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Abstract: The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 

has triggered a global COVID-19 pandemic, challenging healthcare systems worldwide. Effective 

therapeutic strategies against this novel coronavirus remain limited, underscoring the urgent need 

for innovative approaches. The present research investigates the potential of cannabis compounds 

as therapeutic agents against SARS-CoV-2 through their interaction with the virus’s papain-like 

protease (PLpro) protein, a crucial element in viral replication and immune evasion. Computa- 

tional methods, including molecular docking and molecular dynamics (MD) simulations, were 

employed to screen cannabis compounds against PLpro and analyze their binding mechanisms 

and interaction patterns. The results showed cannabinoids with binding affinities ranging from 

−6.1 kcal/mol to −4.6 kcal/mol, forming interactions with PLpro. Notably, Cannabigerolic and 

Cannabidiolic acids exhibited strong binding contacts with critical residues in PLpro’s active region, 

indicating their potential as viral replication inhibitors. MD simulations revealed the dynamic behav- 

ior of cannabinoid–PLpro complexes, highlighting stable binding conformations and conformational 

changes over time. These findings shed light on the mechanisms underlying cannabis interaction with 

SARS-CoV-2 PLpro, aiding in the rational design of antiviral therapies. Future research will focus on 

experimental validation, optimizing binding affinity and selectivity, and preclinical assessments to 

develop effective treatments against COVID-19. 

 

Keywords: SARS-CoV-2; PLpro; cannabis compounds; molecular docking; molecular dynamics 

simulations; antiviral therapy; viral replication; computational methods 

 

 

1. Introduction 

COVID-19 arises from an infectious strain of severe acute respiratory syndrome coro- 

navirus 2 (SARS-CoV-2), belonging to the beta coronavirus category [1–3]. The infection 

with SARS-CoV-2 typically manifests in severe respiratory distress, characterized by symp- 

toms such as shortness of breath, dry cough, and fever, leading to significant morbidity 

and mortality [4,5]. While vaccination remains the main strategy to lessen the severity 

of COVID-19 health implications, Nirmatrelvir (PF-07321332) [6], the key ingredient in 

Pfizer’s oral medication Paxlovid, notably reduces the risk of hospitalization or mortality 

by 89% when administered early in the infection process. This sets it apart from other 

clinically evaluated SARS-CoV-2 antivirals like remdesivir and molnupiravir. Nevertheless, 

Paxlovid is associated with side effects, necessitates administration within the initial five 

days of symptom onset, and carries the risk of resistance mutations [7–12]. Additionally, 

various approaches such as protein minibinders [13,14], peptides [15–17], decoy ACE2 

proteins [18–23], monoclonal antibodies [24], and nanobodies [25] have been devised to de- 

velop antiviral therapeutics for COVID-19. However, all these approaches have limitations, 

such as ineffectiveness in clinical trials (especially when the SARS-CoV-2 variants change), 
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low in vivo half-life, and side effects. Therefore, the exploration of effective treatments, par- 

ticularly those of natural origin with fewer adverse reactions remains the primary approach 

to mitigate the severity of its health consequences. Therefore, the exploration of effective 

treatments, particularly those of natural origin with fewer adverse effects, is considered 

crucial globally [26,27]. 

Papain-like protease (PLpro) is a key enzyme encoded by SARS-CoV-2 that plays a 

crucial role in viral replication and immune evasion. Targeting PLpro presents a promising 

strategy for the development of antiviral therapies against COVID-19. Several studies have 

highlighted the potential of small molecules and natural compounds as inhibitors of PLpro, 

opening avenues for the exploration of novel drug candidates. Given the complex interplay 

between PLpro and viral replication, understanding the molecular interactions between 

PLpro and potential inhibitors is paramount for the rational design of antiviral agents [28]. 

In the quest for novel therapeutic strategies against SARS-CoV-2, natural compounds 

have attracted significant interest due to their diverse pharmacological properties and 

potential as sources of new drug candidates. Among these natural compounds, cannabis- 

derived molecules have emerged as promising candidates for the treatment of various 

diseases, including viral infections. Cannabis contains a myriad of bioactive compounds, 

notably cannabinoids, which have demonstrated diverse biological activities, including anti- 

inflammatory, immunomodulatory, and antiviral effects. This wealth of bioactivity suggests 

that cannabis compounds may hold potential as therapeutic agents against SARS-CoV-2. 

Cannabis sativa L., an annual herbaceous plant originating from central Asia, is com- 

monly known as Indian hemp, while “marijuana” is a term of Mexican origin that now 

refers to the dried flowers and leaves of the cannabis plant. The Arabic term “hashish” 

denotes the resin gum of the plant [28,29]. Cannabinoids, the primary active metabolites 

found in Cannabis sativa, are a class of terpene phenolic compounds concentrated mainly 

in the female flowers’ trichome cavities [30,31]. Notably, ∆-9-tetrahydrocannabinol (THC) is 

the principal psychoactive compound, while cannabidiol (CBD) is the main non-psychotic 

active compound [32]. Additionally, Cannabis sativa exhibits various therapeutic prop- 

erties attributed to cannabinoids, which inhibit neurodegenerative disorders, suppress 

breast cancer cell proliferation, and alleviate inflammation, chronic pain, multiple sclerosis, 

epilepsy, glaucoma, and nausea [33,34]. 

The interaction between the COVID-19 virus and host cells triggers robust pro- 

inflammatory and immune responses, resulting in a cytokine storm and the circulation 

of immune cells. This immune reaction is orchestrated through complex mechanisms, 

involving various signaling molecules, including endocannabinoids (eCBs). Within this 

intricate system, the human endocannabinoid system (ECS) emerges as a crucial regula- 

tor, encompassing cannabinoid receptors type 1 (CB1) and 2 (CB2). While CB1 primarily 

resides in the central nervous system (CNS), CB2 is notably abundant in immune cells, 

where it exerts anti-inflammatory effects by suppressing pro-inflammatory cytokines and 

promoting the production of anti-inflammatory cytokines [35]. Moreover, CB2 plays an 

immunomodulatory role by regulating apoptosis, cellular proliferation, and the expression 

of proinflammatory cytokines, while cannabinoids exhibit affinity for various other recep- 

tors such as the G protein-coupled receptor (GPR55), transient receptor potential vanilloid 

(TRPV) channels, Peroxisome proliferator-activated receptors (PPARs), and serotonin 1A 

receptors, among others [36]. Phyto-cannabinoids have also demonstrated the ability to 

suppress lymphocyte proliferation and inflammatory cytokine production [37,38]. Overall, 

the activation of the ECS appears to play a critical role in both preventing the onset and 

reducing the severity of COVID-19. 

To our knowledge, no study has evaluated the roles of the ECS, cannabinoids, and 

cannabis in the progression of SARS-CoV-2 infection. Also, no epidemiological data are 

available on the incidence of COVID-19 in people taking medicinal or non-medicinal 

cannabinoids [39–42]. Pre-existing non-medicinal consumption of cannabinoids should 

not be encouraged during the ongoing COVID-19 pandemic due to potential respiratory 

complications. Continuation or discontinuation of therapeutically prescribed cannabinoids 
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should be discussed on a case-by-case basis, with the prescribing physician considering the 

risk–benefit ratio of each patient [43–45]. Given the large-scale, worldwide consumption 

of cannabinoids, medicinal or not, it appears critical to improve preclinical and clinical 

knowledge on cannabinoids and COVID-19 [46–48]. To confirm an immunomodulatory 

effect of cannabinoids and a potential interaction with SARS-CoV-2, in vitro and in vivo 

experimental models are requested. From a clinical standpoint, epidemiological studies 

(with case-control design) and retrospective data about the consumption of cannabinoids 

by patients with SARS-CoV-2 infection are needed to investigate the potential influence of 

cannabinoids on COVID-19 disease progression and severity [49,50]. 

In this context, the present research aims to investigate the potential of cannabis 

compounds as therapeutic agents against SARS-CoV-2 by targeting PLpro. Through com- 

putational approaches, including molecular docking and molecular dynamics simulations, 

we aim to elucidate the binding mechanisms and interaction patterns of cannabis com- 

pounds with PLpro. By screening a library of cannabis compounds against PLpro, we 

seek to identify potential inhibitors that exhibit strong binding affinities and favorable 

interaction profiles. Furthermore, our study aims to characterize the dynamic behavior of 

cannabinoid–PLpro complexes, providing insights into the stability and conformational 

dynamics of these interactions [51,52]. 

2. Materials and Methods 

2.1. Retrieval and Preparation of Molecular Structures 

2.1.1. Retrieval of Cannabinoids from PubChem 

For this study, we selected four well-known cannabinoid compounds, CBG-I, Cannabid- 

iolic acid, CBD, and Cannabigerolic acid, to evaluate their potential against SARS-CoV-2 

PLpro protein (6W9C). These four compounds were downloaded in SDF format from 

the Chemical Compound Deep Data Source database (https://www.molinstincts.com/, 

accessed on 10 November 2023). They were then evaluated based on the rule of five. 

2.1.2. Retrieval of SARS-CoV-2 PLpro Protein Structure from Protein Data Bank (PDB) 

The three-dimensional (3D) crystallographic structure of the SARS-CoV-2 non-structural 

PLpro protein (PDB ID: 6W9C) [53,54] was retrieved from the Protein Data Bank (www. 

rcsb.org, accessed on 2 November 2023), and the sequence was obtained from the UniProt 

database [51,52] The resolution of the viral PLpro protein is 2.70 Å with global symme- 

try (cyclic–C3), and the global stoichiometry is Homo 3-mer–A3. The targeted receptor 

was analyzed based on physicochemical properties, such as a total structure weight of 

107.81 kDa, an atom count of 7371, along one unique protein chain. The amino acid se- 

quence contains a lot of necessary information, including extinction coefficient, theoretical 

pI, instability index, estimated half-life, aliphatic index, GRAVY, and amino acid compo- 

sition [51,52]. Further physicochemical properties were determined via the ProtParam 

tool (https://web.expasy.org/protparam/, accessed on 15 November 2023). In ProtParam, 

the FASTA format was used to check physicochemical properties. The conserved motifs, 

including the catalytic triad (Cys111, His272, and Asp286), were selected based on the 

published literature [53,54]. 

2.2. Molecular Docking 

The next step after retrieving ligands and the target protein was molecular docking to 

find the best binding pose of the ligands with the SARS-CoV-2 PLpro protein. AutoDock 

Vina, an open-source docking tool utilized for molecular docking, requires SDF/MOL 

and PDB files of ligands and receptors, respectively. Pyrx is a graphical interface for 

AutoDock Vina, a popular, robust, and user-friendly software application for predicting the 

binding modes and affinities of ligands to the target protein [55,56]. Pyrx streamlines the 

process of preparing input files, establishing parameters, and viewing docking experiment 

outcomes [57–60]. 

https://www.molinstincts.com/
http://www.rcsb.org/
http://www.rcsb.org/
https://web.expasy.org/protparam/
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Molecular docking was carried out using Pyrx’s Vina wizard with default algorithms. 

Using the command prompt, the prepared ligands were docked to the targeted receptor one 

by one. A total of 9 poses of each ligand were generated. All the poses were analyzed based 

on binding affinity and Root Mean Square Deviation (RMSD) value. The best pose with the 

lowest binding affinity and RMSD was chosen, and the remaining poses were eliminated. 

Docking scores were obtained and saved in the .CSV file format. The docking scores 

(Kcal/mol) were used to calculate the ligands’ binding affinity. The best poses with binding 

interactions after molecular docking were assessed using PyMOL (http://www.pymol.org 

accessed on 11 September 2023). The interactions with the lowest binding energies were 

found to be the most favorable interactions. 

MD simulations were conducted employing the Desmond engine and utilizing the 

VSGB solvent model and OPLS3e force field, following a methodology described in the prior 

literature. Enough water molecules were used to solvate the system, and the non-bonded 

interactions were treated with a cut-off range of 10 Å and periodic boundary condition 

was fixed with Particle Mesh Ewald (PME) method. The temperature and pressure were 

controlled using a Nose–Hoover thermostat and Parrinello–Rahman barostat, respectively. 

A timestep of 50 nanoseconds was employed for the simulations. These parameters were 

chosen based on established protocols for MD simulations. 

2.2.1. Protein Structure Preparation Using AutoDock Tools 

The protein structures were prepared using AutoDock Tools v 4.2 [61–63]. Grid-based 

molecular docking was utilized to enable the binding of compounds in multiple potential 

conformations. Prior to the docking process, Gasteiger charges and polar hydrogens 

were added to the protein molecule. In the docking process, a square grid box with a 

size of 20 Å was used (centered around the pocket). Before docking, the target protein 

was prepared by removing heteroatoms, including water molecules, and small molecules 

via PyMOL (https://pymol.org/2/, accessed 15 October 2023). Additional metal ions 

and unnecessary chains were deleted during structure modification, and the lowest-state 

penalty was selected. Tautomeric states and protonation were adjusted to a pH of 7.4. It 

was verified that the 3D structure did not contain any missing residues and it was saved 

into PDB file format. Then, it was loaded into the workspace of Pyrx and converted into 

a macromolecule, which converts the receptor into pdbqt file format by adding charges 

to the protein structure [63]. The BIOVIA Discovery Studio 2020 client software version 

R1 package was used for binding site predictions, interaction analyses, and molecular 

visualization of docked complexes [64,65]. 

2.2.2. Ligand Pre-Processing 

In this study, four well-known cannabinoid compounds—CBG-I, Cannabidiolic acid, 
CBD, and Cannabigerolic acid—were chosen to assess their potential against the SARS- 

CoV-2 PLpro protein. These compounds were obtained in SDF format from the Chemical 

Compound Deep Data Source database (https://www.molinstincts.com/, accessed on 

10 November 2023). Subsequently, they were evaluated based on the rule of five. The 

ligand underwent preprocessing using AutoDock-Tools to address any structural issues 

such as missing atoms, incorrect bond orders, or steric clashes. Energy minimization of 

the ligand structure was conducted to optimize its conformation. Appropriate protonation 

and ionization states were assigned to the ligand at the desired pH. Multiple low-energy 

conformations of the ligand were generated to accommodate flexibility during docking. 

Gasteiger charges were added to each conformation, and rotatable bonds were adjusted. 

Finally, all ligands were converted into pdbqt file format for docking [65]. 

2.2.3. Grid-Based Docking Using AutoDock Vina 

The prepared 3D structure was further processed to build a grid box on the whole 

protein for blind docking.  The X, Y, and Z coordinate dimensions for blind docking 

http://www.pymol.org/
https://pymol.org/2/
https://www.molinstincts.com/
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were −154.97, 180.54, and 167.23, respectively. All three dimensions of the box were 

72 × 88 × 146. For docking, the receptor was saved in the pdbqt file format. 

2.3. Binding Site Predictions and Interaction Analyses Using BIOVIA Discovery Studio 

The BIOVIA Discovery Studio 2020 client software and PyMOL were used to predict 

binding sites, analyze interactions, and visualize docked complexes. A target site within 

the protein was selected for docking, typically a pocket in its three-dimensional structure. 

Discovery Studio’s ‘Ligand Binding Site’ module predicted the protein’s binding site using 

geometric and physicochemical algorithms. The ligands were docked within the pocket 

in various conformations, and binding affinities were assigned to each snapshot. A 20 Å 

square box limited the docking process. Results outlined the ligands and their binding 

affinities to the protein (PLpro). Visualizations in Discovery Studio highlighted residues 

within 5 angstroms of the predicted binding site for further analysis [64,65]. 

2.4. Evaluation Criteria for Docking Results 

The scoring function and conformational sampling were utilized to explore the ligand 

conformational space for docking evaluation. The scoring function of the docking software 

computed the expected binding affinity of each ligand-protein system, where lower binding 

energies indicated stronger binding interactions. The RMSD value between the docked 

ligand conformation and the control ligand conformation was calculated to assess the 

accuracy of ligand binding mode prediction. The projected binding mechanism was then 

assessed for plausibility and consistency by examining interactions between the ligand 

and binding site residues, including hydrogen bonds, hydrophobic interactions, and π–π 

stacking interactions. 

2.5. Validation and Verification Techniques 

To validate the docking approach, redocking experiments were carried out on known 

ligand–protein complexes with empirically determined binding modes. The RMSD between 

the docked poses and experimental binding positions was calculated to determine the 

accuracy of the docking predictions. Cross-docking research was carried out, which 

involved docking different ligands into the target protein’s binding region. The docking 

software’s capacity to accurately anticipate the binding modes and affinities of various 

ligands was assessed. The projected binding mechanism was evaluated for plausibility 

and consistency by analyzing particular interactions between the ligand and binding site 

residues, such as hydrogen bonds, hydrophobic interactions, and π–π stacking interactions. 

To validate and verify the docking results, molecular mechanics generalized Born and 

surface area (MM/GBSA) analysis was run [66]. 

MM-GBSA analysis was conducted via the prime module of Schrodinger to evaluate 
the binding free energy (∆G(bind)) of all four systems (receptor complexed with Cannabid- 

iolic acid, Cannabigerolic acid, CBD, and CBG compounds), which is a measure of the 
stability of the complex and thus the strength of the binding [67]. Counter ions were 
stripped, and the VSGB solvent model with OPLS3 force field was employed, along with 

rotamer search techniques to calculate ∆G (bind) [68,69]. The total binding free energy is 

the difference between the energy of the protein–ligand complex and the free energy of the 
individual protein and inhibitor. A stronger relationship is indicated by more negative ∆G 

(bind) values. 

2.6. Molecular Dynamic Simulation 

The protein–ligand complex of PLpro-CBGA underwent simulation using the Schrödinger 

software Maestro version 2023-1 package for a total of 50 nanoseconds. The complex was 

suspended in a water solvent and neutralized with charged ions. Energy minimization was 

conducted to relax the structure and eliminate steric hindrances. Subsequently, the solvent 

and ions were stabilized by adjusting temperature to 300K and pressure to 1 bar before the 

production step. 
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Schrödinger, a computational biophysics-based platform, facilitates drug discovery 

by characterizing protein–drug interactions via simulations. Initial parameters such as 

ensemble, total molecules, water molecules, simulation time, and charge are determined. 

Molecular docking provides the protein–ligand complex structure, which Schrödinger 

further refines through energy minimization and equilibration steps, ensuring favorable 

geometry and stability. 

3. Results 

3.1. Physicochemical Analysis of PLpro and Chemical Compounds 

All selected compounds were evaluated based on their molecular properties, including 

molecular weight, hydrogen bond donors and acceptors, XLogP, rotatable bonds, heavy 

atoms, and polar surface area (Table 1). The standard criteria for selection were: molecular 

weight < 500, LogP < 5.6, H-bond donors < 5, H-bond acceptors < 10, PSA < 140, RB < 10. 

 
Table 1. Physicochemical properties of selected compounds. 

 
 
 
 
 
 
 
 
 

 
Structure 

 

The amino acid sequences of target proteins from SARS-CoV-2 were retrieved from 
the UniProt database, while the 3D structure was obtained from the PDB database. The 
theoretical pI of the protein is 7.99, with an instability index of 36.41, indicating that the 
targeted receptor is stable. The total number of negatively charged residues is 29, and the 
total number of positively charged residues is 31. The atomic composition is as follows: C 

(1598), H (2459), N (415), O (480), S (19). The estimated half-life is >10 h in Escherichia coli, 

with an aliphatic index of 71.07 and a grand average of hydropathicity (GRAVY) of −0.361. 

3.2. Computational Docking of Cannabinoids with SARS-CoV-2 PLpro 

To gain a better understanding of the binding energies and interactions of the selected 

target protein PLpro, molecular docking calculations were performed for the four selected 
compounds. The compounds with their docking scores and various interactions that 
stabilize the binding are given in Table 2. The docking scores for Cannabidiolic acid, 

Cannabigerolic acid, CBD, and CBG with the PLpro protein of SARS-CoV-2 are −6.1, −5.3, 

−5.0, and −4.6, respectively. The SARS-CoV-2 PLpro’s active site showcases a conventional 

catalytic triad, consisting of Cys112–His273–Asp287. Although none of our molecules bind 

very close to the active site, the binding of the molecules has shown increased structural 

dynamics which could impact the active site and consequently the function of PLpro. 

 
Table 2. Summary of in silico docking interactions of cannabinoids and SARS-CoV-2 PLpro 

protein target. 
 

Serial No. Compound Name Binding Affinity (kcal/Mol) Interacting Residues Type of Bonds 

Cannabidiolic acid PRO248 Pi–Alkyl: 2 

1 
(CBDA) 

−5.3
 

TYR264 
GLY266 

Conventional 
Hydrogen Bond: 1 

 
 

 CBG Cannabidiolic Acid CBD Cannabigerolic Acid 

MW (g/mol) 173.17 358.5 511.79 360.5 
HBD 3 3 0 3 
HBA 5 4 4 4 
RBs 3 7 14 10 

XLogP −3.1 6.6 8.9 7.5 
Heavy Atom 12 26 37 26 

TPSA (Å2) 101 77.8 38.8 77.8 

Molecular 
C21H32O2

 
C22H30O4 C21H30O2 C22H32O4 
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Table 2. Cont. 
 

Serial No. Compound Name Binding Affinity (kcal/Mol) Interacting Residues Type of Bonds 

 

 
2 

 

Cannabigerolic acid 
(CBGA) 

 

 

−6.1 

LYS105 
TRP106 
TYR264 

Alkyl and Pi–Alkyl: 8 
TYR268 

 

 
3 

 

 
CBD 

 

 
−5.0 

ALA288 
LEU289 
TYR268 

Alkyl: 3 ALA288 
Pi–Pi T-shaped: 1 

 

 
4 

 

 
CBG 

 

 
−4.6 

LEU289 
LYS105 
TRP106 Alkyl: 3 
ASN267 Conventional 

   ALA288 Hydrogen Bond: 4 
LEU289 

 

3.3. Binding Affinity and Interaction Patterns of Cannabinoids 

3.3.1. Cannabigerolic Acid (CBGA) 

The docking interaction of CBGA was found to be the highest among the four cannabi- 

noids (Figure 1). 

The binding affinity of CBGA with the PLpro active site was −6.1 kcal/mol. The 

interaction involved the formation of eight alkyl and pi–alkyl bonds with LYS105, TRP106, 

TYR264, TYR268, ALA288, and LEU289. 

The significance of these eight alkyl and pi–alkyl bonds to CBGA having the highest 

binding affinity and the interacting residues are as follows: 

The eight alkyl and pi–alkyl bonds collectively contributed to the binding affinity 

score of −6.1 kcal/mol within the protein–ligand complex. Based on our interpretation and 
research, there is no particular relevance of the type of bonds, but we are rather interested 
in the estimated binding affinity of the protein and ligand complex. 

On the protein side, the residues that participated in the bond formation were Lysine 

at position 105, Tryptophan at position 106, Tyrosine at position 264, Tyrosine at position 

268, Alanine at position 288, and Leucine at position 289. The position here indicates the 

position in terms of the protein sequence. 

In terms of the chemical nature of these residues: Lysine contains a positively charged 

side chain, and the others (Tryptophan, Tyrosine, Alanine, and Leucine) contain hydropho- 

bic side chains. 

3.3.2. Cannabidiolic Acid (CBDA) 

CBD docked to the SARS-CoV-2 PLpro protein demonstrated a binding affinity of 

−5.0 kcal/mol. The analysis showed the formation of various alkyl and conventional 

hydrogen bonds with nearby residues of the active site, such as PRO248, TYR264, and 

GLY266. 

3.3.3. Cannabigerol (CBG) 

Cannabidiolic acid docked to the SARS-CoV-2 PLpro protein demonstrated a binding 

affinity of −5.3 kcal/mol. The analysis showed the formation of different pi–alkyl, alkyl, 
and conventional hydrogen bonds with nearby residues of the active site, such as TYR268, 
ALA288, and LEU289. 
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Figure 1. Molecular docking interaction of (a) CBDA, (b) CBGA, (c) CBD, and (d) CBG with SARS- 

CoV-2 PLpro protein. Ribbon diagram with the solvent surface rendered view and 2-dimensional 

interaction diagram showing interactions of respective cannabinoids with SARS-CoV-2, PLpro protein 

active site. The various interaction types are indicated by different colors provided in the color panel at 

the bottom. BIOVIA Discovery Studio 2020 client was used to visualize and analyze the interactions. 
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Residues 

 
3.3.4. CBD 

CBD docked to the SARS-CoV-2 PLpro protein demonstrated a binding affinity of 

4.6 kcal/mol. The analysis showed the formation of different alkyl and conventional 

hydrogen bonds with nearby residues of the active site such as LYS105, TRP106, ASN267, 

ALA288, and LEU289. 

Each row indicates the docking results for a single protein–ligand complex. The left 

columns depict the structural overview of the interactions, where the trimers of the protein 

are colored in three ribbon-like structures (yellow, blue, and green). The ligand is shown 

in a solid structure placed in the protein pocket. The right column depicts the specific 

protein–ligand contacts noted during the docking process. Here, the ligand is depicted 

in a wire-like structure, and the amino acids from proteins are depicted in a ball-like 

structure. The names of the amino acids are indicated in standard three-letter notations 

(for example, LYS A:105 represents the Lysine residue at position 105 from the “A” chain of 

the protein). The dotted arrows between the ligand and amino acid indicate the observed 

contacts, and they are colored according to their nature (hydrogen, Van der Waals, alkyl, 

and pi–alkyl bonds). 

3.3.5. Cannabinoids with Other Targets 

To gain a better understanding of the binding energies and interactions of the selected 
target protein 6W9C, a molecular docking process was performed for the four selected 
compounds. The docking scores for Cannabidiolic acid, Cannabigerolic acid, CBD, and 

CBG with the PLpro protein of SARS-CoV-2 are −7.1, −7.2, −7, and −5.4, respectively. The 

docking results were then analyzed using a cutoff value of −7, and three of the compounds’ 
docking scores lie within this criterion. Compounds with their docking scores are given in 
Table 3. 

Table 3. Binding affinities of selected compounds and SARS-CoV-2 PLpro protein along the interacting 

residues and type of interactions. 
 

 

Binding Affinities 
(kcal/mol) 

Interacting Residues Type of Interactions 
Van der Wall’s Interacting

 

 

Cannabidiolic acid −7.1 
 
 

 
Cannabigerolic acid −7.2 

 
 

 
CBD −7 

 
 

 
CBG −5.4 

 
VAL126, PHE192, 
LEU226, VAL227 

 

 
VAL126, PHE192, 
LEU226, ILE101, 
TRP104, VAL227 

 
ASN121, SER205, 
ARG190, VAL126, 
TRP104, LEU226 

LYS300, SER297, 
ASP294, ASP290, 
ALA288, PHE59, 

VAL289 

Pi–sigma, pi–pi 
T-shaped, alkyl, 

pi–alkyl 

 
Pi–sigma, pi–pi 

T-shaped, alkyl (2), 
pi–alkyl (2) 

 

 
H-bond (3), alkyl (2), 

pi–alkyl (2) 
 

 
H-bond (5), pi–alkyl, 

carbon hydrogen bond 

VAL120, ASN121, ARG102, 
GLY103, ILE119, TRP104, 
ILE128, HIS207, ILE203, 

ARG190 
ARG190, HIS207, PHE92, 
SER94, ARG102, ASN121, 
VAL120, VAL127, GLY103, 
ILE119, TYR170, ILE128, 

ILE203 
THR124, ASN125, ILE119, 
ILE203, VAL227, ILE128, 
PHE194, ILE101, GLU96, 

ARG102, HIS207 

 
PHE58, LEU296 

 
 

 
CBGA demonstrated the best binding affinity of −7.2 compared to the others. Based 

on the binding scores, CBGA exhibits the potential to bind and maintain stable interactions 

with the SARS-CoV-2 PLpro protein for an extended duration. This characteristic suggests 

its capacity to inhibit the virus by hindering PLpro receptor binding, thereby preventing 

its entry into the host body. The docking poses of CBGA with the targeted receptor 

were analyzed with 2D and 3D interactions along with surface mapping, as displayed in 

Figure 2. It was observed that CBGA makes Pi–sigma, pi–pi T-shaped, alkyl, and pi–alkyl 

Compounds 
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interactions with nonpolar aliphatic residues, such as VAL126, ILE101, VAL227, LEU226, 

and aromatic residues PHE192 and TRP104, respectively. VAL126 depicts a 3.4 Å distance 

and interaction with aromatic carbon, while Ile101 depicts a 3.7 Å distance between CBGA 

and the target protein. 

 

Figure 2. (A) Surface mapping of 6W9C-Cannabigerolic acid complex with forest green and hot pink 

colors respectively. (B) Showing 2D interaction view of Cannabigerolic acid with the SARS-CoV-2 

PLpro receptor. The legend for the interactions involved is given in the left lower box. (C) Labeled 

interacting residues with Cannabigerolic acid and calculated distances. (D) Cannabigerolic acid (hot 

pink) and interacting residues (forest green) in stick representation, while receptor is in cartoon form 

with 50% transparency. 

Aromatic residue PHE192 was observed to participate in pi-pi T-shaped bonding. 
Pi–sigma interactions were detected between the nonpolar aliphatic residue LEU226 and 

Cannabidiolic acid, while VAL227 and VAL126 residues were found to be involved in alkyl 

and pi–alkyl interactions with a binding affinity of −7.1, which lies within the threshold 
criterion. In molecular interactions, hydrophobic interactions occur between nonpolar 

molecules in a hydrophilic (water-based) environment. HIS207, ILE203, and ARG102 
depict hydrophobic interactions with Cannabidiolic acid in Figure 3. 

Hydrogen bonding plays a critical role in enhancing the interaction with the receptor’s 
active sites. Hydrogen bonding was detected between CBD and polar uncharged residues 

ASN121, SER205, and positively charged residue ARG190. Residues TRP104, LEU226, 

PHE192, and VAL126 were observed to participate in alkyl and pi–alkyl interactions with 

CBD. Additionally, VAL227, ARG102, HIS207, and PHE194 form hydrophobic interac- 

tions with the SARS-CoV-2 PLpro receptor (PDB ID: 6W9C), with a binding energy of 
−7.0 kcal/mol. 

In the CBG ligand, five hydrogen bonding interactions were found with the following 
residues: ALA228, ASP290, ASP294, SER297, and LYS300. Aromatic residue PHE59 was 

found to form a pi–alkyl interaction with the target protein. Additionally, hydrophobic 
interactions were detected between VAL289, Leu296 residues, and the 6W9C receptor, with 

a binding energy of −5.4 kcal/mol. 
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Figure 3. (A) Surface mapping of 6W9C-Cannabidiolic acid complex with forest green and red 

colors, respectively. (B) Showing 2D interaction view of Cannabidiolic acid with the SARS-CoV-2 

PLpro receptor. The legend for the interactions involved is given in the left lower box. (C) Labeled 

interacting residues with Cannabidiolic acid and calculated distance. (D) Cannabidiolic acid (red 

color) and interacting residues (forest green) in stick representation, while receptor is in cartoon form 

with 50% transparency. 

3.4. Significance of Docking Results and Implications for Therapeutic Development 

3.4.1. Comparison with Existing Drug Candidates 

The docking results were compared with existing drug candidates, including remde- 

sivir and lopinavir, to assess the potential of cannabinoid compounds for therapeutic 

development. When compared to known drug candidates, our ligands demonstrated com- 

petitive binding affinities for the PLpro protein. The computed binding energies revealed 

robust interactions with the protein, with our ligands exhibiting higher binding affinities 

than existing drugs. Some ligand poses explored a wide range of chemical space, focusing 

on allosteric pockets and surface residues that previous therapeutic candidates could not 

address. This investigation into alternative binding locations may provide potential for 

generating therapeutically useful drugs with novel modes of action and lower resistance. 

Figure 4 depicts the superimposition of cannabinoids with existing drug candidates. 

3.4.2. Statistical Analysis and Data Presentation 

The binding energy of ligands to protein molecules is commonly assessed using the 
MMGBSA method [70]. The binding free energies of all complexes and the impact of 
non-bonded interaction energies were assessed. The binding energy of the Cannabidiolic 

acid complex was −55.73 kcal/mol, while the binding free energy of the CBGA complex 

was −69.68 kcal/mol. Similarly, CBD and CBG showed binding free energy values of 

−101.448 kcal/mol and −18.313 kcal/mol, respectively. Gbind is governed by non-bonded 

interactions such as Gbind–Coulomb, Gbind–Packing, Gbind–Hbond, Gbind–Lipo, and 

Gbind–vdW (Table 4). Across all interaction types, the Gbind–vdW, Gbind–Lipo, and 

Gbind–Coulomb energies had the largest effects on the average binding energy. The 

Gbind–Covalent and Gbind–StrainEnergy energies depict mild contributions. Conversely, 

Gbind–Packing contributed the least to the final average binding energies (Figure 5). Fur- 
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thermore, based on their Gbind–Hbond interaction values, protein complexes demonstrated 

stable hydrogen bonds with amino acid residues. CBD possesses higher negative values 

compared to others and depicts stronger interaction with the targeted receptor. Conse- 

quently, the calculations provided strong support for the binding energy derived from the 

docking data [70]. 

 

Figure 4. Cannabinoid superimposition with existing drug candidate. 

Table 4. The MMGBSA binding free energy calculations of the complexes. 
 

Components 
Cannabidiolic Acid 

(kcal/mol) 
Cannabigerolic Acid 

(kcal/mol) 
CBD (kcal/mol) CBG (kcal/mol) 

∆Gbind −55.73 −69.69 −101.45 −18.31 
∆Gbind-Coulomb −28.22 −24.51 21.44 −24.18 
∆Gbind-Covalent 9.42 5.27 7.37 −0.70 
∆Gbind-Hbond −0.28 −0.30 −0.25 −1.93 
∆Gbind-Lipo −44.26 −52.89 −68.59 −9.70 

∆Gbind-Packing −0.31 −0.42 −0.10 0.00 
∆Gbind-vdW −39.05 −41.19 −55.13 −18.51 

∆Gbind-StrainEnergy 9.06 17.29 15.57 −1.05 

 

Figure 5. Binding free energy calculations via MMGBSA analysis. 

3.5. MD Simulations of PLpro–Cannabinoid Compounds 

3.5.1. Structure Stability Using Root Mean Square Deviation (RMSD) 

RMSD is a primary measure of the structural changes occurring during the course of 

simulation (Figure 6). The backbone and side chains of the protein seem to have equilibrated 
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as their RMSD values are not fluctuating drastically towards the end of the simulations. 

Similar to the protein, the ligand too seems to have equilibrated, given minimal change 

in its RMSD. The fluctuating RMSD of the ligand with respect to the protein ((Lig) fit on 

Prot) in the initial time frames indicates the steric adjustment of the ligand to the protein; 

however, the RMSD seems to be stabilized towards the end of the simulation. 

 

Figure 6. Protein and ligand RMSD plot. 

The RMSD summarizes the overall structural changes occurring within the molecule of 

interest. This statistic is a function of the total change occurring in the positions of the atoms 

throughout the simulation, with their initial position before the start of the simulation as 

a reference. An RMSD value per molecule is therefore a sum of all atomic displacements 

within the molecule during the simulations, compared to their initial positions. 

The results shown in Figure 6 indicate the following: 

• The overall structural stability of the protein fluctuates; however, it seems to have 

reached equilibrium towards the end of the simulation. The overall changes in the 

RMSD range between 5 Å to 8 Å, with fluctuations of 3 Å or less observed from 10 ns 

to 50 ns (backbone and side chains). 

• The overall structural stability of the ligand does not undergo major fluctuations, 

indicating that the ligand has equilibrated (Lig fit lig). 

• When bound to the protein, the RMSD of the ligand fluctuates in the initial stages 

but eventually reaches equilibrium. Given that the RMSD of the bound ligand is not 

significantly higher than that of the protein, it seems that, by the end of the simulations, 

the ligand is still bound in the initial binding pocket (Lig fit pot). 

3.5.2. Root Mean Square Fluctuation (RMSF) 

RMSF captures signals similar to RMSD at the level of individual residues (amino 

acids). The RMSF metric highlights fluctuations occurring at the level of residues with 

respect to the α-Carbon atom and the backbone atoms. Vertical light green lines indicate 

residues that are interacting with the ligand. Overall, residues interacting with the ligand 

are concentrated in regions with low fluctuations (<2.4 Å). 

Similarly, in capturing residue-specific fluctuations for the protein, this page also 

provides information on atom-specific fluctuations occurring within the ligand molecule 

throughout the simulation. Fluctuations in ligand atoms are larger when bound to the 

protein (Fit Ligand on Protein) compared to the unbound state (Ligand). These fluctuations 

are expected, as they may be introduced by protein–ligand interactions. 
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3.5.3. Protein Secondary Structure Analysis 

Continuing from the RMSF results, this section summarizes the structural makeup 
of the protein over the course of the simulation. The figure on Page 5 illustrates the 

overall composition of secondary structural elements (SSEs) (X-axis—residue number, 

Y-axis—participation of the residue in forming secondary structure elements). SSEs pri- 

marily consist of alpha helices and beta-sheets/strands. In total, approximately 44% of the 
protein sequence participates in forming SSEs. 

The figure at the top of page 6 summarizes the percentage of SSEs in the protein 

structure throughout the simulation (X-axis—time (in ns), Y-axis—% of SSEs). This pro- 

portion remains consistently close to the initial 44% throughout the simulation. The figure 
at the bottom of page 6 tracks the residue-specific contribution to the formation of SSEs 

throughout the simulation (X-axis—time (in ns), Y-axis—residues). 

3.5.4. Protein–Ligand Contacts throughout the Entire Simulation 

From Figure 7, it is observed that residues ASN 267, TYR 268, TYR 264, LYS 105, 

and TRP 106 have multiple interactions with the ligand molecule, among which LYS 

105, TYR 264, and ASN 267 form a higher number of water-bridge bonds. Additionally, 

TYR 264, ASN 267, and TRP 106 form a higher number of hydrogen bonds. This can be 

further observed in Figure 2B, where ASN 267 consistently forms protein–ligand contacts 

throughout the simulation. LYS 105, TYR 264, and TYR 268 also interact with the ligand for 

a significant portion of the simulation time. 
 

Figure 7. Protein residues interacting with the ligand CBGA. 

Note: (ASN: Asparagine, TYR—Tyrosine, LYS—Lysine, and TRP—Tryptophan. These 

are standard three-letter notations for amino acids (find them here—https://www.cup.uni- 

muenchen.de/ch/compchem/tink/as.html accessed on 16 September 2023). 

In the context of protein residues interacting with a ligand, the letters A, B, and C 

typically refer to specific amino acid residues within the protein structure based on the 

following breakdown: 

Amino Acid Residues (A, B, C): 

Proteins consists of chains of amino acids. Each amino acid is represented by a single- 

letter code (e.g., A for alanine, B for asparagine, C for cysteine, etc.). When gaining an 

understanding of protein–ligand interactions, researchers generally focus on specific amino 

https://www.cup.uni-muenchen.de/ch/compchem/tink/as.html
https://www.cup.uni-muenchen.de/ch/compchem/tink/as.html
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acid residues within the protein’s binding pocket or active site. These residues play a 

critical role in determining how the protein interacts with ligands (small molecules, ions, or 

other proteins). 

Binding Pockets and Interactions: 

The binding pocket is a specific area of the protein where ligands bind. Amino acid 

residues within this pocket form interactions with the ligand, influencing the binding 

affinity and specificity. These interactions can involve hydrogen bonds, Van der Waals 

forces, electrostatic interactions, and hydrophobic interactions. 

Labeling Residues: 

Residues are labeled based on their position in the protein sequence. For example, A 

might represent the first amino acid residue in the binding pocket, B the second, and so 

forth. Researchers use these labels to identify and analyze specific interactions between 

the ligand and individual residues. In summary, A, B, and C refer to specific amino acid 

residues within a protein’s binding pocket, and their interactions with ligands are crucial 

for understanding protein function and drug design [71,72]. 

Figure 7 displays protein amino acids on the X-axis (refer to the link above to convert 

the three-letter notation to their amino acid names), with the Y-axis quantifying their 
interaction time with CBGA (the higher the bar plot, the longer the interaction time). If you 

refer to the docking report, you will notice that some residues noted in the graph overlap 

with the docking results. Specifically, LYS105, TRP106, TYR264, and TYR268 were shown to 

interact both in the docking and simulation experiments. However, ASN267 also emerges 

as an additional amino acid that interacts with CBGA during the simulations. 

The potential protein–ligand contact points are characterized by their nature. The 

residues making contact with the ligand molecule are listed on the X-axis, with the Y-axis 

quantifying the time of interactions in terms of the total simulation time. The bar plot is 
colored based on the types of interaction each residue had with the ligand molecule. From 
the plot, it can be observed that the top three residues in terms of interaction time with 
the ligand were ASN267, LYS105, and TYR268. Most bonds formed in these interactions 
were via water bridges, which are hydrogen bonds formed via water molecules. This 
schematic represents residue and ligand interactions that lasted for more than 30% of the 
total simulation time. 

3.5.5. Time Course of Interacting Residues and Ligands 

Figure 8 captures similar information but only like a heatmap plot. In the upper plot 

of Figure 8, the X-axis indicates the simulation time (50 nanoseconds), and the Y-axis shows 

the number of bonds formed per timeframe. This plot captures the total number of bonds 
formed between protein-CBGA through simulations. In the lower plots of Figure 8, the 

X-axis indicates the simulation time (50 nanoseconds), and Y axis contains various amino 

acids that interacted with CBGA during the course of the simulation. The top plot shows 
the total number of protein and ligand contacts across the simulation time of 50 nanosec- 

onds (X-axis—simulation time (in ns) and Y-axis—number of contacts). The bottom plot 

highlights the residue-specific number of contacts formed with the ligand molecule. Here, 

darker colors indicate more contacts (X-axis—simulation time (nanoseconds) and Y-axis— 

residues). Here, darker colors indicate more interactions. 

3.5.6. Ligand Torsion Profile 

These plots provide a summary of the conformational changes occurring in every 

rotatable bond within the ligand throughout the simulation. The ligand torsion profile 

captures various properties of the ligand throughout the simulations. 

For example, the first plot at the top displays the ligand-specific RMSD. Each rotatable 
bond is represented by a dial and a bar plot. The dial plot summarizes the torsion confor- 
mation throughout the simulation, while the bar plot presents the corresponding potential 

of the rotatable bond on the Y-axis. 
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Figure 8. Protein residues interacting with the ligand molecule across the time course. 

4. Discussion 

4.1. Interpretation of Docking Results in the Context of PLpro Inhibition 

Docking simulations have uncovered crucial insights into the molecular interactions 

between cannabinoid compounds and SARS-CoV-2’s PLpro protein. The data revealed that 

cannabinoid compounds exhibit high binding affinities for PLpro, comparable to known 

drug candidates, suggesting their potential as effective inhibitors of PLpro activity—a criti- 

cal step in the viral life cycle. Some ligand poses explored alternative binding sites, offering 

potential for developing novel drugs with unique modes of action and reduced resistance. 

These docking studies provide structural insights into how cannabis drugs impact 

PLpro function by targeting its active site or allosteric regions. This interference could 

disrupt essential protein–protein interactions or enzymatic activity necessary for viral 

replication, immune evasion, and host cell manipulation. Additionally, the selectivity of 

cannabis compounds for PLpro highlights their potential as selective antiviral agents with 

minimal off-target effects. 

The discovery of high-affinity cannabinoid drugs targeting PLpro, such as Cannabidi- 

olic acid and CBGA, holds promise for developing antiviral therapies against SARS-CoV-2. 

Inhibiting PLpro activity may impede viral replication, reduce viral load, and attenuate 

viral pathogenicity, potentially slowing disease progression and transmission. Further- 

more, targeting PLpro could complement existing antiviral strategies, leading to improved 

therapeutic outcomes. 

4.2. Implication of Understanding PLpro Inhibition Mechanisms 

PLpro plays a multifaceted role in viral replication, immune evasion, and host cell 

manipulation, making it an attractive target for antiviral therapy. Identifying specific 

residues and structural features involved in PLpro inhibition can help tailor therapeutic 

strategies to selectively disrupt vital protein–protein interactions or enzymatic activity 

crucial for viral pathogenicity. Targeted antiviral approaches inhibiting PLpro hold promise 

for broad-spectrum effectiveness against various coronaviruses and other viral illnesses. 

Understanding pathways of PLpro inhibition is pivotal for overcoming drug resistance, 

a significant hurdle in drug development. Targeting conserved regions of PLpro or utilizing 
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allosteric binding sites can yield inhibitors less susceptible to resistance mutations and 

with prolonged efficacy against emerging viral strains. Additionally, combination therapy 

targeting multiple phases of the viral life cycle, including PLpro inhibition, may mitigate 

drug resistance while enhancing treatment outcomes. Insights into how PLpro influences 

host–pathogen interactions provide valuable understanding of COVID-19 pathogenesis 

and SARS-CoV-2 evasion mechanisms from the host immune system. 

4.3. Comparison of Binding Affinities and Interaction Patterns among Cannabinoids 

The study examined the binding affinities of four cannabinoid compounds towards 

specific receptors, revealing significant variations in their interactions. Some cannabinoids 

exhibited strong binding to PLpro, while others showed lower affinity. These differences 

likely stem from variations in their chemical structures and functional groups. 

Analysis of cannabinoid–PLpro interactions uncovered diverse binding mechanisms 

and chemical interactions. Certain compounds formed hydrogen bonds, alkyl interactions, 

and hydrophobic contacts with key receptor residues, while others relied on hydrophobic 

and π-interactions. The orientation and structural flexibility of cannabinoids also influenced 

their interactions and binding affinities. 

Structural features like aromatic rings, hydroxyl groups, and alkyl chains played 

crucial roles in determining cannabinoid–receptor interactions. Compounds with aromatic 

rings and hydrophobic moieties formed strong interactions with PLpro, while alterations 

in chemical structure led to changes in binding patterns and affinities. Cannabinoids with 

high receptor affinity may offer therapeutic benefits like inflammation modulation and 

neuroprotection without adverse effects. 

4.4. Potential Therapeutic Applications and Drug Development Strategies 

Further exploration of the therapeutic potential of the studied chemicals is essen- 

tial to optimize them for clinical applications. Cannabinoid structures can be enhanced 

to improve pharmacological properties like potency, selectivity, and metabolic stability 

through structure–activity relationship (SAR) studies and medicinal chemistry techniques. 

Lead compounds must undergo thorough preclinical evaluation to assess efficacy, safety, 

and pharmacokinetics, including animal studies, toxicity profiling, and dose optimization. 

Promising candidates can advance to clinical trials (Phases I, II, and III) to evaluate safety, 

efficacy, and tolerability in humans. Additionally, assessing off-target effects, bioavail- 

ability, formulation, regulatory approval, and market access are vital steps in the drug 

development process. 

4.5. Potential Mechanisms of Action of Cannabinoids on SARS-CoV-2 PLpro 

Cannabinoids may have an antiviral effect on SARS-CoV-2 by decreasing the enzy- 

matic activity of PLpro, a major viral non-structural enzyme involved in viral replication 

and immune evasion. PLpro is an important target for antiviral treatments because it 

cleaves viral polyproteins and inhibits host immune responses. Cannabinoids may reduce 

PLpro enzymatic activity by binding to its catalytic site or allosteric regions, affecting viral 

polyprotein processing and preventing viral replication. 

4.6. Limitations of the Study and Future Directions 

In silico methods accurately predict drug–receptor interactions, but experimental vali- 

dation is crucial for confirming binding affinities and biological activities. However, limited 

resources and time constraints may hinder comprehensive validation studies, leading to 

uncertainty in predictions. To address this, we propose expanding the project into wet 

lab experiments. Specifically, guided by the computational analysis and molecular dy- 

namics simulations conducted in our study exploring cannabinoids as potential inhibitors 

of SARS-CoV-2 papain-like protease, we could undertake site-directed mutagenesis to 

design mutants of the protease and replace key amino acids identified from in silico studies. 

For instance, we could introduce oppositely charged amino acids at crucial binding sites 
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and assess their impact on binding affinity using techniques such as isothermal titration 

calorimetry (ITC) or surface plasmon resonance (SPR) assays. Quantifying changes in 

binding affinity through these experiments can provide valuable insights into the molecular 

interactions. Given the relatively short duration (50 nanoseconds) of the MD simulations 

conducted in our study, it is essential to acknowledge potential limitations in capturing 

long-timescale dynamics and to interpret the results with caution. Additionally, we could 

explore off-target effects by performing competitive binding assays with related proteins. 

Furthermore, conducting preclinical and clinical validation studies for safety, efficacy, and 

pharmacokinetics of lead compounds can be pursued based on the findings from these wet 

lab experiments. 

5. Conclusions 

In the current study, we employed in silico drug discovery methodologies to identify 

possible cannabinoid compounds that target PLpro. Structure-based molecular docking and 

molecular dynamics simulations thoroughly assessed the binding affinities and interactions 

of potential cannabinoids with the target protein. The study has provided valuable insights 

into the potential of cannabinoid compounds as effective inhibitors of SARS-CoV-2 PLpro 

activity. The results demonstrate high binding affinities of cannabinoids, particularly 

Cannabidiolic acid (CBDA) and Cannabigerolic acid (CBGA), for PLpro, comparable to 

existing drug candidates. These findings suggest promising avenues for the development 

of novel antiviral therapies against COVID-19.  The detailed analysis of cannabinoid– 

PLpro interactions has revealed diverse binding mechanisms and interaction patterns, 

influenced by the structural features of cannabinoids. Compounds with aromatic rings, 

hydroxyl groups, and alkyl chains exhibited strong interactions with key receptor residues, 

highlighting the importance of specific chemical moieties in determining binding affinity. 

The active site of SARS-CoV PLpro, characterized by a conventional catalytic triad 

composed of Cys112–His273–Asp287, represents a pivotal locus for enzymatic function. 

Our study has revealed intriguing insights into the dynamics of ligand binding, albeit 

without direct proximity to the catalytic center. Despite the absence of immediate interaction 

with the active site, the binding of these molecules induces notable structural fluctuations 

within the enzyme. Such alterations in conformational dynamics hold the potential to exert 

consequential effects on the functional integrity of PLpro. 

Understanding the pathways of PLpro inhibition is crucial for overcoming drug re- 

sistance and optimizing therapeutic strategies. Targeting conserved regions of PLpro or 

utilizing allosteric binding sites may yield inhibitors with prolonged efficacy against emerg- 

ing viral strains. Combination therapy targeting multiple phases of the viral life cycle, 

including PLpro inhibition, holds promise for mitigating drug resistance and enhancing 

treatment outcomes. Further exploration of cannabinoid compounds is warranted to opti- 

mize their pharmacological properties through structure–activity relationship studies and 

medicinal chemistry techniques. Preclinical evaluation, followed by clinical trials, will be 

essential for assessing efficacy, safety, and tolerability in humans. Additionally, investi- 

gating the potential mechanisms of action of cannabinoids on SARS-CoV-2 PLpro could 

provide valuable insights into their antiviral effects and contribute to the development of 

effective therapeutic interventions against COVID-19. 

In summary, targeting PLpro with cannabinoids offers a promising approach for 

inhibiting viral replication, attenuating pathogenicity, and enhancing therapeutic outcomes 

in the fight against COVID-19 and other viral infections. Future research efforts should 

focus on translating these findings into clinically viable treatments to address the ongoing 

global health crisis. 
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