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ABSTRACT
In this paper, we propose PhantomSound, a query-efficient black-
box attack toward voice assistants. Existing black-box adversar-
ial attacks on voice assistants either apply substitution models or
leverage the intermediate model output to estimate the gradients
for crafting adversarial audio samples. However, these attack ap-
proaches require a significant amount of queries with a lengthy
training stage. PhantomSound leverages the decision-based attack
to produce effective adversarial audios, and reduces the number of
queries by optimizing the gradient estimation. In the experiments,
we perform our attack against 4 different speech-to-text APIs under
3 real-world scenarios to demonstrate the real-time attack impact.
The results show that PhantomSound is practical and robust in at-
tacking 5 popular commercial voice controllable devices over the air,
and is able to bypass 3 liveness detection mechanisms with > 95%
success rate. The benchmark result shows that PhantomSound can
generate adversarial examples and launch the attack in a few min-
utes. We significantly enhance the query efficiency and reduce the
cost of a successful untargeted and targeted adversarial attack by
93.1% and 65.5% compared with the state-of-the-art black-box at-
tacks, using merely ∼300 queries (∼5 minutes) and ∼1,500 queries
(∼25 minutes), respectively.

CCS CONCEPTS
• Security and privacy; • Computing methodologies → Ma-
chine learning;

KEYWORDS
Adversarial attack; voice assistant; black-box attack; query effi-
ciency.
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1 INTRODUCTION
Voice is the primarymethod for human-computer interaction. Driven
by the unprecedented amount of voice data and flourishing devel-
opment of Artificial Intelligence (AI) technology, the modern deep-
learning based Automatic Speech Recognition (ASR) systems and
Intelligent Voice Control (IVC) devices have been integrated into
our daily lives. According to Voicebot’s 2019 consumer report [39],
it was reported that 26% of U.S. adults own a smart speaker. Nowa-
days, users can directly speak to their smartphones to interact with
the voice assistants such as Siri [56], Google Assistant [22], or smart
speaker systems such as Google Home [23], Amazon Echo [8].

The voice commands have been used to send and read text mes-
sages, make phone calls, set timers, check calendar entries, and even
order a drink from Starbucks or summon a Uber with “skills" [10].
More and more tech companies now provide ASR services, in-
cluding Amazon Transcribe [9], Google Cloud Speech-to-Text [24],
IBM Watson Speech to Text [36], and Microsoft Azure Speech Ser-
vice [46], all of which allow the developers to empower their apps
with intelligent audio functionalities.

However, with the increasing presence of ASR systems and IVC
devices in private spaces, users begin to worry about the security
and privacy of these systems. For example, a hacked device is now
capable of recording private conversations; collecting and sharing
private data; and controlling all the connected IoT devices in smart
homes [18, 53]. Researchers have demonstrated that ASR systems
could become vulnerable to a wide variety of attacks. For instance,
inaudible commands can be injected through ultrasound [49, 67],
even across different transmissionmedia, such as object surface [62],
light [53], etc. Besides the physical attacks, recent studies also utilize
the discrepancies between the human ear and feature extraction
algorithms to launch signal processing attacks [3, 4].

Despite the aggravating threats, these new attacks could be
defeated by integrating additional hardware [66] or extra signal
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Figure 1: Attack scenario of PhantomSound

processing procedures (e.g., voice activity detection, guard sig-

nals) [3, 34]. Unlike the aforementioned attacks, the adversarial

attack aims to attack the deep neural networks (DNN), i.e., the

computational core of an ASR system, which poses a major threat

to modern ASR systems.

Adversarial Attack:Adversarial attackwas first proposed to attack

image recognition systems [21, 54]. The attack operates by impos-

ing unnoticeable perturbations onto the original image, thereby

misleading the DNN to yield false classification. The inputs that

enable such an attack are commonly referred to as Adversarial Ex-

amples (AEs), which are composed of the original input with an

unnoticeable perturbation. The ASR system with DNN models also

inherits the susceptibility towards AEs.

Prior Studies: Prior studies [7, 14, 20] demonstrate that attackers

can generate adversarial audios to alter the DNN’s prediction result

with or without the prior knowledge of the DNN model. However,

most of these attacks have not been successfully realized against

real-world commercial devices, and their stealthiness is unverified.

Recently, Chen et al. [15] successfully attack both open-source and

commercial speaker verification systems over the air in a grey-box

setting. Yuan et al. [64] embed their generated AE within songs to

launch the attack, and they further adapt their attack in a black-box

setting to subvert the ASR of most IVC devices [18]. Nevertheless,

they fail to guarantee the attack success rate in the presence of user

interference; and cannot promise to craft AEs quickly due to the

training overhead of the substitution model. Meanwhile, two recent

studies [27, 43] inventively propose the sub-second perturbation

and spectrogram patch perturbation to attack open-source ASR sys-

tems, considering the victim user present during the attack. Even

though they demonstrate the robustness and feasibility of their

attack in the presence of environmental distortions, the proposed

attacks are established on the assumption of complete knowledge

of the target ASR system. More recently, Zheng et al. propose a

decision-based black-box attack by incorporating evolutionary al-

gorithms to generate adversarial audios [69]. However, they still

require to query the victim model extensively, which incurs sub-

stantial time and financial costs in a practical attack scenario.

Table 1 summarizes the existing adversarial attacks in terms of

victim systems’ tasks, attacker knowledge, ability to attack quickly,

and attack scenario. The check mark symbolizes a successful attack

under the given scenario, while the cross mark implies that the at-

tack could not function or lacks efficacy in that particular scenario.

For the victim system’s task, SV indicates the speaker verification

task while SR refers to the speech recognition task. We then taxon-

omize attacker knowledge into white-box, grey-box, and black-box,

Table 1: Comparison with other recent audio attacks.

Attacks
SV

SR

Grey

Box

Black

Box

Online

GENR

Over

Air

User

INT

Houdini [20] SR � � � � �

C&W [14] SR � � � � �

Adversarial [7] SR � � � � �

Fakebob [15] SV � � � � �

Comm. [64] SR � � � � �

Devil’s [18] SR � � � � �

AdvPulse [43] SR � � � � �

OCCAM [69] SR � � � � �

SpecPatch [27] SR � � � � �

PhantomSound SR � � � � �

where grey-box implies the attacker can get the logits layer out-

put [7, 15] or confidence score of all possible classes, and black-box

indicates the attacker can only access the prediction label [18] of

the target model. A white-box attacker, on the other hand, has com-

plete knowledge (model architecture, weights of DNN parameters)

of the target system. Next, we use online AE generation (Online

GENR) to characterize whether the attacker can generate AEs or

perturbations swiftly and complete the attack procedure in an on-

line fashion. In fact, most existing studies assume the attacker has

sufficient time to produce AEs offline. The last two metrics, Over

Air and User Interference (User INT) suggest the attack scenario,

where the former indicates an over-the-air attack, while the latter

indicates whether the attack considers the user’s interference (e.g.,

voice commands) during the attacks. To the best of our knowledge,

no existing attacks can attack commercial, closed-source ASR systems

over-the-air with a limited time budget and user interference.

PhantomSound:We propose a query-efficient black-box attack on

commercial closed-source ASR systems and IVC devices. Our attack,

called PhantomSound, can craft AEs and perturbations within a

limited time budget and restricted query cost. Different from the

previous work, the key idea behind PhantomSound is to regard the

users’ voice input as the command “carrier", while the phoneme-

level perturbations are applied on the “carrier" to instantiate the

attack.

Figure 1 depicts the attack scenario. First, the adversary records

the user’s command (any keywords such as “open", “on", “down").

Next, the adversary uses PhantomSound to query the accessible

target models on the target IVC devices (e.g., the Google Cloud

Speech-to-Text API for Google Home). Then, PhantomSound re-

turns a perturbation that alters the prediction of the user’s com-

mand.

During the attack, the adversary plays the perturbation via a

hidden speaker at the same time when the user utters a voice

command, which fools the smart speaker to operate improperly.

Challenges: Four major challenges arise during the design of

PhantomSound.

• Black-box Attack: It is difficult to attack a model without

any prior knowledge. Existing grey-box/black-box attacks ei-

ther assume attackers have the probability score of the target

model [7, 20], or train a substitution model to approach the target

model [18]. The existing attacks require a substantial amount of

time to train a substitution model for the generation of AEs.
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• Speech Model: Different from black-box attacks on image pro-
cessing [16, 19], ASR systems are known to have a more compli-
cated model structure consisting of signal processing, filtering,
acoustic model, and language model. As a result, attacking speech
models requires different attack strategies to bypass the various
components of the ASR models.

• Query Efficiency: A successful black-box attack relies exces-
sively on the effectiveness of queries. The adversary needs to
iteratively update the AEs such that the effectiveness of the
crafted AEs can be justified through querying. However, querying
commercial ASR APIs is costly (e.g., $0.00001/second for Google
Cloud Speech-to-Text) and unable to bypass. Despite some ef-
forts [16, 19] to reduce the number of queries, it still falls short
of meeting the requirements for online generation of AEs.

• Perturbation Sync: To successfully launch our attack, the ad-
versary is expected to play the perturbation when he/she hears
the victim’s voice command. However, in a real-world scenario,
the timing of perturbation is hard to control. Therefore, we need
to tackle this problem by generating a near-synchronization-free
perturbation [43].

Contributions: The contributions of this work are highlighted as
follows.
• New Attack: To the best of our knowledge, we are the first to
achieve query-efficient black-box attacks on commercial ASR
systems as well as IVC devices. We demonstrate the dangers
of our attack over-the-air on 4 different commercial ASR APIs
(i.e., Google Cloud Speech-to-Text, IBM Watson Speech to Text,
Amazon Transcribe, and Microsoft Azure Speech Service) and 5
different IVC devices (i.e., iPhone with Google Assistant, Google
Home, Microsoft device, Amazon Alexa, and IBM Wav-Air-API).

• New Finding: We discover and formulate the unique bound-
ary of commercial ASR systems for producing AEs. This non-
contiguous decision boundary hinders previously successful at-
tempts.

• New Techniques:We propose PhantomSound, a phoneme-level
searching method for efficiently crafting AEs to launch adversar-
ial perturbation attack with the least number of required queries
in comparison with other methods.
The remainder of the paper is organized as follows. We introduce

the background and preliminary observations in §2, followed by the
system design of PhantomSound in §3. The implementation and
evaluation are further presented in §4. The discussion and limitation
of PhantomSound are entailed in §5. We present the related work
in §6 and conclude the paper in §7.

2 BACKGROUND AND PRELIMINARY STUDY
In this section, we present the threat model of PhantomSound, as
well as the assumptions and attack scenarios. Then, we introduce
the fundamentals behind the adversarial attack and present the
decision scheme of commercial ASR systems.

2.1 Threat Model
The adversary’s goal is to mislead the IVC devices or VCS systems
by injecting malicious commands. Prior to our work, there are two
types of attacks that can achieve the same goal. The first attack [18]

uses reverse-engineering models to imitate the commercial models
and craft the offline AE in a white-box manner. The second at-
tack [61] uses generative models to synthesize the victim’s speech.
However, the reverse-engineering attack necessitates a high volume
of queries (as per Table 10) to construct the substitute model. It also
demands updating the model in response to changes in the commer-
cial API. This renders it expensive and inadequate in meeting the
need for a real-time attack. Regarding the generative model driven
synthesized attack, we assume the adversary has access to suffi-
cient recordings of the victim for training purposes. However, in
our specific situation, the attacker is expected to initiate the attack
upon their first encounter with the victim. Furthermore, playing
the synthesized speech outright is not a viable approach as the
victim can hear it and potentially halt the attack.
Adversary’s Capability:We assume that the adversaries can place
a hidden microphone to record the victim’s voice. We assume that
an adversary knows the targeted IVC devices and has access to
their respective ASR API services (e.g., Google Cloud Speech-to-
Text for Google Home or Google Assistant). Following other related
studies [7, 18, 43, 64, 69], we also assume that the adversary is able
to launch this attack via a hidden speaker or a compromised speaker
in the victim’s workspace/home.
Attack Scenarios: The adversary will first collect the victim’s
voice commands, and then generate the AEs and perturbations
swiftly only based on the transcription result of the target devices.
Once the perturbations are crafted, the adversary can wait for the
victim’s next command and play the perturbation manually or
automatically via existing keyword searching or voice detection
mechanisms [6, 55]. Alternatively, the adversary may also play the
perturbation repeatedly through hacked speakers, attempting to
fool the target IVC devices when the corresponding target voice
command was delivered.

In a real-world attack scenario, e.g., in a public space, an attacker
may not have access to a large collection of victims’ voices and may
not have sufficient time to generate the perturbation offline. In this
case, the attacker only has a very limited time window to subvert
the victims’ commands towards voice assistants. To successfully
instantiate such an opportunistic voice attack, an attack approach
with a timely and low complexity AE generation is highly desired.
User Interference:Most existing attacks assume that the users will
not perceive the AEs and will not interact with their voice assistants
during the attack. However, when the users are speaking during
the attack, most existing voice attacks will fail. In this research, we
leverage the users’ voice command as a carrier for the adversarial
audio to launch the attacksmore effectively and stealthily.Moreover,
as advanced liveness detection algorithms [5, 42] have been used to
differentiate between loudspeakers and humans with high accuracy,
most existing audio attacks launched by loudspeakers can be easily
detected. In our attack, however, since the human voice and the
perturbation arrive at the same time, the liveness detection module
of the voice assistant can be effectively bypassed.

2.2 Adversarial Attack
Adversarial attack aims to craft an AE 𝑥0 + 𝛿 , in order to deceive
the model 𝑓 (·) to make false prediction [54]. Take 𝑦𝑝𝑟𝑒𝑑 as the
output of model, if 𝑓 (𝑥0 +𝛿) := 𝑦𝑝𝑟𝑒𝑑 ≠ 𝑦 (𝑦 indicates the true label
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(a) A mixed image with cat and dog is rec-
ognized by Google Cloud Vision API [25]
with 89% cat and 11% dog.

Dog

Deer

Cat

Panda

AE

(b) Search decision boundary in black-box
CV attack.

(c) A mixed audio with “stop" and “back-
ward" is rejected by Google Speech-to-
Text API with no output

"stop"

"start"

"step"

"backward"

Not classified
into any

command

(d) The decision boundary for every class
is non-contiguous for ASR system, every
input in the middle will be rejected due to
ambiguity.

Figure 2: Observations of CV and ASR systems.

of input 𝑥0), we suppose the attacker has launched an untargeted
attack. If the perturbation is crafted intentionally for a specific

target (denoted as 𝑦𝑡 ), the attack formalized as 𝑓 (𝑥0 + 𝛿) = 𝑦𝑡 ≠
𝑦, is regarded as a targeted attack. The generation of AE can be
formulated as an optimization problem as follows:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 L(𝑥0 + 𝛿) := D(𝑓 (𝑥0 + 𝛿), 𝑦𝑡 ) . (1)

The goal of Eq. (1) is to minimize L(𝑥0 + 𝛿) under the constraint
that | |𝛿 | |2 < 𝜖 , where L(·) denotes the loss function, which uses a

distance function D(·) to measure the disparity between 𝑓 (𝑥0 + 𝛿)
and 𝑦𝑡 , | | · | |2 is the L2 norm, and 𝜖 is used to control the amplitude
of perturbation. There are three main types of attacks depending

on the prior knowledge of the victim models, listed as follows:

White-box: If the adversaries learn architecture and the parameters

of the model, they can get the gradient of the loss function ∇L(𝑥)
during the forward or backpropagation. The perturbation can be

subsequently estimated using the inverse gradient [21].

Grey-box: The model conceals its architecture and parameters

from the public and only exposes the prediction scores 𝑃 = [𝑝0, 𝑝1,
· · · , 𝑝𝑛] for a given input. The adversaries can formulate a loss
function [13] D(𝑃, 𝑃𝑦) (𝑃𝑦 is the one-hot encoding of 𝑦), and then
track the changes of distance when tuning 𝛿 in multiple attempts.
The changes inL(𝑥) are utilized to estimate the gradient which will
guide the attacker to update 𝛿 . The gradient estimation algorithms
include Natural Evolution Strategy (NES) [37] and Zeroth Order

Optimization (ZOO) [17].

Black-box:Compared to white-box and grey-box attacks, the black-

box attack is the most challenging, in which the attacker only has

access to the prediction label of the model. In fact, most of the

commercial ASR systems and IVC devices are closed-source and

only offer a final prediction. To successfully attack the black-box

model, existing work either trains a surrogate model and transforms

the problem into a white-box attack [47], or uses a significant

amount of queries to search the decision boundary of the victim

model [12, 16, 19]. Here, we focus on the query-based boundary-

searching attack due to its flexibility and attack efficiency.

2.3 Black-box Audio Adversarial Attack

Compared with the black-box adversarial attack in other domains,

the black-box audio adversarial attack has several unique features.

In this section, we conduct a preliminary study in quantifying the

behaviors of commercial ASR services.

Decision-based Attack: Used for classification, a decision bound-

ary is a hypersurface that partitions the sample space into several

classes. Specifically, a well-trained DNN model uses the decision

boundary to classify the incoming inputs. The main goal of the

existing black-box attacks [12, 16, 19], or so-called decision-based

attacks, is to find the decision boundary of the target model. Gen-

erally, to approach the precise decision boundary, they gradually

perturb the input based on the query feedback, to find an AE on

the verge of the decision boundary.

However, one assumption made by existing decision-based at-

tacks is that the DNN classification model guarantees to return a

prediction 𝑦𝑝𝑟𝑒𝑑 for any input 𝑥 . As shown in Fig. 2(a), we merge a
cat and a dog into one image and feed it into Google Cloud Vision

API [25]. The classifier labels the image as a cat with very high

confidence (89%) while the human brain perceives it differently. As

shown in Fig. 2(b), the decision-based adversary [16] starts from a

dog (𝑥0) and adds the proportion of a cat (𝛿) gradually to approach
the boundary. The curves between classes in Fig. 2(b) indicate the

decision boundaries, where 𝛿 ∈ [0, 255]𝐻×𝑊 denotes the perturbed

image with the same shape as 𝑥0. The contiguous decision bound-
ary allows the DNN models to always output a result, while the

result turns unreliable as it approaches the decision boundary.

Decision Boundary of ASR: At first sight, it appears that the ASR

systems would inherit the DNN’s susceptibility to decision-based

adversarial attacks. However, the unique characteristics of voice

systems and DNN models make traditional decision-based attacks

hard to succeed. Here, we conduct a preliminary experiment, in

which we mix two voice commands “stop" and “backward" together

(Fig. 2(c)) to imitate the mixture of cat and dog images. Then, we

submitted the mixed audio to Google Speech-to-Text API, which

was rejected without any returns. The failed attempts indicate

that the decision boundary of the ASR system is non-contiguous.

As shown in Fig. 2(d), every voice command is surrounded by an
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"stop"

"backward"

"stopwhat"
"stalk what"

"back what"

Continuous decision
boundary for adjacent

classes

Figure 3: Phoneme guided query

exclusive boundary, and the audios outside of the boundary ranges

will be rejected by the ASR systems.

This phenomenon implies that the perturbed voice queries may

fail to solicit valid feedback from the ASR systems. Without feed-

back, it is difficult to determine the direction of the perturbation for

approaching a target decision boundary. Based on this observation,

we are motivated to design a new boundary-searching method to

enable the decision-based black-box attack toward ASR systems.

3 ATTACK DESIGN

In this section, we present the system design of PhantomSound. We

first introduce the phoneme-level boundary searching method to

minimize the possibility of rejection by the ASR systems. Then, we

formalize the attack as an optimization problem and illustrate the

generation of AEs. Finally, to enhance the robustness of PhantomSound

in real-world scenarios, we propose the weak synchronization

scheme and over-the-air speech enhancement.

3.1 Phoneme-level Boundary Searching

Fig. 2(d) shows the challenge in boundary searching to produce

a proper AE. If the adversary randomly adds noise to “stop", the

ASR remains the “stop" decision when the noise is low and gives

rejection while rising the noise power. However, if the adversary

directly applies target “backward" to the benign audio, it results

in audio (red start in Fig. 2(d)) in the middle between two decision

boundaries, hence giving no output.

Therefore, the reasons behind the rejection of queries can be

attributed to two factors: 1) the added random noise will elevate the

command’s noise level; 2) the boundary distance between two valid

commands is too long to allow for an unnoticeable perturbation. To

resolve these two problems, a novel idea is raised: “If we break the

target “backward" into small pieces, then craft AE with sub-targets

which directly connect to the benign decision boundary with small

pieces, and finally, we can craft the final AE with the target." Fig. 3

depicts our attack design. Specifically, instead of directly adding

“backward" on the “stop", we break the target “backward" into a

series of phonemes. During crafting the AE, we randomly add the

phoneme on the benign audio and check the prediction. If the ASR

produces a word that is closer to our target, we keep the phoneme

on the benign audio and search for a closer prediction in the next

round. In our case, the “stop" adds perturbation phoneme 𝛿1 and
is recognized as “stopwhat", then changes to “stalk what", and

“back what", and finally reaches the target “backward". In every

step, the AE achieves to sub-targets who is adjacent to the benign

decision boundary, and gradually, the perturbation can be crafted

by summing up all the small changes.

The basic idea of the proposed phoneme-level searching method

is to perturb the original command along the direction of the target

command while minimizing the distance between the original and

the target ones.

Algorithm 1 presents the initialization procedure for generating

the phoneme-level adversarial perturbation. Specifically, we first

set the counter 𝑠 = 0, and the initial distance between benign and
target as 𝜖 = CER(𝑓 (𝑥0), 𝑦𝑡 ). Next, we construct a phoneme set
𝐷 = {𝑝ℎ1, 𝑝ℎ2, ..., 𝑝ℎ𝑛} by breaking the target command, and then

generate a random noise 𝑣 ∈ [0, 0.1]𝑙 in line 4, where 𝑙 is the length
of original input 𝑥0. Next, together with the 𝑣 , a phoneme from 𝐷
is randomly picked and injected at its corresponding position of 𝑥0
in lines 5-6 to generate an AE 𝑥∗. The purpose of 𝑣 is to increase
the variance of the phoneme. For the targeted attack, if the 𝑥∗ has
a smaller distance to the target (line 7), we put the perturbation

to the initial perturbation set 𝑃 , then update the 𝜖 and 𝑥0. For an
untargeted attack, we can replace line 7 with “if 𝑓 (𝑥∗)! = 𝑦" to
assure the ASR gives an incorrect prediction. The searching loop

continues until it reaches a sufficient number of rounds 𝐾 .

Algorithm 1: Phoneme-level Adversarial Perturbation Ini-

tialization

Input: The original audio 𝑥0, the target label 𝑦𝑡 , the
phoneme clip samples 𝐷 = {𝑝ℎ1, 𝑝ℎ2, ..., 𝑝ℎ𝑛}, the
initial Character Error Rate(CER) 𝜖 , the API service
of black-box ASR system 𝑓 (·).

Result: The initial perturbations set 𝑃
1 s = 0;

2 𝜖 = CER(𝑓 (𝑥0), 𝑦𝑡 );

3 while 𝑠 < 𝐾 do

4 𝑣 = random [0, 0.1]𝑙 ;

5 𝛿 = 𝑣 + 𝑟𝑎𝑛𝑑 (𝐷);

6 𝑥∗ = 𝑥0 + 𝛿 ;

7 if CER(𝑓 (𝑥∗), 𝑦𝑡 ) < 𝜖 then
8 Put 𝛿 into 𝑃 ;

9 𝜖 = CER(𝑓 (𝑥∗), 𝑦𝑡 );

10 𝑥0 = 𝑥0 + 𝛿 ;

11 else

12 𝑠 = 𝑠 + 1;

13 end

14 end

15 return 𝑃

3.2 Perturbation Optimization

Even though Algorithm 1 generates proper perturbations for any

voice commands, the amplitude of the perturbation may become

overwhelming. Revisiting Eq. (1), to acquire the minimal pertur-

bations, we need to gradually increase the perturbation power.

However, due to the black-box setting, the gradient is inaccessible.

As a result, we use Sign-Opt [19] to estimate the gradient, since

Sign-Opt has achieved superior performance with the least number

of queries, as written below:
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∇L(𝑥) ≈
𝑄∑︁
𝑞=1

𝑠𝑖𝑔𝑛(L(𝑥 + 𝜎𝜇𝑞) − L(𝑥))𝜇𝑞, (2)

𝑠𝑖𝑔𝑛(L(𝑥 + 𝜎𝜇) − L(𝑥)) =
{
+1, 𝑓 (𝑥 + 𝜎𝜇) ≠ 𝑦𝑡
−1 𝑓 (𝑥 + 𝜎𝜇) = 𝑦𝑡

(3)

where 𝑥 is the general representation of 𝑥0 + 𝛿 , 𝑞 and 𝑄 denote the
noise index and the total number of noises respectively. 𝜎 is the
search variance and 𝜇 is the noise. The key idea of Sign-Opt is to
search the gradient space using the natural evolution strategy. Since
L(𝑥) is unknown, Sign-Opt queries 𝑓 (·) in Eq. (3). The feedback of
the target model can be collected to measure the number of wrong
predictions. The result will be used to guide Eq. (2) in searching for
the gradient of L(𝑥).
Query-Efficient Fine-tuning: The perturbation generation typ-
ically requires ∼5k queries to craft an AE [16, 19]. To further re-
duce the cost of queries, we design a query-efficient AE generation
scheme to greatly reduce the query number.

By carefully examining the Eq. (2), we realize that the gradient
estimation step depletes most of the queries. Suppose 𝑄 = 50, then
it uses 50 queries to catch the 𝑓 (·) result and estimate gradient
according to Eq. (3). However, Sign-Opt [19] uses the estimated
gradient only once for updating 𝑥 , with a small update learning
rate, while most of the gradient computations are wasted. In our
design, we estimate the gradient once, then apply the estimated
gradient multiple times to update the 𝛿 until it does not satisfy our
attack goal, then do the gradient estimation again.

The workflow of our proposed query efficient phoneme-level
adversarial perturbation generation is shown in Fig. 4. There are
three major steps to generate AEs and perturbations: searching,
proposing, and fine-tuning. In the searching and proposing phases,
unlike the prior study [19] which only searches for random noise
and keeps the shortest initial perturbation while discarding others,
we reserve all the perturbation candidates to increase the genera-
tion speed. In the fine-tuning phase, we optimize all the proposed
perturbations through gradient estimation. Note that there are three
paths from the Query block: 2○ is used to update the perturbation
consecutively until it cannot be further optimized. Then, we will
re-calculate the gradient ( 1○). Once the power of perturbation is
lower than 𝜖 , we add it into the perturbation set 𝑃 ( 3○).

3.3 Weak Synchronization Design
Considering the adversary needs reaction time to play the perturba-
tion, the generated perturbations are demanded to be robust against
the mismatch of insertion positions. To realize such an attack, we
seek to minimize the average loss instead of the instant loss. That is,
we take the impact of mismatch into consideration and expect the
comprehensive loss to be minimized. Mathematically, the average
loss can be expressed as follows:

L(𝑥) = 1
𝑁

𝑁∑︁
𝑖=1

L𝑖 (𝑥), (4)

L𝑖 (𝑥) = L(𝑥 + 𝑐𝜏), (5)
where 𝜏 represents the mismatch interval, 𝑐 controls the length
of a mismatch period, 𝑖 indicates the id of related losses, and 𝑁

is the number of involved L. To minimize the average loss, we
can refer to Eq. (2) and Eq. (3) to estimate ∇L(𝑥) by computing
∇L(𝑥 + 𝑐𝜏). The drawback of the average loss gradient estimation
is that it costs 𝑁× more queries to perform the gradient estimation.
The length of phonemes in 𝐷 varies from 50𝑚𝑠 to 300𝑚𝑠 , and one-
word duration is ranging from 281𝑚𝑠 to 387𝑚𝑠 according to the
report [57]. We expect that the phoneme-level perturbation can
be plugged within the duration of one word, otherwise, it will
be difficult to maintain the minimal L especially when a delayed
perturbation arrives. In this paper, we set the 𝑁 = 4 and 𝜏 = 100𝑚𝑠 .
Fig. 5 depicts the perturbation mismatch scenario: when crafting
the first red perturbation, we gather the other losses by the same
perturbation but with a different time delay. In the figure, L1, L2,
L3 correspond to 𝑐 = 0, 𝑐 = 1, and 𝑐 = 2.

3.4 Over the Air Attack Robustness
Besides the weak synchronization feature, the attack robustness is
another important feature of PhantomSound. Existing work models
the acoustic signal propagation to compensate for the propagation
loss over the air [50]. But the heavy computation prevents them
from being adopted in real time attack. Also, the quality of perturba-
tion relies on the speaker’s amplifier, and the additional distortion
on such small perturbation is hard to model. Inspired by the prior
work [43] who sets a frequency filter to guarantee the generated
perturbation is ranging from 50-8,000 Hz. To guarantee the effec-
tiveness of PhantomSound over the air, we follow their approach on
configuring a frequency filter to mitigate the uneven frequency re-
sponse caused by the hardware imperfection of the speaker, thereby
enhancing the attack robustness.

4 EVALUATION
In this section, we first introduce our benchmark experimental
setting to generate AEs and perturbations. Then, we evaluate Phan-
tomSound thoroughly to validate its feasibility and robustness.
Moreover, we measure the impacts of different parameters in tun-
ing a successful attack. Our attack is successfully launched on four
different ASR service APIs, and the five popular commercial IVC
devices. We further conduct an user case study in section 4.8. This
section describes the results in detail.

4.1 Target Model Selection
Since we are developing a general approach to generate perturba-
tions to attack closed-source ASR systems and commercial devices,
we will examine the effectiveness of AEs and perturbations on the
most popular IVC devices available on the market. Specifically, we
select Google Home (G-H), Google Assistant (G-A), Amazon Echo,
Microsoft Cortana, and IBM WAA1 as target IVC devices. More-
over, we target their respective ASR APIs, namely, Google Cloud
Speech-to-Text API, Microsoft Azure API, Amazon Transcribe API,
and IBM Watson API. As for Apple Siri, since there is no online
speech-to-text API service available fromApple, we cannot perform
PhantomSound due to the lack of querying feedback from its ASR

1WAA represents “Wav-Air-API". As IBM does not own a commercial voice assistant
device, we record and replay our AEs over-the-air, and transcribe them with IBM
Watson API. This process, named as WAA, simulates an IVC device that is integrated
with an IBM Watson API [18].
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system. For all the target systems, we only receive the hard label of

the querying input from their APIs.

4.2 Metrics

We use the following metrics to quantify the effectiveness of our

attack: (1) Success Rate: this metric represents the ratio of successful

attacks and the total attempts. For an untargeted attack, as long as

the AEs and the perturbations alter the prediction of the original

input, we count it as successful. For a targeted attack, we report

success only when the prediction matches the targeted class. (2)

Average queries per command: we use the number of queries to

imply the cost and speed of AE generation. Specifically, we measure

how many queries it needs to craft a perturbation. This metric

is calculated by the total number of queries over the number of

crafted AEs/perturbations. (3) L2 Distortion: the L2 distortion | |𝛿 | |2

indicates the size of perturbations. Prior to the launch of a physical

attack, we can measure the distortion value by summarizing the

squared amplitude of the generated perturbations. Note that the

perturbation 𝛿 ∈ [0, 1]𝑙 and the initial phoneme-level distortion
ranges from 50 to 1,600 depending on different phonemes, which

will be optimized after the perturbation fine-tuning as shown in

Section 4.5. (4) False Accept Rate: the false accept rate is measuring

the probability of that the attacks can be false accepted by the

liveness detection methods. We use this metric to evaluate the

ability of our attacks to bypass the existing defense methods (e.g.

liveness detection) compares to the existing attacks. The higher

false accept rate we achieve, indicating themore dangerous of attack

is, to bypass the existing liveness detection methods.

4.3 Dataset

The dataset we choose as original input is speech commands v0.02 [60]

released by Google Brain. This dataset is designed to validate the

keyword detection capability of DNN models. It contains 105,829

utterances of 35 common one-word commands (e.g., “yes", “learn",

“stop"), which is recorded from 2,618 volunteers. To validate the

effectiveness of PhantomSound on a longer command, we record

10 longer commands (partially listed in Table 4) from a volunteer.

For the phoneme dataset, we expect to obtain all 44 pure Eng-

lish phonemes with flexible duration. Existing speech datasets (e.g.,

Arabic Speech Corpus [32], TIMIT [1]) include the annotations

of phonemes, but it requires extra efforts to extract individual

phonemes with different duration from the speech audio. Besides,

PCVC dataset [2] only involves 12 volunteers, and scikit phoneme

dataset [51] only contains 5 vowels. To construct a phoneme dataset

with a diverse set of speakers, we use 200 different audios from

200 speakers in speech commands v0.02, remove the silence in the

recordings, and randomly cut audio clips with a duration between

50ms to 300ms. This phoneme processing step follows that of the

scikit phoneme dataset [51], which results in 453 audio clips in

total.

Table 2: Dataset description (“unique cmds" refers to the

number of unique target commands, and “total audios" refers

to the total number of (adversarial) audios that lead to the

target commands).

Phone. Cmd. Untargeted Targeted

Unique cmds - 45 1785 64

Total audios 453 300 6,219 216

Table 2 records the number of involved data including phonemes,

commands, untargeted perturbations, and targeted perturbations.

We use 35 one-word commands from the speech commands v0.02

dataset, along with 10 self-recorded long commands to build a com-

mand dataset with 45 different commands, including 300 audios in

total. Then, we apply the proposed algorithm to randomly generate

AEs and perturbations for an untargeted attack, resulting in 1785

different commands and 6,219 adversarial audios on 4 different com-

mercial APIs. For the targeted attack, we attempt the perturbation
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of keywords, and generate 64 target commands with 216 adversarial

audios.

4.4 Experiment Setting

We conduct the experiments on a desktop with Intel i7-7700k CPUs,

32GB RAM, and 64-bit Ubuntu 18.04 LTS operating system. The

experiments are performed at three locations with different noise

floors. We use three loudspeakers, including LG monitor built-in

speaker (at the apartment), an SADA D6 home small speaker (at

the lab), and an Samsung S9 phone (at outdoor), to transmit AEs

(i.e., AE attack) and perturbations (i.e., perturbation attack) to the

victim devices. Figure 12(a) demonstrates the attack scenario: the

victim speaks commands into a smartphone or Google Home mini,

while the attacker plays the perturbation through a speaker.

4.5 Attack Performance

We first evaluate the functionality of AE generation in Phantom-

Sound. The purpose of this evaluation is 1) to demonstrate that the

perturbation amplitude is negligible compared with the input, and

2) to prove the query efficiency of our phoneme-level searching

algorithm. Then, we conduct the physical attack and validate the

robustness of our attack over the air.

Attack Over-the-line:We first evaluate the attack by targeting

the ASR APIs. The adversarial audios are directly supplied to the

online APIs. We randomly select 20 adversarial audios from every

command, and then perform the untargeted attack by searching

for 100 epochs (𝐾 = 100 in Algorithm 1). Then, the generated
perturbations are optimized to suppress their power. In the end, we

obtain 148 AEs and perturbations from ∼44k queries (𝑄 = 30 in
Eq. (2)), i.e., 301 queries per AE on average.

(a) One-word commands (b) Command phrases

Figure 6: Comparison of input and perturbation amplitudes.

To evaluate the perturbation amplitude, we randomly pick two

examples from the generated perturbation as shown in Fig. 6. We

can see that the crafted perturbations have a negligible power pro-

file compared with the input regardless of the length of commands.

Moreover, the duration of perturbation is shorter than the input,

which makes it possible to conceal the presence of perturbation.

Table 3 summarizes the results of the untargeted attacks toward

4 types of commercial APIs. We observe that every command can

be altered into at least two false commands. While some of the

false predictions are harmless, the attack can almost certainly in-

validate the victim’s command. Moreover, in certain cases, some

perturbations can lead to a contrary response from voice assistants

(e.g., “right" to “wrong" in Amazon Transcribe API, “right" to “no"

in Microsoft Azure API). Considering the number of queries for

generating one perturbation, the Google Cloud Speech-to-Text is

reported to be the most resilient API under our attack, as it requires

the most queries.

Table 3: Untargeted attack results.

Cmds.
Google

Cloud

MS

Azure

AMZ

Trans.

IBM

Watson

"down"

"damn" "town" "done" "Downer"

"done" "one" "dine" "Done"

"does" "south" "drive" "Drone"

"follow"

"fallout" "fallout" “no” "fallen"

"farm" "fall over" "for sure" "fall over"

"four" "learn" "phone" "fall"

"forward"

"forewarn" "work" "what" "for"

"for eyes" "for" "work" "four"

"for work" "ford" "for all"

"yes"

"yeah" "file" "yeah" "yeah"

"yeah!" "4" "yes.." "yet"

"yet" "On" "right" "hi"

"right"

"Rite Aid" "no" "write" "run"

"write" "go" "run" "ray"

"read" "trade" "wrong" "left"

Queries 345 251 215 314

To further comprehend the query effectiveness, we conduct an

additional experiment to validate the sensitivity of different APIs in

terms of request rejection rates. The result shows that Google API is

most sensitive as it refuses to respond to an unclear input, while the

Amazon transcribe always responds to any inputs. Table 4 records

the targeted attack results towards a longer input. The results show

Table 4: Targeted attack results

Command Query

Input Target
Google

Cloud

MS

Azure

AMZ

Trans.

IBM

Wat.

"turn right" "turn left" 1,895 1,128 1,421 1,487

"kitchen

lights off"

"kitchen

lights on"
1,754 857 933 1,377

"callmom" "call 911" - 1,421 1,125 -

"read

my

message"

"delete

my

message"
2,342 1,520 1,436 1,781

Average

Queries
1,997 1,232 1,229 1,548

that our phoneme-level searching method is capable of finding the

specific perturbation that could mislead the APIs to return a target

result. Note that the average query amount increases dramatically

in the targeted attack case, which is anticipated because the tar-

get need to be achieved by multiple round perturbation searching

(line 7-10 in Algorithm 1). It is also noteworthy that our targeted

attack cannot guarantee finding a successful perturbation under

any arbitrary inputs (e.g., Google Cloud fails to craft AEs for “call

911").

Query Efficiency Comparison on Known models: To validate

the benefits of introducing phonemes to guide the optimization

direction, we implement 3 different attacks on two known models.

By attacking two ASR models (DeepSpeech 1/DS 1 [33] and Deep-

Speech 2/DS 2 [11]) with different prior knowledge and method,
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Table 5: Comparison for Untargeted Attacks

Models↓ Ours
white

box[14]

score

based[17]

brute

force[12]

DS 1 [33] 185 90 206 ∞

DS 2 [11] 226 75 197 ∞

we find that PhantomSound achieves comparable query efficiency

with the grey box setting, with 100% attack success rate. The result

is summarized in Table 5. Given the same 10 benign commands,

we use the 4 attacks to generate untargeted AEs with the same

𝐿2 distortion. We record the average number of queries for differ-
ent prior knowledge of the victim model. Compares to the white

box attack, which can fine-tune in <90 queries, PhantomSound re-

quests 200 queries to craft an AE, which is close to the queries of

a score-based attack. This result indicates that our strategy such

as 1) using phoneme to initialize perturbation 2) Query-efficient

fine-tuning is working well, and performing similar results with

less information (e.g., confidence score). It is noteworthy that the

brute force decision boundary search method doesn’t work for at-

tacking the ASR model. Because this method initializes a random

noise and retrieves model gradients by altering the noise. However,

this noise can never be fine-tuned while the victim model produces

an empty label to it, resulting in an infinite number of queries.

Table 6: Comparison for Targeted Attacks

Attacks Knowledge Queries SR

Carlini [14] Gradient ∼1,000 100%

Houdini [20] Gradient ∼1,000 100%

Devil’s [18] Conf. Score ∼1,500 100%

OCCAM [69] Final decision ∼30,000 100%

Ours Final decision ∼1,500 68%

Query Efficiency Comparison for Targeted Attacks:We com-

pare the number of required queries with four existing attacks

in Table 6. The white-box attacks (Wb) [13, 20] require the least

amount of queries (∼1,500). With the knowledge of confidence

scores of API’s decoding results, the Devil’s Whisper [18] utilizes

a surrogate model trained with around 1,500 queries to attack the

APIs. In the scenario when an attacker can only access the final

decision of the query API, PhantomSound needs ∼1,500 queries

(comparable with the white-box setting) to craft a targeted pertur-

bation. Compared with a recent black-box attack OCCAM [69], we

reduce the number of queries by 95%. However, due to the limita-

tion of phoneme length and diversity, we sacrifice the success rate

to achieve high query efficiency.

Weak synchronization: Before evaluating the physical attacks,

we investigate the effectiveness of the proposed weak synchro-

nization design. In this experiment, we manually add mismatch

delays between input 𝑥0 and the generated perturbation to craft
mismatched AEs. We then use the mismatched AEs to query the

APIs and measure the attack success rate. Fig. 7(a) displays the

result, from which we can see that, after using the average loss,

although we expect the weak-synchronization works within 400𝑚𝑠
(detailed in Section 3.3), this design is only partially effective, be-

cause the success rate drops steadily with the increasing mismatch

time. Moreover, we show the tendency of L2 distortion w.r.t. the

number of queries in Fig. 7(b). The baseline denotes an L2 distortion

of 10, which is proven unnoticeable by two volunteers when AEs

are played using an LG monitor with a medium volume.

(a) Weak synchronization (b) 𝐿2 Distortion vs. No. of queries

Figure 7: Evaluation of AE generation process.

Attack Over-the-air: The over-the-air attack evaluation aims to

prove the robustness of PhantomSound.

To attack commercial APIs, we play the valid AEs and pertur-

bations (which attack successfully in over-the-line scenarios) via a

SADA D6 speaker, and record it by iPhone 12 Pro, the recordings

are sent to the commercial API for evaluation. The attack distance

is set to 50cm. For each attack, we choose 5 AEs to play 5 times and

get the average success rate. We report the result in Table 7. From

Table 7: Over-the-air attack API baseline

APIs Google Cloud MS Azure AMZ Trans IBM Wat.

Targeted
AE 76% 80% 80% 84%

Pert. 68% 72% 72% 76%

Untargeted
AE 100% 100% 100% 100%

Pert. 72% 80% 80% 92%

our observations, it is apparent that in the context of a targeted

attack, our method attains approximately a ∼ 80% success rate in

attacking over-the-air commercial ASR APIs by directly playing the

audio adversarial example (AE). When the attack is synchronized

with the victim’s speech, the perturbation attack exhibits around a

∼ 72% success rate. On the other hand, when it comes to untargeted

attacks, our adversarial examples (AE) and perturbation methods

achieve impressively high success rates. They misdirect the victim’s

input with a 100% and approximately 81% success rate, respectively.

Next, we follow the same setting to attack commercial IVC devices.

The result in Fig. 8(a) uncovers the success rate of playing AEs

directly. Among all the tested IVC devices, Microsoft Cortana is

most vulnerable against the AE attack, while the Google series

products (e.g., Google Home, Google Assistant) show the most

resilience against the targeted AE attack. Overall, the success rate

of an untargeted attack is higher than that of a targeted one, i.e.,

the former reaches ∼80% success rate and the latter stays around

∼50%. With the perturbation attack, Fig. 8(b) reveals a relatively low

success rate. Similarly, compared to the targeted perturbation attack,

the untargeted attack has a higher success probability, achieving

around 45% success rate on average. Nevertheless, the success rate

can be further improved via multiple repeated attempts. We also
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(a) AE attack (b) Perturbation attack (c) Distance (d) Loudness

Figure 8: AE generation results.

Table 8: Comparison with other real-world attacks

Target
Google

Cloud

MS

Azure

AMZ

Trans.

IBM

Wat.

Google

Home

Google

Assit.

MS

Cortana

AMZ

Echo

Devil’s [18] 10/10 10/10 4/10 10/10 9/10 10/10 10/10 10/10

Danger [68] - - - - 15/100 - - 69/100

Ours 19/25 20/25 20/25 21/25 11/25 12/25 16/25 16/25

summarize the success rate compared to prior black-box attacks in

Table 9.

Upon comparison with the Devil’s attack [18], it is evident that

our attack method yields a marginally lower success rate against

the APIs, with the exception of the Amazon Transcribe API. Consid-

ering the IVC devices, the Devil’s attack tends to be more effective

at similar SNR levels. For the Danger attack [68], we have displayed

their success rate derived from their "voice squatting" attack, where

the victim’s command is misinterpreted to initiate the attack skill.

A comparison reveals that our attack technique yields comparable

success rates when targeting Amazon Echo, and even demonstrates

superior performance when used to attack Google Home.

Table 9: Latency for perturbation generation

Time

Consumption

Google

Cloud

MS

Azure

AMZ

Trans.

IBM

Wat.

Latency (s) 0.29 0.58 26.31 1.35

Untargeted (min) 1.67 2.43 94.3 7.1

Targeted (min) 9.65 11.9 539 34.8

TimeCost:Different from the prior works that require a substantial

amount of time to craft AEs offline, PhantomSound enables much

faster AE generation. Such a fast generation feature is essential in

practice, when the attackers only have a limited time budget to

instantiate the attack.

In the experiment, we record the latency for querying 4 different

commercial APIs to get the results. The results are presented in

the first row of Table 9, which show that 3/4 of APIs could return

a result in seconds, except Amazon Transcribe API. The Amazon

API has to interact with Amazon Web Service and Storage bucket,

which spends a longer period for the results to return.

We then compute the total time needed for perturbation genera-

tion, by multiplying latency with the number of queries (shown in

Table 3, 4). Our result shows that PhantomSound can generate a

perturbation for both the targeted and untargeted attacks in min-

utes with the exception of Amazon API, while the targeted one

takes longer. Note that we take the 𝐿2 distortion into consideration
during the time cost computation, however, if the attacker ignores

the impact of the perturbation loudness and uses the intermediate

perturbation, the generation time can be further reduced.

Figure 9: Attacks vs. liveness detection defenses

4.6 Ability to Bypass Liveness detection

Compares to the existing physical adversarial attacks [18, 64, 69],

PhantomSound relies on the benign commands spoken by the user.

Although this attack setting requires extra effort to synchronize

the perturbation and the user’s benign speech, it brings potential

benefits to bypassing the defense mechanism. For example, recent

works [5, 28, 38, 40, 42, 45] proposed liveness detection approaches

can differentiate the source of sound (human or machine) with high

accuracy. Therefore, the conventional adversarial attacks that are

launched solely by loudspeaker [18, 64, 69] have a higher probability

to be defended by those liveness detection methods. In contrast,

our attack is designed to launch with the user’s speech, leading

to a more dangerous threat to the liveness detection defenses. To

validate the performance of PhantomSound over different defense

mechanisms, we reproduce three liveness detection algorithms,

CQCC [38], STC [40], and Void [5]; For comparison, we implement

C&W attack [14] and Devil’s [18]to attack with liveness detection

algorithms. The detailed liveness detection methods can be found

in Appendix A. To conduct this experiment, we follow the settings

described as follows:

Ours:We play our perturbation when the user gives the command,

and record it with a smartphone. Then, we run three liveness de-

tection algorithms to detect the sound source.
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C&W [14]:We play the AEs that are generated by this attack, and

then record with the same smartphone and run liveness detection

algorithms to defend it.

Devil’s [18]:We play the AEs provided from the paper’s demon-

stration website, and then record it with the same smartphone,

followed by the same liveness detection procedure.

For our attack and the C&W attack, we use 20 different perturba-

tions/AEs to attack the liveness detection model; As for the Devil’s

attack, since we can only collect 10 AEs from the demonstration

website, we use 10 AEs to attack the liveness detection model. We

present our result in Fig. 9. It is evident to show that our attack can

bypass the three liveness detection models, resulting 95% to 100%

false accept rate. In contrast, the other two attacks have a very low

chance to counter the Void [5] detection with less than 15% FAR.

Even for conventional liveness detection methods (e.g., CQCC and

STC), the existing attacks that use complete AEs also have a low

probability ( 40%) to attack successfully.

4.7 Impact of Practical Factors

To investigate the critical factors that may affect the success rate of

PhantomSound, we evaluate the perturbation attack under different

environments (e.g., apartment, lab, outdoor). The ambient noise

level for the aforementioned places are 39.8 𝑑𝐵𝑆𝑃𝐿 (apartment), 41.2
𝑑𝐵𝑆𝑃𝐿 (lab) and 58 𝑑𝐵𝑆𝑃𝐿 (outdoor), respectively.
In this experiment, we play a crafted perturbation of “turn right"

10 times, attempting to transform the prediction into “turn left",

and the volume of perturbation is 60 𝑑𝑏𝑆𝑃𝐿 . We then record the
success rate under different circumstances. Fig. 8(c) demonstrates

the impact of attack distances, i.e., the closer the adversary is, the

higher success rate he/she achieves, which is unsurprising given

that our attack relies on the successful delivery of the perturbation.

The relatively short attack distance is in fact a common limitation

reported by the existing work [18, 43, 64]. However, the attacker

can further extend the attack distance by increasing the speaker’s

volume (though it could make the perturbation more noticeable)

or utilizing a speaker array [49]. Next, we provide the results on

how the loudness factor could affect the attack performance in

Fig. 8(d). We can see that the success rate improves with the in-

creasing perturbation loudness. This result also coincides with the

prior work [43]. In an outdoor environment, it is suggested that the

adversary enhance the attack robustness by amplifying the pertur-

bations. Due to the higher noise level outdoors, the phoneme-like

perturbation can still be hard to perceive.

(a) Attack Angle iPhone 12Pro (b) Attack Angle Mi 8 Lite

Figure 10: Attack with different angles

Impact of Attack Angles: Besides the attack environments and

the distance, the attack angle can also alter the attack performance.

We evaluate our attack by playing AEs to two smartphones in 12

different directions (from 0 degrees to 360 degrees, with 30-degree

intervals). This experiment is conducted in Lab environment and

attacks the google assistant on the smartphone. We play 10 AEs

in every direction with 60𝑑𝐵𝑆𝑃𝐿 , and record the success rate of
the untargeted attack. We report our result in Fig. 10. We find

that our attack has the best performance when the adversary is

facing or back to the smartphone. While attacking through the

side direction (e.g., 0 degrees when the adversary is parallel to the

victim), the success rate is impaired. We observe the same trend

on two smartphones. This result indicates that the microphone

arrangement and its direction will lead to audio information loss.

Unfortunately, the low power of our perturbation is hard to be

sensed with the audio loss, therefore causing a low success rate in

the side direction.

Impact of Different victims: In the attack preparation period,

every perturbation is crafted based on a specific command from a

specific speaker. However, the adversary may use the crafted pertur-

bation on the previous victim to attack the current victim. Here, we

evaluate the capability of PhantomSound to attack different speak-

ers. First, we obtain 4 perturbations from speaker #1 (male), which

convert the benign commands "stop", "right", "yes", and "down" into

4 target commands "backward", "left", "no" and "song" respectively.

Next, we randomly select 100 speakers (50 males and 50 females)

who are not speaker #1 from the speech commands v0.02 dataset,

and inject the perturbations into their benign audio samples. For

the targeted attack, if the benign commands are successfully inter-

preted as the target, we classify it as successful. For the untargeted

attack, any case where the benign commands are misinterpreted is

considered successful. The result is present in Fig. 11.

(a) Targeted attack (b) Untargeted attack

Figure 11: Attack cross different victims

The result indicates that, for targeted attacks, the attack success

rate is dependent on the benign samples. The success rate exceeds

50% when the target is of the same gender, but it falls below 40%

when targeting different genders. Regarding the untargeted attacks,

the perturbations demonstrate robust transferability for attacking

various speakers. The average success rate is notably high, reaching

98% for males and 74% for females.

4.8 User Study

To evaluate the stealthiness of perturbation in a real-world attack,

we conduct an online/in-person user study to investigate the users’
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perception level of PhantomSound. In our study, 20 volunteers are

involved, and they are requested to hear 6 crafted perturbations

across 4 different distances. Two volunteers attend the in-person

experiment (see Fig. 12(a)) and the rest of them carry out the ex-

periment at their homes. We recruit 13 volunteers from Amazon

Mechanical Turk with complete experimental instructions. The

experiment setup detail can be found at Appendix B.

The volunteers are asked to pretend speaking to their voice assis-

tants while hearing the perturbation, after which they will answer

questions to depict their comprehension of the heard perturbations.

The options for perception levels include: Listened, Abnormal, and

Recognize. Listened indicates that the volunteer can hear a pertur-

bation but regard it as a normal noise; Abnormal implies that they

hear some strange sounds; and Recognize stipulates that they can

understand the meaning of the heard sound. We report the experi-

ment result in Fig. 12(b). It shows that most of the participants can

hear the perturbation within a short distance, but less than 50% of

them regard the perturbation as an abnormal sound. Such “abnor-

mality" feeling will gradually disappear with the increasing attack

range, which ends with 10% in 2 meters. Moreover, even though all

the perturbations are “meaningless" phonemes, some participants

claim to understand their meanings (though the understanding is

incorrect). To summarize, PhantomSound can be noticed by victims,

but would not vastly raise their attentions. Notably, the victims are

generally unaware of the meaning of perturbations.

Victim

Laptop

Smart
Phone

Speaker
Google

Home Mini

(a) Experiment setup (b) Users’ perception level of
PhantomSound

Figure 12: Real-world user study of PhantomSound.

5 DISCUSSION

5.1 Low-cost Attack

Table 10 lists the cost comparison between PhantomSound and the

existing work [18]. The first row records the pricing information of

the commercial APIs, which is measured by the duration of given

audios (in minutes). The recent black-box attack [18] is reported to

incur the cost of 1,500 queries for building the substitute models,

and every query uses an audio with 25 seconds long. In total, such

an attack requires 1500 ∗ 25/60 = 625 minutes to train a surro-
gate model, and can only generate 10 pre-selected commands. To

generate extra commands, the attacker needs to submit additional

queries (∼100) for the candidate AEs. Suppose the length of candi-

date AEs is 6 seconds, the total time cost for generating extra AEs

is 6 ∗ 100/60 = 10 minutes. All together, the duration of queried
audio is 72.5 minutes for producing one single AE. In contrast,

PhantomSound does not require a substitute model, and as such, it

only takes ∼300 queries and ∼2,000 queries of one-second audios

to craft an untargeted AE (Ours-U) and a targeted AE (Ours-T)

respectively. We then present the cost to generate one AE based

on the pricing and the query audio length (shown in row 4 and 5).

In the end, PhantomSound saves 93.1% and 65.5% of the cost for
crafting an AE, a drastic improvement.

5.2 Limitations

The limitation of PhantomSound includes that: 1) the attack is

sensitive to ambient noise; 2) there is no guarantee to generate an

AE for any input and any target; 3) this attack could not substantially

modify very long sentences; 4) the attack distance is relatively

short as presented in Section 4.7. To address the first and the forth

limitation, the adversary can either amplify the perturbation power

or attack the victim in a relatively quiet place. The second and

third limitations are possibly addressed using multiple repeated

attempts of phoneme injections, which will increase the likelihood

of generating a successful perturbation with a potential caveat of

growing costs.

Table 10: Cost comparison

Google MS AMZ IBM

Pricing/min $0.024 $0.016 $0.024 $0.01

Build model [18] 625 min

Craft AE [18] 10 min

Total time/AE [18] 72.5 min

Total time/AE (Ours) 5 min - 25 min

Cost/AE [18] $1.74 $1.16 $1.74 $0.725

Cost/AE (Ours-U) $0.12 $0.08 $0.12 $0.05

Cost/AE (Ours-T) $0.6 $0.4 $0.6 $0.25

Saving/AE (Ours) 93.1%/65.5%

5.3 Defense

Prior studies [43, 63, 64] reveal that the audio adversarial attack can

be defended by signal processing techniques, since the adversarial

perturbations are delicately crafted and hence are deemed fragile.

The signal processing techniques, however, can reduce the fidelity

of perturbations and hence protecting the ASR models. Typical

signal processing defense methods include 1) Down sampling (DS):

decreasing the sampling rate of AEs to disrupt the quality of AEs [43,

63, 64]; 2) Quantization: as the original AEs are encoded by 16-

bit values, the quantization technique rounds the 16-bit precise

value to its nearest integer multiple of 𝑄 , where 𝑄 represents the
quantization level. A higher 𝑄 results in a lower precision of AEs,
which has been adopted to defend against the attacks [43, 63]. 3)

Low pass filtering (LFP): the defense can use a Butterworth low-pass

filter with different cutoff frequencies to remove the high-frequency

components of the perturbations [43].

We reproduce the aforementioned three defense methods to

test their effectiveness against PhantomSound. Specifically, for DS

approach, we modify the sampling rate of AEs from 16k to 8k and

4k. In the quantization setting, we follow the existing work [43] to

set𝑄 as 256, 512, and 1,024. Then, we build a Butterworth low-pass
filter with a cutoff frequency of 4kHz, and set the order of the filter

as 6. To validate the defense performance comprehensively, we

generate 1,190 AEs from 20 clean audio samples and process them

with 6 different defense settings.
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(a) Defense performance of down sam-
pling and low pass filter

(b) Defense performance of quantization

Figure 13: Performance of PhantomSound against different

defenses.

We use the processed AEs to attack 4 commercial ASR APIs, and

present the results in Fig. 13. Fig. 13(a) shows that LPF can barely

impact the attack success rate of AEs and APIs. For comparison, the

DS technique slightly changes the attack success rate from 100% to

92.4% (Microsoft), 71.4% (IBM), 87.5% (Amazon), and 63.3% (Google).

This method can further reduce the success rate by applying a lower

sampling rate (e.g., with 4k sampling rate, the IBM and Amazon

API can defend against ∼60% attacks, while the Google API is not

supported for the audio input with such a low sampling rate. Differ-

ent from the findings from previous work [43, 63] that quantization

is effective in defending against the adversarial attack, our results

show a converse performance. From Fig. 13(b), we observe that only

the IBM API can be affected by the quantization, which reduces

the success rate to 73%, 61%, and 47% for q=256, 512, and 1,024,

respectively. To summarize, our results demonstrate that the exist-

ing signal processing-based defense approaches cannot protect the

commercial APIs from PhantomSound. Future research on defense

mechanisms are needed to provide more secure speech-to-text and

voice assistance services.

5.4 Ethical Issues

The intention behind publishing this work is to enlighten the aca-

demic and tech community about the vulnerabilities of commercial

ASR APIs and smart speakers, it may also provide malicious ac-

tors with the knowledge and tools to exploit these vulnerabilities

for harmful purposes, such as privacy invasion, identity theft, or

unauthorized control of connected devices. If the findings of this

paper are misused, malicious actors could potentially manipulate

smart speakers into sharing sensitive information or performing

unauthorized actions, there may be potential financial and repu-

tational harm to individuals and corporations. To address these

ethical concerns, it would be advisable to collaborate with manu-

facturers of smart speakers to design effective countermeasures to

defend against this attack.

6 RELATEDWORK

The study of adversarial attacks starts from the discovery of in-

triguing properties of the neural networks around 2014 [21, 54].

Researchers manually or automatically add small perturbations to

the input and thereby misleading the neural network models.

Adversarial Attacks against ASR Systems: Existing work [7, 14,

20, 48] has proposed different optimization algorithms to craft effec-

tive AEs towards ASR models with some knowledge of the victim’s

ASR model (e.g., prediction scores or logits output). However, the

robustness of their attack approaches in a real-world over-the-air

scenario is usually unverified. The recent physical attacks such as

CommanderSong [64], Devil’s Whisper [18], and AdvPulse [43]

require a substantial cost (in time and money) for the attackers to

succeed in attacking the black-box voice assistants.

Signal Processing Attacks: Rather than exploiting the vulnera-

bilities of neural networks in ASR systems, the signal processing

attacks aim at attacking the signal pre-processing or feature ex-

traction modules. They usually exploit the discrepancies between

the human auditory system and the perceptual hearing system of

microphones to fool the ASR system. These attacks analyze the

input and output of the feature extraction procedure, and then they

modify the input of feature extraction and preserve the shape of

output to either hide their attack [3] or mislead the ASR system in

producing incorrect transcriptions [4]. Even though the existing

signal processing attacks demonstrate the efficiency and effective-

ness against the black-box models, it is relatively straightforward

to defend against using frequency filters.

AudioBackdoorAttacks:Different from adversarial attackswhich

attack a trained model, backdoor attacks [26, 31, 44] inject backdoor

triggers during the training process. Recently, researchers demon-

strated that the backdoor attack [52, 65] can also be implemented in

the ASR model and Speaker Verification models. To defend against

the backdoor attacks in the image domain, several countermeasures

are proposed [29, 30].

Other Related Works: Some attackers exploit the imperfection of

hardware (e.g., microphone) to deliver inaudible attacks through

different media [41, 53, 62, 67]. Besides, Danger [68] uses homo-

phones (i.e., different words with similar sounds) to attack ASR

skills. Researchers also develop side-channel attack [59] by inject-

ing voice commands through a power line. Speech synthesis attack

produces victim’s fake speech by generative models [61]. To protect

the victim’s original speech, researchers add perturbations( [35, 58])

to prevent the generating of deep fake speech.

7 CONCLUSION

In this work, we proposed PhantomSound, a practical, black-box,

and query efficient audio attack against commercial ASR systems

and IVC devices in a real-world scenario. As opposed to the exist-

ing attacks that require prior knowledge of the target model, we

propose a phoneme-level searching method to generate AEs and

perturbations rapidly and effectively in a black-box setting. In the

real-world experiments, PhantomSound is shown to be practical

and robust in attacking 5 popular commercial voice controllable

devices over the air, which could potentially cause hazard to the

smart home.
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APPENDIX
A LIVENESS DETECTION METHODS
The first liveness detection model [38] (CQCC) is the baseline model
of the ASVSpoof challenge, which uses constant-Q cepstral coef-
ficients (CQCC) features and Gaussian Mixture Model (GMM) to
separate the natural and replayed human speech. The second detec-
tion, STC [40] won the ASVSpoof 2017 challenge, which exploits a
Light Convolutional Neural Network (LCNN) to perform detection.
The third model called Void [5] is a fast and high efficient detection
algorithm proposed recently. It considers novel spectrogram fea-
tures such as spectrogram delay patterns, peak patterns, and Linear
Prediction Cepstrum coefficient (LPCC) to achieve state-of-the-art
detection accuracy 2.

2We skip some more advanced liveness detection approaches such as [28, 42, 45]
because they require extra hardware to facilitate the detection.

B USER STUDY SETUP
We recruit 7 volunteers from our institute and 13 volunteers from
Amazon Mechanical Turk. Before the experiment, we informed
them that their name, voice, and other personal information would
not be recorded. We would only release the statistical data about
reactions to our attack. For 2 in-person volunteers, we played 6
crafted perturbations at 4 different distances while they were speak-
ing to the smart speaker. For the 5 volunteers from our institute and
the 13 volunteers from the MTurk, we asked them to complete the
hearing screening before the experiment. Then, we sent them the 6
perturbations and asked them to play the perturbation toward their
smart speakers at 4 different distances. To ensure that all the results
are valid, we verified that there were no random responses (e.g.,
“listened" at a far distance but not at a close distance; “recognized"
but not “listened"). Every experiment took ∼10 minutes because
some subjects reported that they would need to play perturbations
multiple times before determining an answer.
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