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Abstract—This paper presents new achievability bounds on the
maximal achievable rate of variable-length stop-feedback (VLSF)
codes operating over a binary erasure channel (BEC) at a fixed
message size M = 2*. We provide bounds for two cases: The first
case considers VLSF codes with possibly infinite decoding times
and zero error probability. The second case limits the maximum
(finite) number of decoding times and specifies a maximum
tolerable probability of error. Both new achievability bounds are
proved by constructing a new VLSF code that employs systematic
transmission of the first £ message bits followed by random linear
fountain parity bits decoded with a rank decoder. For VLSF
codes with infinite decoding times, our new bound outperforms
the state-of-the-art result for BEC by Devassy ef al. in 2016.
We show that the backoff from capacity reduces to zero as the
erasure probability decreases, thus giving a negative answer to
the open question Devassy et al. posed on whether the 23.4%
backoff to capacity at k = 3 is fundamental to all BECs. For
VLSF codes with finite decoding times, numerical evaluations
show that the systematic transmission followed by random linear
fountain coding performs better than random linear coding in
terms of achievable rates.

I. INTRODUCTION

For point-to-point communications with stop feedback, the
blocklength varies because the decoder decides whether to
cease transmission at each decoding time by sending as a
1-bit acknowledgement (ACK) or negative acknowledgement
(NACK) symbol via a noiseless feedback channel. At the
transmitter, the codeword symbols are completely determined
by the message. The feedback is only used to instruct the
transmitter when to stop, hence the name "stop feedback."

A practical communication paradigm that uses stop feed-
back is hybrid ARQ [1], [2], where an initial packet is
transmitted and ACK/NACK feedback determines whether
subsequent packets of incremental redundancy are needed.
Hybrid ARQ often allows only a small, finite number of
decoding times which occur only after each packet is received.
When our paper examines stop feedback with finite number
of decoding times, hybrid ARQ is the intended application.

Polyanskiy et al. formalized stop-feedback codes as
variable-length stop-feedback (VLSF) codes in [3] and stud-
ied the case where the number of possible decoding times
is infinite with stop feedback provided after every symbol
transmission. Stop feedback is relatively simple as compared
to active feedback approaches such as posterior matching [4],
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but Polyanskiy et al. showed that the maximal achievable rate
of VLSF codes with infinite decoding times is significantly
larger than fixed-length codes in the nonasymptotic regime
with a fixed tolerable error probability. Thus stop feedback
harnesses much of the potential non-asymptotic rate benefit
of feedback.

This paper focuses on achievable rates for the binary erasure
channel (BEC) with stop feedback. Devassy et al. obtained
the state-of-the-art nonasymptotic achievability [5, Theorem
9] and converse bounds [5, Theorem 5] for VLSF codes
operating over a BEC. Constructing VLSF codes for the BEC
is equivalent to constructing rateless erasure codes. Motivated
by this observation, Devassy er al. derived the achievability
bound by analyzing a family of random linear fountain codes
[6, Chapter 50] of message size 2* using a rank decoder.
The rank decoder keeps track of the rank of the generator
matrix that produced the unerased received symbols from the
message bits. As soon as the rank equals %, the decoder stops
transmission by sending an ACK symbol and reproduces the
k-bit message with zero error using the inverse of the generator
matrix. The achievability bound [5, Theorem 9] computes the
percentage of backoff from capacity as a function of message
length &, which attains its maximum of 23.4% at k = 3. They
posed the question whether this worst-case 23.4% backoff
percentage to capacity at k = 3 is fundamental.

While Devassy et al. examined non-asymptotic behavior
when decoding after every symbol, Heidarzadeh et al. [7],
[8] used sequential differential optimization [9] to explore
non-asymptotic behavior for finitely many carefully placed
decoding times, as would be used in a practical hybrid ARQ.

Both Devassy et al. and Heidarzadeh et al. employ random
linear coding for all transmitted symbols for a BEC. In
contrast, we propose a new coding scheme, namely systematic
transmission followed by random linear fountain coding (ST-
RLFC). After an initial systematic transmission of the k
message bits, the transmitter employs a random linear fountain
code to generate parity bits. We use the same rank decoder as
Devassy et al.

Our contributions in this paper are as follows.

1) For decoding after every symbol, ST-RLFC provides

a new achievability bound for VLSF codes with 2*
messages and zero error probability. This bound outper-
forms Devassy et al.’s result [5, Theorem 9]. Regarding
Devassy’s open question about whether the 23.4% back-
off at k = 3 message bits is fundamental, our new bound
achieves a smaller backoff than 23.4% that decreases
with erasure probability.



2) ST-RLFC also provides new VLSF achievability bounds
for VLSF codes constrained to have finite decoding
times and a nonzero error probability, showing a similar
improvement of ST-RLFC over random linear coding.

The remainder of this paper is organized as follows. Section
IT introduces the notation and the VLSF code, and presents
previously known bounds for VLSF codes operating over a
BEC. Section III provides the new VLSF achievability bounds
and comparisons with previous results. Section IV concludes
the paper. Due to space constraints, only proof sketches for
our main results are provided. Detailed proofs can be found
in the longer, online version of this paper [10].

II. PRELIMINARIES
A. Notation

Let N={0,1,...}, Ny =N\ {0}, Noc = NU {00} be the
set of natural numbers, positive integers, and extended natural
numbers, respectively. For i € N, [i] £ {1,2,...,i}. We use
x] to denote a sequence (z;,Tit1,...,z;), 1 < i < j. We
denote by e; € R¥*! the k-dimensional natural base vector
with 1 at index ¢ and 0 everywhere else, 1 < ¢ < k. We denote

the distribution of a random variable X by Px.

B. VLSF Codes

We consider a BEC with input alphabet X = {0, 1}, output
alphabet ) = {0,7,1}, and erasure probability p € [0, 1).
A VLSF code for BEC with possibly finite decoding times is
defined as follows.

Definition 1: An (I,n]*, M,e) VLSF code, where [ > 0,
m € Ny, nf" € N satisfying n1 < ng < -+ < ny,, M €
Ny, and € € (O 1), is defined by:

1) A finite alphabet / and a probability distribution P;; on
U defining the common randomness random variable U
that is revealed to both the transmitter and the receiver
before the start of the transmission.

2) A sequence of encoders f, : U x [M
1,2,...,ny,, defining the channel inputs

where W € [M] is the equiprobable message.

3) A non-negative integer-valued random stopping time
7 € {ni,n2,...,ny} of the filtration generated by
{U,Y™}™, that satisfies the average decoding time
constraint

] = X, n =

E[] <. )

4) m decoding functions g, : U x Y™ — [M], providing
the best estimate of W at time n;, ¢ € [m]. The final
decision W is computed at time instant 7, i.e., W =
g-(U,YT™) and must satisfy the average error probability
constraint

P.A2PW £ W] <e 3)

Comparing to Polyanskiy et al.’s VLSF code definition [3],
the primary distinctions are two-fold. First, the VLSF code

is allowed to have finite decoding times rather than infinite
decoding times. As a result, the stopping time is constrained
to be one of these decoding times. Second, both the expected
blocklength and error probability constraints correspond to the
given sequence of decoding times rather than N.

In this paper, we focus on lower bounding the achievable
rates of (I, N, 2% 0) VLSF code with m = oo and (I, n}*, 2% ¢)
VLSF code with m < oco. The rate of an (I,n]", M, e) VLSF
code is defined by

a logM
R= B

“4)

C. Previous Results for VLSF Codes over BECs

For the BEC, the decoder has the ability to identify the
correct message whenever only a single codeword is compat-
ible with the unerased channel outputs up to that point. By
exploiting this fact and utilizing the RLFC, Devassy et al.
[5] obtained state-of-the-art achievability bound for zero-error
VLSF codes with message size M that is a power of 2.

Theorem 1 (Theorem 9, [5]): For each integer k > 1, there
exists an (I, N, 2¥,0) VLSF code for a BEC(p) with

l<<k+222k:211>, s)

where C' = 1 — p denotes the capacity of the BEC.

Note that the second term in parentheses of (5) is upper
o 1

bounded by the Erdos-Borwein constant ¢ 2 3 1T =

1.60669515... (OEIS': A065442), because
k—1 k—1
2 1—-27°
ZQk 722k i 2 — 1 ¢ (6)
i=1 i=1 j=1

In [8, Theorem 2], Heidarzadeh et al. showed that by con-
structing random linear codes for which column vectors of the
parity check matrix for erased symbols are linearly indepen-
dent, the average blocklength of the corresponding (I, N, 2¥, 0)
VLSF code is given by kgc. This indicates that Heidarzadeh’s
random linear coding scheme performs as well as Devassy’s
RLFC scheme for sufficiently large message length k.

The state-of-the-art converse bound for (I,N, 2% 0) VLSF
codes over a BEC is also obtained by Devassy et al. using the
method of binary sequential hypothesis testing.

Theorem 2 (Theorem 5 applied to VLSF code, [5]): The
minimum average blocklength [%(M,0) of an (I,N,M,0)
VLSF code over a BEC(p) is given by

MJ 492 (1 o 2Llog2 M |—log, ]VI)

C

. log
I5(M,0) > —2

(N
Note that when M is a power of 2, Theorem 2 implies that
the converse bound on maximal achievable rate is simply the

capacity of the BEC.
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III. ACHIEVABLE RATES OF VLSF CODES OVER BECS

In this section, we present a new coding scheme for a
BEC called the ST-RLFC, a new achievability bound for
zero-error VLSF codes of infinite decoding times, and the
comparison with Devassy et al.’s result. Finally, we present a
new achievability bound for VLSF code with finite decoding
times and a comparison of achievability bounds for various
numbers of decoding times.

A. ST-RLFC Scheme

Consider transmitting a k-bit message b = (b1, ba, ..., by)
€ {0,1}*. Let us define the set of nonzero base vectors in

{0,1}"* by
Gr 2 {ve{0,1}F:v #£0}. (®)

Using ST-RLFC scheme, the channel input at time instant n €
N, for message b is given by

b ifl<n<k
Xn = n’k 1 SN s (9)
D, gnibi ifn>k,

where @ denotes bit-wise exclusive-or (XOR) operator, and
gn = (Gn,1,9n,2:--- 7gn,k)T € Gy, is generated at time instant
n according to a uniformly distributed random variable U e
Gr.. Note that the encoder and decoder share the same common
random variable U at time instant n > k so that the decoder
can produce the same g, at time n. For 1 < n < k, both
the encoder and decoder simply use the natural base vector
e, € R¥*! For all b € {0,1}*, the procedure (9) specifies
the common codebook before the start of transmission, i.e.,
the common randomness random variable U in Definition 1.

Let Y,, be the received symbol after transmitting X,, over
a BEC(p), p € [0,1). We consider the rank decoder [5] that
keeps track of the rank of generator matrix G associated with
received symbols Y™ = (Y1,Ys,...,Y,). Let G(n) denote the
nth column of G. If Y,, =7, G(n) = 0; otherwise, G(n) = gn.
Define the stopping time

7 £ inf{n € N: G(1 : n) has rank k}, (10)

where G(i : j) denotes the matrix formed by column vectors
from time instants ¢ to j, 1 < ¢ < j. Thus, the rank decoder
stops transmission at time instant 7 and reproduces the k-bit
message b using Y7 and the inverse of G(1 : 7) (namely, by
solving k message bits from k linearly independent equations).
Clearly, the error probability associated with the ST-RLFC
scheme is zero.

B. Achievability of Zero-Error VLSF Codes using ST-RLFC

The ST-RLFC scheme implies the following achievability
bound for (I,N, 2k, 0) VLSF codes operating over a BEC.

Theorem 3: For a given integer k > 1, there exists an
(I,N, 2%, 0) VLSF code for BEC(p), p € [0, 1), with

S
—

2’6—1
2i

1

I<k+—
- C«

F(i; k, 1 —p), an

Mﬁ

where C' =1 — p and

-p) = Z (I;) (1 —pyp*7

=0

F(isk, 1 (12)
denotes the CDF evaluated at 4, 0 < ¢ < k, of a binomial
distribution with k trials and success probability 1 — p
Proof: Let S, denote the rank of generator matrix G,.
According to the ST-RLFC scheme, at time instant k, the prob-
ability mass function (PMF) of S}, is given by the binomial
distribution B(k,1 — p).
For n > k, the behavior of S,,, n > k, is characterized by
the following discrete-time homogeneous Markov chain with
k + 1 states: For n > k,

1-— 2 —1
P[Spy1 =7|Sp =71] =p+ %’ (13)
1—p)(2F—27
PlSpt1=r+1S, =1] = %’ 14)

where 0 < r < k — 1, and P[S,41 = k|S, = k] = 1. Note
that this Markov chain has a single absorbing state S,, = k.
The time to absorption for this Markov chain follows a discrete
phase-type distribution [11, Chapter 2] with initial distribution

[, o], where ™ £ [P[Sy = 0],P[Sk = 1],...,P[Sk =
k—1]], ar, =1 —a'1, and transfer matrix
|\ (I-7n
P [OT 1 } , (1)
where the entries of T € R*** are given by
T =P[Spy1=i—1|S,=i—1], 1 <i<k (16a)
Thio1 =P[Spr =i|S, =i—1], 1<i<k—1 (16b)
Tij=0forj#iand j #i+1, 1<4,5<k. (16¢c)

Let random variable X denote the time to absorption state k.
It can be shown that the generating function of X is given by
Hx(z) = ag,+za' (I —2T)~*(I —T)1. Hence, the expected
time to absorption state k is given by

dHx(2) T -1

EX]=——— = I-T)""1. 17
[X] o |, e (I-T) (17)

Therefore, the expected stopping time E[7] is given by
E[r] = k + E[X] (18)

k—1
1 2k —1
=k ——F(i;k, 1 —p). 1

+ C — 2k’ 27, (7’7 ? p) ( 9)
See Section IV-A in [10] for complete proof. [ ]

We remark that the new achievability bound (11) is tighter
than Devassy’s bound (5) and two bounds are equal if p =1
or k = 1. An important corollary is that the gap between the
achievability and converse is O(k~1).

Corollary 1: For a given k € N and BEC(p), p € [0, 1], it
holds that

1<:0+Z

k=1 o;
F(isk,1—p <k+22k -, (20)
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Fig. 1. Percentage of backoff from the capacity of BEC for k = 3. The red
curve corresponds to a backoff percentage 23.4%.
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Fig. 2. Rate vs. average blocklength E[r] for (I,N, 2*,0) VLSF codes over
BEC(0.1). The markers correspond to integer message length k.

where C = 1—p and F(i; k,1 — p) is given by (12). Equality
holds if p=1or k = 1. ‘

Proof: Using k + Y2~ 2=1 = Y 22,: 57 it can be
shown that the RHS of (20) is lower bounded by the LHS of
(20). Detailed proof can be found in [10]. [ |

For BEC(0) and k& > 2, our new bound (11) reduces to k,
whereas Devassy et al’s bound (5) is strictly larger than & and
approaches k + ¢ for sufficiently large k, where ¢ denotes the
Erdos-Borwein constant. Moreover, (5) also implies an upper
bound independent of p on the backoff percentage to capacity,

1= g s1- ,szklg

i=1 2k_— 2L
Devassy et al. [S] reported that this upper bound attains
its maximum 23.4% at k = 3 and that the maximum is
independent of erasure probability, thus raising the question
whether this backoff percentage is fundamental. In contrast,

our result in (11) implies a refined upper bound on backoff
percentage that is dependent on p,

R k
1-t<1- e .
KC + S 2L P ik, 1 — p)

21

S (22)

Fig. 1 shows the comparison of these two upper bounds at
k = 3. We see that for k£ = 3, the upper bound in (22) is a

o
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Fig. 3. E[S$T] — E[SRLFC] vs. k for BEC(0.1) for k from 1 to 100.

strictly increasing function of p. As p — 0, this upper bound
decreases to 0, which closes the backoff from capacity at k =
3. As p — 1, the upper bound in (22) increases to the backoff
percentage in (21), as shown in Corollary 1. Combining (6),
Corollary 1, (21), and (22), we conclude that C—R = O(k™1)
for both Devassy et al’s and our result.

Fig. 2 shows the comparison between the new achievability
bound (Thm. 3) and Devassy et al.’s bounds (Thms. 1 and
2) for BEC(0.1). As can be seen, for a small message length,
the new achievability bound is closer to capacity than Devassy
et al.’s bound. This is because when k is small, systematic
transmission of the uncoded message symbol is more likely
to increase rank than transmitting a fountain code symbol.
However, as k gets larger, the advantage of systematic trans-
mission over RLFC gradually diminishes. To see this more
clearly, let random variables ST and SRFFC denote the rank of
generator matrix G(1 : k) for ST and RLFC, respectively. We
use E[SPT] — E[SRLFC] as the metric to measure the difference
of rank increase rate over time range 1 to k. Note that
E[S?T] = k(1 — p) since the rank distribution at time instant
k is binomial. E[SRFC] can be numerically computed using
the one-step transfer matrix P in (15) and initial distribution
[1,07] € R™(*+1)_ Fig. 3 shows E[S}T] — E[SRMC] as a
function of message length k& for BEC(0.1). We see that this
gap constantly remains nonnegative, implying that the rank
increase rate for ST is always faster than that for RLFC. For
sufficiently large k, this gap becomes small, indicating the
diminishing advantage of ST over RLFC.

C. Achievability of VLSF Codes with Finite Decoding Times

The ST-RLFC scheme also facilitates an (I, n7*, 2% ¢) VLSF
code for a BEC. This code is constructed by using the same
ST-RLFC scheme in (9) but a rank decoder that only considers
a finite set of decoding times. Specifically, fix n]* € N
satisfying ny < ng < .-+ < n,,. For a given £ € N, and

€ (0,1), the rank decoder still shares the same common
randomness with the encoder in selecting the base vector g,,,
except that it adopts the following stopping time:

™ £ inf{n € {n;}1", : G(1: n) has rank k or n = n,, }.

(23)



If 7 < ny, and G(1 : 7) is full rank, the rank decoder
reproduces the transmitted message using Y7 and the inverse
of G(1: 7). If 7 = ny, and G(1 : n,y,) is rank deficient, then
the rank decoder outputs an arbitrary message.

The ST-RLFC scheme and the modified rank decoder imply
an achievability bound for an (I,n7*, 2% ¢) VLSF code.

Theorem 4: Fix nf* € N satisfying ny < mnz < -+ < np,.
For any positive integer k¥ € N and € € (0,1), there exists
an (I,n7", 2% ¢) VLSF code for the BEC(p) with

m—1

LS — > (i1 — ni)P[Sn, = K], (24)
=1

e<1—P[S,, =k, (25)

where the random variable S,, denotes the rank of the genera-
tor matrix G(1 : n) observed by the rank decoder. Specifically,
P[S,, = k] is given by

ifn<k

26
if n >k, (26)

1—a'Tr*1,

where o' £ [P[S; = 0], P[Sk = 1],...,P[Sx = k — 1]] and
T € R¥** with entries given by (16).

Proof: The proof essentially builds upon the proof of
Theorem 3 with the distiction that the rank decoder adopts
a new stopping time given by (23).

Let S,, denote the rank of the generator matrix G(1 : n)
observed by the rank decoder. The expected stopping time
E[r*] is given by

o0 m—1
E[r*] = Z Plr* > n] =n; + Z (nit1 — ng)P[T* > ny]
n=0 i=1
m—1
=n,, — Z (nit1 — ny)P[Sy, = K], 27)
i=1

At finite blocklength, decoding error only occurs when the
rank of the generator matrix G(1 : n,,) is still less than &,

¢ <PS, <k =1-P[S, =4k, (28)

where P[S,, = k] can be derived using the discrete phase-type

distribution. See Section IV-B in [10] for complete proof. H

Theorem 4 facilitates an integer program that can be used

to compute the achievability bound on rate for all zero-error

VLSF codes of message size M = 2F and m decoding times.
Define

m—1
N(n) & n, — Z (nit1 — ny)PSy, = k.

i=1

(29)

For a given number of decoding times m € N, message
length & € Ny, and a target error probability § € (0, 1),
min  N(nj")
" (30)
s.t. 1—=P[S,, =k <4

Assume N(af*) is the minimum value after solving (30),
where af* is the minimizer. Then the achievability bound

Capacity of BEC(0.5)
m =oo (Th. 3)
m =oo (Th. 1)
m = 16, ST-RLFC
—s—m = 8, ST-RLFC
—4—m =4, ST-RLFC
—»—m =4, RLFC
0.05 —a—m =2, ST-RLFC
—p—m =1, ST-RLFC

N N N

0 10 20 30 40 50 60 70 80 90 100 110
Average blocklength E[7]

Fig. 4. Rate vs. average blocklength E[7] for (I,n7*,2F,8) VLSF codes
operated over the BEC(0.5), where § = 1073, The marker corresponds to
integer message length k. In this figure, k > 1 form =1,2,4,8 and k > 2
for m = 16.

on rate for a VLSF code of message size 2%, target error
probability 6, and m decoding times is given by W For
reasonably small values of m, one can use brute-force method
to obtain af* and N (af").

For BEC(0.5), Fig. 4 shows achievability bounds for
(I,n7*,2% §) VLSF codes generated by ST-RLFC, where
m € {1,2,4,8,16} and target error probability § = 1073,
The achievability bounds associated with m = oo case for
Theorems 1 and 3 are also shown. In addition, we added the
achievability bound for (I,n$,2% §) VLSF codes generated
by RLFC. This bound is obtained using the same analysis
for RLFC. We see that when m is small, increasing m
can dramatically improve the achievable rate. However, when
m = 16, the achievable rate closely approaches that for
m = oo. We remark that similar effect on achievable rate
as a function of the number of decoding times has also been
observed in several previous works, e.g., [?], [8], [12], [13].
For m = 4, Fig. 4 shows a small benefit of ST-RLFC over
RLFC. The ST-RLFC advantage over RLFC for small £ would
be more pronounced for a BEC with a smaller p such as 0.1.

IV. CONCLUSION

Using the ST-RLFC scheme and the rank decoder, we have
shown an improved achievability bound for zero-error VLSF
codes of message size M = 2*. The improvement leverages
the fact that when k is small, transmitting systematic message
symbols at the beginning is more likely to increase the rank of
the generator matrix than transmitting fountain code symbols.
It remains to be seen how to further close the gap between
achievability and converse bounds. In addition, the extension
of Theorem 3 to arbitrary message size M remains open.

The ST-RLFC scheme combined with a modified rank
decoder facilitates a VLSF code of finite decoding times and
bounded error probability. Fig. 4 shows that ST-RLFC still
performs better than RLFC for a finite number of decoding
times and a bounded error probability. However, a rigorous
proof establishing this observation still remains open.
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