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We propose a new formula for the entropy of a dynamical black hole—valid to leading order for
perturbations off of a stationary black hole background—in an arbitrary classical diffeomorphism covariant
Lagrangian theory of gravity in n dimensions. In stationary eras, this formula agrees with the usual Noether
charge formula, but in nonstationary eras, we obtain a nontrivial correction term. In particular, in general
relativity, our formula for the entropy of a dynamical black hole differs from the standard Bekenstein-
Hawking formula A=4 by a term involving the integral of the expansion of the null generators of the
horizon. We show that, to leading perturbative order, our dynamical entropy in general relativity is equal to
1=4 of the area of the apparent horizon. Our formula for entropy in a general theory of gravity is obtained
from the requirement that a “local physical process version” of the first law of black hole thermodynamics
hold for perturbations of a stationary black hole. It follows immediately that for first order perturbations
sourced by external matter that satisfies the null energy condition, our entropy obeys the second law of
black hole thermodynamics. For vacuum perturbations, the leading-order change in entropy occurs at
second order in perturbation theory, and the second law is obeyed at leading order if and only if the
modified canonical energy flux is positive (as is the case in general relativity but presumably would not
hold in more general theories of gravity). Our formula for the entropy of a dynamical black hole differs
from a formula proposed independently by Dong and by Wall. We obtain the general relationship between
their formula and ours. We then consider the generalized second law in semiclassical gravity for first order
perturbations of a stationary black hole. We show that the validity of the quantum null energy condition
(QNEC) on a Killing horizon is equivalent to the generalized second law using our notion of black hole
entropy but using a modified notion of von Neumann entropy for matter. On the other hand, the generalized
second law for the Dong-Wall entropy is equivalent to an integrated version of QNEC, using the
unmodified von Neumann entropy for the entropy of matter.
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I. INTRODUCTION

The discoveries that black holes obey laws of thermo-
dynamics [1], radiate thermally [2], and should be assigned
an entropy [3], provide some of the deepest insights we
presently have on the fundamental nature of black holes
within a quantum theory of gravity. A formula for the
entropy of a stationary black hole in an arbitrary theory of
gravity obtained from a diffeomorphism covariant

Lagrangian was obtained in [4]. However, the derivation
of [4] required evaluation of the entropy on the bifurcation
surface, B, of the black hole, thus restricting the validity of
the formula for entropy to stationary black holes and their
linear perturbations, evaluated at the “time” represented by
B. It is of considerable interest to obtain an expression for
the entropy of a nonstationary black hole in a general
theory of gravity at a “time” represented by an arbitrary
cross section C, since this would allow one to investigate
whether, classically, black hole entropy satisfies a second
law (i.e., whether it is nondecreasing with time) and
whether, semiclassically, black hole entropy satisfies a
generalized second law (i.e., whether the sum of black
hole entropy and a matter contribution to entropy is
nondecreasing). A formula for dynamical black hole
entropy in a general theory of gravity on an arbitrary cross
section C was proposed in [4]. However, that proposed
dynamical entropy formula is not field redefinition
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invariant, and the authors retracted their proposal in a “note
in proof” in the published version of [4]. Subsequently,
proposed prescriptions for dynamical black hole entropy
were given independently by Dong [5] and Wall [6]. The
Dong and Wall entropy formulas agree for perturbations of
a stationary black hole in the cases where both have been
evaluated and are expected to correspond generally at
leading order in metric perturbations, although this has
not been proven. We will refer to their proposal for
dynamical black hole entropy as the Dong-Wall entropy.
The main aim of this paper is to apply a new strategy to

the definition of dynamical black hole entropy, based upon
the validity of a local, “physical process version” of the first
law of black hole mechanics. Since this law is valid only at
leading nontrivial order in perturbation theory about a
stationary black hole, our resulting definition of dynamical
black hole entropy, S½C�, on an arbitrary cross section, C, of
the black hole horizon is intended to be applied only at
leading nontrivial order in perturbation theory about a
stationary black hole. Our formula does not agree with the
Dong-Wall entropy, but, as we will elucidate in Sec. VI,
there is a close relationship between our formula and theirs.
Furthermore, in the case of general relativity, we obtain a
nontrivial dynamical correction to the Bekenstein-Hawking
entropy formula; namely, we obtain

S½C� ¼ A½C�
4

−
1

4

Z

C

Vϑ; ð1Þ

where A½C� is the area of the cross section C [so A½C�=4 is
the usual Bekenstein-Hawking entropy], V is an affine
parameter of the null generators of the horizon (with V ¼ 0

corresponding to the bifurcation surface B), and ϑ is the
expansion of these generators with respect to this affine
parametrization.
In the remainder of this introductory section,we shall give

an outline of our strategy that leads to our new dynamical
entropy formula and explain some of the key features of our
formula. To begin, we recall that the derivation of [4]
of the entropy of a stationary black hole follows from a
“fundamental identity” [see (30) below] that holds in an
arbitrary theory of gravity obtained from a diffeomorphism
covariant Lagrangian. For source-free perturbations of a
stationary black hole whose event horizon is a Killing
horizon, the fundamental identity reduces to

d½δQ½ξ� − ξ · θðϕ; δϕÞ� ¼ 0: ð2Þ

Here ξa denotes the horizonKilling field,Q½ξ� is theNoether
charge associated with ξ, θ denotes the symplectic potential,
and ϕ collectively denotes all of the dynamical fields (i.e.,
the metric together with any matter fields appearing in the
Lagrangian). Integration of this equation over a spacelike
hypersurfaceΣ that extends from the bifurcation surfaceB of
the black hole to infinity yields

Z

B

δQ½ξ� ¼ δM −ΩHδJ: ð3Þ

Here the right side is the boundary term from infinity
resulting from integration of (2) and it involves the mass,
M, and angular momentum, J, at spatial infinity (with ΩH

being angular velocity of the horizon, which enters the
expression when one expresses ξa in terms of asymptotic
time translations and rotations). The left side is the boundary
term at B; very importantly, there is no contribution to this
term from ξ · θ because ξa ¼ 0 on B. We define

S≡
2π

κ

Z

B

Q½ξ�; ð4Þ

where κ denotes the surface gravity of the black hole (so that
κ=2π is theHawking temperature of the black hole). It can be
shown that S is a local, geometrical quantity [4]. We thereby
obtain the first law of black hole mechanics for arbitrary
source-free perturbations of a stationary black hole,

κ

2π
δS ¼ δM −ΩHδJ: ð5Þ

This formula gives S the interpretation of representing the
entropy of the black hole, valid to first order for perturba-
tions of a stationary black hole.
However, as already mentioned above, (4) has the

deficiency that the horizon boundary term is evaluated at
the bifurcation surface, B, and, thus, S has the interpretation
of representing the entropy, S½B�, of the black hole only at
the “time” corresponding to B. This deficiency is not of
importance for a stationary black hole, since the entropy
should be “time independent,” i.e., independent of the cross
section of the horizon of the black hole at which it is
evaluated. However, for a nonstationary black hole, the
entropy should evolve with time, and one would like to
have an expression for the entropy, S½C�, on an arbitrary
cross section, C.
An expression for S½C� that would satisfy the first law of

black hole mechanics would be obtained if we could define
S½C� so that

δS½C� ¼ 2π

κ

Z

C

δQ½ξ� − ξ · θðϕ; δϕÞ: ð6Þ

If, on the event horizon H, the pullback, θ, of the
symplectic potential θ were of the form θ ¼ δBH for some
quantity BH defined on H, then the desired quantity S½C�
could be defined by

S½C� ¼ 2π

κ

Z

C

ðQ½ξ� − ξ · BHÞ: ð7Þ

However, it is not possible for θ to be of the form of a total
variation δBH on H in general because such a form would
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imply that the symplectic current flux through the horizon
would vanish identically (since the symplectic current is the
antisymmetrized second variation of θ), which is not the
case. Indeed, it was for this reason that [4] defined the
entropy via (4) only on the bifurcation surface B.
A similar issue arises for the definition of ADM mass,

M, at spatial infinity with respect to an asymptotic time
translation ta. One wishes to define M so that it is the
Hamiltonian conjugate to ta, i.e., so that it generates
asymptotic time translations on phase space. This leads
to the requirement that under asymptotically flat perturba-
tions of any asymptotically flat background solution, we
have [4]

δM ¼
Z

∞

δQ½t� − t · θðϕ; δϕÞ ð8Þ

where “∞” denotes that the integral is taken over a sphere
that approaches spatial infinity. However, in this case, as
one approaches spatial infinity, the symplectic current goes
to zero sufficiently rapidly that the symplectic current flux
vanishes. Thus, there is no obstruction to finding a quantity
B∞ such that to leading asymptotic order

θ ¼ δB∞ ð9Þ

and such a B∞ can be explicitly found [4]. One may then
define the ADM mass as

M ¼
Z

∞

ðQ½t� − t ·B∞Þ ð10Þ

and, thus, there is no difficulty in defining a quantityM that
satisfies the desired relation (8).
The problem of defining dynamical black hole entropy is

much more analogous to the problem of defining the Bondi
mass, MB, at null infinity Iþ. Here, the symplectic current
flux does not, in general, vanish at null infinity, so an
analog of (9) cannot hold in general. Nevertheless, it was
found in [7] that one could find another symplectic
potential θ0ðϕ; δϕÞ for the pullback of the symplectic
current to Iþ with the property that θ0 ¼ 0 in a stationary
background ϕ. The authors of [7] then defined BIþ by

θ − θ0 ¼ δBIþ ; ð11Þ

where θ denotes the pullback of θ to Iþ. They then defined
the Bondi mass relative to an asymptotic time translation ta

on a cross section, C, of Iþ by

MB½C� ¼
Z

C

ðQ½t� − t · BIþÞ: ð12Þ

In this case, MB does not satisfy (8) in general—since, in
general, there is no solution to this equation—but it does

satisfy (8) for perturbations off of a stationary background
spacetime.
In this paper, we will apply the strategy of [7] to the

definition of dynamical black hole entropy. We will prove
that for first-order perturbations of a stationary black hole,
there exists a quantityBH defined on the black hole horizon
that satisfies1

θ b¼ δBH; ð13Þ

where θ denotes the pullback of θ to H and “ b¼ ” denotes
that the equality holds only on the horizonH. This enables
us to define dynamical black hole entropy via (7). For first-
order vacuum perturbations of stationary black hole, it
follows immediately from integration of (2) over a hyper-
surface that extends from an arbitrary cross section C of the
horizon to spatial infinity that

κ

2π
δS½C� ¼ δM −ΩHδJ; ð14Þ

i.e., the first law of black hole mechanics holds for an
arbitrary cross section. However, it also follows that
δS½C� ¼ δS½B�, i.e., for vacuum perturbations of a stationary
black hole, the entropy is “time independent” to first order
and is equal to the entropy of [4]. In order to obtain a
nontrivial time variation of black hole entropy, we must
either work to second order in perturbation theory in the
vacuum case or allow an external stress-energy, δTab, to be
present in the first-order perturbation. As will be discussed
in Sec. V B, the results in the vacuum case at second order
are closely analogous to the first-order results with an
external stress-energy, with the perturbed matter stress-
energy δTab replaced by the second-order modified canoni-
cal energy [8] of the gravitational field. For simplicity, we
describe only the first-order results with an external stress-
energy in the discussion below.
When an external stress-energy δTab is present, the

fundamental identity (2) on the black hole horizon becomes

d½δQ½ξ� − ξ · θðϕ; δϕÞ� ¼ −ξaδCa; ð15Þ

where, restoring the form indices, δCa is given by

δCaa1���an−1 ¼ δTaeϵ
e
a1���an−1 ; ð16Þ

where ϵa1���an is the spacetime volume n-form. The change
in the dynamical entropy with “time” (i.e., its dependence
on the cross section C) can be seen by integrating (15) over
the portion of the horizon, H12, bounded by cross sections
C1 and C2, where we take C2 to lie to the future of C1. Using

1Note that this is equivalent to the Wald-Zoupas requirement
for the existence of a θ0 that satisfies (11) and vanishes for a
stationary background, since for a nonstationary background, one
could define θ0 ¼ θ − δBH.
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θ ¼ δBH, we obtain

κ

2π
ðδS½C2� − δS½C1�Þ ¼

Z

H12

−ξaδCa

¼
Z

H12

δTabξ
akb

ffiffiffi
h

p
dVdn−2x; ð17Þ

where ka is the tangent to the affinely parametrized
generators of the horizon. Thus, we obtain

κ

2π
ΔδS ¼ ΔδE; ð18Þ

where ΔδS is the first-order entropy difference between
“times” C2 and C1, and ΔδE is the first-order matter energy
flux (relative to the horizon Killing field ξa) through
the horizon between these “times”. Since κ=2π is the
temperature of the black hole, this has exactly the form
of the “physical process” version of the first law of black
hole mechanics [9]. Equation (18) is valid for first-order
perturbations with matter sources off of a stationary black
hole in an arbitrary theory of gravity obtained from a
diffeomorphism covariant Lagrangian.
If the matter stress-energy satisfies the null energy

condition, then δTabξ
akb ≥ 0. It then follows immediately

from (18) that our definition of entropy satisfies the
classical second law ΔδS ≥ 0 for first-order perturbations.
For source-free first-order perturbations, we have ΔδS ¼ 0,
so the leading-order change in entropy occurs at second
order. As previously mentioned, we will show in Sec. V B
that the entropy is nondecreasing with time at second order
if and only if the modified canonical energy is non-negative
at second order. This is the case in general relativity but
would not be expected to hold in more general theories of
gravity.
For the case of general relativity, the term −ξ · BH

appearing in (7) gives rise to the “dynamical correction
term” to the Bekenstein-Hawking entropy given in (1). This
correction term makes S½C� smaller than the Bekenstein-
Hawking entropy. It follows immediately from (18) that, to
first order, our entropy increases only when matter crosses
the horizon. This contrasts with the Bekenstein-Hawking
entropy, which increases before matter is thrown into the
black hole since the event horizon is teleologically defined
and moves outward in anticipation of matter being thrown
in at a later time. We show in Appendix A that, to first
order, our entropy (1) is, in fact, the area of the apparent
horizon corresponding to “time” C, and thus can be
determined locally, without knowledge of the future
behavior of the spacetime.
As previously mentioned, our formula for dynamical

black hole entropy differs from the Dong-Wall formula.
However, we show in Sec. VI that there is a close
relationship between our notion of entropy and the
Dong-Wall entropy SDW. If, for simplicity, we consider

the entropy S½V� evaluated on a cross section of constant
affine time V, then we have

S½V� ¼ SDW½V� − V
d

dV
SDW½V�: ð19Þ

In particular, we have

d

dV
S ¼ −V

d2

dV2
SDW: ð20Þ

As we shall see in Sec. VII, the fact that the first derivative
of our entropy is related to the second derivative of the
Dong-Wall entropy will play an important role in the
analysis of the generalized second law and its relationship
to the quantum null energy condition (QNEC). We will
show that with our notion of entropy, the generalized
second law is equivalent to QNEC, but with a dynamical
correction to the von Neumann entropy. On the other hand,
with the Dong-Wall notion of entropy, the generalized
second law is equivalent to an integrated version of QNEC,
using the unmodified notion of von Neumann entropy of
matter.
In Sec. II, we give the necessary background material on

the Lagrangian formalism that we will be using throughout
the paper and we also define our tetrad choice and specify
our gauge conditions on the horizon. In Sec. III, we prove
that for perturbations of a stationary black hole whose event
horizon is a bifurcate Killing horizon, there exists a
quantity BH such that θ b¼ δBH. This enables us to give
a general definition of dynamical black hole entropy and
elucidate its properties in Sec. IV. We derive the physical
process version of the first law of black hole mechanics in
Sec. V for both external matter perturbations and vacuum
perturbations and discuss its implications for the second
law. The relationship of our notion of entropy with the
Dong-Wall entropy is analyzed in Sec. VI. The generalized
second law and its relationship to QNEC is analyzed in
Sec. VII for both our notion of entropy and the Dong-Wall
notion.
We will generally follow the conventions of [10]. As we

have already done above, we will use boldface to denote
differential forms when the form indices are not explicitly
written. Pullbacks of differential forms to the event horizon
H will be denoted by underlining them as in (13) above.
The covariant spacetime volume element is written as
ϵa1…an

, and our orientation conventions for the event
horizon and horizon cross sections are given by (47) and
(48) below. We will use the notation “ b¼ ” to denote that an
equality that holds only when both sides are restricted (but
not necessarily pulled back) to H, although we will often
simply use “¼” for equations involving quantities that are
only defined on H, where no confusion can arise. We also
set ℏ ¼ 1 ¼ G.
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II. LAGRANGIAN FORMALISM, KILLING

HORIZONS, TETRAD CHOICE, AND GAUGE

CONDITIONS

In this section, we review some basic definitions and
constructions in the Lagrangian formalism, we specify a
tetrad choice on the horizon, and we impose some gauge
conditions on the horizon.

A. Lagrangians, Noether charge,

and the fundamental identity

We consider an arbitrary diffeomorphism covariant
theory of gravity in n-dimensions derived from a
Lagrangian n-form L of the form2

L ¼ Lðgab; Rabcd;∇a1
Rbcde;…;∇ða1 � � �∇amÞ

× Rbcde;ψ ;…;∇ðb1 � � �∇apÞψÞ; ð21Þ

where gab is the spacetime metric, ∇ denotes the derivative
operator associated with gab, Rabcd denotes the curvature of
gab, and ψ denotes any matter fields included in the
Lagrangian. We shall assume that ψ is a tensor field or
fields; spinor fields can be treated via the approach
developed in [12]. We collectively refer to the dynamical
fields as ϕ ¼ ðgab;ψÞ. It was shown in [4] that any
diffeomorphism covariant Lagrangian can be put in the
form (21). Beginning in Sec. III, we restrict consideration
to the case where matter fields, ψ , are not present in the
Lagrangian, but we allow their presence for now.
The first variation of the Lagrangian can always be

expressed in the form

δL ¼ Eδϕþ dθ; ð22Þ

where E is locally constructed out of ϕ and its derivatives
and θðϕ; δϕÞ is locally constructed out of ϕ, δϕ, and their
derivatives and is linear in δϕ. In (22), contraction of the
tensor indices of ϕ with the corresponding dual tensor
indices of E is understood. The Euler-Lagrange equations
of motion obtained from L are E ¼ 0. The (n − 1)-form θ

plays the role of a symplectic potential [4] in that the
symplectic current (n − 1) form is obtained from it via3

ωðϕ; δ1ϕ; δ2ϕÞ ¼ δ1θðϕ; δ2ϕÞ − δ2θðϕ; δ1ϕÞ: ð23Þ

The symplectic form W is obtained by integrating the
symplectic current over a Cauchy surface,Σ, of the spacetime

WΣðϕ; δ1ϕ; δ2ϕÞ ¼
Z

Σ

ωðϕ; δ1ϕ; δ2ϕÞ: ð24Þ

Let χa be an arbitrary vector field on the spacetime M.
Since χa is the infinitesimal generator of a diffeomorphism,
i.e., a local symmetry of L, there is an associated Noether
current (n − 1)-form J defined by

JðϕÞ ¼ θðϕ;LχϕÞ − χ ·LðϕÞ; ð25Þ

where Lχ denotes the Lie derivative with respect to χa and
we use the notation “·” to denote the contraction of a vector
field into the first index of a differential form. This
definition of J holds for any field configuration ϕ, i.e.,
ϕ need not be a solution to the field equations, E ¼ 0.
It can be shown that the Noether current can be written in
the form [13]

J ¼ dQ½χ� þ χaCa: ð26Þ

Here, the (n − 2) form Q is referred to as the “Noether
charge” and the dual vector valued (n − 1)-form Ca

vanishes when the equations of motion are satisfied and
is referred to as the constraints of the theory associated with
diffeomorphism invariance. The Noether charge takes the
general form [4]

Q½χ�¼WcðϕÞχcþXcdðϕÞ∇½cχd�þYðϕ;LχϕÞþdZðϕ;χÞ;
ð27Þ

whereWc,Xcd, Y, and Z are covariant quantities, withWc

and Xcd locally constructed from ϕ, and Y and Z locally
constructed from the indicated fields, with Y linear in Lχϕ

and Z linear in χ. For the case where the matter field ψ is a
single tensor field Aa1���ak

b1���bl of type ðk; lÞ, the constraints
take the explicit form [14]

Caa1���an−1

¼ ϵca1���an−1

h
2ðEGÞca −

X
Ad1���dk

b1���a���blðEMÞd1���dkb1���c���bl

þ
X

Ad1���c���dk
b1���blðEMÞd1���a���dsb1���bl

i
; ð28Þ

where ϵa1���an is the spacetime volume form, ðEGÞab ¼ 0 are
the equations of motion for gab (obtained by varying
the Lagrangian with respect to gab) and ðEMÞa1���akb1���bl
are the equations of motion for the matter field Aa1���ak

b1���bl .
The summations in (28) run over the possible index
positions of a and c. The generalization of (28) to more
than one matter field is straightforward.
Taking the first variation of (25) (taking the vector field

χa to be fixed) and using (22) and (23), we obtain [4]

2Due to the Bianchi identities, not all of the derivatives
∇ða1 � � �∇amÞRbcde are algebraically independent at each point.
An independent set is given e.g., by ∇ða1 � � �∇am

Rb
cdÞ

e [11].
3Here we assume that the field variations δ1ϕ and δ2ϕ arise

from a two-parameter variation ϕðλ1; λ2Þ and thus commute. Note
that (23) uses the opposite sign convention of [4], but the same
sign convention as [8].
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δJðϕÞ¼−χ ·ðEðϕÞδϕÞþωðϕ;δϕ;LχϕÞþd½χ ·θðϕ;δϕÞ�;
ð29Þ

Equating this to the first variation of (26), we obtain

ωðϕ; δϕ;LχϕÞ ¼ χ · ðEðϕÞδϕÞ þ χaδCaðϕÞ
þ dðδQ½χ� − χ · θðϕ; δϕÞ�Þ: ð30Þ

Following Hollands and Wald [8], we shall refer to this
equation as the fundamental identity. The fundamental
identity holds for arbitrary ϕ and δϕ, i.e., they need not
satisfy the equations of motion or linearized equations of
motion. For the case where χa is a Killing field of the
background ϕ so that Lχϕ ¼ 0, a second variation of (30)
yields

ωðϕ;δϕ;LχδϕÞ¼ χ ·ðδEðϕÞδϕÞþχ ·ðEðϕÞδ2ϕÞ
þχaδ2CaðϕÞþdðδ2Q½χ�−χ ·δθðϕ;δϕÞÞ:

ð31Þ

B. Tetrad choice on a bifurcate Killing horizon

We are interested in this paper in first- and second-order
perturbations of spacetimes that contain a black hole whose
event horizon is a bifurcate Killing horizon. By definition, a
Killing horizon H is a null surface to which a Killing field
ξa is normal. Thus, ξa is tangent to the null geodesic
generators of H. The surface gravity, κ, of H is defined by

ξb∇bξ
a ¼ κξa ð32Þ

so κ measures the failure of Killing parametrization of the
null generators to be an affine parametrization. It is
necessary for κ to be constant in order that there not be
a parallelly propagated curvature singularity onH [15]. We
shall consider here only the case where κ is constant and
κ ≠ 0, in which case H corresponds to a bifurcate Killing
horizon [16].
We wish to use a tetrad basis on H to the future of the

bifurcation surface B that is Lie transported by the Killing
field. One way of doing this would be to introduce
Gaussian null coordinates, using the Killing parameter v
as one of the coordinates (see, e.g., [17]). However, the
introduction of Gaussian null coordinates requires an
arbitrary choice of a cross section, C, of H, and this would
raise questions in our subsequent analysis as to the extent to
which our constructions depend upon our choice of C.
Instead, we will introduce a tetrad that is constructed only
from ξa since our constructions will, in any case, depend
upon ξa.
We do so by introducing a vector field Na on H that

satisfies,

∇aξb b¼ 2κN½aξb�; ð33Þ

NaNa b¼ 0; ð34Þ

where b¼ denotes equality onH. That there exists a unique
Na satisfying these conditions can be seen as follows. From
the hypersurface orthogonality of ξa on H and Frobenius’s
theorem, there exists a vector field wa on H such that

∇½aξb� b¼ 2w½aξb�: ð35Þ

Since ξa is a Killing field, we have ∇½aξb� ¼ ∇aξb and it
follows from (32) that

ξawa b¼ κ ð36Þ

so, in particular, wa ≠ 0. We define

Na b¼ðξbwbÞ−1wa þ cξa ¼ 1

κ
wa þ cξa ð37Þ

with

c ¼ −
1

2ðξbwbÞ2
wawa ¼ −

1

2κ2
wawa: ð38Þ

Then it is easily seen that Na satisfies (33) and (34).
Uniqueness follows from the fact that (33) uniquely
determines Na up to addition of a multiple of ξa at each
point and (34) then fixes that multiple. Note that if we
contract (33) with ξa and use (32), we find that Naξa b¼ 1.
Thus, Na is a past-directed null vector. Note also that
Na must be invariant under the action of the isometries
generated by ξa, since this action preserves (33) and (34)
but Na is unique. Thus, we have LξN

a b¼ 0.
It is useful to complete ξa andNa to a basis of the tangent

space on H by introducing vectors sai (i ¼ 1;…; n − 2) on
H such that sai ξa ¼ 0 ¼ saiNa, sai sja ¼ δij and Lξs

a
i jH ¼ 0.

This can be done by choosing sai on a cross section
4 so as to

satisfy these properties and then Lie-transporting sai
along ξa.
It is important to understand the behavior of our tetrad

fξa; Na; sai g as one approaches the bifurcation surface B.
This is most conveniently analyzed by introducing Gaussian
null coordinates based on a choice of affine parameter V
of the null generators of H (see, e.g., [18])—V ¼ 0

4Note that there is no reason why there need exist a cross
section to which Na is orthogonal, so, unlike a Gaussian null
coordinate basis, sai is not assumed to be tangent to the cross
section. It may not be possible to make global choices of sai on a
cross section, in which case our construction would have to be
done in patches. Different choices of sai will merely differ by
rotations in the (n − 2)-plane orthogonal to ξa and Na, and it will
be manifest that our results below will not depend upon the
choice of sai .
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corresponding to the bifurcation surface B—since such
coordinates are smooth at B. Since we require V ¼ 0 at B,
the choice of V is unique up to V → fV, where f may vary
from generator to generator but is constant on each
generator. The results below hold for any choice of V.
By (32), the relationship between Killing parameter v and
affine parameter V is

V ¼ eκv; ð39Þ

where the (generator-dependent) scaling freedom of V
corresponds to the (generator-dependent) freedom in the
choice of origin of v. Thus, we have

ξa ¼ κeκvka ¼ κVka; ð40Þ

where ka is tangent to the affinely parametrized geodesics
and thus is smooth and nonvanishing on B. Thus, we see
that ξa ¼ OðVÞ at V ¼ 0. Similarly, Na ¼ OðV−1Þ at
V ¼ 0, i.e., the components of Na in Gaussian null
coordinates blow up as 1=V as V → 0. Finally, the tetrad
vectors sai smoothly extend to B. To see this, we note that

Lks
a
i ¼

1

κ
e−κvLξs

a
i þ e−κvξasbi∇bv ¼ κkasbi∇bv: ð41Þ

Since Lξ½κsbi∇bv� ¼ 0, the right side is smooth, which
implies that sai smoothly extends to B.
The following is an important consequence of the results

of the previous paragraph. Suppose that in a spacetime with
a bifurcate Killing horizon we have a tensor field
Sa1���akb1���bl that is Lie derived by ξa and is smooth on
HnB. We can expand Sa1���akb1���bl on HnB in the basis
fξa; Na; sai g. Since both Sa1���akb1���bl and the basis elements
are Lie derived by ξa, the coefficients appearing in the basis
expansion must also be Lie derived by ξa. It follows
immediately that if any nonvanishing term in the basis
expansion has strictly more Na

’s than ξa’s, then Sa1���akb1���bl
cannot be extended to B. Indeed, in smooth coordinates
covering B, some components of Sa1���akb1���bl will blow up
as 1=Vp, where p is the maximum of the number of Na

’s
minus the number of ξa ’s appearing in any individual
nonvanishing term in the basis expansion. On the other
hand, if all of the nonvanishing terms in the basis expansion
of Sa1���akb1���bl have at least as many ξa’s as Na

’s, then
Sa1���akb1���bl can be smoothly extended to B.

C. Gauge conditions on perturbations

In the remainder of this paper, we will be concerned with
perturbations, δgab, of a black hole with a bifurcate Killing
horizon. Without loss of generality, we will assume that the
true event horizon of the perturbed spacetime coincides
with H. We take ξa to be fixed under the variation, i.e., we
take δξa ¼ 0. We will impose the following two gauge
conditions on δgab at the event horizon:

ξaδgab b¼ 0; ð42Þ

∇aðξbξcδgbcÞ b¼ 0: ð43Þ

Both of the above gauge conditions can be imposed without
any loss of generality. This is most easily seen from the fact
that they automatically hold for any perturbation in
Gaussian null coordinates based on the Killing parameter
v [see (146) below]. However, we will use only the above
two gauge conditions in our analysis below, e.g., we need
not assume that the full Gaussian null gauge conditions are
imposed.
Equation (42) states that ξa remains the null normal toH

under perturbations, since the condition implies that ξa

remains null and orthogonal to any vector tangent to H.
Equation (43) implies that

δðξb∇bξ
aÞ ¼ ξbδΓa

bcξ
c b¼ −

1

2
ξbξc∇aδgbc

b¼ −
1

2
∇aðξbξcδgbcÞ b¼ 0; ð44Þ

where (42) was used to get the second and third equalities.
Comparing with (32), we see that the second condition is
equivalent to

δκ ¼ 0; ð45Þ

i.e., the surface gravity of ξa on H does not change under
the perturbation.
If matter fields ψ are present in the Lagrangian, then the

results we will obtain below can be straightforwardly
generalized if additional conditions are imposed on their
perturbations, δψ . In particular, if an electromagnetic field
is present, our results can be straightforwardly generalized
if the condition ξaδAa b¼ 0 is imposed, which can always be
achieved without loss of generality by an electromagnetic
gauge transformation. However, very recently, Wall and
Yan [19] extended the definition of the Dong-Wall entropy
to Proca fields without imposing additional restrictions on
the Proca field. Furthermore, even more recently, Visser
and Yan [20] showed that the results of the next section can
be generalized to the case where general matter fields are
present, without imposing additional restrictions on the
perturbations. Thus, we believe that it should be possible to
extend our analysis to the case where additional matter
fields are present. Nevertheless, for the remainder of this
paper, we shall restrict consideration to the case where the
metric is the only dynamical field in the Lagrangian, i.e., no
additional dynamical fields ψ are present.
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III. THE PULLBACK OF THE SYMPLECTIC

POTENTIAL IS A TOTAL VARIATION

FOR PERTURBATIONS OF A STATIONARY

BLACK HOLE

In this section, we consider perturbations of a stationary
black hole whose event horizon is a bifurcate Killing
horizon. We assume that the perturbations are everywhere
smooth and satisfy the gauge conditions (42) and (43).
However, we need not assume that the background space-
time metric gab, is a solution to the field equations, nor do
we need to assume that the perturbed metric, δgab is a
solution to the linearized field equations. We will prove that
there exists a quantityBH defined on the black hole horizon
that is locally and covariantly constructed from the metric
and5 ξa such that the pullback, θ, to H of the symplectic
potential θðgab; δgabÞ is given by

θ b¼ δBH: ð46Þ

As explained in the Introduction, (46) will enable us to
define dynamical black hole entropy, and we shall then do
so in the next section. As stated at the end of the previous
section, we restrict consideration here to the vacuum case,
but very recently, Visser and Yan [20] showed that (46)
holds in the nonvacuum case as well. Their expression for
BH is not covariant in the metric and ξa, but a covariant
expression can be obtained using methods similar to those
used in the proof of Theorem 1 below.
The horizon H is an (n − 1)-dimensional null surface.

Since the pullback of the spacetime metric to H is
degenerate, it does not induce a unique volume form on

H. However, we can define a volume form ϵ
ðn−1Þ
a1���an−1 on H

that is Lie derived by ξa in the background spacetime by

−nξ½a1ϵ
ðn−1Þ
a2���an� ¼ ϵa1a2���an ; ð47Þ

where ϵa1a2���an is the spacetime volume form. It is also

convenient to define an (n − 2)-form ϵ
ðn−2Þ
a1���an−2 on H by

ϵ
ðn−2Þ
a1���an−2 ¼ ξcϵ

ðn−1Þ
ca1���an−2 : ð48Þ

The pullback of ϵðn−2Þ to any cross section, C, of H will
then agree with the volume element on C obtained from the
nondegenerate metric on C obtained from the pullback of
the spacetime metric.
The symplectic potential θ is an (n − 1)-form on space-

time, so its pullback θ toHmust be proportional to ϵðn−1Þa1���an−1 .
It follows from (47) that we have

θ b¼ αaξaϵ
ðn−1Þ; ð49Þ

where we defined

αa ≡
1

ðn − 1Þ! θa1���an−1ϵ
aa1���an−1 : ð50Þ

Our results on the form of θ will be a direct consequence of
the following theorem.
Theorem 1. Let ðM; gabÞ be an n-dimensional spacetime

with a bifurcate Killing horizon H with horizon Killing
field ξa. Let δgab be an arbitrary smooth perturbation of gab
satisfying the gauge conditions (42) and (43). Let αa be a
vector field on M of the form

αa ¼
Xk

i¼0

T
ab1���bicd
ðiÞ ∇ðb1 � � �∇biÞδgcd; ð51Þ

where the tensors Tab1���bicd
ðiÞ ¼ T

aðb1���biÞðcdÞ
ðiÞ are smooth and

are locally and covariantly constructed from the metric,
curvature, and covariant derivatives of the curvature. Then
on the horizon, the scalar function αcξ

c takes the form

αcξ
c¼̂

Xk−1

i¼0

T̃
b1���bicd
ðiÞ ∇ðb1 � � �∇biÞLξδgcd; ð52Þ

where the tensors T̃
b1���bicd
ðiÞ are smooth on H and are

locally and covariantly constructed from the metric, cur-
vature, and its derivatives as well as from ξa and Na

[see (33) and (34)], with ξa and Na appearing only
algebraically.
Proof. To begin, we focus on the tensor field T

ab1���bicd
ðkÞ

on H appearing in the highest derivative term in the
expansion (51) of αa. Our aim is to show that
ξaT

ab1���bicd
ðkÞ ∇ðb1 � � �∇bkÞδgcd can be written in the form

T̃
b1���bk−1cd
ðk−1Þ ∇ðb1 � � �∇bk−1ÞLξδgcd plus lower derivative terms

of essentially the same character as appeared in the original
expression for ξaα

a. This will enable us to make an
inductive argument to prove the theorem.
By the hypothesis of the theorem, the tensor field

T
ab1���bicd
ðkÞ is smooth on H, including at the bifurcation

surface B. Since ξa is a Killing field of the back-
ground spacetime, T

ab1���bkcd
ðkÞ is Lie derived by ξa.

Therefore, as shown in the last paragraph of Sec. II B,
if we expand it in the basis fξa; Na; sai g, the only non-
vanishing terms in the basis expansion will have at least as
many factors of ξa as Na. If we then contract αa with ξa,
we will eliminate one factor of Na from each term in the
basis expansion, so each nonvanishing term will have at
least one more factor of ξa than Na. More explicitly, the
basis expansion of ξaT

ab1���bicd
ðkÞ takes the form

5The vector field Na on H will also appear in our expression
for BH. However, Na on H is locally and covariantly determined
from the metric and ξa via (33) and (34).
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ξaT
ab1���bkcd
ðkÞ ¼̂ c1ξ

b1ξb2 � � � ξbkξcξd

þ c2N
ðb1ξb2 � � � ξbkÞξcξd þ c3ξ

b1ξb2 � � � ξbkNðcξdÞ

þ c4s
ðb1
i1
ξb2 � � � ξbkÞξcξd þ c5ξ

b1ξb2 � � � ξbksðci ξdÞ

þ � � �

þ c6s
ðb1
i1
s
b2
i2
� � � sbk−1ik−1

ξbkÞsðcj1s
dÞ
j2
þ c7s

b1
i1
s
b2
i2
� � � sbkik ξ

ðcsdÞj ; ð53Þ

where c1; c2;…; c7 are Lie derived by ξa. Here, the
first term in the basis expansion is the term with all
ξa’s. In the second line, we replace one of the ξa’s with an
Na. Since T

ab1���bicd
ðkÞ is symmetric in b1…bk as well as in

cd, there are two distinct terms that we can get via such a
replacement, namely, one term where the Na replaces a ξa

on a bi index and one term where it replaces a ξa on a c or
d index. In the third line, we similarly replace a ξa by an
sai . (Since i ranges from 1 to n − 2, there are n − 2 distinct
expressions of the form appearing in the third line.) The
“…” in the fourth line represents all of the terms we get by
continuing to replace ξa’s by Na

’s and sai ’s, thereby
continually decreasing the number of factors of ξa.
The key point is that each term must have at least one
more ξa than Na. Thus, the final two terms in the basis
expansion—shown on the fifth line—have (kþ 1) factors
of sai and one factor of ξa.
We now consider each term in the basis expansion

separately. Since at least one ξa appears in each term in
the basis expansion, there are three possible cases, which
we will consider separately:

(i) Case (1): There are no ξbi factors, i.e., there are no
factors of ξa that contract into ∇ðb1 � � �∇bkÞ in (51).
Furthermore, there is only one ξc or ξd factor,
i.e., only one index of δgcd contracts into factor
of ξa.

(ii) Case (2): As in case (1), there are no ξbi factors.
However, there are ξc and ξd factors, i.e., both
indices of δgcd contract into factors of ξa.

(iii) Case (3): There is at least one ξbi factor, i.e., there is
at least one contraction of ξa with a derivative index
in (51).

Case (1) is the most straightforward to analyze.
Since only one factor of ξa occurs in this case, the
only terms in the basis expansion (53) that meet the
criterion of case (1) take the form of the very last term
in (53). Thus, to analyze this case, we need to consider the
quantity

s
b1
i1
s
b2
i2
� � � sbkik ξ

csdj∇ðb1 � � �∇bkÞδgcd; ð54Þ

where we dropped the symmetrization over cd in the
basis term since δgcd is symmetric in c and d. We now
move ξc, through all of the derivatives∇ðb1 � � �∇bkÞ to write
it as

s
b1
i1
s
b2
i2
� � � sbkik ξ

csdj∇ðb1 � � �∇bkÞδgcd

¼ s
b1
i1
s
b2
i2
� � � sbkik s

d
j∇ðb1 � � �∇bkÞðδgcdξcÞ

þ lower derivative terms; ð55Þ

where the “lower derivative terms” have one or more
derivatives ∇bi

acting only on ξc and thus have no more
than k − 1 derivatives remaining to act on δgcd. However,
by our gauge condition (42), we have δgcdξ

c b¼ 0. Since
derivatives of this quantity in directions tangential to the
horizon must also vanish, we see that the terms occurring in
case (1) are equivalent to an expression with strictly fewer
than k derivatives acting on δgcd.
The analysis of case (2) is similar to case (1). We move

both ξc and ξd through ∇ðb1 � � �∇bkÞ to obtain a term where
all k derivatives act on δgcdξ

cξd plus “lower derivative
terms,” i.e., terms where at least one derivative acts on ξc or
ξd and thus no more than k − 1 derivatives act on δgcd.
However, the term ∇ðb1 � � �∇bkÞðδgcdξcξdÞ can have at most
one factor Nbi contracting into it, since there are precisely
two factors of ξa in the terms that arise in case (2) and we
must have strictly more factors of ξa than Na. Therefore, in
the term ∇ðb1 � � �∇bkÞðδgcdξcξdÞ, there is at most one
derivative of δgcdξcξd that is taken in a direction that is
not tangential to the horizon. Consequently, this term
vanishes by our gauge condition ∇bðδgcdξcξdÞ b¼ 0.
Therefore, we are left only with the lower derivative
terms, i.e., terms with k − 1 or fewer derivatives acting
on δgcd.
Finally, to treat case (3), we must analyze terms of the

form

ξbi∇b1
� � �∇bi

� � �∇bk
δgcd: ð56Þ

To do so, we first bring ξbi through ∇b1
� � �∇bi−1

to rewrite
this term as

ξbi∇b1
� � �∇bi

� � �∇bk
δgcd

¼ ∇b1
� � �∇bi−1

½ξbi∇bi
ð∇biþ1

� � �∇bk
δgcdÞ�

þ lower derivative terms: ð57Þ

We then write
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ξbi∇bi
ð∇biþ1

� � �∇bk
δgcdÞ

¼ Lξð∇biþ1
� � �∇bk

δgcdÞ
þ lower derivative terms: ð58Þ

Finally, we use the fact that since ξa is a Killing field of the
background metric, Lξ commutes with the background
derivative operator ∇b, so we have

Lξð∇biþ1
� � �∇bk

δgcdÞ ¼ ∇biþ1
� � �∇bk

Lξδgcd: ð59Þ

Putting this all together, we have shown that

ξbi∇b1
� � �∇bi

� � �∇bk
δgcd

¼ ∇b1
� � �∇bi−1

∇biþ1
� � �∇bk

Lξδgcd

þ lower derivative terms: ð60Þ

Combining all of the results of the analyses of cases (1),
(2), and (3) above, we see that the highest derivative term in
ξaα

a can be written in the form

ξaT
ab1���bkcd
ðkÞ ∇ðb1 � � �∇bkÞδgcd

¼̂ T̃
b1���bk−1cd
ðk−1Þ ∇ðb1 � � �∇bk−1ÞLξδgcd

þ
Xk−1

i¼0

T 0b1���bicd
ðiÞ ∇ðb1 � � �∇biÞδgcd ð61Þ

Here T̃
b1���bk−1cd
ðk−1Þ arises entirely from case (3), wherein one

ξb in terms in the basis expansion of ξaT
ab1���bkcd
ðkÞ has been

combined with a ∇b and converted to a Lξ. It follows that

each term in basis expansion of T̃b1���bk−1cd
ðk−1Þ has at least as

many ξa’s as Na
’s and thus is smooth on H. The

components of T̃b1���bk−1cd
ðk−1Þ are obtained algebraically from

ξaT
ab1���bkcd
ðkÞ together with the basis elements Na, ξa and

fsai g. However, it is clear that T̃
b1���bk−1cd
ðk−1Þ does not depend on

the choice of fsai g, as can be seen from the fact that we
could have worked with the projector

qab ¼ gab − 2ξðaNbÞ ð62Þ

rather than choosing the basis fsai g. Since ξaT
ab1���bkcd
ðkÞ is

locally and covariantly constructed from the metric, cur-
vature, and its derivatives, we see that T̃b1���bk−1cd

ðk−1Þ is locally

and covariantly constructed from the metric, curvature, and
its derivatives together with ξa and Na, with only algebraic
dependence on ξa and Na.
On the other hand T 0b1���bicd

ðiÞ is algebraically constructed

from not only ξaT
ab1���bkcd
ðkÞ , ξa, and Na but also from deriva-

tives of ξa. However, we can use the Killing field identity,

∇a∇bξc ¼ Rcbadξ
d; ð63Þ

to eliminate second derivatives of ξa in terms of ξa and
curvature. By successively using this identity,we can rewrite
all factors involving an arbitrary number of derivatives of ξa

in terms of curvature, derivatives of curvature, ξa, and∇bξ
a.

We may then use

∇bξa¼̂ 2κN½bξa� ð64Þ

to eliminate the first derivative of ξa in terms of ξa andNa. In
this way, we see that T 0b1���bicd

ðiÞ is locally and covariantly

constructed from the metric, curvature, derivatives of
curvature, ξa and Na, with only algebraic dependence on
ξa and Na.
Next, we note that since ξa is a Killing field of the

background spacetime, we have

T̃
b1���bk−1cd
ðk−1Þ ∇ðb1 � � �∇bk−1ÞLξδgcd

¼ Lξ½T̃b1���bk−1cd
ðk−1Þ ∇ðb1 � � �∇bk−1Þδgcd� ð65Þ

¼ ξa∇a½T̃b1���bk−1cd
ðk−1Þ ∇ðb1 � � �∇bk−1Þδgcd�: ð66Þ

Thus, we may rewrite (61) as

Xk−1

i¼0

T 0b1���bicd
ðiÞ ∇ðb1 � � �∇biÞδgcd

¼ ξaT
ab1���bkcd
ðkÞ ∇ðb1 � � �∇bkÞδgcd

− ξa∇a½T̃b1���bk−1cd
ðk−1Þ ∇ðb1 � � �∇bk−1Þδgcd�: ð67Þ

The right side of (67) is smooth and vanishes on the
bifurcation surface on account of the explicit factor of ξa in
both terms. Thus, the left side of (67) has exactly the same
properties as ξaα

a except that (i) there now is additional
algebraic dependence on ξa and Na and (ii) the highest
derivative term has only k − 1 derivatives of δgcd. The first
point is of no consequence for any of the arguments that led
from (53) to (61). The second point enables us to prove the
theorem by the following inductive argument.
We take as an inductive hypothesis in k that a slight

strengthening of the statement of the theorem holds;
namely, we allow the tensors appearing in (51) to depend
algebraically on ξa and Na as well as on the metric,
curvature, and covariant derivatives of the curvature. We
assume that the inductive hypothesis holds for k ¼ p − 1.
For k ¼ p, the above arguments show that the highest
derivative term in ξaα

a takes the form (61) and that the
lower derivative terms are such that the k ¼ p − 1 hypoth-
esis can be applied to them. Therefore, the inductive
hypothesis for k ¼ p − 1 implies the inductive hypothesis
for k ¼ p, and all that remains to show is that the inductive
hypothesis holds for k ¼ 0. However, this is just a simple
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special case of cases (1) and (2) in the above proof of the
proposition, and it follows immediately from our gauge
conditions (42) and (43) that ξaαa ¼ 0 when k ¼ 0. Thus,
our inductive hypothesis holds for k ¼ 0 and the proof is
completed. ▪

The main result of this section can now be obtained as
follows. For αa defined by (50), the general form of θ given
by Eq. (23) of [4] shows that (51) holds with k ¼ mþ 1,
where m is the maximum number of derivatives of the
curvature appearing in the Lagrangian (21). Therefore,
by (49) and the above theorem, we have

θ b¼ ϵ
ðn−1Þ

Xm

i¼0

T̃
b1���bicd
ðiÞ ∇ðb1 � � �∇biÞLξδgcd: ð68Þ

Define BH on H by

BH ¼ ϵ
ðn−1Þ

Xm

i¼0

T̃
b1���bicd
ðiÞ ∇ðb1 � � �∇biÞLξgcd: ð69Þ

Then we have

θ b¼ δBH: ð70Þ

Namely, when we take a first variation of BH, we will get a
factor of Lξgcd ¼ 0 appearing in all terms except the terms
where the variation acts on this factor. However, these terms
manifestly yield θ.
The quantities T̃

b1���bicd
ðiÞ needed to obtain BH can be

computed by following the steps used in the proof of the
theorem. We will compute BH explicitly for general
relativity and for theories with Lagrangians that are
quadratic in the curvature tensor in the next section. We
will also discuss the ambiguities in the definition of BH in
the next section.

IV. DYNAMICAL BLACK HOLE ENTROPY

A. General definition of dynamical black hole entropy

In the previous section, we have proven that for a
stationary black hole whose event horizon,H, is a bifurcate
Killing horizon there exists an (n − 1)-form BH on H with
the property that (70) holds for arbitrary perturbations.
Following the motivation given in the Introduction, we
define the entropy (n − 2)-form S on H by

S≡
2π

κ
ðQ½ξ� − ξ ·BHÞ: ð71Þ

We define the entropy, S½C�, of the black hole at a “time”
represented by an arbitrary cross section C by

S½C�≡
Z

C

S ¼ 2π

κ

Z

C

ðQ½ξ� − ξ · BHÞ: ð72Þ

Since the definition of S does not depend on a choice of
cross section and S is smooth onH, it follows immediately
that S½C� varies continuously with the cross section C in the
sense defined in [21]. We now consider the ambiguities in
our definition of S½C� for stationary black holes, for first-
order perturbations of stationary black holes, and for
second- and higher-order deviations from a stationary
black hole.
For the unperturbed stationary black hole, we have

BH ¼ 0 by (69), so we have

S½C� ¼ 2π

κ

Z

C

Q½ξ�: ð73Þ

Thus, the only possible ambiguities in S½C� for stationary
black holes arise from ambiguities in the definition of Q,
which are given by [4]

Q½ξ� → Q½ξ� þ ξ · μðϕÞ þ Yðϕ;LξϕÞ þ dZðϕ; ξÞ: ð74Þ

Here the first two terms result from the ambiguity in θ

θðϕ; δϕÞ → θðϕ; δϕÞ þ δμðϕÞ þ dYðϕ; δϕÞ ð75Þ

arising from adding an exact term dμ to the Lagrangian and
an exact term dY to θ (see Ref. [4]). Since the (n − 1)-form
μ is locally and covariantly constructed from the metric, we
have Lξμ ¼ 0 in the stationary background. Since μ

smoothly extends to B, it then follows from the type of
argument given at the end of Sec. II B that the pullback of μ
to H vanishes in the stationary background. The Y term in
(74) vanishes in the stationary background since Lξϕ ¼ 0.
Finally, dZ integrates to zero over any cross section C.
Thus, S½C� is completely unambiguous in the stationary
background. Furthermore, if the equations of motion hold
in the stationary background, then dQ ¼ J by (26).
However, (25) implies that the pullback of J toH vanishes,
because θðϕ;LξϕÞ ¼ 0 (since ξa is a Killing field) and the
pullback of ξ ·L to H vanishes (since ξa is tangent to H).
Thus, we find that the pullback of dQ to H vanishes. This
implies that S½C� does not depend on C for a stationary black
hole, i.e., the entropy is “time independent”. In particular,
we may evaluate S½C� on the bifurcation surface B, in which
case it reduces to the definition given in [4,22]. Thus, our
definition (72) reduces to the standard expression for
entropy for stationary black holes on any cross section C.
For first-order perturbations of a stationary black hole,

we have

δS½C� ¼ 2π

κ

Z

C

ðδQ½ξ� − ξ · θÞ; ð76Þ

where (70) was used to replace δBH by θ. The only possible
ambiguities in this expression result from the ambiguities
(74) and (75). Thus, the ambiguity in δS is
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δS → δSþ 2π

κ
½ξ · δμþ Yðϕ;LξδϕÞ þ dδZðϕ; ξÞ

− ξ · δμ − ξ · dYðϕ; δϕÞ� ð77Þ

¼ δSþ 2π

κ
½LξYðϕ; δϕÞ þ dδZðϕ; ξÞ − ξ · dYðϕ; δϕÞ�

ð78Þ

¼ δSþ 2π

κ
½dðξ · YÞðϕ; δϕÞ þ dδZðϕ; ξÞ� ð79Þ

where the general identity

Lξα ¼ ξ · dαþ dðξ · αÞ ð80Þ

for any form α was used in the last line. The exact terms in
(79) integrate to zero on any cross section. Thus, for
arbitrary first-order perturbations, δS½C� is entirely unam-
biguous. As we will see explicitly below, in the case of
general relativity our formula for δS½C� does not agree with
the Bekenstein-Hawking entropy formula in nonstation-
ary eras.
For second-order perturbations, there will, in general, be

substantial additional ambiguities resulting from ambigu-
ities in defining BH at second order. As we shall now
explain, there are two sources of these ambiguities.
The first source has to do with the essential presence of

ξa in the formula forBH. At first order, the perturbed metric
enters the formula for BH only via the factor Lξδgab, so all
of the other quantities in that formula take their background
values. Since we require δξa ¼ 0, ξa is rigidly fixed on
spacetime to be the horizon Killing field of the background
metric gab. Similarly, Na on H is rigidly fixed by (33)
and (34). However, the varied metric will not, in general,
admit any Killing fields at all, and, at second and higher
orders in perturbation theory, the formula for BH will
depend upon how ξa is chosen. We can (and will) require as
a gauge choice that ξa is a fixed vector field on spacetime,
but unless gab is rigidly tied to ξa, the formula for BH will
have a gauge dependence with regard to the metric. In order
to avoid this, we must provide a prescription to rigidly fix
ξa in terms of the metric in a situation where the metric no
longer possesses a horizon Killing field. Without loss of
generality, we may assume that the true event horizon of the
perturbed spacetime coincides with H, that ξa remains
normal to H, and that ξb∇bξ

a ¼ κξa on H. This rigidly
fixes ξa on H up to a choice of cross section B of H in the
varied spacetime corresponding to the bifurcation surface.
However, since as many asmþ 1 derivatives of ξa occur in
(69), we must also give a construction of ξa off ofH at least
up to this order for the case of a metric that does not possess
a horizon Killing field. Once we have determined ξa, we
may define Na on H by (35) and the first equalities of (37)
and (38).

A simple and natural way to rigidly tie gab to ξa in a
neighborhood of H would be to introduce Gaussian null
coordinates (GNCs) on H adapted to a choice of affine
parameter V on the null geodesics of H, with V ¼ 0

corresponding to B. In these coordinates, the metric takes
the form

ds2¼2dV

�
dρ−ρ³Adx

A−
1

2
ρ2αdV

�
þ´ABdx

AdxB; ð81Þ

where xA are coordinates on a cut of constant V and ρ is an
affine parameter along the null geodesics transverse to H

that are orthogonal to these cuts. We may then define ξa in a
neighborhood of H by

ξa ¼ κ

�
V

�
∂

∂V

�
a

− ρ

�
∂

∂ρ

�
a
�
; ð82Þ

and we may then apply a suitable diffeomorphism to gab; ξa

such that ξa is the same in each spacetime.6

For the case of a metric with a horizon Killing field with
surface gravity κ and bifurcation surface B, this definition
reproduces the horizon Killing field [8], but this formula is
well-defined in a neighborhood of H for an arbitrary
metric. In addition, the metric in this gauge satisfies
conditions that yield (42) and (43) for perturbations about
a metric with a horizon Killing field. However, there is a
rescaling freedom V → fðxAÞV in the choice of V.
Although this rescaling freedom does not affect the
definition (82) of ξa in the case where the metric possesses
a horizon Killing field with surface gravity κ and bifurca-
tion surface B, it will affect the definition of ξa in the
general case. Thus, even with this choice of prescription,
we have ambiguities in the definition of ξa and correspond-
ing ambiguities in the definition of BH. Of course, other
prescriptions for defining ξa off of H would also be
possible. In Appendix C we will give an alternative
construction of ξa.
It is not necessarily a bad thing that BH—and thereby

our definition of entropy—depends on a choice of “time
translation” ξa. It is generally recognized that the notion of
energy should be defined as conjugate to a notion of time
translations. Since energy and entropy appear together in
the first law of thermodynamics for near-equilibrium
systems, it seems reasonable that the notion of entropy
should similarly depend on a notion of time translations.
Nevertheless, the ambiguities in defining a notion of “time
translation” gives rise to ambiguities in our definition of
entropy beginning at second order in perturbation theory
about a black hole whose event horizon is a Killing horizon.
The second source of ambiguities in the formula for

entropy at second order arises from the fact that BH was

6In other words, we identify different spacetimes by identify-
ing points near H with the same coordinates ðV; ρ; xAÞ.
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constructed so as to satisfy (70), which is a condition that
applies only to first-order perturbations. Therefore, we have
freedom to add to BH terms that vanish identically for first-
order perturbations about a background spacetime with a
Killing horizon but do not vanish at second order.
Nevertheless, based upon the construction of BH given
in the previous section, it seems natural to impose the
following conditions on BH:
(1) We require BH to be locally and covariantly con-

structed out of the metric, the curvature tensor,
derivatives of the curvature tensor, and the vector
fields ξa, Na and their covariant derivatives.7

(2) We require that each term in the expression for BH

contains a factor8 of Lξgab (or covariant derivatives
of this quantity). In particular, we have BH ¼ 0 in
the stationary background.9

(3) We require that (70) holds for arbitrary perturbations
of a stationary background.

(4) We require that the total number of derivatives
appearing in BH cannot exceed the total number
of derivatives in θ, which is one fewer than the total
number of derivatives appearing in the Lagrangian.
(Here, a factor of the curvature tensor counts as “two
derivatives” in the Lagrangian and in BH. The factor
of Lξgab in BH counts as “one derivative.” However,
the appearance of Na does not count towards the
derivative limitation in BH—despite its being de-
termined by the derivative of ξa—since its presence
can also arise from the purely algebraic basis
expansion.)

(5) We require that BH is invariant under a rescaling of
ξa by a constant, ξa → cξa and the corresponding
rescaling κ → cκ.

These conditions are quite restrictive for theories with a
relatively low total number of derivatives in the Lagrangian.
In particular, they uniquely determine BH in general
relativity. However, by the time one reaches curvature
cubed theories (i.e., a total of six derivatives in the
Lagrangian), it is not difficult to construct terms—such
as ϵab1���bn−1RpqN

pNqRa
cξ

cgmnLξgmn—that could be added
to BH so as satisfy all of the above conditions and are
nonvanishing at second order. It is possible that one could
impose additional conditions on BH so as to further restrict

its ambiguities and/or obtain other desired properties of S.
One attractive possibility would be to impose conditions
that imply that S½C� satisfies a second law (i.e., that it is
nondecreasing with time) at second order (see Sec. V B).
However, we do not believe that it would be possible to do
this within our framework.
It is instructive to compare the nature of our framework

and its definition freedom arising at second order with the
framework and definition freedom in the approach of
Hollands, Kovacs, and Reall (HKR) [18]. As will be
discussed further in Appendix C 3, HKR take an effective
field theory approach, wherein the Lagrangian is expanded
about the general relativity Lagrangian in powers of a small
parameter l and one works only to some finite order in l.
The HKR entropy-current (n − 2)-form SHKR is constructed
so as to agree with the Dong-Wall entropy (see Sec. VI)
rather than our entropy current to first order in perturbation
theory about a black hole with a bifurcate Killing horizon.
The HKR construction is aimed at providing an entropy
satisfying the second law to second order in perturbation
theory [18], or even nonperturbatively in a recent extension
[23]. But it need not be covariant in the metric [24]. As
discussed further in Appendix C 3, the lack of a covariant
HKR entropy current (n − 2)-form means that there is no
guarantee that the HKR entropy will be “cross section
continuous”, [21] i.e., if we “wiggle” the cut C into another
cut C0 that is arbitrarily close to C, there is no guarantee that
SHKR½C0� will be close to SHKR½C�, as illustrated in Fig. 1.
Although we will see in Sec. VI that (our and) the Dong-
Wall entropy is cross section continuous, it appears that the
HKR entropy will not, in general, satisfy this property. A
detailed comparison of the definition freedom in entropy at
second order in our approach and the HKR approach is
given in Appendix C 3.
Finally, we comment on the definition of S and S½C�

outside of the perturbative context, i.e., for an arbitrary
dynamical black hole. We have already noted above that
our approach to defining entropy is heavily reliant on the
presence of a time translation vector field ξa. In the case of a
stationary black hole whose event horizon is a Killing
horizon, the horizon Killing field ξa provides a natural
notion of time translations upon which to base notions of
energy and entropy. For a black hole that is very nearly

FIG. 1. Cross section continuity [21] of S½C� means that S½C0�
approaches S½C� for a cut C0 tending to a cut C, even if C0 is very
wiggly as illustrated.

7Note that Na onH itself is locally and covariantly constructed
from the metric, ξa, and the first derivative of ξa, since it is
uniquely determined in a local manner by (35) and the first
equalities of (37) and (38). It would be consistent with our
construction of BH in Sec. III at first order to require that no
derivatives of Na appear in the expression for BH.

8When matter fields are present, there may be terms propor-
tional to the matter field contracted into ξa that do not contain a
factor involving Lξ.

9It would be consistent with our construction of BH in Sec. III
at first order to require that there be no more than m covariant
derivatives of Lξgab.
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stationary—in particular, in first- and second-order pertur-
bation theory about a stationary black hole—it also appears
to be natural to use the definition of ξa given above to play
the role of time translations. However, for a black hole that
is far from “equilibrium”, it seems quite artificial to attempt
to assign a surface gravity κ and bifurcation surface B to the
event horizonH so as to construct a Killing-like vector field
ξa. Furthermore, even in ordinary physics where a notion of
time translation is present, the definition of the entropy of a
system that is far from equilibrium is not well defined
without making a choice of coarse-grained observable [25].
Thus, we do not advocate applying our formulas for S and
S½C� outside of the perturbative context around a stationary
(i.e., “equilibrium”) black hole.
We now evaluate our formula for S and S½C� for the case

of general relativity and, more generally, for theories whose
Lagrangians do not depend on derivatives of the curvature
tensor.

B. Dynamical black hole entropy in general relativity

The Lagrangian for general relativity is

La1���an ¼
1

16π
ϵa1���anR: ð83Þ

The symplectic potential θ is [4]

θa1���an−1 ¼
1

16π
ϵea1���an−1g

fhð∇fδgeh −∇eδgfhÞ ð84Þ

and the Noether charge is [4]

Qa1���an−2 ¼ −
1

16π
ϵa1���an−2cd∇

cξd: ð85Þ

Using the methods employed in Sec. III to obtain BH from
θ, we obtain

BHa1���an−1 ¼ −
1

16π
Nbϵba1���an−1g

efLξgef: ð86Þ

It is easily seen that BH satisfies all of the requirements
enumerated above in Sec. IVA. Furthermore,BH is unique,
since it is allowed to contain only one derivative—which is
used up by the required factor of Lξgef—and no terms of
the required form can be constructed that vanish for
arbitrary first-order perturbations. In terms of the affinely
parametrized tangent ka ¼ ξa=ðκVÞ [see (40)], we can
rewrite BH as

BHa1���an−1 ¼−
1

16π
nbϵba1���an−1g

efLkgef¼−
1

8π
nbϵba1���an−1ϑ;

ð87Þ

where ϑ is the expansion of the null generators of the
horizon in the affine parametrization V and na ¼ κVNa

(so naka ¼ 1). This agrees with Eq. (6.24) in [26] (see
also [27]) for the corresponding term in the symplectic
potential on an arbitrary null surface needed to implement
the Wald-Zoupas prescription for defining charges.
The entropy (n − 2)-form (71) in general relativity is

Sa1���an−2 ¼ −
1

8κ
ϵa1���an−2cd∇

cξd − ϵ
ðn−2Þ
a1���an−2

1

4
Vϑ; ð88Þ

where ϵ
ðn−2Þ
a1���an−2 ¼ ξbNcϵbca1���an−2 was defined by (47)

and (48) and is such that its pullback to any cross section
C on the horizon yields the volume element on C obtained
from the pullback of the metric to C. For a given cross
section C of the horizon, the entropy is

S½C� ¼ A½C�
4

−
1

4

Z

C

Vϑϵðn−2Þ; ð89Þ

where A½C� is the ((n − 2)-dimensional) area of C and the
integral over C in the second term is taken with respect to

the natural volume element ϵðn−2Þa1���an−2 on C. The first term
in (89) is the usual Bekenstein-Hawking entropy. For a
stationary black hole, we have ϑ ¼ 0. However, for a
dynamical black hole, we have ϑ > 0, so S½C� is smaller

than the Bekenstein-Hawking entropy. We will show in
Appendix A that for first-order perturbations, S½C� in
general relativity is, in fact, equal to the area of the
apparent horizon at the “time” corresponding to the cross
section, C, of the horizon.
Rignon-Bret [28] (see also [29]) have given an analysis

of aspects of our entropy expression (89) as well as an
alternative entropy expression based on the York symplec-
tic potential that is constructed to vanish on any cross
section of a light cone in Minkowski spacetime.

C. Entropy form for LðRabcdÞ theories
Consider a theory of gravity obtained from a Lagrangian

that depends on the metric and curvature but does not
depend on derivatives of the curvature,

La1���an ¼ ϵa1���anLðgab; RabcdÞ: ð90Þ

The symplectic potential (n − 1)-form can be calculated
from the algorithm given in Lemma 3.1 of [4] or directly
from10 Eq. (4.5) of [30]. We obtain,

θa1���an−1 ¼2ϵma1���an−1

�
∂L

∂Rmbcd

∇dδgbc−∇d

�
∂L

∂Rmbcd

�
δgbc

�
:

ð91Þ

The Noether charge (n − 2)-form can be obtained either

10The sign difference between our formula and Eq. (4.5) of
[30] appears to be a result of differences in conventions.
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from the Noether current J via the algorithm given in
Lemma 1 of [31] or directly from Eq. (4.6) of [30],

Qa1���an−2 ¼ ϵcda1���an−2

�
−

∂L

∂Rcdef

∇½eξf�−2∇f

�
∂L

∂Rcdef

�
ξe

�
:

ð92Þ

From the construction in Sec. III, we obtain

BHa1���an−1 ¼ 2Nfϵfa1���an−1ξm
∂L

∂Rmbcd

NdLξgbc: ð93Þ

The entropy (n − 2)-form is then

Sa1���an−2 ¼
2π

κ

�
ϵcda1���an−2

�
−

∂L

∂Rcdef

∇½eξf�

− 2∇f

�
∂L

∂Rcdef

�
ξe

�

þ 2ϵ
ðn−2Þ
a1���an−2ξm

∂L

∂Rmbcd

NdLξgbc

�
: ð94Þ

We now explicitly evaluate the above quantities for the
case of a general curvature squared Lagrangian, i.e.,

La1���an ¼ ϵa1���anðα1RabcdR
abcdþα2RabR

abþα3R
2Þ; ð95Þ

where α1, α2, α3 are arbitrary constants. The symplectic
potential (n − 1)-form is11

θa1���an−1 ¼ ϵma1���an−1f4α1½Rmbcd∇dδgbc −∇dR
mbcdδgbc�

þ α2½2gc½mRb�d∇dδgbc þ 2Rc½m∇b�δgbc þ gc½b∇m�Rδgbc þ 2∇½mRb�cδgbc�
þ 2α3½Rgmcgbdð∇dδgbc −∇cδgbdÞ − 2gc½m∇b�Rδgbc�g: ð96Þ

The Noether charge (n − 2)-form is

Qa1���an−2 ¼ −ϵcda1���an−2 ½ð2α1Rcdef þ 2α2g
ceRfd þ 2α3Rg

cegdfÞ∇½eξf�

þ ð4α1∇fR
cdmf þ α2g

cm∇dR − 2α2∇
cRmd þ 4α3∇

dRgcmÞξm�: ð97Þ

The BH (n − 1)-form is

BHa1���an−1 ¼ Nfϵfa1���an−1ð4α1RabcdξaNd − α2R
bc − α2Radξ

aNdgbc − 2α3Rg
bcÞLξgbc: ð98Þ

The entropy (n − 2)-form is

Sa1���an−2 ¼ −
2π

κ
ðϵcda1���an−2 ½ð2α1Rcdef þ 2α2g

ceRfd þ 2α3Rg
cegdfÞ∇½eξf�

þ ð4α1∇fR
cdmf þ α2g

cm∇dR − 2α2∇
cRmd þ 4α3∇

dRgcmÞξm�

− ϵ
ðn−2Þ
a1���an−2ð4α1RabcdξaNd − α2R

bc − α2Radξ
aNdgbc − 2α3Rg

bcÞLξgbcÞ: ð99Þ

As will be discussed in Sec. VI, this yields a formula for
S½C� that differs from the Dong-Wall entropy in a manner
analogous to how our formula for S½C� in general relativity
differs from the Bekenstein-Hawking entropy.

V. THE PHYSICAL PROCESS FIRST LAW AND

THE SECOND LAW

As explained in the Introduction, the main motivation for
our new definition of dynamical black hole entropy is to
obtain a local in time version of the physical process version
of the first law of black hole mechanics. In this section, we
derive the physical process version of the first law and
discuss the second law of black hole mechanics. As stated at
the end of Sec. II, we restrict consideration to Lagrangians

for which the only dynamical field is themetric. However, in
this context, there are two distinct cases that we consider.
The first case is where an external stress-energy is

present in the first-order perturbation. Here, by an external
stress-energy, we mean a source term in the first-order
gravitational equations arising from matter that is not
represented in the Lagrangian. In this case, as we shall
see, there can be nontrivial time dependence of
the dynamical black hole entropy S at first order when
the external matter crosses the horizon. We show that the

11The choice of α1 ¼ 1, α2 ¼ −4, α3 ¼ 1 corresponds to
Gauss-Bonnet gravity. There is a typo—previously noted in
[32]—in the sign of the second-to-last term in the formula for θ
for Gauss-Bonnet gravity given in Eq. (70) of [4].
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entropy change is related to the energy flux by the first law
of black hole mechanics. As an immediate corollary, we see
that if the external matter satisfies the null energy condition,
then the second law of black hole mechanics holds, i.e., the
entropy is nondecreasing with time in first-order perturba-
tion theory. These results hold for an arbitrary theory of
gravity.
The second case is that of pure vacuum perturbations. In

this case, S does not change with time at first order, so we
have to go to second order in perturbation theory to
investigate the time dependence of S. We find that at
second order, results similar to the external matter case
hold, with the first-order energy flux of external matter
replaced by the second-order flux of modified canonical
energy [8]. The flux of modified canonical energy is
positive in general relativity—it is proportional to the
square of the first-order perturbed shear of the horizon—
so the second law of black hole mechanics holds at second
order in general relativity. However, the flux of modified
canonical energy would not be expected to be positive in
general theories of gravity, so we would not expect a second
law to hold for vacuum perturbations in general theories.

A. Perturbations with external matter sources

For an arbitrary Lagrangian theory of gravity where the
only dynamical field is the metric, we consider a stationary
black hole with horizon Killing field ξa that satisfies the
vacuum field equations ðEGÞab ¼ 0. We consider pertur-
bations, δgab, of this spacetime that are sourced by a matter
stress-energy tensor, δTab, that is conserved, ∇aδTab ¼ 0.
Thus, δgab satisfies

2δðEGÞab ¼ δTab: ð100Þ

The perturbed matter energy flux (n − 1)-form e on the
horizon is given by

δea1���an−1 ≡ −ξbδTb
cϵca1���an−1 ¼ δTbcξ

bξcϵ
ðn−1Þ
a1���an−1 ; ð101Þ

where ϵðn−1Þa1���an−1 was defined by (47). We have the following
theorem:
Theorem 2 (Physical process version of the first law [9]).

Let C1 and C2 be arbitrary cross sections of the horizon H

with C2 lying to the future of C1. Let ΔδS denote the
perturbed entropy difference between the cross sections

ΔδS ¼ δS½C2� − δS½C1� ð102Þ

and let ΔδE denote the perturbed total energy flux between
the cross sections

ΔδE ¼
Z

H12

δe ¼ −

Z

H12

ξbδTb
cϵca1���an−1

¼
Z

H12

δTbcξ
bξcϵ

ðn−1Þ
a1���an−1 ð103Þ

whereH12 denotes the portion ofH bounded by C1 and C2.
Then we have

κ

2π
ΔδS ¼ ΔδE: ð104Þ

Proof. The pullback to the horizon of the fundamental
identity (30) with χa taken to be the horizon Killing vector
field ξa yields

d½δQ½ξ� − ξ · θ� ¼ −ξaδCa: ð105Þ

Using the definition (71) of S together with (70), we can
rewrite the left side of (105) as

d½δQ½ξ� − ξ · θ� ¼ κ

2π
dδS: ð106Þ

Using the general formula (28) with EM ¼ 0 for Ca

together with (100), we can rewrite the right side
of (105) as

−ξaδCa ¼ δe ð107Þ

so we have

κ

2π
dδS ¼ δe: ð108Þ

Integration of this equation over the region H12 of the
horizon bounded by C1 and C2 then immediately
yields (104) ▪.
Remark. In the case of general relativity, (104) yields

κ

8π
Δ

�
A −

Z

C

Vϑϵðn−2Þ
�
¼ ΔE: ð109Þ

This result can also be derived by multiplying the
Raychaudhuri equation by κV and integrating the resulting
expression between the two cross sections [20,33].
There are two important immediate consequences

of Theorem 2. First, if δTbc satisfies the null energy
condition (i.e., if δTbcn

bnc ≥ 0 for all null na), then it
follows immediately from (103) that ΔδE ≥ 0. It then
follows immediately from Theorem 2 that ΔδS ≥ 0, i.e.,
δS½C2� ≥ δS½C1� whenever C2 lies to the future of C1. Thus,
in an arbitrary theory of gravity, the second law of black
hole mechanics holds to first order for perturbations of a
black hole with external matter satisfying the null energy
condition.
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Second, Theorem 2 shows that, to first order, the entropy
of a black hole changes between cross sections C1 and C2 if
and only if there is a net energy flux of matter between C1
and C2. Thus, the increase in entropy of the black hole has
an entirely local cause. In the case of general relativity, this
contrasts sharply with the properties of the Bekenstein-
Hawking entropy, A=4. The event horizon of a black hole is
“teleological” in nature, i.e., its location is determined by
properties of the spacetime in the asymptotic future. If one
is going to throw matter into a black hole at a later time,
then at early times the event horizon area will have already
slightly increased in anticipation of the later arrival of the
matter. In other words, if one makes a firm decision to
throw a baseball into a black hole, the Bekenstein-Hawking
entropy of the black hole will have increased while the
baseball is still in one’s hand. Our definition of the entropy
of a dynamical black hole does not have this property.
Although the A=4 term in (89) will have increased while the
baseball is still in one’s hand, the horizon will also be
expanding at that time, so the second term in (89) will
contribute negatively. Theorem 2 shows that these two
terms cancel at first order, so there is no change in the black
hole entropy while the baseball is still in one’s hand. The
entropy of the black hole changes only when the baseball
crosses the horizon.

B. Vacuum perturbations

If we have no external matter sources, δTab ¼ 0, then
Theorem 2 states that ΔδS ¼ 0, i.e., there is no change of
black hole entropy with time at first order. Thus, we must
go to second order in perturbation theory to obtain the
leading-order dynamical behavior of black hole entropy. To
do so, we use the varied fundamental identity (31) with
χa ¼ ξa. Since we assume that the vacuum equations of
motion hold, the first three terms on the right side of (31)
vanish.12 We obtain13

ωðg; δg;LξδgÞ ¼ d½δ2Q½g; ξ� − ξ · δθðg; δgÞ�: ð110Þ

We can rewrite this equation as

ωðg; δg;LξδgÞ þ d½ξ · δθðg; δgÞ − ξ · δ2BHðgÞÞ�

¼ d½δ2Q½g; ξ� − ξ · δ2BHðgÞ� ¼
κ

2π
dδ2SðgÞ: ð111Þ

The term ωðg; δg;LξδgÞ is known as the canonical energy
(n − 1)-form [8] of the metric perturbation δg. We refer to
entire left side of (111) as the modified canonical energy

(n − 1)-form eG,

eGðg; δg; δgÞ≡ ωðg; δg;LξδgÞ
þ d½ξ · δθðg; δgÞ − ξ · δ2BHðgÞÞ�: ð112Þ

Note that eG is quadratic in δgab and does not depend on
δ2gab. The modified canonical energy was introduced in [8]
for the case of general relativity as a means of obtaining a
quantity with a locally positive flux whose total flux
through the black hole horizon agrees with the total
canonical energy flux. For the case of general relativity,
the modified canonical energy flux is given by

eG ¼ 1

4π
ðκVÞ2δσcdδσcdϵðn−1Þ; ð113Þ

[see Eq. (105) of [8] ], where V is an affine parameter, σcd is
the shear of the generators of the horizon with respect to V,
and we have used the fact [8] that δϑjH ¼ 0 for vacuum
perturbations. Although the modified canonical energy was
introduced in an entirely ad hocway in [8], we now see that
it naturally enters the formula for the local change in
dynamical black hole entropy at second order.
From (111) we see that the situation for vacuum

perturbations at second order corresponds to the situation
for external matter perturbations at first order, with the
modified canonical energy flux eG replacing the matter
stress-energy flux e. In particular, for vacuum perturbations
we have

κ

2π
Δδ2S ¼

Z

H12

eGðg; δg; δgÞ: ð114Þ

It follows immediately that, in an arbitrary theory of
gravity, the second law of black hole mechanics will hold
at second order for vacuum perturbations if and only if the
modified canonical energy flux through the horizon is
positive. This is the case in general relativity. However, it
seems unlikely that this will be the case in more general
theories of gravity even if we allow ourselves to modify the
entropy making use of the permissible ambiguities (see
Appendix C 3 for further discussion).

VI. RELATIONSHIP WITH THE DONG-WALL

ENTROPY

In 2013, Dong [5] proposed a formula for dynamical
black hole entropy for theories obtained from a Lagrangian
that depends upon the curvature but not derivatives of the
curvature. In 2015, Wall [6] proposed a formula for
dynamical black hole entropy for general Lagrangian
theories, valid to linear order for perturbations of a sta-
tionary black hole. Wall’s approach for obtaining dynami-
cal black hole entropy does not have any obvious
relationship with Dong’s. Nevertheless, for the case of a
Lagrangian that depends upon the curvature but not its
derivatives, Wall’s formula was found to agree [6] with the

12The first two terms would vanish in any case under pull-
back to H.

13Here δ2, the second variation, refers to the second derivative
with respect to a parameter s of a family of metrics
g
ðsÞ
ab ¼ gab þ sδgab þ 1

2
s2δ2gab þOðs3Þ.
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linearization of Dong’s formula. In Appendix D, we show
that when we apply the ideas of Wall’s method as
elucidated in this section to calculate entropy in dilaton
gravity models, it agrees with the linearization of the
entropy obtained by Dong and Lewkowycz [34] using
Dong’s approach. Thus, we believe that Wall’s entropy
agrees with the linearization of Dong’s entropy in general.
We will therefore refer to this entropy as the Dong-Wall
entropy and will denote it by SDW. Nevertheless, it should
be kept in mind that general agreement has not been
proven. In the event that they do not agree, the entropy
defined in this section would correspond to that proposed
by Wall [6].
In this section, we will give a derivation of the Dong-

Wall entropy based on the fundamental identity (30). We
will then obtain a simple, general relationship between the
Dong-Wall entropy and our entropy, valid up to linear order
in perturbations about a stationary black hole. As we shall
see, the relationship between the Dong-Wall entropy and
our entropy in general theories of gravity is very similar to
the relationship (89) between the Bekenstein-Hawking
entropy and our entropy in general relativity.
The starting point of our derivation of the Dong-Wall

entropy is the formula (28) for the pullback of the linearized
constraints to the horizon, which take the form

ξaδCa ¼ −2ðδEGÞabξaξbϵðn−1Þ; ð115Þ

where ϵðn−1Þ was defined by (47). The linearized equations
of motion ðδEGÞab take the general form

δEab
G ¼

Xk

i¼0

U
abc1���cide
ðiÞ ∇ðc1 � � �∇ciÞδgde; ð116Þ

where the tensors Uabc1���cide
ðiÞ ¼ U

ðabÞðc1���ciÞðdeÞ
ðiÞ are smooth

and are locally and covariantly constructed from the metric,
curvature, and covariant derivatives of the curvature. This is
closely analogous to the quantity αa in (51) except that
there are two free indices on δEab

G instead of the single free
index on αa. Both of these free indices on δEab

G are
contracted into ξa in (115), as opposed to the single
contraction that occurs in (52). Thus, one might expect
that a strengthened form of Theorem 1 should hold for
ðδEGÞabξaξb. We show in Appendix B that this is the case.
Specifically, we show that ðδEGÞabξaξb can be written in
the form

ðδEGÞabξaξb¼̂
Xk−2

i¼0

Ũ
c1���cide
ðiÞ ∇ðc1 � � �∇ciÞðL2

ξ − κLξÞδgde;

ð117Þ

where the tensors Ũc1���cide
ðiÞ are smooth onH and are locally

and covariantly constructed from the metric, curvature,

and its derivatives as well as from ξa, and Na [see (33)
and (34)], with ξa and Na appearing only algebraically.
Thus, we see that ðδEGÞabξaξb has the form

ðδEGÞabξaξb b¼ κLξPðg; ξ; δgÞ − L2
ξPðg; ξ; δgÞ

¼ ðκ − LξÞδPðg; ξ;LξgÞ ð118Þ

with

Pðg; ξ; δgÞ ¼ −
Xk−2

i¼0

Ũ
c1���cide
ðiÞ ∇ðc1 � � �∇ciÞδgde: ð119Þ

We define the Dong-Wall entropy (n − 2)-form by14

SDW ¼ Sþ 4π

κ
Pðg; ξ;LξgÞϵðn−2Þ; ð120Þ

where our entropy (n − 2)-form S was defined by (71) and
ϵ
ðn−2Þ was defined in (48). It is clear that SDW ¼ S in the
stationary background, wherein both are given by (73).
Since δS is uniquely defined for arbitrary first-order
perturbations and δP is uniquely determined by (118),
we see that δSDW is uniquely defined for arbitrary first-
order perturbations. However, there will be ambiguities in
SDW at second and higher orders resulting from the
ambiguities in S discussed at the end of Sec. IVA (see
also Appendix C) as well as from the additional ambiguities
in defining P at second and higher orders. The Dong-Wall
entropy of a cross section C is defined by

SDW½C� ¼
Z

C

SDW: ð121Þ

Since SDW does not depend on a choice of cross section and
SDW is smooth on H, it follows immediately that SDW is
cross section continuous, as defined in [21].
A simple relationship between SDW and S for first-order

perturbations can now be obtained as follows. As in the
proof of Theorem 2, we have

κ

2π
dδS ¼ −ξaδCa: ð122Þ

Using (115) and (118), we obtain

κ

2π
dδS ¼ 2ðκ − LξÞ½δPðg; ξ;LξgÞϵðn−1Þ�: ð123Þ

Applying the general identity (80) to
Lξ½δPðg; ξ;LξgÞϵðn−1Þ�, we obtain

14Reanalyzing Wall’s derivation [6], the authors of [35] have
emphasized the fact that the entropy integrand has a current part,
i.e., it is an (n − 2)-form. However, we have not been able to find
a relationship between their proposed formula and our for-
mula (120).
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Lξ½δPϵðn−1Þ� ¼ d½δPξ · ϵðn−1Þ� þ ξ · d½δPϵðn−1Þ�
¼ d½δPϵðn−2Þ�; ð124Þ

where the second term in the first equality vanishes because
ϵ
ðn−1Þ is an (n − 1)-form on the (n − 1)-dimensional mani-
fold H, so its “d” vanishes. Thus, bringing the LξδP term
on the right side of (123) to the left side and using (124) and
the definition (120) of SDW, we obtain

κ

2π
dδSDW ¼ 2κδPðg; ξ;LξgÞϵðn−1Þ: ð125Þ

Canceling the factors of κ and contracting both sides with
ξa, we obtain

1

2π
ξ · dδSDW ¼ 2ξ · ½δPðg; ξ;LξgÞϵðn−1Þ�

¼ 2δPðg; ξ;LξgÞϵðn−2Þ: ð126Þ

By the general identity (80), we have

ξ · dδSDW ¼ LξδSDW − d½ξ · δSDW�: ð127Þ

Thus, we obtain

4πδPðg; ξ;LξgÞϵðn−2Þ ¼ LξδSDW − d½ξ · δSDW�: ð128Þ

By the definition (120) of SDW, we have

δS ¼ δSDW −
4π

κ
δPðg; ξ;LξgÞϵðn−2Þ; ð129Þ

and substituting in (128) we have15

δS ¼ δSDW −
1

κ
LξδSDW þ 1

κ
d½ξ · δSDW�: ð131Þ

The last term is exact, so it does not contribute when one
integrates over a cross section C to get the Dong-Wall
entropy, δSDW½C�, of the cross section. Thus, we obtain the

desired general relationship between our entropy and the
Dong-Wall entropy for an arbitrary cross section C

δS½C� ¼ δSDW½C� −
1

κ

Z

C

LξδSDW: ð132Þ

It is worth noting that if we multiply (118) by ϵ
ðn−2Þ and

use (128) we obtain

ðδEGÞabξaξbϵðn−2Þ b¼
1

4π
ðκ − LξÞ½LξδSDW − dðξ · δSDWÞ�:

ð133Þ

Integrating over an arbitrary cross section C, we obtain

Z

C

ðδEGÞabξaξbϵðn−2Þ ¼
1

4π

Z

C

ðκ − LξÞLξδSDW: ð134Þ

Let V be an affine parameter for null geodesic generators of
H with V ¼ 0 corresponding to the bifurcation surface. Let
ka be the corresponding affinely parametrized tangent to
the null generators. Then ξa ¼ κVka on H and on differ-
ential forms we have κLξ − L2

ξ ¼ −κ2V2L2
k modulo exact

terms. We therefore obtain

Z

C

V2ðδEGÞabkakbϵðn−2Þ ¼ −
1

4π

Z

C

V2L2
kδSDW: ð135Þ

If C is a cross section of constant V (which always can be
achieved for any given cross section using the rescaling
freedom of V), then we obtain

Z

C

ðδEGÞabkakbϵðn−2Þ ¼ −
1

4π

d2

dV2
δSDWðVÞ: ð136Þ

This equation is the defining property16 of the entropy
given by Wall [see Eqs. (7) and (8) of [6] ].
For the case of general relativity [i.e. using the

Lagrangian (83)], we have

ðδEGÞabkakb ¼
1

16π
δRabk

akb ¼ −
1

16π
Lkδϑ; ð137Þ

where the linearized Raychaudhuri equation was used in
the second equality. Thus, we have

15Note that we can combine (131) and (122) into the equation,

2πkaδCa ¼ dðLkδSDWÞ; ð130Þ

to first order, where ξa ¼ κVka and V is an affine parameter
vanishing on B such that ka∇aV ¼ 1. This is identical in form to
the defining equation (to first order) of the Dong-Wall entropy as
given in Eq. (120) in Ref. [18] if we replace la there with ka, and
the entropy-current (n − 2)-form s defined by Eq. (119) of
Ref. [18] with SDW, noting that Fl in Eq. (120) [18] vanishes
up to and including first-order variations. Also note that s is
defined only to first order by Eq. (120) in Ref. [18], and it is
shown in Proposition 1 in Ref. [18] that it can be modified at
second order if necessary so as to be covariant. By contrast, our
derivation automatically delivers a covariant form of SDW.

16Note that there is a missing factor of 1=2π on the left side of
Eq. (7) (the first law) in [6]. Putting this factor back in and taking
two derivatives in affine parameter of that equation, one obtains
Eq. (8) of [6] with a factor of 2π on the left side instead of on the
right side. To match with (136), note that the Wall’s equations of
motion tensor Hab (defined in Eq. (2) in [6]) is given by
Hab ¼ 2ðEGÞab.
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ðδEGÞabξaξb ¼ −
1

16π
κ2V2Lkδϑ ¼ 1

16π
ðκ − LξÞðκVδϑÞ:

ð138Þ

Comparing with (118), we obtain

δPðg; ξ;LξgÞ ¼
1

16π
κVδϑ: ð139Þ

Substituting this result in (120), we find that for general
relativity, we have

δSDW ¼ δSþ 1

4
Vδϑϵðn−2Þ: ð140Þ

Thus, in general relativity the term arising from P in SDW
cancels the term arising from BH in our formula (71) for S,
and we are left with only the contribution from Q, which
yields the Bekenstein-Hawking entropy. Thus, the Dong-
Wall entropy equals the Bekenstein-Hawking entropy in
general relativity.

The type of cancellation between the BH and P terms
that occurs in the calculation of the Dong-Wall entropy in
general relativity does not occur for higher derivative
theories. In particular, for the Lagrangian

L ¼ RabR
ab
ϵ; ð141Þ

the equations of motion are

ðEGÞab ¼ Rða
cdeðgbÞdRec − RbÞegcdÞ

−∇d∇eðgdðaRbÞe − gdeRab − gabRde þ geðaRbÞdÞ

−
1

2
RdeR

degab: ð142Þ

This can be put in the form

ðδEGÞabξaξb ¼ κLξPðg; ξ; δgÞ − L2
ξPðg; ξ; δgÞ ð143Þ

with

Pðg; ξ; δgÞ ¼ 2ξnNmδRmn −
1

2
gbdqmn∇m∇nδgbd þ gbdqmn∇m∇bδgnd

−RfmqeN
fξmNqξegbdδgbd − gbdqmnRfbmeξ

eNfδgnd − qmnRf
bmeN

bξeδgnf

− 2Ndξfqmn∇m∇dδgnf þ Nmξfqbd∇b∇dδgfm − qpnRmnpeN
mξegabδgab; ð144Þ

where qab ¼ gab − 2ξðaNbÞ is the orthogonal projector to ξa and Na. In this case, it is easily seen that contribution to SDW
from P does not cancel the contribution of BH to S [see (98) with α1 ¼ α3 ¼ 0 and α2 ¼ 1].
We now evaluate the perturbed Dong-Wall entropy δSDW½C� for the Lagrangian (141), evaluated on an arbitrary

cross section C. Taking the Lie derivative of (144), we find, after some algebra, that LξPðg; ξ; δgÞ can be put in
the form

LξPðg; ξ; δgÞ¼̂ 2ξnNmLξδRmn þ 2qmn∇mðδRnfξ
fÞ

þ 1

2
qmn∇m∇nðgabLξδgabÞ − qpnRmnpeN

mξegabLξδgab þ gabLξδgabRmnξ
mNn: ð145Þ

We now substitute (145) and (99) (with α1 ¼ α3 ¼ 0

and α2 ¼ 1) into (120) and integrate the resulting (n − 2)-
form over C. The computations needed for this are
most readily done using Gaussian null coordinates based
upon the cross section C and the Killing parametrization.
The metric in these coordinates takes the form (see
e.g., [36])17

ds2¼2dvdr−2rα̃dv2−2r³Advdx
Aþ´ABdx

AdxB ð146Þ

with ξa ¼ ð∂=∂vÞa and α̃ b¼ κ. HereH corresponds to r ¼ 0

and the cross section C of H corresponds to v ¼ 0. We can
express Na and qab on H in terms of ξa, la ≡ ð∂=∂rÞa, and
³a ¼ ³AðdxAÞa as follows:

Na¼̂ la þ 1

2κ
³a −

1

8κ2
³p³pξ

a; ð147Þ

qab¼̂ ´ab −
1

κ
ξða³bÞ þ 1

4κ2
³p³

pξaξb: ð148Þ

Using these relations for Na and qab to rewrite (145),
we find

17The Killing Gaussian null coordinates v, r in (146) are
related to the affine Gaussian null coordinates V, ρ of (81) by
V ¼ eκv, ρ ¼ κ−1e−κvr. The quantities ³A and ´AB of (146) are the
same quantities that appear in (81), but α̃ is a different quantity
from α.
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4π

κ
LξPðg; ξ; δgÞϵðn−2Þ ¼ 2πLξδ½ϵðn−2Þð4ξmlcRmc − gabLξgab´

pq∇plqÞ� þ
2π

κ
Dq

�
ϵ
ðn−2Þ

�
2δRnfξ

f´qn −
1

κ
³qξmξfδRmf

þ 1

2
DqðgabLξδgabÞ −

1

2
³qgabLξδgab

��
: ð149Þ

The last two terms on the right hand side are a total spatial divergence, which vanish when integrated over C. The entropy
(n − 2)-form for the Lagrangian (141) is given by (99) with α1 ¼ α3 ¼ 0 and α2 ¼ 1, i.e.,

Sa1���an−2 ¼ −
2π

κ
ðϵcda1���an−2 ½2gceRdf∇½eξf� þ ðgcm∇dR − 2∇cRmdÞξm� þ ϵ

ðn−2Þ
a1���an−2ðRadξ

aNdgbc þ RbcÞLξgbcÞ: ð150Þ

Taking a variation of this quantity, pulling it back to C, and evaluating it in Gaussian null coordinates in a manner similar to
what was done above for P, we find, after some algebra, that

δS ¼̂ 2π

�
δ½ϵðn−2Þð4Rmnξ

mln − gabLξgab´
pq∇plqÞ� −

1

κ
Lξδ½ϵðn−2Þð4Rmnξ

mln − gabLξgab´
pq∇plqÞ�

−
2

κ
Dm½ϵðn−2ÞδRdnξ

d´mn�
�
: ð151Þ

Note that the form of this equation—where the second term
is minus the Lie derivative of the first term and the third
term is exact—is to be expected in view of (131). The last
line of (151) vanishes when integrated over C. Adding (149)
and (151) and integrating over C, we find that the
Dong-Wall entropy is

δSDW½C� ¼ 2πδ

Z

C

ϵ
ðn−2Þð4Rmcξ

mlc − 2KK̄Þ; ð152Þ

where

K ¼ 1

2
gabLξgab; ð153Þ

K̄ ¼ ´pq∇plq; ð154Þ

are the traces of the extrinsic curvatures in the ξ and l
directions, respectively. This agrees with Wall’s formula [6]
and with the linearization of Dong’s formula [5].
Finally, we note that if we integrate (125) between a

cross section C1 and another cross section C2 lying to the
future of C1, we obtain

δSDW½C2� − δSDW½C1� ¼ 4π

Z

H12

δPϵðn−1Þ; ð155Þ

where H12 denotes the portion of H bounded by C1 and C2
and we have written δP instead of δPðg; ξ;LξgÞ to make the
notation less cumbersome. Thus, the Dong-Wall entropy
will satisfy the second law of black hole mechanics at
first order if and only if δPðxÞ ≥ 0 for all x∈H. However,
from (118), we see that if the matter stress-energy tensor
satisfies the null energy condition, then we have

−eκvLξðe−κvδPÞ ¼ ðκ − LξÞδP ¼ ðδEGÞabξaξb

¼ 1

2
ðδTabÞξaξb ≥ 0; ð156Þ

where v is the Killing parameter along the null geodesics
(see (39)). Thus, we have

Lξðe−κvδPÞ ≤ 0: ð157Þ

For any x∈H, let ´ denote the null geodesic of H passing
through x. Integrating this equation along ´ with respect to
v from x to infinity and making the additional assumption
that limv→∞ e−κvδP ¼ 0, we obtain

δPðxÞ ≥ 0: ð158Þ

Thus the Dong-Wall entropy also satisfies the second law of
black hole mechanics. However, as with the Bekenstein-
Hawking entropy as discussed at the end of Sec. VA, the
Dong-Wall entropy may increase in anticipation of matter
that will be thrown into the black hole at a later time.

VII. THE GENERALIZED SECOND LAW

AND QNEC

The generalized second law (GSL) of thermodynamics
states that the sum of the entropy of a black hole and the
entropy of matter outside the black hole never decreases
with time. The GSL was originally proposed by Bekenstein
[3] in order to rescue the second law of thermodynamics in
view of the fact that the total entropy of matter in the
Universe will decrease if matter falls into a black hole; by
assigning an entropy to a black hole, Bekenstein argued
that the total (generalized) entropy would be nondecreasing
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even if the entropy of matter decreases. Bekenstein’s
proposal was originally made within the context of classical
black hole physics, where it is not consistent because,
classically, black holes have vanishing thermodynamic
temperature, but they would have to be assigned a nonzero
temperature in order to satisfy the first law of thermo-
dynamics with a finite entropy. However, shortly thereafter,
Hawking [2] discovered that within the context of
semiclassical physics, black holes radiate thermally at a
temperature T ¼ κ=2π. This not only removed a major
inconsistency of Bekenstein’s proposal but it made the GSL
the only viable candidate for a thermodynamic second law,
since quantum fields can violate all local energy conditions
and the second law of black hole mechanics will be violated
if there is a flux of negative energy into the black hole as
occurs during the Hawking radiation process. Thus, matter
entropy and black hole entropy can individually decrease in
various circumstances; only their sum has a possibility of
being nondecreasing in all circumstances.
There is considerable circumstantial evidence in sup-

port of the GSL. In particular, gedankenexperiments
attempting to violate the GSL fail [37] in a manner
reminiscent of the failure of Gedankenexperiments
designed to violate the ordinary second law. Of course,
one would like to obtain a precise formulation and proof
of the GSL rather than just having circumstantial evidence
in support of it. However, even in the context of non-
gravitational physics, there is no precise formulation and
proof of the ordinary second law of thermodynamics.
Rather, there is a basic argument for the ordinary second
law, which traces back to Boltzmann. This argument
involves the introduction of a coarse-grained observable
to define the entropy of matter. In the context of classical
physics, the entropy of a state is defined to be the
logarithm of the volume of phase space corresponding
to the value of the coarse-grained observable in that state.
If the entropy of a state is not at its maximum value,
dynamical evolution is very likely to evolve that state to a
state of higher entropy. If the entropy of a state is at its
maximum, it is very likely to remain in a maximum
entropy state for much longer than any realistic observa-
tion time. Thus, this argument suggests that if one starts a
system in a special (i.e., a low entropy) state, one will
observe an entropy increase until it reaches an equilibrium
(i.e., maximum entropy) state, at which point one will
observe no further changes. A similar argument applies in
the quantum context, with the phase space volume of the
value of the coarse-grained observable replaced by the
dimension of the eigensubspace of the eigenvalue of the
coarse-grained observable [25]. It should be emphasized
that the von Neumann entropy of the quantum state does
not play any role in this argument for justifying
the validity of the ordinary second law in the quantum
context [25]. Indeed, for any isolated system in any
quantum state, the von Neumann entropy is constant,

but one would still expect to observe an entropy increase
in such a system if one started it in a special state.
It is therefore quite remarkable that a precise formulation

and argument/proof of the GSL has been given for semi-
classical general relativity, using von Neumann entropy as
the notion of entropy of matter outside the black hole. In
particular, Wall [38] has shown that

d

dV

�
A

4
þ SvN

�
≥ 0: ð159Þ

Here AðVÞ=4 is the Bekenstein-Hawking entropy of the
black hole on the cross section C corresponding to affine
time V and SvNðVÞ is the von Neumann entropy of the
quantum field matter outside the black hole at a “time”
corresponding to a spacelike hypersurface extending from
C to spatial infinity. In fact, SvNðVÞ is ill-defined on account
of the infinite entanglement of the quantum field across the
horizon. However, von Neumann entropy differences
between states should be well defined, and that is what
should be needed to make sense of dSvN=dV in the GSL
(see Ref. [39] for a recent proposal on how to rigorously
define entropy differences in quantum field theory via a
cross product construction).
In this section, we will investigate the validity of the GSL

for first-order perturbations of a stationary black hole in a
general theory of gravity, using both our definition of
entropy, S½C�, and the Dong-Wall definition, SDW½C�. Our
analysis will be based upon the QNEC for quantum fields
in fixed classical background, first introduced in [40].
QNEC asserts that if C is a cross section of a null
hypersurface N such that the expansion and shear of N
vanish on C, then for any point p on C we have [40]

ffiffiffi
h

p
hTabikakb ≥

1

2π

δ2

δVðpÞ2 SvN; ð160Þ

where h is the determinant of the induced metric on C, VðyÞ
is the affine parameter (a function of the coordinates in the
transverse direction y), and SvN is the von Neumann
entropy of the quantum field outside the null hypersurface
(where “outside” means on a spacelike hypersurface whose
future Cauchy horizon coincides with N ). For simplicity,
we will restrict consideration here to the case where the
deformation of C is a uniform translation in V. Integration
of (160) over C yields

Z

C

hTabikakb ≥
1

2π

d2

dV2
SvN: ð161Þ

QNEC has been rigorously proven/formulated in [41]
within the general framework of half-sided modular inclu-
sions and relative entropy, and this setting is expected to
cover the case of a bifurcate Killing horizon in curved
spacetime as considered here. We omit a more precise

HOLLANDS, WALD, and ZHANG PHYS. REV. D 110, 024070 (2024)

024070-22



technical discussion of the setting and, for purposes of
readability, we stick to informal notations such as (161). In
the remainder of this section, we will assume that (161)
holds for an arbitrary cross section C of a bifurcate Killing
horizon.
Equation (161) holds in a fixed background spacetime.

We assume that for an unperturbed stationary black hole
with a quantum field in a Hartle-Hawking-like vacuum
state, both sides of (161) vanish. We now consider
perturbing the quantum state, taking back-reaction into
account by treating δhTabi as an “external matter pertur-
bation” as in Sec. VA. Then we have

2δðEGÞabkakb ¼ δhTabikakb: ð162Þ

Consequently, when back-reaction is taken into account,
QNEC in the form (161) yields

Z

C

2δðEGÞabkakb ≥
1

2π

d2

dV2
δSvN: ð163Þ

The GSL for the Dong-Wall definition of black hole
entropy can now be obtained as follows. Using (136), we
obtain

−
1

2π

d2

dV2
δSDW ≥

1

2π

d2

dV2
δSvN; ð164Þ

i.e.,

d2

dV2
½δSDW þ δSvN� ≤ 0: ð165Þ

Integrating this equation from an initial cross section to
V ¼ ∞ and making the additional assumption that
limV→∞ dδSDW=dV ¼ limV→∞ dδSvN=dV ¼ 0, we obtain
the desired GSL

d

dV
½δSDW þ δSvN� ≥ 0: ð166Þ

This derivation corresponds closely to Wall’s derivation of
the GSL for general relativity [38], although he based his
argument on the monotonicity of the relative entropy rather
than QNEC. The above argument shows that this form of
the GSL corresponds to an integrated form of QNEC.
The GSL for our definition of black hole entropy can be

obtained by evaluating the physical process version of the
first law (104) on cross sections C of constant V and
differentiating with respect to V. We obtain

κ

2π

d

dV
δS ¼

Z

C

δhTabikaξb

¼ κV

Z

C

δhTabikakb ≥
κ

2π
V

d2

dV2
δSvN: ð167Þ

This relation can be put in a GSL form by defining a
modified von Neumann entropy of matter, S̃vN, by

S̃vN ≡ SvN − V
d

dV
SvN: ð168Þ

Thus, S̃vN agrees with SvN in stationary eras but has a
dynamical correction when SvN changes with time. Since

d

dV
S̃vN ¼ −V

d2

dV2
SvN; ð169Þ

we see that (167) takes the GSL form18

d

dV
½δSþ δS̃vN� ≥ 0: ð170Þ

This version of the GSL directly corresponds to QNEC,
rather than an integrated form of QNEC.
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APPENDIX A: S IS THE AREA OF THE

APPARENT HORIZON TO FIRST ORDER IN

GENERAL RELATIVITY

The apparent horizon on an arbitrary Cauchy surface Σ is
the boundary of the region containing outer trapped
surfaces that lie within Σ. The apparent horizon is a
marginally outer trapped surface, i.e., its outgoing null
expansion vanishes. If the null energy condition holds and
if weak cosmic censorship is valid, then an apparent
horizon must lie within a black hole, so apparent horizons

18The idea of defining a modified von Neumann entropy
by (168) so as to be able to write (167) in the form (170) was
suggested to us by Jon Sorce. It would be interesting to see if this
definition of modified von Neumann entropy can be motivated by
additional, independent arguments. In this regard, Igor Klebanov
has pointed out to us that the expression V d

dV
SvN is formally

equal to the monotonic c-function for two-dimensional CFTs
defined by [42]. The lightray algebras of a Killing horizon have
connections with a chiral CFT, so this might be more than a
coincidence.
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are very useful for determining the presence of a black hole
given only data on Σ. For a stationary black hole, the
apparent horizon on any Cauchy surface Σ is given by the
intersection of Σ with the event horizon H.
For a nonstationary black hole, the location of an

apparent horizon will depend on the choice of Cauchy
surface, and the area of an apparent horizon at a time (i.e.,
choice of Cauchy surface) corresponding to a cross section
C of the horizon will not, in general, be a meaningful
concept. However, for first-order perturbations of a sta-
tionary black hole with bifurcate Killing horizon, the notion
of the area of an apparent horizon at a time corresponding
to C is a well-defined concept. To see this, we note that, as
proven in Sec. 2.1 of [8], for a stationary black hole with
bifurcate Killing horizon, any horizon cross section C is a
strictly stably outermost marginally trapped surface in the
terminology of [43]. This implies that given any function,
f, on C, there exists a unique function, ψ on C such that if
we deform C infinitesimally by ψla (with la a fixed vector
field tranverse to the horizon), then to first order, the
outgoing expansion of δC will be f. Now suppose we
perturb the black hole so that its perturbed expansion at C is
positive, δϑ > 0. To find the apparent horizon at first order,
we infinitesimally perturb C inwards by ψla and denote the
first order change of the outgoing null-expansion ϑ by δψlϑ.
If we now choose ψ so that δψlϑ ¼ −δϑ, then to first order,
this uniquely locates an apparent horizon lying along the
flow of ψla from C. To first order, the area of the apparent
horizon will not depend on the choice of la.
The computation of the location of the apparent horizon

is most conveniently done using Gaussian null coordinates
based upon the cross section C and the Killing para-
metrization, as previously introduced in (146). We take
la ¼ ð∂=∂rÞa, so la is the (past directed) ingoing null
normal to C, normalized so that laξa ¼ 1. The perturbed
expansion of C along the horizon direction with respect to
ξa is then δϑ̃ ¼ κVδϑ. The equation for ψ that we must
solve is

δψlϑ̃ ¼ −δϑ̃ ¼ −κVδϑ: ðA1Þ

The variation δψlϑ̃≕Wψ is given by a linear operator W
intrinsic to C acting on ψ which has been given in [43] (see
also Eqs. (5.12) and (5.34) of [44]) as19

Wψ ¼−DaDaψþ³aDaψ

þ
�
Gabξ

albþ1

2

�
R½´�−1

2
³a³aþDa³

a

�
− ϑ̃

¯̃
ϑ

�
ψ ;

ðA2Þ

where R½´� denotes the scalar curvature of the induced
derivative Da on C associated with the induced metric ´ab,
ϑ̃ ¼ 1

2
´cdLξ´cd is the outgoing expansion of C, and

¯̃
ϑ ¼ 1

2
´cdLl´cd the ingoing expansion of C.

We now use Einstein’s equation Gab ¼ 0 and the fact
that H has vanishing outgoing shear and expansion in the
stationary background. Using the fact that α̃ b¼ κ and using
Einstein’s equation again, the scalar curvature of C is found
to be [see also Eq. (82) of [36] ]

R½´� ¼ Da³
a þ 1

2
³a³a þ 2κ ¯̃ϑ: ðA3Þ

Thus, ψ is determined by

−DaDaψ þ ³aDaψ þ ðDa³
aÞψ þ κ

¯̃
ϑψ ¼ −κVδϑ: ðA4Þ

The second and third terms on the left side combine to a
total divergence Daðψ³aÞ intrinsic to C. Integrating over C,
we see that ψ satisfies the relation

κ

Z

C

¯̃
ϑψϵðn−2Þ ¼ −κ

Z

C

Vδϑϵðn−2Þ: ðA5Þ

On the other hand, the change in area resulting from
displacing C infinitesimally along ψla is

δA ¼
Z

C

ψ ¯̃ϑϵðn−2Þ: ðA6Þ

Thus, we see that the area of the apparent horizon differs
from the area of C by

δA ¼
Z

C

ψ
¯̃
ϑϵðn−2Þ ¼ −

Z

C

Vδϑϵðn−2Þ: ðA7Þ

Comparing with (89), we see that up to first order, we have

S½C� ¼ Aapp½C�
4

ðA8Þ

where Aapp½C� is the area of the apparent horizon at the time
corresponding to the cross section C of the horizon.

APPENDIX B: GENERALIZATION OF

THEOREM 1 TO THE CASE OF A TENSOR

DOTTED WITH TWO (OR MORE) ξ’s

Consider the hypotheses of Theorem 1, but with αa in
(51) replaced by

19The differences between formula (A2) for our operator
defined by δψ lϑ̃≕Wψ and the corresponding Eq. (1) of [43]
result from the facts that (i) we are considering a null displace-
ment rather than a spacelike displacement and (ii) they set ϑ̃ ¼ 0

since they are considering a marginally outer trapped surface.
Equation (A2) is valid for the change in the expansion of the
orthogonal null geodesics of any n − 2-dimensional surface C

under an infinitesimal displacement of the surface by ψ la, where
la is the other null normal field to C, normalized to have unit inner
product with the null normal defining the expansion.
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³ab ¼
Xk

i¼0

T
abc1���cide
ðiÞ ∇ðc1 � � �∇ciÞδgde: ðB1Þ

We wish to obtain a strengthening of the conclusion (52) of
Theorem 1 that is valid for the form of ³abξ

aξb.
Specifically, we will show that ³abξaξb can be written in
the form

³abξ
aξb b¼

Xk−2

i¼0

T̃
c1���cide
ðiÞ ∇ðc1 � � �∇ciÞðLξ − κÞLξδgde ðB2Þ

where the tensors T̃b1���bicd
ðiÞ are smooth onH and are locally

and covariantly constructed from the metric, curvature, and
its derivatives as well as from ξa, and Na, with ξa and Na

appearing only algebraically.
To show this, we start with the highest derivative term in

³abξ
aξb and proceed as in the proof of Theorem 1. Each

term in the basis expansion of ξaξbT
abc1���cide
ðkÞ corresponding

to (53) will now have at least two “extra” ξ’s, i.e., there will
be at least 2 more ξ’s thanN’s in each term. We can perform
the exactly the same manipulations with one of these
“extra” ξ’s as was done to derive (61) in the proof of
Theorem 1. We thereby obtain

ξaξbT
abc1���ckde
ðkÞ ∇ðc1 � � �∇ckÞδgde

b¼ T̃
c1���ck−1de
ðk−1Þ ∇ðc1 � � �∇ck−1ÞLξδgde

þ
Xk−1

i¼0

T 0c1���cide
ðiÞ ∇ðc1 � � �∇ciÞδgde ðB3Þ

with T̃
c1���ck−1de
ðk−1Þ and T 0c1���cide

ðiÞ satisfying the same properties

as enumerated in Theorem 1 but with T̃
c1���ck−1de
ðk−1Þ now

satisfying the additional property that there is at least
one “extra” ξa appearing in each term in its basis expan-
sion. We may now perform the same manipulations with
this additional ξa to obtain

ξaξbT
abc1���ckde
ðkÞ ∇ðc1 � � �∇ckÞδgde

b¼ T̃
c1���ck−2de
ðk−2Þ ∇ðc1 � � �∇ck−2ÞL

2
ξδgde

þ
Xk−1

i¼0

T 00c1���cide
ðiÞ ∇ðc1 � � �∇ciÞδgde ðB4Þ

where T 00c1���cide
ðiÞ incorporates all of the additional lower

derivative terms arising from this second set of manipu-
lations. Now, the left side of (B4) is OðV2Þ as V → 0,
where V denotes an affine parameter on the horizon (with
V ¼ 0 corresponding to the bifurcation surface). However,
the first term on the right side is only OðVÞ since

T̃
c1���ck−2de
ðk−2Þ ∇ðc1 � � �∇ck−2ÞL

2
ξδgde

¼ L2
ξ ½T̃

c1���ck−2de
ðk−2Þ ∇ðc1 � � �∇ck−2Þδgde�

¼ κVLkðκVLk½T̃c1���ck−2de
ðk−2Þ ∇ðc1 � � �∇ck−2Þδgde�Þ

¼ κ2ðV2L2
k þ VLkÞ½T̃c1���ck−2de

ðk−2Þ ∇ðc1 � � �∇ck−2Þδgde� ðB5Þ

and the factor with VLk is only OðVÞ. We can rectify
this by replacing L2

ξδgde in (B4) by ½L2
ξ − κLξ�δgde and

compensating for this by adding the quantity
T̃
c1���ck−2de
ðk−2Þ ∇ðc1 � � �∇ck−2ÞκLξδgde to the second term on

the right side of (B4). Since this quantity involves at most
(k − 1) derivatives of δgde, it does not change the character
of this term. Thus, have shown that

ξaξbT
abc1���ckde
ðkÞ ∇ðc1 � � �∇ckÞδgde

b¼ T̃
c1���ck−2de
ðk−2Þ ∇ðc1 � � �∇ck−2ÞðLξ − κÞLξδgde

þ
Xk−1

i¼0

T 000c1���cide
ðiÞ ∇ðc1 � � �∇ciÞδgde ðB6Þ

where T̃ðk−2Þ and T 000
ðiÞ are smooth and are locally and

covariantly constructed from the metric, curvature, ξa, and
Na, with only algebraic dependence on ξa and Na. But now
the left side and the first term on the right side are both
OðV2Þ as V → 0. Therefore, the last term on the right side
is also OðV2Þ and therefore T 000c1���cide

ðk−1Þ must also have two

“extra” ξ’s in each term of its basis expansion. This allows
us to make an inductive argument to prove (B2) in parallel
with the proof of Theorem 1.
Remark. For the case of a tensor

´a1���ap ¼
Xk

i¼0

T
a1���apc1���cide
ðiÞ ∇ðc1 � � �∇ciÞδgde; ðB7Þ

contracted into p factors of ξa, the corresponding result is

´a1���apξ
a1 � � � ξap b¼

Xk−p

i¼0

T̃
c1���cide
ðiÞ ∇ðc1 � � �∇ciÞðLξ − κðp − 1ÞÞ � � � ðLξ − 2κÞðLξ − κÞLξδgde ðB8Þ

where the tensors T̃c1���cide
ðiÞ are smooth on H and are locally and covariantly constructed from the metric, curvature, and its

derivatives as well as from ξa, and Na, with ξa and Na appearing only algebraically.
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APPENDIX C: AMBIGUITIES OF S BEYOND

FIRST ORDER

1. Nondynamical background structures

As discussed in Sec. IVA, the definition of S suffers
from ambiguities at second order and beyond. One source
of ambiguities arises from the presence of ξa in our formula
for BH and the fact that, going beyond linear order in
perturbation theory, we can no longer treat ξa as the exact
Killing field on the stationary background. The approach
taken in Sec. IVA was to tie the metric gab to ξa

by postulating in effect that gab is in a Gaussian null
gauge (81) and is related to ξa by (82), in such a way that B
is at ρ ¼ 0 ¼ V.
In this section, we will present another possible approach

wherein the class of metrics gab considered (i.e. effectively
the gauge near H), as well as the form of ξa off of H is
determined by a nondynamical background structure given
only on H, as opposed to off of H as in (82). In particular,
off of H, though not on H, the ξa considered in this
appendix will depend on gab, unlike in Sec. IVA.
Our main reason for considering a different approach

here is that with the approach given below, it will be
possible to make a precise comparison between the
ambiguities and structure of S in our approach and that
of recent proposal by [18] (see Sec. C 3). In fact, while [18]
also works in a Gaussian null gauge, just as we did to tie the
gauge of gab to ξa in Sec. IVA, the gauge considered
by [18] is tied to the cross section C on which one wants to
define S½C�. By contrast, in the present paper we have ξa

which is not tied from the outset to a particular C on which
we anticipate evaluating S.
In order to characterize the ambiguities in S precisely, it

is necessary to specify the geometric structures underlying
our construction. The rigidly fixed, nondynamical back-
ground structure considered in this appendix consists of
(a) an (n − 1)-dimensional hypersurface H of M having
the topological structure of a trivial fiber bundle with fibers
R and compact base; (b) a preferred cross section, B, onH;
(c) a vector field ξa tangential to the fibers which changes
its direction at B (and vanishes only on B); (d) a positive
real number κ; (e) a vector field Na transverse to H that is
defined for each point in HnB, and is nonzero where
defined.
Definition 1. Given our rigidly fixed, nondynamical

background structure ðH;B; ξa; Na; κÞ, we consider com-
patible spacetime metrics gab onM in the following sense.
We require that H is null with normal ξa and, furthermore,
is such that ξa∇aξ

b ¼ κξb, NaNa ¼ 0, and gabξbNa ¼ 1 on
H. We call this space of metrics P. BH, as well as S are
functionals on P.
The space P does not imply any physical restrictions

onto the metric. Indeed, let H̃ be any null surface with
compact cross sections ruled by affinely parametrized null
geodesics with tangent ka. Let V be any affine parameter

along the null geodesics vanishing on some cut, B and set
ξ̃a ¼ κVka. Then we have ξ̃a∇aξ̃

b ¼ κξ̃b and ξ̃a is obvi-
ously null and normal to H̃. Furthermore, let Ña be a
second null field defined on H̃ such that ξ̃aÑa ¼ 1. By
applying a diffeomorphism ϕ, we can clearly achieve that
ϕ�Ña ¼ Na;ϕ�ξ̃a ¼ ξa and ϕ½H̃� ¼ H. Thus, ϕ�gab is
in P.
Due to the derivatives acting on ξa in (69), we first define

Na off of H by demanding that, besides relation (C1) and
Naξa ¼ 1; NaNa ¼ 0 on H, we have Na∇aN

b ¼ 0. Since
ξa is hypersurface orthogonal, we have ∇½aξb� b¼ 2κw½aξb�
for some wa. In fact, we can and will adjust the extension
such that wa ¼ Na. To see this, note that we are allowed to
change ξa → ξa þ fpa where f is any function on M

vanishing on H and pa is any vector field. Since ξa is
normal to H, we must have ∇af ¼ cξa on H, where c is a
function that we can choose as we please. This means that
wa → wa − cpa=κ which we use to change wa to Na.
Our requirement ∇½aξb� b¼ 2κN½aξb� fixes the first deriva-

tive of ξa on H only partially. Note that we are not free to
fix the symmetrized derivative of ξa e.g. by (33) since that
relation used the Killing property of ξa, and we are no
longer requiring at this stage that ξa is a Killing vector field
with respect to gab. However, we may, and will, demand
without loss of generality that ξa has been extended off of
H such that

∇½aξb�¼̂2κN½aξb�; ð∇aξbÞNaNb¼̂0; ð∇ðaξbÞÞξb¼̂0:

ðC1Þ

We are allowed to change ξa → ξa þ fξa, where f is
any function on M vanishing on H, without affecting
the first relation in (C1). Since ∇af ¼ cξa on H, we
can thereby change ∇ðaξbÞ → ∇ðaξbÞ þ cξaξb. Since c is a
function that we can choose as we please and since
Naξa ¼ 1, we can clearly impose ð∇aξbÞNaNb b¼ 0. The
condition ð∇ðaξbÞÞξb b¼ 0 easily follows from
∇½aξb� b¼ 2κN½aξb� and ξa∇aξ

b b¼ κξb. Finally, using
Na∇aN

b ¼ 0 and ð∇ðaξbÞÞξb b¼ 0 b¼ð∇aξbÞNaNb, we have

Na∇aðNbξbÞ¼̂ 0; ∇aðξbξbÞ¼̂ − 2κξa: ðC2Þ

Transvecting ∇½aξb�¼̂ 2κN½aξb� with Na, we get
LNξa¼̂ − 2κNa, which clearly uniquely determines the
first-order change of ξa off of H.
As we have argued, (C1) defines ξa to first order off of

H, but we would like to define it to arbitrary orders off of
H. In order to have a definition that gives us the Killing
vector field ξa in the special case thatH is a Killing horizon
for gab, we require ξa to satisfy the geodesic deviation
equation,

Na∇aðNb∇bξcÞ ¼ RcbadN
bNaξd; ðC3Þ
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which is a viewed as a second-order ordinary differential
equation for ξa whose initial conditions are posed
on H. Since the geodesic deviation equation implies that
Na∇aðNb∇bðξcNcÞÞ ¼ 0, the initial conditions ξaNa b¼ 1;
Nc∇cðNaξaÞ b¼ 0, imply that Naξa ¼ 1 in a neighborhood
of H.
Consider now a metric g̃ab having a stationary bifurcate

Killing horizon H with Killing field ξ̃a that vanishes on B.
We have constructed in Eqs. (33) to (38) a vector field Ña at
points ofH from the Killing field ξ̃a and the metric g̃ab. We
can align these with ξa, Na as in definition 1 by a
diffeomorphism ϕ, so that gab ¼ ϕ�g̃ab ∈P. Since any
Killing field satisfies (63), we automatically have
Na∇aðNb∇bξcÞ ¼ RcbadN

bNaξd, where the derivatives
and Riemann tensor refer to gab. Thus, our extension
procedure produces precisely the horizon Killing field if
there is one.
We likewise require that any variation δgab be compat-

ible with our the fixed (not varying) background structure
ðH;B; ξa; Na; κÞ in this appendix, in the sense that it is
given as the derivative of a 1-parameter family of metrics in
the space P (definition 1), i.e. as an element in the tangent
space of P. Then we have δgabξa ¼ 0 on H. Furthermore,
since δκ ¼ 0 as κ is part of the rigidly fixed back-
ground structure, the last equation in (C2) implies that
0 ¼ δ½∇aðξbξbÞ� ¼ ∇aðδgbcξcξbÞ. Thus, the previously
considered gauge conditions (42), (43) hold generally,
not just off a stationary (bifurcate Killing-) horizon.
Our main first-order variation formula for S was (76) for

any perturbation δgab satisfying gauge conditions (42),
(43). In the construction leading to (76), we previously
considered ξa as fixed not only onH, but also off ofH. By
contrast, the algorithm we have just given above for
extending ξa, Na off of H depended on the chosen metric,
and therefore while δξa b¼ 0, the derivatives of δξa off of H
will not in general vanish. Nevertheless, by a lengthy
argument, we have shown that (76) continues to hold. As a
consequence we still have the formulas expressing the
second law obtained within the previous framework of
nondynamical background structure in Secs. VA and V B.
Similarly, we still have the second-order variation
formulas (111) and (112) in the present setting with a
varying ξa, with only minor modifications to the definition
of the boundary terms in the modified canonical energy
(112). However, we shall not present the details of these
modifications here.

2. Structure and ambiguities of S

As in the approach taken in Sec. IVA, there is substantial
potential ambiguity in S beyond first order. The first
ambiguity arises because it may happen that two metrics
gab and ϕ�gab may both be in P, where ϕ is a nontrivial
diffeomorphism fixingH and hence ξa onH. We therefore
have ðϕ�gabÞξaNb ¼ 1 by definition 1, so gab satisfies the
definition 1 also for Ña ¼ ϕ−1�Na. Since gab and ϕ�gab

must be regarded as physically equivalent, this is telling us
that we have, in effect, changed Na

→ Ña while keeping
gab fixed, analogous to the freedom of choosing a different
affine parametrization in of H in Sec. IVA.
The second ambiguity arises from the fact that BH,

which enters S, was constructed to satisfy (70), which is a
condition that applies only to first-order perturbations. We
may add many terms to BH (and hence to S ¼ Q − ξ ·BH)
that vanish identically at first order but not second. The
following lemma will enable us to give a precise classi-
fication of such terms.
Lemma 1. Let BH be an (n − 1)-form valued functional

satisfying 1.–5. in Sec. IVA. Then it can be written as a sum
of monomials of the following factors (i)—(iii), contracted
with Na; ξa; sai ’s and multiplied by powers of κ.

(i) s
a1
i1
� � � sajij ∇ða1 � � �∇ajÞLξgab;

(ii) s
a1
i1
� � � sajij ∇ða1 � � �∇aj−1ÞðLξÞsNaj

, s ≥ 0;

(iii) ∇ða1 � � �∇aj
Rb

ajþ1ajþ2Þ
c; j > 0, Rabcd.

Each contracted monomial in BH is invariant under a
rescaling ξa → cξa, Na

→ Na=c, κ → cκ. There must be at
least one factor of type (i), (ii) with s > 0 or a fully
contracted factor of type (iii) with more ξa’s than Na

’s. The
total number of derivatives in each monomial must be less
than the number of derivatives in the Lagrangian, with each
occurrence of κ counting as one derivative.
Proof. By assumptions 1.–5. BH is a sum of monomials

consisting of the following factors: (a) ∇a1
…∇aj

Nb,
(b) ∇a1

…∇aj
ξb, (c) ∇a1

…∇aj
Rabcd, which are fully con-

tracted into the legs of the tetrad Na; ξa; sai . We will now
show by induction in j ≥ 0 that each such term can be
converted into one of the terms (i)–(iii) listed in lemma 1.
For term (c) it follows from the results of [11]. Thus, we
only have to deal with the terms (a) and (b). For j ¼ 0, there
is nothing to show.
Assuming that the statement is true up to j − 1 deriv-

atives, let us prove it for j derivatives. We begin by
considering all possible ways of dotting the legs of our
null tetrad into a term of the form (b), ∇a1

…∇aj
ξb. By

commuting derivative operators at the expense of Riemann
tensors (giving terms of the form (b) with fewer derivatives
and terms of the form (c)), and by moving any Na factors
into the derivative operators at the expense of new terms of
the form (a) with fewer than j derivatives, we may bring the
expression into the form ∇a1

…∇aj−k
ðNc∇cÞkξb, dotted into

ξa’s and sai ’s. For k ≥ 2, we may use (C3) to lower k at the
expense of terms of the form (c), so only the case k ¼ 0, 1
needs to be considered. As an example of such a term for
k ¼ 1, consider s

a1
i1
…s

aj
is
ξasþ1…ξaj−1∇a1

…∇aj−1
ðNc∇cξbÞ.

At the expense of terms of the form (a) when a derivative
hits Nc, we can move all derivatives tangent to ξd onto ξb
and then use ξd∇dξb b¼ κξb, since all derivatives are at this
stage tangent toH. Thus, we can effectively assume that the
term we are dealing with is of the form
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termðbÞ¼s
a1
i1
…s

aj−1
ij−1

∇a1
…∇aj−1

ðNc∇cξbÞ

¼s
a1
i1
…s

aj−1
ij−1

∇a1
…∇aj−1

�
Nc

�
1

2
Lξgcbþ2κN½cξb�

��
:

ðC4Þ

The first term on the right side is of the form (i) in the

lemma, whereas the second has fewer than j derivatives

acting onto ξb and at most j derivatives acting onto Nc, i.e.

it is a term of the form (a), after symmetrizing derivatives at

the expense of terms of the form (c) with Riemann tensors.

The case k ¼ 0 is treated similarly.
Next, we consider all possible ways of dotting the legs of

our null tetrad into a term of the form (a), ∇a1
…∇aj

Nb. By
commuting derivative operators at the expense of Riemann
tensors (giving terms of the form (a) with fewer derivatives
and terms of the form (c)), and by moving any Na factors
into the derivative operators at the expense of new terms of
the form (a) with fewer than j derivatives, we may bring the
expression into the form ∇a1

…∇aj−k
ðNc∇cÞkNb, dotted

into ξa’s and sai ’s. Such a term vanishes for k > 0 because
of Nc∇cNb ¼ 0. We can move all derivatives tangent to ξd

onto Nb at the expense of terms of the form (b) with fewer
than j derivatives. Thus, we can effectively assume that the
term we are dealing with is of the form

termðaÞ ¼ s
a1
i1
…s

aj−s
ij−s

ξaj−sþ1…ξaj∇a1
…∇aj

Nb: ðC5Þ

We can now gradually express the number of derivatives
into the ξa-direction in terms of Lie derivatives Lξ and
terms such that each factor has fewer than j derivatives. So,
we have reduced the (a) terms to terms of the form

termðaÞ ¼ s
a1
i1
…s

aj−s
ij−s

∇a1
…∇aj−s

ðLξÞsNb; ðC6Þ

and we can symmtrize the ai-indices at the expense of
terms of the type (c). If we dot ξb into this expression, we
get terms of type (b), since ξbNb ¼ 1. If we dot Nb into this
expression, we get terms of the type (a) with fewer
derivatives since NbNb ¼ 0 in a neighborhood of H. So
we have effectively reduced attention to terms of the form
claimed in item (ii). ▪

The main consequence of this lemma is as follows: If H
is a stationary bifurcate Killing horizon with Killing vector
field ξa, then any factor of type (i), (ii) with s > 0 or any
fully contracted factor of type (iii) with more ξa’s than Na

’s
vanishes. By contrast, a factor of type (ii) with s ¼ 0, or a
fully contracted factor of type (iii) with no more ξa’s than
Na

’s factors will not, in general, vanish. It is thus clear that
the ambiguity in BH consists in adding monomials with at
least two factors of either type (i), (ii) with s > 0, or a fully
contracted factor of type (iii) with more ξa’s than Na

’s.

3. Comparison with HKR Proposal

In [18] Hollands, Kovacs, and Reall (HKR) constructed
an entropy-current (n − 2)-form SHKR in an “effective field
theory” (EFT) framework

L ¼ 1

8π
ð2l−2Λþ Rþ l

2L4 þ l
4L6 þ…Þ; ðC7Þ

where each LN is a Lagrangian that is locally and
covariantly constructed out of the metric and N derivatives.
EFT is understood to mean that one restricts attention to
only those solutions in the theory truncated at some given
order N such that, roughly speaking, the higher-order
terms20 in the equations of motion are locally small near
H. SHKR is by construction equal to the Dong-Wall
entropy-current (n − 2)-form [5,6] SDW to first order off
a solution with a stationary bifurcate Killing horizon.
[18,23] showed that the ambiguities can also be exploited,
for each N, so that SHKR satisfies the 2nd law in the EFT
sense, i.e., up to terms that are of the same order in l as the
terms neglected when truncating the EFT order N.
A comparison between the ambiguities in the HKR

approach and our approach may now be given as follows:
In Lemma 2.3 in Ref. [18] it was shown that the admissible
terms in SHKR must be monomials in Gaussian null
coordinate (GNC) components [see (81)] of the following
factors of total boost weight zero (see definition 2.2
in Ref. [18]):

(i) Dða1 � � �DajÞKab;
(ii) Dða1 � � �Daj−1Þ³aj , Dða1 � � �DajÞK̄ab;
(iii) ∇ða1 � � �∇aj

Rb
ajþ1ajþ2Þ

c, Rabcd;
where na ¼ ð∂ρÞa. To compare with lemma 1, we have

Na b¼ κ−1
�
∇a logV þ 1

2
³a −

1

8
V³b³bk

a

�
;

ξa b¼ κVka;

sai b¼ eai −
1

2
Vebi ³bk

a;

1

2
Lξgab b¼ κVKab −

1

4
V3κKcd³

c³dkakb; ðC8Þ

where
P

i e
a
i e

b
i ¼ ´ab. The scaling requirement in lemma 1

is equivalent to the zero total boost weight requirement21

in [18]. Furthermore, comparing (i’)–(iii’) in the light of
(C8) with the terms (i)–(iii) in Lemma 1, one can see some
broad similarities between (iii) and (iii’) and (i) and (i’), if
we consider xA GNC components as analogous to sai tetrad
components. Items (ii) and (ii’) are also similar, in the

20The cosmological constant term is also considered higher
order, in the sense that Λ ≪ 1, cf. the cosmological constant
problem.

21Here it must be understood that the boost weights of κ, V be
þ1;−1 respectively. Note that in the HKR scheme, no explicit
factors of κ nor V appear.
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following sense. If in (ii), we have s ¼ 0 (no Lie-derivative
in the ξa-direction), then one can see from Eqs. (C8) that we
basically get a specific combination of the two types of
terms in (ii’). When s ≥ 1 in the term (ii), we also get
certain combinations of the two types of terms in (ii’). To
see this, we first consider one Lie-derivative in the ξa-
direction on Nb (C8), to get

LξNa b¼ 1

2
VLk³a þ

1

4
V2ð³cLk³c þ Kbc³

b³cÞka: ðC9Þ

This already is of the type of terms of the form (i’), (ii’)
except for the term involving Lk³a. However, by equations
given in [[18], sec. A.1], we have

Lk³a þ Kab³
b b¼ 2Rbcdan

bkckd; ðC10Þ

so LξNa is in fact a combination of the terms in (i’), (ii’),
(iii’) not involving K̄ab. This remains true by an inductive
argument for ðLξÞsNa, and more generally for all our terms

of type (ii) in lemma 1. Thus, our terms (i), (ii), (iii) in
lemma 1 correspond to specific combinations of the terms
(i’), (ii’), (iii’).
Thus, we see that the ambiguities present in our approach

are more restrictive than in the HKR approach.
Correspondingly, our S½C� is more rigidly fixed than
SHKR½C�. We do not believe that we would have sufficient
re-definition freedom in our approach to ensure that our
entropy flux (114) satisfies the 2nd law beyond general
relativity. On the other hand, it may still be possible to
ensure that the second law holds for specific EFTs, which
may thus provide an interesting selection criterion to
discriminate unphysical EFTs.
It appears very unlikely that the more general freedom

allowed by HKR will, in general, yield an entropy SHKR½C�
that is cross section continuous [21]. To appreciatewhy, recall
that, as shown in Sec. 2.1 of [18], under a change of affine
parameter V ¼ V 0ψðxAÞ, where ψ > 0, the quantities asso-
ciatedwith a correspondingGNC system [see (81)] change as

³0a ¼̂ ³a þ 2Da logψ − 2VKa
bDb logψ ;

K̄0
ab ¼̂ ψ−1ðK̄ab − VDaDb logψ − VðDa logψÞDb logψ − V³ðaDbÞ logψÞ;

K0
ab ¼̂ ψKab; ðC11Þ

where Kab and K̄ab are the extrinsic curvatures along V
respectively ρ. Let C be a cut of constant V and C0 a cut of
constant V 0 and consider a ψ that is extremely close to 1 but
with extremely large angular derivatives (see Fig. 1). As an
example, consider now the Ricci-squared theory, with
Dong-Wall entropy given by (152). It is easy to see that
the first term in (152) is cross section covariant because the
definition of the Ricci tensor does not involve any notion of
foliation. Let us next focus on the KK̄-term in (152). Using
(C11), it is seen to change as

K0K̄0 b¼KðK̄ − V 0DaD
aψ − V 0³aDaψÞ ðC12Þ

under a change of affine parameter. Therefore, since
´0ab b¼ ´ab, we obtain
Z

C0
K0K̄0

ϵ
0ðn−2Þ ¼

Z

C0
KðK̄ − V 0DaD

aψ − V 0³aDaψÞϵðn−2Þ:

ðC13Þ

The terms in this last expression involving derivatives of ψ
threaten to blow up. However, these terms crucially are
linear in ψ , and since V 0 is constant on C0, we may pull it
out of the integral and then integrate the angular derivatives
Da by parts. Hence, it is clear that also the KK̄ term in the

Dong-Wall entropy given by (152) is cross section con-
tinuous. On the other hand, it seems highly unlikely that
SHKR would only produce terms that are linear in ψ , since,
in particular, it contains noncovariant terms starting at
sufficiently high EFT order [24]. By contrast, since our
entropy is obtained from an entropy (n − 2)-form that is
covariant in the metric and ξa, it automatically yields a
cross section continuous entropy.
Of course, in an EFT framework, it is not sensible to

consider surfaces, like C0, that are wiggly on a scale
that is comparable to or smaller than the cutoff scale l of
the EFT. More precisely, in the EFT setting, we fix a
GNC system with respect to which the EFT assumptions
[18] are formulated, and we would not be allowed to
perform a change of GNCs with a ψ such that e.g., lK̄0 as
in (C11) failed to remain small. By the results of [18]
and their generalization [23] on the second law for SHKR, if
we do chose to impose such a restriction, this would
preclude the possibility that reparametrization noninvar-
iant terms could spoil the second law. However, one can
see from (C11) that this would imply a restriction on how
large V can be, which is somewhat against the EFT spirit,
since that is not a restriction on the UV behavior. If we
merely insist that the wiggles in C0 were on a scale
considerably larger than l, i.e., if we merely require
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jDa1
� � �Dak

ψ j ≪ Oðl−kÞ but we allow V to be arbitrarily
large, then a violation of the second law of SHKR [18,23]
appears to be possible due to reparametrization
noninvariance.

APPENDIX D: APPLICATION TO DILATON

GRAVITY THEORIES WITH SCALAR FIELDS

Dong and Lewkowycz [34] have analyzed a dilaton
gravity theory coupled to two scalar fields and have
obtained an entropy formula for this theory using
Dong’s approach. In this appendix we show that the
linearization of their entropy expression agrees with what

would be calculated from (120). This lends further support
to the belief that Dong’s entropy agrees in general with the
entropy that would be obtained from Wall’s approach.
The Lagrangian of dilaton gravity in two dimensions

coupled with two scalar fields, σ and ω, considered
in [34] is

Lab ¼ −
1

2
ϵab½ϕR − ð∇σÞ2 − ð∇ωÞ2 þ λω∇c∇dσ∇

c∇dσ�;

ðD1Þ

where λ is a constant. The equations of motion for gab are

ðEGÞab ¼ −
1

2

�
∇aσ∇bσ þ∇aω∇bωþ∇a∇bϕ − gabðged∇e∇dϕþ 1

2
½ð∇σÞ2 þ ð∇ωÞ2 − λωð∇∇σÞ2�Þ

þ λ½∇mðω∇m∇bσÞ∇aσ þ ða↔ bÞ� − λ∇cðω∇a∇bσ∇cσÞ
�

ðD2Þ

The pullback of the constraints to the horizon can be put in
the form

ξaCab2
¼ 2ϵ

ð1Þ
b2
½κLξP − L2

ξP� ðD3Þ

where

Pðψ ; ξ; δψÞ ¼ 1

2
κðδϕ − λωLξδσN

a∇aσÞ ðD4Þ

where ψ collectively refers to the dynamical fields
g;ϕ; σ;ω.
The Noether charge 0-form is

Q ¼ −
1

2
ϵaeA

aebd∇½bξd� þ ½ϵae∇fA
fbae þ ϵafB

aðfbÞ�ξb
ðD5Þ

where

Aabcd ¼ −
1

2
ϕðgacgbd − gadgbcÞ ðD6Þ

B̃abc¼1

2
∇dϕðgacgbd−gadgbcÞ

þ1

2
λω∇ðm∇nÞσ∇tσð2gmagncgbt−gmbgncgatÞ: ðD7Þ

The symplectic potential θ is given by

θb2 ¼ ϵab2ðAabcd∇dδgbc þ B̃abcδgbc

þDaδσ þ Faf∇fδσ þMaδωÞ ðD8Þ

where

Da ¼ ∇aσ þ λgmegna∇eðω∇ðm∇nÞσÞ ðD9Þ

Faf ¼ −λωgmagnf∇ðm∇nÞσ ðD10Þ

Ma ¼ ∇aω ðD11Þ

The pullback of θ to the horizon takes the form

θ ¼̂ δBH ðD12Þ

where

BHb ¼
1

2
ϵ
ð1Þ
b ð2λωNa∇aσLξσÞ ðD13Þ

Our entropy 0-form S (see (71) is given by

S ¼ 2π

κ
ðQ − ξ ·BHÞ ðD14Þ

¼ 2π

κ
½−κϕþ κλωNa∇aσLξσ − Lξð−ϕþ λωNa∇aσL

2
ξσÞ�

ðD15Þ

The Dong-Wall entropy (see (120) is

SDW ¼ 2π

κ
ðQ − ξ ·BHÞ −

4π

κ
Pðψ ; ξ;LξψÞ ðD16Þ

¼ 2π½−ϕþ λωNa∇aσLξσ�; ðD17Þ

This agrees22 with the linearization of (A.44) of [34].

22To compare, one must take into account—as one also must
do in comparing Eq. (14) of [6] with Eq. (1.3) of [5]—that Dong
works in Euclidean signature and uses a complex z coordinate.
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