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Abstract—We propose a novel multisection cable-driven
soft robotic arm inspired by octopus tentacles along with a
new modeling approach. Each section of the modular ma-
nipulator is made of a soft tubing backbone, a soft silicone
arm body, and two rigid endcaps, which connect adjacent
sections and decouple the actuation cables of different
sections. The soft robotic arm is made with casting after the
rigid endcaps are 3D-printed, achieving low-cost and con-
venient fabrication. To capture the nonlinear effect of ca-
bles pushing into the soft silicone arm body, which results
from the absence of intermediate rigid cable guides for
higher compliance, an analytical static model is developed
to describe the relationship between the bending curvature
and the cable lengths. The proposed model shows supe-
rior prediction performance in experiments over that of a
baseline model, especially under large bending conditions.
Based on the nonlinear static model, a kinematic model of a
multisection arm is further developed and used to derive a
motion planning algorithm. Experiments show that the pro-
posed soft arm has high flexibility and a large workspace,
and the tracking errors under the algorithm based on the
proposed modeling approach are up to 52% smaller than
those with the algorithm derived from the baseline model.

Index Terms—Soft robotics, soft manipulators, cable-
driven, kinematics modeling, statics modeling.

I. INTRODUCTION

S
OFT robotic manipulators have been widely proposed and

developed for their various advantages, such as safe human–

machine interactions, robustness, and flexibility [1], [2]. Com-

pared with their fully rigid counterparts, soft manipulators can

utilize the softness of their body structures to adapt to external
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collisions and constraints and mitigate risks to humans, while

being able to accomplish manipulation tasks [3], [4]. The advan-

tages of soft manipulators make them competitive candidates

for applications involving the handling of delicate and complex

objects, as in fruit harvesting and medical surgeries [5], [6], [7].

Multiple structures and actuation methods have been devel-

oped for building soft robotics arms to achieve efficient de-

formation. For example, fluid-driven methods are widely used

for soft actuators, where fluid pressures inside chambers are

modulated to generate elastic deformation [8], [9], [10], [11].

Soft actuators have also been constructed with other mechanisms

including smart materials [12]. In particular, the cable-driven

method is popular thanks to its simplicity and high force-to-

weight ratio [13], [14], where embedded eccentric cables driven

by motors deliver torques to achieve deformation of the soft

body.

To control the deformation of the soft arm effectively, models

that capture the relationship between the actuation space and the

task space of the robotic arm have been developed. The modeling

is generally complex and often dependent on robot designs and

actuation methods. Models for fluid-driven actuators are often

built based on static and dynamic analysis [15]. For simple cable-

driven actuators, models have been built based on geometry

relationships [16]. Static models for tendon-driven manipulators

have also been proposed to analyze the deformation of the

elastic tendons [17]. In addition, models have been reported for

the coupling and decoupling cable system of multisection soft

manipulators [16], [18]. Piecewise constant curvature (PCC)

models are widely utilized due to their simplicity [16], while

other models, such as finite element method (FEM) models

and Cosserat rod models are proposed with better accuracy but

higher complexity [19], [20]. In addition, piecewise constant

strain and geometric variable strain models have been proposed

that allow more general settings [21].

Many biological structures and mechanisms have inspired

the design of robotic systems, and conversely, the development

of robots has provided bio-physical models for understanding

biomechanics [22]. In this study, inspired by the longitudinal

muscles in the octopus tentacles, we propose a novel decoupled

modular cable-driven soft robotic arm fabricated with a inte-

grated molding technique. We further develop a novel analytical

static model that considers the prominent nonlinear effect of the

cable pushing into the soft body of the robotic arm. To the best

of the authors knowledge, this is the first effort in explicitly

modeling the transverse deformation effect in soft cable-driven
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Fig. 1. Structures of the soft robotic arm. (a) Two-section modular
soft robotic arm. (b) Structure for one section of the robotic arm. (c)
Connection of two endcaps. (d) One endcap at the tip side of the section.
(e) Cable paths for different sections of the soft robotic arm.

actuators, which extensively exists and potentially significantly

influence the actuation length of the cable.

Specifically, a novel composite structure of a single section

of the arm consists of multiple parts: flexible backbone, soft

silicone body, multipurpose rigid caps, and embedded coil-

reinforced cable guides with high compliance [see Fig. 1(b)]. A

piece of soft tubing is selected as the backbone to constrain the

axial deformation. Two rigid endcaps are attached to the ends of

the backbone, which act as connectors between sections and an-

chor points for cables. The soft silicone body is made by casting

with three specially-designed evenly embedded fiber-reinforced

cable guides that protect the soft body while maintaining high

compliance. Actuation cables in the cable guides provide con-

traction forces like longitudinal muscles while the cavities are

able to reduce the bending stiffness of the soft arm.

The soft modular multisection robotic arm consists of iden-

tical sections with an embedded cable system. The unique ac-

tuation decoupling mechanism is achieved by the connection

of the multipropose endcaps, which generate pathways between

the cable guides and the backbone tubing [see Fig. 1(c) and (d)].

The actuation cables, with their one end fixed on the endcap,

pass through the cable guides in one section and go into the

backbone tubing through the pathways before they are attached

to the corresponding driving motors, which presents a conve-

nient routing scheme thank to the endcap design of the actuation

decoupling mechanism [see Fig. 1(e)]. When one section of the

arm has a bending deformation, its backbone maintains a nearly

constant length, ensuring the lengths of the actuation cables

for other sections do not passively change. During the bending

motion of the multisection robotic arm, the backbone tubing

protects the actuation system for other sections, separating the

deformation of one section from the change of cable lengths of

other sections, and thus achieving actuation decoupling between

different sections of the robotic arm.

Fig. 2. Modeling of one section of the arm driven by a single cable.
(a) Bending configuration for one section driven by a single cable.
(b) External forces and moments applied by the cable to the soft section.
(c) Total transverse force applied by the cable and its arm. (d) Actuation
cable considering transverse deformation (red) and without transverse
deformation (blue).

II. MATERIALS AND METHODS

Each section of the modular soft robotic arm was fabricated

separately by using integrated molding and then assembled

together. The endcaps and the molds for each section were

fabricated with a 3-D printer (Objet Connex 350) using rigid

material (Objet Vero White). After the molds were assem-

bled with flexible tubing (Clear Masterkleer Soft PVC Plastic

Tubing, McMaster-Carr), which acted as the backbone, a sili-

cone material (Ecoflex 00-10, Smooth-On) was utilized to cast

the soft body of each section, before different sections and the

cable system were assembled. More details on the fabrication of

the soft robotic arm and on the experimental setups are given in

the Supplementary Material.

III. MODELING OF THE SOFT ROBOTIC ARM

The model for the multisection soft robotic arm is separated

into two parts: A static model for a single section, which maps

the actuation cable lengths to the bending configuration of one

section and another model that characterizes the relationship

between the bending configurations for all sections and the task

space variables (in particular, the end position of the arm). A

parameter list is provided in the Supplementary Material (S2)

for the convenience of readers.

A. Static Model of a Section Driven by a Single Cable

The static model for a single section of the robotic arm is

built based on the analysis of its bending deformation. Before

studying a section with multiple actuation cables, we consider

the case with a single actuating cable and analyze an arbitrary

bending configuration [see Fig. 2(a)]. The cable and the support
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of the section provide external forces. To simplify the static

analysis, several assumptions are made as follows.

A1) The backbone (dash line) of the soft section has a

constant length.

A2) The backbone and the cable (red line) have constant

curvatures.

A3) The backbone has bending deformations within one

single plane.

A4) The friction between the cables and the soft body of the

arm is negligible.

A5) The soft section of the arm has a linear bending stiffness

with no hysteresis.

A6) The cables have no slacks.

Refer to Fig. 2(a). Let sb (subscript “b” for “backbone”) be the

arclength parameter for the backbone. The bending angle φ(sb)
of the section at a given point with an arclength sb is defined as

the angle of rotation between the two local frames at the base,

e = (ex, ey), and at the point with sb on the backbone, a =
(ax,ay), and can be described as

φ (sb) =
sb
Rb

(1)

where Rb is the radius of the backbone curvature. The curvature

of the backbone, κb, is written as: κb =
dφ
dsb

= 1
Rb

.

The curvature κc (subscript “c” for “cable”) for the cable is

described similarly: κc = 1/Rc, where Rc is the radius of the

actuation cable curvature, and s is the arclength parameter for

the cable. As illustrated in Fig. 2(a), θ(s) is the rotation angle

between the base frame e and f = (fx,fy), where f is the local

frame at the point with an arclength of s on the cable.

Based on the force balance [see Fig. 2(a)], the transverse force

density ρ between the cable and soft body [see Fig. 2(d)] is

derived

ρ =
dFρ

ds
= Tκc (2)

where dFρ = Tdθ, d denotes the differential operator, T is the

tension of the cable, Fρ is the transverse force between the cable

and the soft body, θ is used to denote θ(s) for simplicity, the

notation “d” represents differential, and the relationship dθ
ds

= κc

is used in the derivation of (2).

Another assumption following the introduction of ρ is made

to describe a simplified interaction model between the cable and

the soft body of the arm.

A7) The maximum transverse deformation of the cable

(|BC| in Fig. 2(d)) is proportional to the transverse force

density ρ applied by the cable [see Fig. 2(d)].

Next, the transverse force density vector ρe at point s, viewed

in the base frame e [see Fig. 2(a)], is calculated by using a

rotation matrix Re
f

ρe(θ) = Re
f

[

−ρ

0

]

(3)

Re
f (θ) =

[

cos θ − sin θ

sin θ cos θ

]

. (4)

The total transverse force F eq (subscript “eq” for “equivalent

total force”) between the cable and the soft body [see Fig. 2(b)]

can then be obtained by the following integration:

F eq =

∫ l

0

ρe(θ(s))ds = T

[

− sin (φb − θ0) + sin θ0

cos (φb − θ0)− cos θ0

]

(5)

where l is the cable length in the soft section, φb is the bending

angle of the backbone at the tip, and θ0 is the incident angle of

the cable, which is the angle between the tangent line (cy axis)

of the cable at the base surface and the normal (ey axis) of the

base surface [see Fig. 2(a)].

The contraction force F T applied by the cable tip to the soft

section [see Fig. 2(b)] is calculated as

F T = Re
f (φb − θ0) ·

[

0

−T

]

= T

[

sin (φb − θ0)

− cos (φb − θ0)

]

. (6)

From the force balance equation: F r + F eq + F T = 0,

where Fr (subscript “r” for “reaction”) represents the support

force applied by the base support of the soft section to the soft

section [see Fig. 2(b)], one can derive

F r = −F eq − F T = T

[

− sin θ0

cos θ0

]

. (7)

Next, the moment balance of the section is analyzed with

respect to the base point O [see Fig. 2(b)]. The arm rT [see Fig.

2(b)] for F T is derived as

rT =

[

−d− 2Rd sin
2 (φb/2)

2Rd sin (φb/2) cos (φb/2)

]

(8)

where Rd is the radius of the cable curvature [see Fig. 2(b)]

when the transverse deformation of the cable is not considered,

d is the distance between the incident point of the cable and the

base point O of the section.

Since F eq is located on the mirror-symmetric axis of the

bending section [see Fig. 2(c)], the point of action of F eq is

irrelevant in computing the resulting moment around point O;

in other words, the moment is the same regardless of the point

of action of F eq. We have thus chosen the point of action as

illustrated in Fig. 2(c), with the associated arm vector

req =

[

−d−Rd sin
2 (φb/2)

Rd sin (φb/2) cos (φb/2)

]

. (9)

From the moment balance of the section:M r +Meq +MT

= 0, where Mr denotes the support moment [see Fig. 2(b)],M eq

andMT are the moments generated byF eq andF T with respect

to point O, respectively, [see Fig. 2(b)], and

Meq +MT = req × F eq + rT × F T = Td cos θ0 (10)

one obtains

M r = −(M eq +MT ) = −Td cos θ0. (11)

See the Supplemental Material (S2) for calculation details of

this concise result. Next, the incident angle of the cable θ0 [see
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Fig. 2(a) and (d)] satisfies

∆y = (Rb − d) sinα = Rc sin (α− θ0) (12)

which implies

θ0 = α− arcsin

(

(1 − κbd)
κc

κb

sinα

)

(13)

where α = φb/2.

Based on assumption (A7) and the geometric relationships

[see Fig. 2(d)], one can obtain

∆h = |BC| = Rd(1 − cosα)−Rc (1 − cos (α− θ0)) (14)

ρ = Kc∆h (15)

where ∆h is the maximum transverse deformation of the cable,

and Kc is the coefficient in the simplified linear relationship

between ∆h and ρ, which is influenced by physical characters

of the soft arm (e.g., elasticity modulus). The value of Kc is

obtained via experimental calibration.

Based on assumption (A5), the relationship between the bend-

ing deformation and the external torque is derived by introducing

a bending stiffness Kb

|M eq +MT | = |M r| = Mr = Kbκb (16)

where Kbκb is the internal elastic moment. The value Kb is also

influenced by the physical characters of the arm and calibrated

by using experiments.

Finally, by using the Equations (2), (11), (13)–(16), and the

geometric relationships, the model for a single soft section driven

by a single cable is captured by
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Kbκb = Td cos θ0

θ0 = α− arcsin
(

(1 − κbd)
κc

κb
sinα

)

T = Kc

κc

{(

1
κb

− d
)

(1 − cosα)− 1
κc

(1 − cos (α− θ0))
}

l = Rc (φb − 2θ0) =
1
κc

(Lκb − 2θ0)

(17)

where L is the length of the soft section’s backbone. In the for-

ward mapping from actuation to the robotic arm configuration,

the backbone curvature κb is solved based on the cable length l
by using a nonlinear equation set solver and numerical methods

(e.g., “fsolve” in MATLAB), while in the inverse problem l is

calculated based on a desired referenceκb by using the nonlinear

equation set solver. The incident angle θ0, cable curvatureκc and

cable tension T are intermediate variables, while d, L, Kc, and

Kb are constants and φb and α are dependent on κb. The initial

guess for the solution to the nonlinear equations is derived by

solving the last three equations in (17) when we assume that

there is no transverse deformation of the cable [blue curve in

Fig. 2(a)]: θ0 = 0.

B. Static Model of a Section Driven by Multiple Cables

After the model for one section driven by one cable is ob-

tained, the model for the case of a single section with multiple

actuating cables is addressed, where we assume that there is no

slack for any cable.

Fig. 3. Modeling of one section of the arm driven by multiple cables.
(a) Bending configuration for one section of the arm driven by multiple
cables. (b) External moments applied by multiple cables to the soft
section in the P direction.

The bending configuration for the soft section with n evenly

distributed cables (a general case) is defined by the bending angle

φb and the bending orientation γg (γg is with respect to the base

frame g) [see Fig. 3(a)]. A curved neutral surface is defined

so that it is perpendicular to the bending plane and contains

the backbone. The cables are indexed counterclockwise and the

direction of the x-axis of the base frame g points to the first cable.

The angle βi between the ith cable orientation (in the base plane)

and the bending direction is written as [see Fig. 3(a)]

βi =
2π(i− 1)

n
− γg i = 1, 2, 3 . . . (18)

where n is the total number of the evenly distributed cables in

the soft section.

The distance between the incident point of the ith cable and

the neutral plane is calculated as

di = d cosβi i = 1, 2, 3 . . . . (19)

In the bending plane of the ith cable [see Fig. 3(a)], which is

parallel to the bending plane of the backbone and contains the

ith cable, the external force condition is analyzed as the single

cable-driven case
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

F r,i = Ti

[

− sin θ0,i

cos θ0,i

]

|M r,i| = |−Tidi cos θ0,i|

θ0,i = α− arcsin
(

(1 − κbdi)
κc,i

κb
sinα

)

Ti=
Kc

κc,i

{(

1
κb

−di

)

(1−cosα)− 1
κc,i

(1−cos(α− θ0,i))
}

(20)

where Ti, θ0,i, and κc,i are the cable tension, incident angle, and

curvature of the ith cable, respectively, and F r,i and M r,i are
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the support force and moment components induced by the ith

cable, respectively, in local frame ei [see Fig. 3(a)].

Then, one can calculate the total bending moment applied by

the cables for the section

|M | =

∣

∣

∣

∣

∣

n
∑

i=1

−M r,i

∣

∣

∣

∣

∣

= Kbκb. (21)

Furthermore, since there is no bending deformation in the

direction perpendicular to the bending direction, and based on

assumption (A3), the total external moment applied by cables in

the P direction with respect to O [see Fig. 3(b)] is zero

n
∑

i=1

Mp,i = 0 (22)

whereMp,i is the external moment applied by the ith cable with

respect to O, in the P direction [see Fig. 3(b)].

The arm rp,i of the external forces for Mp,i is the distance

between the bending plane of the ith cable and the bending plane

of the backbone [see Fig. 3(b)], whose direction is perpendicular

to the bending plane with the magnitude

rp,i = d sinβi. (23)

Thus, the lateral moment Mp,i applied by the ith cable is

derived as

Mp,i = F T,i,y × rp,i +

∫ li

0

ρe
i,y(s)× rp,ids

= − F r,i,y × rp,i (24)

where F T,i,y , ρe
i,y , and F r,i,y are the components along ei,y

axis (or gz axis) of the F T,i, ρ
e
i , and F r,i, respectively.

Then, based on (19)–(24) and the geometric relationships,

the kinematic model for a soft section of the arm actuated by

multiple cables is derived as
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∑n
i=1 Tid cos θ0,i cosβi = Kbκb

∑n
i=1 Tid cos θ0,i sinβi = 0

θ0,i = α− arcsin
(

(1 − κbdi)
κc,i

κb
sinα

)

Ti=
Kc

κc,i

{(

1
κb

−di

)

(1−cosα)− 1
κc,i

(1−cos(α−θ0,i))
}

li = Rc,i (φb − 2θ0,i) =
1

κc,i
(Lκb − 2θ0,i) .

(25)

In the forward mapping from actuation to arm configuration,

given the cable lengths li, the backbone curvature κb and the

bending orientation γg [manifested via βi in (18)] are obtained

by solving the (25). θ0,i, κc,i, and Ti are intermediate variables,

d, L, Kc, and Kb are constants, and φb, α are fully determined

by κb. Therefore, in the forward mapping problem, there are

(3n+ 2) unknowns and (3n+ 2) independent equations. In the

inverse mapping problem, the lengths li for different cables are

calculated based on the desired reference values of κb and γg
by solving the same (25). It is noticed that n (the number of the

cables) is required to be larger than 2 to achieve a redundant

actuation system for all of the bending orientations considering

the limitation that Ti is nonnegative (in the inverse mapping,

considering the (25), substituting βi by using γg , the numbers of

Fig. 4. Modeling of a multisection soft robotic arm. (a) Variables of
bending configuration for one section. (b) Local frames for different
sections. (c) Inverse kinematics solver for the bending configurations of
different sections based on the reference of the end position. (d) Open
loop control of the soft robotic arm based on the proposed model. x and
l are the end position of the soft robotic arm and the actuation cable
lengths, respectively, for which xd and ld are the corresponding target
values.

independent equations and the unknown variables are (3n+ 2)
and (4n), respectively). The initial guess of the nonlinear system

is obtained by solving the last three rows in (25), where we

assume that there is no transverse deformation of the cables:

θ0,i = 0.

C. Modeling of a Multisection Soft Arm

For the multisection soft robotic arm, the kinematic model

between the task space configuration (in particular, the end

position) and the bending configuration for each section is built

by using homogeneous transformation matrices [16]. Specifi-

cally, considering the thickness of the rigid endcaps, one can

divide each section of the arm into three parts: straight, bending,

and straight. The transformation matrix T i,s
i,e , which transforms

vectors in the end frame Σi,e to those in the base frame Σi,s for

the ith section [see Fig. 4(a)], is given by

T i,s
i,e =

[

I p0,i

0 1

][

Rz (γi) 0

0 1

][

Ry (φb,i) pi

0 1

]

·

[

Rz (−γi) 0

0 1

][

I p0,i

0 1

]

(26)

where φb,i and γi (γi is with respect to a general base frame

Σi,s that is not dependent on the cable distribution) are the

bending angle and orientation for the ith section, respectively,

pi =
[

(1 − cosφb,i)/κb,i 0 sinφb,i/κb,i

]T

is the in-plane

displacement from the base to tip for the ith section, κb,i is the

curvature of the backbone of the ith section,p0,i =
[

0 0 h
]T

is the displacement of the straight part and h is the thickness of

the endcaps. I is a 3-D identity matrix, Rz(γi), Ry(φb,i), and

Rz(−γi) are the 3-D rotation matrices around the z-, y-, and

z-axes for the angle γi, φb,i, and −γi, respectively.

The transformation matrix T 1,s
m,e, which transforms vectors

in the end frame Σm,e to those in the base frame Σ1,s of the

m-section arm, and the end position of the arm p
1,s
t (subscript

“t” for “tip”) in Σ1,s [see Fig. 4(b)] can be calculated as

T 1,s
m,e =

m
∏

i=1

T i,s
i,e (27)
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p
1,s
t = T 1,s

m,e · p
m,e
t (28)

where p
m,e
t =

[

0 0 0 1

]T

.

For the inverse kinematics [23], the linear velocity Jacobian

matrix Jv for the end position of the m-section arm with respect

to the variables of bending configuration of each section is

calculated as

Jv = J
p

1,s
t
(q) =

[

∂p
1,s
t

∂q1
. . .

∂p
1,s
t

∂q2m

]

(29)

where q =
[

γ1 κb,1 . . . γm κb,m

]T

is the set of vari-

ables of the bending configurations of all sections. The calcu-

latedJv is omitted for brevity and a small value δκ is added toκb,i

when κb,i → 0 for numerical stability. At least two sections are

required for the arm to provide redundancy for tracking desired

end positions in 3-D space.

Once Jv is obtained, one can use the following method

to approach the configurations given the desired task space

output (inverse kinematics) by using the Levenberg–Marquardt

method [24]

q̇ = Jv
†V +

(

I − Jv
†Jv

)

q̇0 (30)

where Jv
† = Jv

T (JvJv
T + k2I)−1 is the pseudoinverse of Jv ,

I is an identity matrix, k is a small positive number, V = ẋd(t)
is the velocity vector of the tracking trajectory xd(t) (subscript

“d” for “desired”), q̇0 is any vector with the shape of q̇ and set

to zero for the minimum energy criterium.

By using the Euler method [25] to integrate the velocities, the

references for the bending configuration variables are calculated

q (tk+1) = q (tk) + Jv
† (q (tk)) · ẋd (tk) ·∆t (31)

where q(tk) and q(tk+1) denote q at the time steps tk and tk+1,

respectively.

Closed-loop feedback is further implemented in the solver

[see Fig. 4(c)] to reduce the error accumulated by the numerical

integration with (31)

q̇ = Jv
†(q) (ẋd +K ·E) (32)

where E = xd − T 1,s
m,e(q) · p

m,e
t is the feedback error and K is

a positive diagonal gain matrix. Once q is obtained, we can use

the (25) to calculate the cable lengths li for different actuation

cables for all sections. Thus, by combining the kinematic model

for a multisection arm and the static model for single section,

an analytical model can be built for handling the modeling of a

soft arm with an arbitrary number of sections.

IV. RESULTS

A. Baseline Model for the Soft Robotic Arm

Extensive experiments have been conducted to validate the

proposed model. For a fair comparison, a static baseline model

was built based on the same assumptions (including the PCC

assumption), except the consideration of the transverse defor-

mation induced by the cables. The multisection part of the

baseline model was kept the same as that of the proposed

model. In this way, the influence of considering the transverse

Fig. 5. Experiment results for a single section of the soft robotic arm.
(a) Bending configuration of one section in experiments. (b) Relationship
between cable contraction ∆l = L− l and bending angle φb with single
cable actuation, comparing the predictions of the proposed model and
the baseline model with the experimental data. (c) Tracking different
bending angle φb when γ = 0◦ using the baseline model (BA) and the
proposed model (ST). (d) Tracking different φb when γ = 15◦. (e) Track-
ing different φb when γ = 30◦. (f) Tracking different φb when γ = 45◦.
(g) Tracking different φb when γ = 60◦. The error bars denote the
standard deviations of three runs for each bending configuration in the
results.

deformation can be isolated from those of other factors. Note

that the proposed model reduces to the baseline model once the

transverse deformation effect is ignored (assigning θ0,i = 0).

The derived baseline model shares the same form as in the

existing literature [16], where the curvature κc,i and the length li
of the ith cable in a section [blue curve in Fig. 3(a)] are derived as

1

κb

=
1

κc,i

+ di (33)

li = Rc,i · φb =
κb

κc,i

L (34)

where di is derived from (19), κb and L are the curvature and

the length of the backbone, respectively.

B. Parameter Identification

The geometric parameters including (L, d) were measured

directly from the prototype. The total length of the two-section

arm was 206 mm and the diameter of the soft armD was 28 mm.

The bending stiffness Kb for a single soft section was calculated

by using (11) and (16) assuming θ0 ≈ 0 when φb was small,

where T and φb were measured by a force sensor and a motion

capture system when a single section was driven by one cable,

respectively.

The relationship between a single cable contraction length ∆l
and φb [see Fig. 5(b)] was obtained in experiments for one soft

section driven by a single cable, where the experimental results

[see Fig. 5(b)] were used to identifyKc by using (17). The exper-

imental results and the estimations of the bending deformation

of one section driven by one cable based on the baseline model

and the proposed model [see (17)] with the identified parameters
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are shown in Fig. 4(b). The experimental setups for identifying

Kb and Kc, the measured geometry parameters, and identified

parameters (L, d,Kb,Kc) are elaborated in the Supplementary

Material (S3).

C. Experimental Results for a Single Section

The single cable actuation results [see Fig. 5(b)] showed that,

compared with the baseline model, the proposed static model

was better in describing the nonlinear relationship between the

cable actuation and the bending angle for the soft robotic arm,

especially when the bending angle was relatively large. The

simulation results of the proposed model and the real experiment

data showed good agreements [see Fig. 5(b)], validating the pre-

diction accuracy of the model. The results also indicated that the

proposed model maintained high accuracy when the transverse

deformation induced by the cable became more significant. The

prediction by the baseline model, on the other hand, became

worse when such effects became non-negligible under stronger

actuation. After the model parameters were identified, extensive

experiments were conducted to compare the accuracy of the

baseline model and the proposed model [see (25)], where an

open loop control without feedback was used [see Fig. 4(d)].

A single section of the arm was used to track different bending

angles φb in specific bending orientations γ by using different

models [see Fig. 5(a)]. The experimental setups, strategy for

multicable redundancy, data processing methods for the results,

and the high computation efficiency of the models (taking less

than 1 ms to solve in MATLAB) are elaborated in Supplementary

Material (S3).

The experiment results of the bending configurations (φb, γ)

of the single section arm controlled by multiple cables by using

different models are shown in Fig. 5(c)–(g). In the experiments,

it was shown that the tracking accuracy of the proposed static

model was significantly better than the baseline model in the

experimental range [see Fig. 5(c)–(g)], indicating the importance

and effectiveness of considering the transverse deformation of

the cable in the proposed robotic arm. In particular, the tracking

errors inφb andγ for the proposed model were small for different

bending configurations. In comparison, the tracking error in φb

for the baseline model increased together with the target φb

when the target γ was fixed, while the tracking error in γ for

the baseline model was almost constant and was considerable in

some cases despite the changing of the target φb when the target

γ was fixed.

Moreover, it was also shown that in the experiment range, the

tracking error in φb for the baseline model increased with larger

target γ when the target φb was fixed. The maximum φb tracking

error increased from about 12◦ to about 37◦ when the target γ
increased from 0◦ to 60◦, respectively. The γ tracking error for

the baseline model increased from about 0◦ to 16◦ when the tar-

get γ increased from 0◦ to 30◦, respectively, and then decreased

to near 0 when the target γ increased to 60◦ . It was noticed that

for both models, the γ tracking error approached 0 when target

γ was 0◦ and 60◦, which was attributed to a single effective

cable contraction and two effective cable contractions with the

same contraction length, respectively. Specifically, when the

Fig. 6. Experiment results for a single section of the soft robotic arm
tracking a circular trajectory. (a) Trajectories of the end position of the
single section by using the baseline model (BA) and the proposed model
(ST). (b) Illustration of movement and bending of the single section by
using BA. (c) Illustration of movement and bending of the single section
by using ST. In (b) and (c), yellow curves indicate the reference trajectory
and red/blue dots indicate the tip of the arm.

target γ was 0, there was only one effective actuation cable (the

other two cable were almost slack) for both the baseline model

and the proposed model, and the bending orientation γ in the

experiment naturally stayed around 0, which was the same as

the orientation of the actuation cable. When the target γ was

60◦, the two actuation cables shared the same contraction length

(the third cable was almost slack) for both the baseline model

and proposed model, and γ in the experiment stayed near 60◦

because of the actuation and structure symmetry.

A trajectory tracking experiment for the end of the single

section was further conducted where the trajectory reference

was included in its workspace. The experiment showed that the

average tracking error of the single section (1.58 cm) by using

the proposed model [see (25)] was about 35% smaller than that

(2.43 cm) of the baseline model [see Fig. 6(a)]validating the

effectiveness of the proposed model, and the soft section had

flexible and versatile bending configurations [see Fig. 6(b) and

(c)]. A video of these experiments and those in Section IV-D can

be viewed online1 (see the video in the Supplementary Material).

D. Experimental Results for a Two-Section Soft Robotic
Arm

A multisection arm was assembled and utilized for the com-

parison of the baseline model and the proposed model, and

its performance was further evaluated. For simplicity, a two-

section arm was assembled and controlled to track a circular

trajectory within its workspace by using the baseline model and

the proposed model. The experiment results showed that, the

average tracking error with the proposed model (3.76 cm) was

about 36% smaller compared with the baseline model (5.92 cm),

and the trajectory achieved with the open loop controller

based on the proposed model was closer to the reference [see

Fig. 7(a)–(c); also see the Supplementary Video]. The tracking

error of the two-section soft arm was larger compared with that

with a single section, which might be attributed to the error

1[Online]. Available: https://youtu.be/I-e1PxHwG1Y
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Fig. 7. Experiment results for a two-section soft robotic arm. (a) Tra-
jectories of the end position of the arm tracking a circular path by
using the baseline model (BA) and the proposed static model (ST).
(b) Illustration of movement and bending of the arm tracking a circular
path by using BA. (c) Illustration of movement and bending of the arm
tracking a circular path by using ST. (d) Trajectories of the end position
of the arm tracking a straight path by using BA and ST. (e) Illustration of
movement and bending of the arm tracking a straight path by using BA.
(f) Illustration of movement and bending of the arm tracking a straight
path by using ST. In (b), (c), (e), and (f), yellow curves indicate the
reference trajectory and red/blue dots indicate the tip of the arm.

accumulation between multiple sections and a more prominent

gravity influence for the base section of the arm.

In addition, the two-section arm was controlled to track a

straight trajectory within its workspace by using the models,

where the average tracking error (1.70 cm) of the proposed

model was about 52% smaller than that of the baseline model

(3.52 cm) [see Fig. 7(d)–(f)] showing the advantage of the

proposed model. Besides the comparison between the proposed

model and the baseline model, by evaluating a normalize track-

ing error (the ratio of the static tracking error in open-loop con-

trol over the total arm length), it was found that the tracking error

based on the proposed model (about 18.3%, 8.3% in circular,

straight tests, respectively) was comparable to that based on

a state-of-art FEM modeling approach (about 12.5%) in [19],

while the proposed model was much more computationally

efficient (see S3 in the Supplementary Material).

In summary, the extensive experiments showed the advantage

of the proposed static model as compared to a baseline model

and validated the flexibility and dexterity of the proposed soft

robotic arm.

V. CONCLUSION

In this article, we designed an octopus-inspired soft robotic

arm and developed a novel kinematic model to characterize

its flexible movements. The modular design of the soft arm

enabled longer arm prototypes and permitted a decoupling cable

actuation system for different sections that simplified the mod-

eling. The hybrid fabrication method of 3-D printing and casting

resulted in low-cost and easy-to-build prototypes. An analytical

static model was built to capture the transverse deformation of

the cable during actuation, which was largely ignored in the

literature.

Extensive experiments were conducted to validate the pro-

posed model and the static baseline model was used for a fair

comparison. The modeling accuracy was evaluated in the cable

actuation experiments [see Fig. 5(b)] and tracking experiments

(see Figs. 5–7). The results of tracking experiments for a single

section of the soft arm showed an evident advantage and smaller

tracking errors for the proposed model over the baseline model

in terms of bending angle, orientation, and the end position of the

arm. Experiments with a two-section arm further supported the

efficiency of the proposed model in tracking circular and straight

trajectories for the endpoint and demonstrated the dexterity of

the proposed soft arm.

We note that our modeling approach was not only motivated

by and particularly relevant to the proposed modular cable-

driven soft robotic arm, but also applicable to many other cable-

driven robotic arms, especially those not using rigid spacers,

examples of which are abundant [26], [27]. Even for the soft

arms with multiple rigid spacers, the transverse deformation

phenomenon would still exist in the areas where the cables and

the soft body interact directly.

For future work, first, we plan to relax the current geometric

assumption (PCC assumption) for the soft arm by considering

the moments generated by the gravity and external forces, using

an iterative approach similar to that in Fairchild et al. [28]. We

will also explore the related dynamic model with external inter-

actions. Finally, we will develop integrated embedded sensors

(e.g., soft strain sensors) for the soft robotic arm, so that real-time

bending configuration data for the arm are made available for

feedback control.
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