg/m. The frictional anisotropy between the
snake skins and the ground was set as μf : μb : μt = 1 : 1 : 1.5,
and the maximum of the pressure bias bm was set as the
same as pm = 276 kPa. The proportional constant Kb between
the applied pressure difference and the curvature was set as
0.058 kPa·m. The period of the actuation and the sinusoidal
waves was 1 s.

The serpentine locomotion of the soft snake robot demon-
strated approximate reversibility (Fig. 5 A) in extensive sim-
ulations when the function f was designed as: ãt = f(at) =
{ba,1, ba,2,−c} when at = {ba,1, ba,2, c}. The trajectories in
extensive simulation results suggested a small K < 1 (in Eq.
(2)) for locomotion and navigation of the soft snake robot when
the above function f was used.
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Fig. 6. Experimental results of the training for locomotion and navigation of the soft snake robot with one fixed target (0, 0.5 m). (a) Returns; (b) Success rates;
(c) Average distances; (d) Average deflections.

Fig. 7. Evolution of the maximum Q-value at different locations during the training (from left to right: initial state, epoch 100, 500, 1 k, 10 k), with blue arrows
illustrating the directions of explorations. (a) Training with BER; (b) Training with DDPG.

The soft snake robot was initialized in the simulator by using

a horizontal static curved shape ((X,Y ) = (0, 0), θ = 0) with
zero-value action histories and a target (with neighborhoods:
ε = 0.03 m), whose control policies were learned by using BER
(with DDPG) and several state-of-art benchmark algorithms,
including DDPG, HER [13], and PPO [23]. The number of
total training epochs was 10,000 and the strategy to sample
the transitions was Pt,b = 0.5e−0.002i when the index of epoch
i ≤ 2500, Pt,b = 0 when i > 2500, and Pt,f = 1− Pt,b, Pb =
Pt,b. The coefficients of the reward were selected as ω1 = 0.15,
ω2 = 1 (while the choice of weights influences the learning
performance, it was observed not to alter the general trend
in performance comparison among the algorithms), and the
termination condition for one episode was either the COM of
the robot entering a neighborhood of the target and receiving
a success reward (Rg = 50) or the exploration time exceeding
150 s.

The return, success rate, average distance (the averaged
∆Lt/L0 for each time step t), and average deflection (the
averaged ∆θr,t for each time step t) were used to evaluate the
algorithms during the training, with moving-window averaging
for training with different seeds (lwindow = 50 epochs). Three
training experiments with different random seeds (for parameter
initialization) were conducted to evaluate each algorithm, where

the solid line and the shaded area showed the mean and the
standard deviation, respectively (Figs. 6 and 8). An AMD 9820X
processor with 64 GB memory and Ubuntu 18.04 was used for
the training.

2) Locomotion and Navigation With a Fixed Target: The
performance of the algorithms was initially evaluated on the
locomotion and navigation task of the robot, targeting a challeng-
ing fixed point (xg, yg) = (0, 0.5 m) (Fig. 5(b)). The experiment
results of the training showed that both DDPG and BER were
able to solve the task and learn policies to reach the fixed target
successfully, while HER had worse stability and PPO was unable
to solve the task within the epoch limitation (Fig. 6). It was also
shown that BER had a faster convergence rate and better stability
compared with other baseline algorithms.

The evolution of the maximum Q-value at different locations
for the algorithms during the training process (with the same
seed) revealed the underlying mechanism and the advantage
of BER (Fig. 7). It was shown that the effective Q-values in
the training with BER were estimated from both the start and
the target locations, expediting the successful explorations and
the convergence of the estimation. The BER learned a more
informative Q-value distribution after 500 epochs than that of the
baseline DDPG after 1000 epochs. The final Q-value distribution
of BER was also more accurate than that of the baseline DDPG,
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Fig. 8. Experimental results of the training for locomotion and navigation of the soft snake robot with random targets. (a) Returns; (b) Success rates; (c) Average
distances; (d) Average deflections.

Fig. 9. Trajectories of the COM of the soft snake robot by using the controllers learned by different algorithms. (a) Trajectories with a backward target where the
relationships between positions and time are shown in (d), (g); (b) Trajectories with a lateral target where the relationships between positions and time are shown
in (e), (h); (c) Trajectories with a forward target where the relationships between positions and time are shown in (f), (i).

manifested by their shapes and the positions of the Q-value’s
peaks.

3) Locomotion and Navigation With Random Targets: A
locomotion and navigation task of the soft snake robot with
random targets was then explored by using different RL al-
gorithms, where a half ring was used to randomly sample
the target because of the system symmetry: g ∈ {(d, α) | d ∈
[0.3, 1], α ∈ [0, π]} (Fig. 5(b)). Besides, a strategy was de-
signed where the targets were sampled uniformly from gradually
expanding areas for the i-th training epoch within the total
n epochs: g ∈ {(d, α) | d ∈ [0.3, 1], α ∈ [0, ψ] ∪ (π2 − ψ, π

2 +

ψ] ∪ (π − ψ, π]}, ψ = π
4n2 i

2.
The training results revealed that BER outperformed all other

tested benchmarks (Fig. 8). BER achieved the highest return and
success rate during training, exhibiting more stable behavior and
a smaller average deflection. In contrast, the baseline DDPG’s
performance declined when introduced to a variety of targets, de-
spite its strong early-stage performance. HER struggled to learn

to reach targets in different areas, indicating that the increasing
of additional inefficient goals would not improve its performance
but induce undesired behaviors, whereas PPO gradually learned
an effective policy, a process that benefited from the random-goal
training setup involving progressively changing targets.

The robot’s trajectories further demonstrated BER’s effi-
ciency (Fig. 9), where controllers with median success rates
from each algorithm were used for control. A video for these
experiments in simulator can be viewed at https://youtu.be/
Z0da6rVu9j8. Three representative targets were tested: (−0.8
m, 0.1 m) for moving backward, (0, 0.5 m) for moving towards
a lateral target, (0.8 m, 0.1 m) for moving forward. The BER
controller successfully and smoothly guided the robot to all
targets. In contrast, the DDPG and HER controllers exhibited
inefficient oscillations, possibly due to less accurate Q-function
estimation. While the PPO controller managed to reach all
targets, it also displayed oscillation and adopted a sub-optimal
policy for the forward target (0.8 m, 0.1 m).
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TABLE I
TESTING PERFORMANCE COMPARISONS OF DIFFERENT ALGORITHMS

The quantitative results of the algorithms (Table I) were the av-
erage values tested by using the controllers trained with different
seeds, and using 50 random targets sampled from the half-ring
area (Fig. 5(b)). The average velocity (vavg = ∆L0/tep, tep:
episode length) indicated the efficiency of the learned con-
trollers. Notably, the average velocity of the robot with the BER
controller (0.0169 m/s) was approximately 48% faster than that
of the DDPG baseline (0.0114 m/s), and significantly higher
compared to other benchmarks. Besides, compared to other
algorithms, BER not only learned an efficient controller based
on the primary reward (highest average deflection: 0.2920 rd)
but was also able to sacrifice the secondary reward to some
extent (second highest average distance: 0.4002 m/m) for better
performance. The success rate of BER reached 100% while
the other baselines did not exceed 65%, which exhibited the
advantage of BER in the locomotion and navigation learning of
the soft snake robot.

IV. CONCLUSIONS AND DISCUSSIONS

A novel technique, Back-stepping Experience Replay, was
proposed in this paper, which exploited the back-stepping tran-
sitions constructed by using the standard transitions in both
forward and backward exploration trajectories, improving the
learning efficiencies in off-policy RL algorithms for the ap-
proximate reversible systems. The BER was compatible with
arbitrary off-policy RL algorithms, demonstrated by combining
with DQN and DDPG in a bit-flip task and locomotion and
navigation task for a soft snake robot, respectively.

A model-free RL framework was proposed for locomotion
and navigation of a soft snake robot as an application of the
proposed BER, where a conventional locomotion model for real
snakes was adopted to describe the serpentine locomotion of
the soft snake robot and to design a simulator for learning.
An RL formulation for locomotion and navigation of the soft
snake robot was built based on the characteristics of the robot.
Extensive experiments showed that the proposed RL approach
was able to learn an efficient controller that drove the soft
snake robot approaching fixed or even random targets by using
serpentine locomotion. For the tasks with random targets, the
controller learned by using BER achieved a 100 % success rate
and the robot’s average speed was 48 % faster than that of the
best baseline RL benchmark.

For future work, we will apply the proposed RL approach
with BER to a physical soft snake robot system, to explore
the simulation-to-reality gap and minimize such a gap using
techniques like [24]. It is also noted that we did not consider
obstacles in the environment in the current work. We plan to
investigate extending the proposed approach to such cases. In
addition, we will also study the influence of the function f and
the approximate reversibility of general systems (e.g. robotic
arms) on BER, and analyze the convergence properties of BER
for proper state-of-the-art off-policy RL algorithms.
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