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Abstract
Awell-known open problem on the behavior of optimal paths in random graphs in the
strong disorder regime, formulated by statistical physicists, and supported by a large
amount of numerical evidence over the last decade (Braunstein et al. in Phys Rev
Lett 91(16):168701, 2003; Braunstein et al. in Int J Bifurc Chaos 17(07):2215–2255,
2007; Chen et al. in Phys Rev Lett 96(6):068702, 2006; Wu et al. in Phys Rev Lett
96(14):148702, 2006) is as follows: for a large class of random graph models with
degree exponent τ ∈ (3, 4), distances in the minimal spanning tree (MST) on the giant
component in the supercritical regime scale like n(τ−3)/(τ−1). The aim of this paper
is to make progress towards a proof of this conjecture. We consider a supercritical
inhomogeneous random graph model with degree exponent τ ∈ (3, 4) that is closely
related to Aldous’s multiplicative coalescent, and show that the MST constructed by
assigning i.i.d. continuous weights to the edges in its giant component, endowed with
the tree distance scaled by n−(τ−3)/(τ−1), converges in distribution with respect to the
Gromov–Hausdorff topology to a random compact real tree. Further, almost surely,
every point in this limiting space either has degree one (leaf), or two, or infinity (hub),
both the set of leaves and the set of hubs are dense in this space, and the Minkowski
dimension of this space equals (τ − 1)/(τ − 3). The multiplicative coalescent, in
an asymptotic sense, describes the evolution of the component sizes of various near-
critical random graph processes. We expect the limiting spaces in this paper to be
the candidates for the scaling limit of the MST constructed for a wide array of other
heavy-tailed random graph models.
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1 Introduction

Consider a finite, connected, andweighted graph (V , E, b), where (V , E) is the under-
lying graph and b : E → [0,∞) is the weight function. A spanning tree of (V , E) is
a tree that is a subgraph of (V , E) with vertex set V . A minimal spanning tree (MST)
T of (V , E, b) satisfies

∑

e∈T
b(e) = min

{ ∑

e∈T ′
b(e) : T ′ is a spanning tree of (V , E)

}
. (1)
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Geometry of the minimal... 731

The MST is one of the most studied functionals in combinatorial optimization. Study-
ing this object when the edge weights and potentially the underlying graph is random
has stimulated an enormous body of work in probabilistic combinatorics and geomet-
ric probability. The papers [9, 13, 15, 17, 19, 20, 22, 38, 49–52, 56, 59, 66–69, 72]
and the references therein give a non-exhaustive account of the enormous literature
on the probabilistic study of MSTs.

We are interested in the global geometric properties of the MST, e.g., the diameter
and the typical distance. In the early 2000s, several major conjectures were made
about the intrinsic geometry of MSTs in the statistical physics community where
this object arises as models of disordered networks, but until very recently, there
were few rigorous mathematical results on this problem. Consider a finite connected
graph G = (V , E), and assign costs exp(βεe) to the edges e ∈ E where β > 0.
An optimal path P in G between u, v ∈ V minimizes the total cost

∑
e∈P ′ exp(βεe)

among all paths P ′ between u and v. This model interpolates between the first passage
percolation regime (the weak disorder regime) and the minimal spanning tree regime
(strong disorder regime). Assuming that εe, e ∈ E , are pairwise distinct, it is easy to
see that for sufficiently large values of β, the optimal path between any two vertices
u and v is the path P that minimizes the maximal edge weight maxe∈P ′ εe among
all paths P ′ connecting u and v in G. It is well-known (see Lemma 4.3) that this is
simply the path connecting u and v in the MST of G constructed using the weights εe,
e ∈ E . Thus, the number of edges or the hopcount lopt in the optimal path between
two typical vertices in the presence of strong disorder is simply the length of the path
in the MST connecting two typical vertices.

Motivated by the availability of data on a host of real-world networks as well as
the impact of complex networks in our daily lives, the last few years have witnessed
an explosion in the formulation and study of mathematical models of networks. These
models try to capture properties of networks observed empirically. Of relevance to us is
the heavy-tailed nature of the empirical degree distribution. To study this phenomenon,
a plethora of random graph models have been proposed that have heavy-tailed degree
distributionswith some degree exponent τ ∈ (1,∞]. A precise definition of the degree
exponent will not be needed in the sequel, so we instead refer the reader to [45, 54, 55]
for a detailed discussion on the random graph models now available to practitioners.

Coming back to disordered networks, in the 2000s, statistical physicists predicted
[32, 33, 39, 73] that if the underlying graph posseses a heavy-tailed degree distribution
with exponent τ , then in the presence of strong disorder, lopt exhibits the following
scaling behavior:

lopt ∼
{
n1/3 , if τ > 4,
n(τ−3)/(τ−1) , if τ ∈ (3, 4) ,

(2)

where n denotes the number of vertices in the underlying graph, and further, such
behavior should be universal, i.e., in principle should apply to a wide array of random
graph models.

The above conjecture is related to the universality of the intrinsic geometry of
the MST, proving which in full generality remains open to date. Only recently, there
has been some progress in the τ > 4 regime. In [6], it was shown that the MST
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732 S. Bhamidi, S. Sen

of the complete graph on n vertices constructed using i.i.d. Unif[0, 1] edge weights,
endowed with the tree distance scaled by n−1/3 and the uniform probability measure
on the vertices, converges in distribution to a random compact R-tree M . Further,
almost surely,M is binary and the Minkowski dimension ofM equals 3. This result
can be seen as a confirmation of (2) for the case τ = ∞. The limiting space M is
expected to be the scaling limit of the MST of a variety of random discrete structures
including random graphs with degree exponent τ > 4. A first step in this broader
program of establishing universality of M was taken in [8], where it was shown that
the scaling limit of the MST of the random 3-regular (simple) graph as well as the
3-regular configuration model, with the tree distance scaled by n−1/3, is 61/3 ·M .

On the other hand, the problem has stayed completely open in the τ ∈ (3, 4) regime.
The aim of this work is to study the MST in this regime and prove the existence
of the scaling limit of the MST. We will consider a supercritical inhomogeneous
random graph (IRG) model that corresponds to the rank-1 case of the general class
of IRGs studied in [30]. We will show that under certain assumptions, the MST on
the giant component of this random graph, endowed with the tree distance scaled
by n−(τ−3)/(τ−1), converges in distribution with respect to the Gromov–Hausdorff
topology to a random compact R-tree. We will then study the topological properties
of the scaling limit. We will show that almost surely, every point in this limiting space
either has degree one (leaf), or two, or infinity (hub), and that both the set of leaves
and the set of hubs are dense in this space. Further, the Minkowski dimension of this
space equals (τ − 1)/(τ − 3) almost surely. Note the contrasting characteristics of
such a space in comparison to the space M .

The inhomogeneous random graph model considered in this paper is of special
interest as it is closely related to the multiplicative coalescent [10, 11]. The evolution
of a large class of dynamic random graph models around the point of phase transition
can be well-approximated [24, 26] by the multiplicative coalescent, and we expect
that this fact can be leveraged to establish universality of the scaling limits obtained
in this paper. We defer further discussion regarding the general program to establish
universality to Sect. 8. Our main result proves convergence of the MST viewed as a
metric space, which in particular implies distributional convergence of the diameter of
the MST rescaled by n−(τ−3)/(τ−1). This presents some rigorous evidence supporting
the prediction in (2), although the asymptotic behavior of the typical distance claimed
in (2) does not follow from this alone. The scaling limit of the typical distance can be
deduced if one were able to establish distributional convergence of the MST viewed
as a metric measure space. This strengthening of our result can be achieved if one
additional estimate is proved. This will also be discussed in Sect. 8.

1.1 Organization of the paper

A reasonable amount of notation regarding notions of convergence of metric space-
valued random variables as well as R-trees is required. To quickly get to the main
result, we first define the random graph models of interest in Sect. 2, and then describe
the main result in Sect. 3. Various definitions and preparatory results are then given in
Sect. 4. In Sect. 5, we show that it is equivalent to work with a modified random graph
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model; this will make many of our calculations easier. A key step in the proof of our
main result is relating the MST in the supercritical graph to the MST in the critical
window; this is accomplished in Sect. 6. Then we complete the proof of the main
result in Sect. 7. In Sect. 8 we discuss possible extensions and how the scaling limit
obtained here can be shown to be universal. We also discuss how our main result can
be strengthened to convergence with respect to the Gromov–Haussdorff–Prokhorov
topology. A few technical proofs are relegated to Appendix A.

2 Random graphmodels

We start by describing the class of random graphmodels of interest for this paper. Start
with the vertex set [n] := {1, 2, . . . , n}, and suppose each vertex i ∈ [n] has a weight
w

(n)

i ≥ 0 attached to it; intuitively this measures the propensity or attractiveness of
this vertex in the formation of links. We assume that the vertices are labeled so that
w

(n)

1 ≥ w
(n)

2 ≥ · · · ≥ w
(n)
n . Write w(n) = (w

(n)

1 , . . . , w
(n)
n ), and let

qi j := qi j (w
(n)) = w

(n)

i w
(n)

j

Ln
∧ 1 , 1 ≤ i �= j ≤ n , (3)

where Ln is the total weight given by

Ln :=
∑

i∈[n]
w

(n)

i . (4)

Nowconstruct a randomgraphon [n]byplacing an edgebetween i and j independently
for each i < j ∈ [n] with probability qi j . This random graph model corresponds to
the rank-1 case of the general class of IRGs studied by Bollobás, Janson, and Riordan
[30]. We will denote this random graph by Gn . A closely related model [30, 65] is
obtained by using the edge connection probabilities

qi j = qi j (w
(n)) := 1− exp(−w

(n)

i w
(n)

j /Ln) , (5)

andwill be denoted by Gn . In the regime of interest for this paper, as shown in [58], this
model is equivalent to the Chung-Lu model [40–43] and the Britton–Deijfen–Martin-
Löf model [34]. Probabilists will be more familiar with the above random graph via its
connection to one of the most famous stochastic coalescent models–the multiplicative
coalescent. We describe only a special case and refer the interested reader to [10, 11,
14, 21] formore general constructions of this specificmodel aswell as other coalescent
models.

Definition 2.1 (Finite state multiplicative coalescent) Fix a finite vertex set V and a
collection of nonnegative vertex weights x = (

xv ; v ∈ V
)
. Start at time zero with

each vertex v ∈ V being in a separate cluster of size xv . At any time t ≥ 0 we
will have a collection of connected clusters with the weight of a cluster C given by
Wx(C ) = ∑

v∈C xv . Consider the continuous time Markov chain where two existing
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734 S. Bhamidi, S. Sen

Fig. 1 TheMSTon the component of the vertex 1 inGn withwi = 3(n/i)α , where τ = 3.05 and n = 80000

distinct clusters Ca and Cb merge at rateWx(Ca) ·Wx(Cb) into a single cluster of size
Wx(Ca) +Wx(Cb). Write

(
MC

(
(V , x), t

); t ≥ 0
)
for this process.

Associated with the above dynamics is the following random graph related to Gn .

Definition 2.2 (Random graph G
(
(V , x), t

)
) Consider a finite set V , nonnegative

weights
(
xv ; v ∈ V

)
, and t ≥ 0. Let G

(
(V , x), t

)
be the random graph on vertex set

V obtained by independently placing edges between pairs of vertices u, v ∈ V with
probability 1− exp(−t xvxu).

The following lemma is easy to check from the above description of the dynamics.

Lemma 2.3 For any t ≥ 0, the ordered sequence of weights of the connected compo-
nents of G ((V , x), t) has the same distribution as the ordered sequence of weights of
clusters of MC((V , x), t).
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Fig. 2 TheMSTon the component of the vertex 1 inGn withwi = 3(n/i)α , where τ = 3.95 and n = 80000

The random graph G is essentially the same as Gn with the parameters expressed in
a different way. This connection between the random graph Gn and the multiplicative
coalescent will play a major role in our proofs.

We now specify how the vertex weights w(n) are chosen. For the rest of this paper,
we will work with a fixed exponent τ ∈ (3, 4). We will use the following notation for
constants associated to this exponent:

α := 1

τ − 1
, ρ := τ − 2

τ − 1
, and η := τ − 3

τ − 1
. (6)

Assumption 2.4 Consider a sequence
(
w(n) ; n ≥ 1

)
of weight sequences, where

w(n) = (
w

(n)

1 , w
(n)

2 , . . . , w
(n)
n

)
with w

(n)

1 ≥ w
(n)

2 ≥ . . . ≥ w
(n)
n > 0. Then we assume the

following:
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736 S. Bhamidi, S. Sen

(i) Supercriticality condition: Let Ln be as in (4). Then

ν := lim inf
n→∞

∑n
j=1(w

(n)

j )2

Ln
> 1 .

(ii) For each i ≥ 1, there exists θ∗i > 0 such that

lim
n→∞

w
(n)

i

nα
·
(

n
∑n

j=1(w
(n)

j )2

)1/2

= θ∗i .

(iii) There exist constants A1, A2 ∈ (0,∞) such that for all n ≥ 2 and 1 ≤ i ≤ n/2,

A1

(n
i

)α ≤ w
(n)

i ≤ A2

(n
i

)α

.

(iv) For all n ≥ 2, w(n)
n ≥ A1

(
log n

) 3
2 · n− η

4 .

Assumption 2.4 (i) ensures supercriticality of the random graph model, and
Assumption 2.4 (ii) corresponds to the condition in [11, Display (19)]. It should be
possible to relax Assumption 2.4 (iii) and (iv) with a more intricate analysis; however,
we do not pursue it here. We will discuss this briefly in Sect. 8.

Note that Assumption 2.4 implies that for all n ≥ 2 and n/2 ≤ i ≤ n,

w
(n)

i ≤ w
(n)

n/2 ≤ 2αA2 ≤ 2αA2

(n
i

)α

. (7)

Write

Pmtr := (
A1, A2, τ, ν

)
(8)

for the parameters in Assumption 2.4. The following lemma is easy to verify and gives
two natural settings that give rise to weights satisfying the above condition. The proof
is omitted.

Lemma 2.5 Suppose F is a cumulative distribution function (cdf) with support in
[0,∞) such that for some τ ∈ (3, 4), βF > 4/η, and cF ∈ (0,∞),

lim sup
x↓0

(
x−βF F(x)

)
< ∞, lim

x→∞ xτ−1[1− F(x)] = cF , and

∫ ∞

0
x2F(dx) >

∫ ∞

0
xF(dx) .

Consider w(n) = (
w

(n)

i , 1 ≤ i ≤ n
)
obtained via one of the following:

(a) Let w(n)

i = [1− F]−1
(
i/(n + 1)

)
for 1 ≤ i ≤ n.

(b) Let W1, . . . ,Wn be i.i.d. random variables with cdf F, and let w
(n)

1 ≥ . . . ≥ w
(n)
n

be the corresponding ordered values.
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Then under (a),
(
w(n), n ≥ 1

)
satisfies Assumption 2.4. Under (b), we can construct

w(n), n ≥ 1, on the same probability space such that Assumption 2.4 is satisfied almost
surely in this space with a deterministic ν, and random A1, A2, and θ∗i , i ≥ 1.

Write C (1, Gn) (resp. C (1, Gn)) for the component of vertex 1 in the graph Gn

(resp. Gn). For any component C of Gn or Gn , write W (C ) = ∑
i∈C w

(n)

i . The
following result states somebasic properties of these two randomgraphs. The notations
OP (·) and �P (·) used in the sequel are as explained at the end of Sect. 4.1.

Proposition 2.6 The following hold under Assumption 2.4:

(a) We have, W
(
C (1, Gn)

) = �P (n), and

max
{
W (C ) : C component in Gn and C �= C (1, Gn)

} = OP (log n) . (9)

We call C (1, Gn) the giant component in Gn. Further, an analogous result holds
for the random graph Gn.

(b) By [30, Theorem 3.13], if further the empirical distribution n−1 ∑
i∈[n] δ

{
w

(n)

i

}

converges to a cdf with tail exponent τ ∈ (3, 4), then the degree distribution of
Gn (resp. Gn) converges in probability to a deterministic distribution with tail
exponent τ .

The claim that W
(
C (1, Gn)

) = �P (n) follows from Proposition 6.8, (42), and
Lemma 5.1. The proof of (9) is similar to that of Lemma 6.26. Proposition 2.6 (b) is
not important for this study, but it gives some justification as to why these models are
used to understand real world systems. We now define the central object of interest in
this paper.

Definition 2.7 (Minimal spanning tree) Let U = (
Ui j ; 1 ≤ i < j ≤ n

)
be a collec-

tion of i.i.d. Unif [0, 1] random variables, and let Uji = Ui j for 1 ≤ i < j ≤ n. Let
Mn denote the minimal spanning tree on the giant component of Gn using the edge
weights

(
Ui j ; {i, j} is an edge in C (1, Gn)

)
. Define Mn in analogous way.

We make a convention here that we will follow throughout this paper:

When a finite connected graph H is viewed as a metric space, the underlying
set will be the collection of vertices in H joined by line segments of unit length
that represent the edges in H , and the distance between two points will be the
minimum of the lengths of paths connecting the two points. For anymetric space
(X , d) and a > 0, a · X will denote the metric space (X , a · d), i.e, the space
where the distance is scaled by a.

Using this convention, we can view Mn and Mn as (random) compact metric spaces.
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738 S. Bhamidi, S. Sen

3 Main result

Recall that the lower and upper box counting dimensions of a compact metric space
X are given by

dim(X) := lim inf
δ↓0

log [N (X , δ)]
log(1/δ)

, and

dim(X) := lim sup
δ↓0

log [N (X , δ)]
log(1/δ)

respectively, where N (X , δ) is the minimum number of closed balls with radius δ

required to cover X . If dim(X) = dim(X), then the box-counting dimension or the
Minkowski dimension of X exists and equals this common value. For an R-graph X
and any point x ∈ X , let deg(x ; X) denote the degree of x in X ; see Sect. 4.3 for the
relevant definitions. We write

L (X) := {x ∈ X : deg(x ; X) = 1} , and

H (X) := {x ∈ X : deg(x ; X) = ∞} (10)

for the set of leaves and the set of hubs in X respectively. Recall the notation from (6).

Theorem 3.1 Under Assumption 2.4 on the weight sequence, there exists a random
compact R-treeM θ∗ whose law depends only on θ∗ := (θ∗i ; i ≥ 1) such that

n−η · Mn d−→ M θ∗ , as n → ∞ , (11)

with respect to the Gromov–Hausdorff topology. Further, almost surely,

(a) deg
(
x; M θ∗) ∈ {

1, 2,∞}
for all x ∈ M θ∗ ;

(b) both the set of leaves L (M θ∗) and the set of hubs H (M θ∗) are dense in M θ∗;
and

(c) the Minkowski dimension of M θ∗ satisfies

dim
(
M θ∗) = 1

η
= τ − 1

τ − 3
.

Moreover, (11) continues to hold under Assumption 2.4 if we replace Mn by Mn.

It should be possible to lift the Gromov–Hausdorff convergence in (11) to conver-
gence with respect to the Gromov–Hausdorff–Prokhorov topology. For this, it would
suffice to prove an additional technical condition.Wewill discuss this further in Sect. 8.
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4 Definitions and preliminary results

4.1 Notation

Throughout this paper, C,C ′ etc. will denote constants that depend only on Pmtr as
defined in (8), and their values may change from line to line. Special constants will be
indexed by the relevant equations, e.g., C45 etc., and their values will depend only on
Pmtr unless specified otherwise. If a constant depends on any parameter other than
Pmtr , then that will be explicitly mentioned when the constant is first introduced. For
example, C21 = C21(
) appearing in the statement of Theorem 6.1 below depends
on Pmtr and 
.

A claim holds ‘for all large n’ or ‘∀n’ will imply that there exists n0 ≥ 1 depending
only on Pmtr such that the claim holds for all n ≥ n0. If the threshold depends on
any other parameter, then that will be explicitly mentioned, and it will be assumed,
without explicit mention, that such a threshold is chosen bigger than all thresholds
involving n that depend only on Pmtr and were previously introduced in the proof. For
example, n46 = n46(κ) appearing around (46) depends on Pmtr and κ , and although
not explicitly mentioned, is chosen so that it is bigger than the threshold involving n
above which (41) and (42) hold.

Similarly, all thresholds involving λ or ε will depend only on Pmtr unless specified
otherwise when the threshold is first introduced.

A relation of the form a � bwill mean that there existC,C ′ > 0 depending only on
Pmtr such that Ca ≤ b ≤ C ′b. Here, a, b could be elements of two sequences, or two
functions defined on the same domain. As an example, consider the following claim
made around (36) below: “…for all large n, iλ(u) � u1/α for (λ, u) ∈ I (n),2." This
statement can be rewritten as follows: There exist C,C ′ > 0, and n0 ≥ 1 depending
only on Pmtr such that Cu1/α ≤ iλ(u) ≤ C ′u1/α for all n ≥ n0 and (λ, u) ∈ I (n),2.

For a set S, we use |S| or #S to denote the number of elements in S. For any
graph H , we write V (H) and E(H) for the set of vertices and the set of edges of H
respectively. We write |H | for the number of vertices in H , i.e., |H | = |V (H)|. For
any finite connected graph H = (V , E), we write sp(H) for the number of surplus
edges in H , i.e., sp(H) := |E | − |V | + 1. For a finite (not necessarily connected)
graph H , we let

max sp(H) = max
{
sp(C ) : C connected component of H

}
. (12)

Similarly, we write diam(H) for the maximum of the diameters (with respect to graph
distance) of all the components in H . We will write LP(H) to denote the length of the
longest self-avoiding path in H . For a rooted tree T , ht(T ) will denote the height of
T , i.e., the distance to the farthest leaf from the root of T .

For a graph H = (V , E) and v ∈ V , we write C (v, H) to denote the component
of v in H . For V ′ ⊆ V , we write H \V ′ to denote the restriction of H to the vertex set
V \ V ′. If the vertices in H have weights y = (yv; v ∈ V ) associated to them, then
for any subgraph H0 in H , we write W y(H0) = ∑

v∈V (H0)
yv for the weight or mass

of H0 as measured by the prescribed vertex weights. When the weight sequence is w,
we omit the subscript and simply write W (·).
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For two real valued random variables X ,Y we write X �sd Y for the stochas-
tic domination relation between the distributions of these random variables. We use
Poi(·), Unif(·) and Bernoulli(·) to respectively denote Poisson, uniform, and Bernoulli
distributions with parameters in · that will be specified in the setting of interest.

For a non-negative function n �→ g(n), we write f (n) = O(g(n)) when
| f (n)|/g(n) is uniformly bounded, and f (n) = o(g(n)) when limn→∞ f (n)/g(n) =
0. Furthermore, we write f (n) = �(g(n)) if f (n) = O(g(n)) and g(n) = O( f (n)).

We let
d−→,

P−→, and
a.s.−→ respectively denote convergence in distribution, con-

vergence in probability, and almost sure convergence. For a sequence of random
variables (Xn; n ≥ 1) and a sequence of positive real numbers (bn; n ≥ 1), we write
Xn = OP (bn) if the sequence of laws of (Xn/bn; n ≥ 1) is tight, and Xn = oP(bn)

if Xn/bn
d−→ 0 as n → ∞. Further, we write Xn = �P (bn) if Xn = OP (bn) and

1/Xn = OP (1/bn). For simplicity, we will freely omit ceilings and floors; this will
not affect the argument.

4.2 Convergence of metric spaces

The following five topologies will be relevant to us: (i) the Hausdorff topology on
closed subsets of a compact metric space, (ii) the Gromov–Hausdorff (GH) topology
on SGH–the isometry equivalence classes of compact metric spaces, (iii) the marked
Gromov–Hausdorff topology on the isometry equivalence classes of triples of the
form

(
X ,C, d

)
, where (X , d) is a compact metric space and C ⊆ X is closed, (iv) the

Gromov–Hausdorff–Prokhorov (GHP) topology on the isometry equivalence classes
of compactmetricmeasure spaces, and (v) theGromov-weak topology on the isometry
equivalence classes of metric measure spaces. The Hausdorff distance and the GHP
distance will be denoted by dH( · , · ) and dGHP( · , · ) respectively. We refer the reader
to [36] for background on the topologies in (i) and (ii). For the topologies in (iii)
and (iv), we will primarily follow [64] and [1, 6] respectively. For the Gromov-weak
topology, we refer the reader to [18, 53]. The definitions and results related to the
topologies in (i)–(iv) needed in this paper can be found in one place in [8, Section
3.2].

4.3 R-trees andR-graphs

For any metric space (X , d), a geodesic between x1, x2 ∈ X is an isomeric embedding
f : [0, d(x1, x2)] → X such that f (0) = x1 and f

(
d(x1, x2)

) = x2. (X , d) is a
geodesic space if there is a geodesic between any two points in X . An embedded cycle
in X is a subset of X that is a homeomorphic image of the unit circle S1.

Definition 4.1 (Real trees [47, 62]) A compact geodesic metric space (X , d) is called
a real tree or R-tree if it has no embedded cycles.

For a metric space (X , d), x ∈ X , and ε > 0, let B(x, ε ; X) := {
y ∈ X : d(y, x) ≤

ε}. We next recall some definitions and constructs from [6]. We refer the reader to [6,
Section 2.3] for a detailed treatment.
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Definition 4.2 (R-graphs [6]) A compact geodesic metric space (X , d) is called an
R-graph if for every x ∈ X , there exists ε > 0 such that

(
B(x, ε ; X), d|B(x,ε ; X)

)
is

an R-tree.
The core of an R-graph (X , d), denoted by Core(X), is the union of all the sim-

ple arcs having both endpoints in embedded cycles of X . If it is non-empty, then
(Core(X), d) is an R-graph with no leaves. We define Conn(X) to be the set of all
x ∈ X such that x belongs to an embedded cycle in X .

Clearly, Conn(X) ⊆ Core(X). By [6, Theorem 2.7], if X is an R-graph with
a non-empty core, then (Core(X), d) can be represented as (k(X), e(X), l), where
(k(X), e(X)) is a finite connected multigraph in which all vertices have degree at least
3 and l : e(X) → (0,∞) gives the edge lengths of this multigraph. We denote by
sp(X) the number of surplus edges in (k(X), e(X)). On anyR-graph (X , d) there exists
a unique σ -finite Borel measure len called the length measure such that if x1, x2 ∈ X
and [x1, x2] is a geodesic path between x1 and x2 then len

([x1, x2]
) = d(x1, x2). Note

that

∑

e∈e(X)

l(e) = len
(
Core(X)

)
. (13)

Clearly, len
(
Conn(X)

) ≤ len
(
Core(X)

)
< ∞. If Conn(X) �= ∅ (in which case

len
(
Conn(X)

)
> 0), we write lenConn(X) for the restriction of the length measure to

Conn(X) normalized to be a probability measure, i.e.,

lenConn(X)(·) = len(·)
len(Conn(X))

.

For an R-graph (X , d) and x ∈ X , choose ε > 0 such that B(x, ε ; X) is an R-tree,
and define the degree of x as

deg(x ; X) := ∣∣{connected components of B(x, ε ; X) \ {x}}∣∣ .

Note that the value of deg(x ; X) is independent of the choice of ε.
Since any finite connected graph, viewed as a metric space, is an R-graph, the

above definitions make sense for any finite connected graph H . Note the difference
between e(H) defined above and E(H)-the set of edges in H . Note also that in this
case, the graph theoretic 2-core of H , viewed as a metric space, coincides with the
space Core(H) as defined above, and len(Core(H)) equals the number of edges in the
graph theoretic 2-core of H .

4.4 Some properties of MSTs

Suppose H = (V , E, b) is a weighted, connected, and labeled graph. Assume that
b(e) �= b(e′) whenever e �= e′. We now state a useful property of the MST.
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Lemma 4.3 (Minimax paths property) Let H = (V , E, b) be as above. Then the MST
T of H is unique. Further, T has the following property: Any path (x0, . . . , xn) with
xi ∈ V and {xi , xi+1} ∈ E(T ) satisfies

max
1≤i≤n

b
({xi , xi+1}

) ≤ max
1≤ j≤m

b
({x ′j , x ′j+1}

)

for any path (x ′0, . . . , x ′m) with {x ′j , x ′j+1} ∈ E and x0 = x ′0 and xn = x ′m. In words,
the maximum edge weight in the path in the MST connecting two given vertices is
smallest among all paths in G connecting those two vertices.

Moreover, T is the only spanning tree of G with the above property.

The above lemma is just a restatement of [59, Lemma 2]; see also [16, Proposition 2.1].
We record the following useful observations that follow directly from Lemma 4.3:

Observation 4.1 The MST can be constructed just from the ranks of the different edge
weights. This fact is not needed in the sequel, but it shows that the laws of Mn and Mn

will remain unchanged if we used a set of exchangeable and pairwise distinct edge
weights instead of U as in Definition 2.7.

Observation 4.2 Let H = (V , E, b) be a connected and labeled graph with pairwise
distinct edge weights. Let u ∈ [0,∞) and C be a component of the graph Gu =
(V , Eu), where Eu ⊆ E contains only those edges e for which b(e) ≤ u. Then the
restriction of the MST of (V , E, b) to C is the MST of

(
V (C ), E(C ), b|E(C )

)
.

This fact is extremely useful as it can be used to connect the structure of the MST
to the geometry of components of the graph under percolation.

4.5 Cycle-breaking

In this section we recall two procedures from [6] that can be applied to R-graphs and
combinatorial graphs. We refer the reader to [6, Sections 3.1 and 3.2] for a detailed
treatment. Recall the notation k(X), e(X), (l(e), e ∈ e(X)), and sp(X) introduced
below Definition 4.2.

Definition 4.4 (Cycle-breaking (CB), [6, Section 3.2]) Let X be an R-graph. If X
has no embedded cycles, then set CB(X) = X . Otherwise, sample x ∈ X using the
measure lenConn(X). Endow X \{x}with the intrinsic metric: the distance between two
points is the minimum of the lengths of paths in X \ {x} that connect the two points.
Set CB(X) to be the completion of X \ {x} with respect to the intrinsic metric. (Thus,
CB(X) is also an R-graph.)

For k ≥ 2, we inductively define CBk(X) to be the space CB
(
CBk−1(X)

)
. (Thus,

at the k-th step, if CBk−1(X) has an embedded cycle, then we are using the measure
to lenConn(CBk−1(X)) to sample a point.)

Note that CBk(X) = CBsp(X)(X) for all k ≥ sp(X), i.e., the spaces CBk(X) remain
the same after all cycles have been cut open. We denote this final space (which is a
real tree) by CB∞(X).

Next we define a cycle-breaking process for discrete graphs.

123



Geometry of the minimal... 743

Definition 4.5 (Cycle-breaking for discrete graphs (CBD), [6, Section 3.1]) Let H =
(V , E) be a finite connected graph. Sample e ∈ E uniformly. If (V , E \ {e}) is
connected, set CBD(H) = (V , E\{e}). Otherwise, set CBD(H) = H . Inductively
set CBDk+1(H) = CBD

(
CBDk(H)

)
, k ≥ 1.

Almost surely, the graphs CBDk(H) are the same (and are all trees) for all large
values of k. We denote this tree by CBD∞(H).

Suppose H is a finite connected graph. Let f1, . . . , fs be the edges of H that get
removed in the process

(
CBDk(H), k ≥ 1

)
. Clearly, s = sp(H). For 1 ≤ i ≤ s, let yi

be a uniformly sampled point on fi . It is easy to see that viewing H as an R-graph,
the completion of the space H \ {y1, . . . , ys}with repect to the intrinsic metric has the
same distribution as CB∞(H). In this coupling, CBD∞(H) is a subspace of CB∞(H),
and

dH
(
CBD∞(H), CB∞(H)

) ≤ 1 . (14)

We now state a lemma that connects cycle-breaking to MSTs.

Lemma 4.6 Suppose H is a finite connected graph. Then CBD∞(H) has the same
law as the MST of H constructed by assigning exchangeable pairwise distinct weights
to the edges in H.

Lemma 4.6 follows easily from Lemma 4.3. A proof can be found in [6, Proposition
3.5]. For r ∈ (0, 1) define Ar to be the set of all R-graphs X that satisfy

sp(X) + len(Core(X)) ≤ 1/r , and min
e∈e(X)

len(e) ≥ r . (15)

The following theorem will allow us to prove convergence of MSTs from GHP con-
vergence of the underlying graphs.

Theorem 4.7 Fix r ∈ (0, 1). Suppose (X , d) and (Xn, dn), n ≥ 1, areR-graphs inAr

such that (Xn, dn) → (X , d) as n → ∞w.r.t. GH topology. Further, suppose for each
n ≥ 1, (Xn, dn) is isometric to εn · Hn, where Hn, n ≥ 1, are finite connected graphs

and εn → 0. Then as n → ∞, εn · CBD∞(Hn)
d−→ CB∞(X) w.r.t. GH topology.

Theorem 4.7 follows from [6, Theorem 3.3] and (14).

5 A slightly different model

Recall the definition of Ln from (4), and let

�n :=
n∑

i=2

w
(n)

i = Ln − w
(n)

1 . (16)
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Analogous to (3) and (5), define

q̄ i j = q̄ i j (w
(n)) = 1 ∧ (

w
(n)

i w
(n)

j /�n
)
, and qi j = qi j (w

(n))

= 1− exp
( − w

(n)

i w
(n)

j /�n
)

(17)

for 1 ≤ i �= j ≤ n. Note that under Assumption 2.4, for all large n, q̄ i j = w
(n)

i w
(n)

j /�n

for all 1 ≤ i �= j ≤ n. Let Gn (resp. Gn) be the random graph on [n] obtained by
placing an edge between i and j independently for each i < j ∈ [n] with probability
q̄ i j (resp. qi j ).

Lemma 5.1 Under Assumption 2.4, there exists a coupling of Gn and Gn such that
P
(
Gn �= Gn

) → 0 as n → ∞. Similar assertions hold for the pairs
(
Gn ,Gn

)
, and(

Gn ,Gn
)
.

Proof We will prove the assertion for Gn and Gn ; a similar argument works for the
other pairs.UnderAssumption2.4,maxi, j

(
w

(n)

i w
(n)

j /�n
) = O(n−η). By [58,Corollary

2.12], it is enough to prove that
∑

i �= j (qi j − qi j )
2/qi j → 0, as n → ∞. Now, under

Assumption 2.4, for all large n,

∑

i �= j

(qi j − qi j )
2

qi j
=

∑

i �= j

wiw j

�n

(
1− �n

Ln

)2

≤ L2
n

�n
·
(

w1

Ln

)2

≤ Cn−η .

This completes the proof. ��
Similar to Definition 2.7, let Mn denote the minimal spanning tree on C (1,Gn)

using the edge weights
(
Ui j ; {i, j} ∈ E

(
C (1,Gn)

))
. Define Mn as the MST on

C (1,Gn) in an analogous way. In view of Lemma 5.1, it is enough to prove Theo-
rem 3.1 for Mn and Mn . Hence, from now on we will only work with the random
graphs Gn and Gn . This will make some of the computations simpler.

6 Relating theMST with the components in the critical window

We will now need some notation. Recall that �n = ∑n
i=2 w

(n)

i , and define

σ
(n)

2 = n−1
n∑

i=2

(w
(n)

i )2 , and νn := nσ
(n)

2 /�n . (18)

(Note that once again we have omitted the weight of vertex 1 in the formulae.) Using
Assumption 2.4, it is easy to see that lim infn→∞ νn = ν > 1. Without loss of
generality, we can assume the following:

Assumption 6.1 For all n ≥ 1, νn ≥ ν′ := 1+ (ν − 1)/2.
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For λ ≥ 0, define

pnλ :=
(
1+ λ

nη

)
1

νn
. (19)

Let U be as in Definition 2.7. For any subgraph H of Gn , we write

U
∣∣
H := (

Ui j ; {i, j} ∈ E(H)
)
. (20)

In words, U
∣∣
H is the collection of edge weights corresponding to the edges in H .

Definition 6.2 (The graph Gn(λ)) Fix λ ≥ 0. Let Gn(λ) be the subgraph of Gn with
edge set

{{i, j} : {i, j} ∈ E(Gn) and Ui j ≤ pnλ
}
.

For v ∈ [n], letC n
v (λ) = C

(
v,Gn(λ)

)
. LetMn

λ denote theMST onC n
1 (λ) constructed

using U
∣∣
C n
1 (λ)

.

Thus,Mn = Mn
λ for allλ ≥ (νn−1)nη. Note that if pnλ ∈ [0, 1] andw

(n)

i w
(n)

j /�n ≤ 1

for all i �= j ∈ [n], thenGn(λ) is a randomgraph on [n]with independent edge connec-
tion probabilities

(
pnλw

(n)

i w
(n)

j /�n 1 ≤ i < j ≤ n
)
. Note also that by Observation 4.2,

Mn
λ1

is a subtree of Mn
λ2

whenever 0 ≤ λ1 ≤ λ2. In particular, Mn
λ is a subtree of Mn

for all λ ≥ 0.

Definition 6.3 (The graph Gn(λ)) Fix λ ≥ 0. Let Gn(λ) be the random graph on [n]
obtained by placing an edge between i and j independently for each i �= j ∈ [n] with
probability 1−exp

(− pnλw
(n)

i w
(n)

j /�n
)
for 1 ≤ i < j ≤ n. LetC n

1 (λ) = C
(
1,Gn(λ)

)
.

We are now ready to state the result that connects Mn to Mn
λ .

Theorem 6.1 Under Assumptions 2.4 and 6.1, for every 
 ∈ (0, 1/2], there exist
λ21 = λ21(
) ≥ 1, n21 = n21(
) ≥ 2, and C21 = C21(
) > 0 such that for n ≥ n21
and λ ∈ [λ21, (νn − 1)nη],

P

(
dH

(
Mn

λ , Mn) ≥ nη

λ1−

+ nη

(log n)1/6

)
≤ C21√

λ
. (21)

Remark 1 Note that W
(
C (1,Gn)

) = �p(n), while it turns out (see (43), (42), and
Lemma 7.4) that for large (and fixed) λ, W (C n

1 (λ)) = �P
(
λ1/(τ−3)nρ

) = oP (n).
Thus, the above result shows that despite this major gap in their respective masses,
n−η · Mn

λ approximates n−η · Mn quite well when λ is large. However, as we will
see later (see (145) and [29, Theorem 1.2 (c)]), if λ is kept fixed and n → ∞, n−η ·
Mn

λ converges in distribution in the GH sense to a limiting compact R-tree whose
Minkowski dimension is (τ − 2)/(τ − 3), whereas dim(M θ∗) = (τ − 1)/(τ − 3).
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Thus, the intrinsic geometry of Mn
λ has features significantly different from that of

Mn . Similar results were proved in [6] in the context of the MST of the complete
graph.

Theorem 6.1 follows upon combining the next two propositions.

Proposition 6.4 Under Assumptions 2.4 and 6.1, there exists ε22 ∈ (0, ν′ − 1), and
for every 
 ∈ (0, 1/2], there exist λ21 = λ21(
) ≥ 1, n22 = n22(
) ≥ 1, and
C22 = C22(
) > 0 such that for n ≥ n22 and λ ∈ [λ21, ε22nη],

P

(
dH

(
Mn

λ , Mn
ε22nη

) ≥ nη

λ1−


)
≤ C22√

λ
. (22)

Proposition 6.5 Under Assumptions 2.4 and 6.1, for all large n,

P

(
dH

(
Mn

ε22nη , Mn) ≥ (
log n

)−1/6
nη

)
≤ n−1.

The rest of Sect. 6 is devoted to the proofs of Propositions 6.4 and 6.5. In Sect. 6.1
below, we first explain the rationale behind proving these two results, and then the
proofs are completed in several steps in the following sections. Fromnowon, all results
will be proved under Assumptions 2.4 and 6.1, and we will not mention this explicitly.

6.1 The general strategy

The scaling limit of the MST of the complete graph viewed as a metric measure
space was established in [6] relying on the results of [2, 3, 7]. This was an important
breakthrough, and the limiting space is–quoting the authors of [6]–“one of the first
scaling limits to be identified for any problem from combinatorial optimisation." This
proof has four key ingredients: (i) One of them is deriving the critical scaling limit
of the Erdős-Rényi random graph. The scaling limit of the maximal components of
the Erdős-Rényi random graph inside the critcal window was established in [3] with
respect to the GH topology. This was strengthened to convergence with respect to
the GHP topology in [6]. (ii) Consider the MST Mn on the complete graph Kn on
n vertices constructed using i.i.d. Uniform[0, 1] edge weights Ui j , 1 ≤ i < j ≤ n.
Now, for λ > 0, consider the subgraph of Kn with vertex set [n] and edge set

{{i, j} :
1 ≤ i < j ≤ n, Ui j ≤ n−1 + λn−4/3

}
; let Mn,λ denote the restriction of Mn to

the maximal component in this graph. An important step in the proof is getting a
tail bound on the Hausdorff distance between Mn,λ and Mn for large fixed λ. This
bound was obtained in [7]. In words, this result states that Mn,λ is quite close to Mn

in the GH sense if λ is sufficiently large, and thus, the structure of Mn viewed as a
metric space is essentially determined in the late stages of the critical window. (Note
that the authors of [7] prove their results in the slightly different setting of a random
graph process evolving through the addition of edges in discrete time. However, this
result translates to the setting mentioned above in a straighforward way.) (iii) The
third ingredient is proving a tail bound on the maximal number of vertices in the trees
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obtained by removing the edges of Mn,λ from Mn for large λ. This was established
in [6, Lemma 4.11]. (iv) Finally, certain topological properties of the scaling limit
were established in [6]. This included showing that the Minkowski dimension of the
limiting space is 3 almost surely; the proof of this result also made use of the results
in [2].

The scaling limit ofMn with respect to the GH topology was established in [6] by
combining the critical scaling limit of the Erdős-Rényi random graph mentioned in
(i) with the tail bound in (ii) via the results of [6, Section 3]. This can be strengthened
to GHP convergence by using the bound in (iii) and using the fact that the number of
vertices in the trees obtained by removing the edges ofMn,λ fromMn satisfy a certain
exchangeability propoerty; see the proof of [6, Proposition 4.8] and [8, Lemma 6.19
and Remark 5].

In the context of the multiplicative coalescent in the regime of interest in this paper,
the critical metric scaling limit of the maximal components was obtained in [29, 35]
(wewill need slightly tweaked versions of these results in our proof aswill be discussed
in Sect. 7.1 below). The missing ingredient for proving the convergence in (11) was
the analogue of the result in (ii) mentioned above in the present setting. Theorem 6.1
provides this tail bound. Once we have this bound, it can be combined with the critical
scaling limit in a manner similar to [6] to deduce the claimed GH convergence in (11).
The techniques used in the proof of Proposition 6.4 to analyze the graph Gn(λ) will
also be useful in Sects. 7.4 and 7.5 where we prove the claimed Minkowski dimension
in Theorem 3.1 (c).

Now, the tail bound mentioned in (ii) above was established in [7] in two stages: (a)
First, a bound on the Hausdorff distance betweenMn,n1/3(log n)−1 andMn (going from
the barely supercritical regime to the purely supercritical regime) is proved using a
variation of Prim’s algorithm [71]; this approach used in [7] is explained inAlgorithm1
in Sect. 6.8. (b) Next, the Hausdorff distance betweenMn,λ andMn,n1/3(log n)−1 (from
the critical window to the barely supercritical regime) is bounded for fixed λ > 0.
This step makes use of [63, Theorem 7] which, in words, says that the identity of
the maximal component in the Erdős-Rényi random graph process gets fixed in the
late critical window. The desired bound is then established by considering time points
in a suitably chosen geometric progression in the interval [λ, n1/3(log n)−1], and
estimating the Hausdorff distance between the MSTs of the maximal components at
consecutive time points in this progression. This technique of proving a property of
a random graph process by considering time points where the consecutive points are
neither too close nor too far away was previously used in [63, Sections 4 and 6] where
it was termed the “scanning method.”

Proposition 6.5 stated above gives a bound on the Hausdorff distance between Mn

and Mn
ε22nη–the MST on the component of the vertex 1 in the purely supercritical

regime where the graph is only slightly supercritical. This gives a result analogous to
the one derived in [7] (mentioned in (a) above) for the model of interest in this paper.
In our setting, applying Algorithm 1 directly would not yield the desired bound; rather
we have to use a modification of this approach (explained in Algorithm 2 in Sect. 6.8).
Proposition 6.4 proves the complementary bound by connecting Mn

λ to Mn
ε22nη . In

the proof of Proposition 6.4, we use the scanning method as in [7, 63]. Here, the
bulk of the work lies in choosing an appropriate geometric progression to which
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the scanning method can be applied, and bounding the Hausdorff distance between
the MSTs at successive time points in this progression. This requires several new
techniques. In particular, we rely on a new method of getting tail bounds on heights
of branching processes recently developed in [4], concentration inequalities proved
in [5], and results on the relation between connected components of inhomogeneous
rank-1 graphs and p-trees derived in [28, 29].

In Sect. 6.2 below, we will define two processes called ‘breadth-first walks’ that
will help us analyze the random graph models of interest. In Sect. 6.3, we use a con-
centration inequality for the suprema of the centered breadth-first walk (which relies
on a similar inequality derived in [5]) to prove bounds on the lower tails of the total
weight of the component of 1 in Gn(λ) as well as the sum of the squares of the vertex
weights in the component of 1 in Gn(λ). These bounds hold for a range of values of
λ where Gn(λ) passes from the late critcal window to the purely supercritical regime.
We also show that when λ is in this range, the probability that many of the high-weight
vertices are contained in the component of 1 is lower bounded by an appropriately
chosen function of λ. In particular, these results will allow us to show that for λ in
this range, if the component of 1 is removed from Gn(λ), then the rest of the graph is
sufficiently subcritical. In Sect. 6.4, we obtain a tail bound on the height of a branching
process closely related to the random graph Gn(λ). Here, we use a technique devel-
oped in [4]. Now, as mentioned above, we aim to use the scanning method to prove
the claimed bound in Proposition 6.4. With this in mind and building on the results of
Sects. 6.2, 6.3, and 6.4, we achieve the following in Sects. 6.5 and 6.6: (1) We define
δ1 > 0 such that the scanning method can be applied to a geometric progression of
time points where the common ratio is (1 + δ1/2). We also define a random graph
Hn(λ, δ1) such that dH

(
Mn

λ , Mn
λ(1+δ1/2)

)
can be stochastically bounded in terms of

the longest self-avoiding path in Hn(λ, δ1). (2) We prove a tail bound on the diameter
of Hn(λ, δ1). This is done by establishing height bounds for a random tree that has
(potentially) three layers, each of which resembles a multitype branching process. The
offspring distributions in these three layers and the depths of the different layers are
chosen in a suitable way to obtain the desired bound. (3) We obtain a lower bound for
the probability that each component of Hn(λ, δ1) is either a tree or is unicyclic. Here,
we make use of a construction of a connected component of a rank-1 inhomogeneous
random graph using p-trees [28, 29]. We then use these results and apply the scanning
method to complete the proof of Proposition 6.4 in Sect. 6.7. Finally, the proof of
Proposition 6.5 is given in Sect. 6.8. As mentioned above, here we use a modification
of the approach used in the proof of [7, Lemma 4].

6.2 An exploration process

Fix λ ≥ 0. It will be useful in the proof to express Gn(λ) in a reparametrized form.
Define

x (n)

i := w
(n)

i

nρ
(
σ

(n)

2

)1/2 , and θ
(n)

i,λ :=
(
1+ λ

nη

)
w

(n)

i

nα
(
σ

(n)

2

)1/2 , 1 ≤ i ≤ n.

(23)
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Write x(n) = (
x (n)

i , i ∈ [n]), and σ2(x(n)) := ∑n
i=2(x

(n)

i )2. (Note that similar to (18),
x (n)

1 is not included in the sum.) Then

σ2(x(n)) = n−η , and
(
λ + nη

)
x (n)

j = θ
(n)

j,λ for j ∈ [n] . (24)

Further, by Assumption 2.4, for each i ≥ 1,

(
σ2(x(n))

)−1
x (n)

i = nη · x (n)

i → θ∗i , as n → ∞ . (25)

Now note that for 2 ≤ i < j ≤ n,

pnλ

(
w

(n)

i w
(n)

j

�n

)
=

(
λ + 1

σ2(x(n))

)
x (n)

i x (n)

j , (26)

and consequently,

Gn(λ)
d= Gn(λ) := G

(([n], x(n)
)
, λ + (

σ2(x(n))
)−1

)
, (27)

where the latter is as in Definition 2.2.
Let G−

n (λ) = Gn(λ) \ [1]. A useful tool in the study of the random graph G−
n (λ)

is the “breadth-first walk" process
(
Zn,−

λ (u), u ≥ 0
)
associated with a breadth-first

exploration of the random graph G−
n (λ), which we describe next. This is very much in

the spirit of [11], although our breadth-first walk (defined in (29)) is slightly different
from the one considered in [11], as it is easier to analyze.

For 2 ≤ j ≤ n, let the size of vertex j be x (n)

j . Choose v(1) from [n] \ {1} in a

size-biased way, i.e., P
(
v(1) = v

) ∝ x (n)
v , v ∈ [n]\{1}. Explore the component of v(1)

in G−
n (λ) in a breadth-first fashion. Let h1 be the height of the breadth-first tree, and

for 0 ≤ i ≤ h1, let Gen1i be the set of vertices in the i-th generation of the breadth-first
tree. For t ≥ 2, having explored the component of v(1), . . . , v(t − 1), choose v(t) in
a size-biased way from the remaining vertices, explore its component in G−

n (λ) in a
breadth-first fashion, let ht be the height of its breadth-first tree, and for 0 ≤ i ≤ ht ,
let Genti be the set of vertices in the i-th generation of the breadth-first tree. Stop when
all vertices j ∈ [n] \ {1} have been found.

Using properties of exponential random variables, it can be easily checked that the
above collection of random variables can be constructed in the following way: Recall
the relations from (24). Let ξnj , 2 ≤ j ≤ n, be independent random variables such that

ξnj,λ ∼ Exp
((

λ + (
σ2(x(n))

)−1)
x (n)

j

)
, or equivalently, ξnj,λ ∼ Exp

(
θ

(n)

j,λ

)
. (28)
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To simplify notation we will write ξnj instead of ξnj,λ. Let v(1) be such that ξnv(1) =
min

{
ξnj : 2 ≤ j ≤ n

}
, and set Gen10 =

{
v(1)

}
. Inductively define

Gen1i =
{
j ∈ [n] \ {1} :

ξnj ∈
[
ξnv(1) +

i−2∑

k=0

∑

v∈Gen1k
x (n)

v , ξnv(1) +
i−1∑

k=0

∑

v∈Gen1k
x (n)

v

]}
for 1 ≤ i ≤ h1 + 1 ,

where

h1 + 1 = min
{
i ≥ 1 : Gen1i = ∅}

.

For t ≥ 2, let v(t) be such that

ξnv(t) = min

{
ξnj : 2 ≤ j ≤ n and j /∈

t−1⋃

k=1

hk⋃

i=0

Genki

}
.

Set Gent0 = {
v(t)

}
, and define Genti , 1 ≤ i ≤ ht + 1, in a manner analogous to the

case t = 1. Stop when all vertices j ∈ [n] \ {1} have been found.
We define the breadth-first walk as

Zn,−
λ (u) = −u +

∑

2≤ j≤n

x (n)

j 1l
{
ξnj ≤ u

}
, u ≥ 0 . (29)

The correspondence described above allows one to prove various properties of G−
n (λ)

by studying the process Zn,−
λ . Here we make note of an elementary property of Zn,−

λ

that will be useful to us: Suppose G−
n (λ) and ξnj , 2 ≤ j ≤ n, are coupled by means of

the correspondence described above. Then in this coupling, for 1 ≤ t ≤ m,

Zn,−
λ

(
ξnv(t) −

) = Zn,−
λ

(
ξnv(t) +Wx(n)

(
C

(
v(t),G

−
n (λ)

)))

= −ξnv(t) +
t−1∑

k=1

Wx(n)

(
C

(
v(k),G

−
n (λ)

))
< 0 ,

where m denotes the number of components in G−
n (λ). This leads to the following:

Lemma 6.6 In the above coupling, if for some 0 < u1 < u2, Z
n,−
λ (u) > 0 for u ∈

[u1, u2], then there exists a component C � in G−
n (λ) such thatWx(n)

(
C �

) ≥ u2 − u1.

Note that we can explore Gn(λ) starting from the vertex 1 in a manner similar to
the exploration of G−

n (λ). In this case, we define the breadth-first walk as

Zn,(1)
λ (u) = x (n)

1 − u +
∑

2≤ j≤n

x (n)

j 1l
{
ξnj ≤ u

}
, u ≥ 0 , (30)
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where ξnj , 2 ≤ j ≤ n, are as in (28). (Here we append a “(1)” to specify that the
process starts at vertex 1.) As in the case of G−

n (λ), there is a natural coupling between
Gn(λ) and ξnj , 2 ≤ j ≤ n.

Lemma 6.7 In the above coupling,

Wx(n)

(
C

(
1,Gn(λ)

)) = inf
{
u ≥ 0 : Zn,(1)

λ (u) = 0
}
.

Let us get back to the process Zn,−
λ (·). Using (28) and the second identity in (24),

it can be directly checked that for any u ≥ 0,

E
[
nηZn,−

λ (u)
] = λu −

n∑

j=2

θ
(n)

j,λ(
1+ λn−η

)
(
uθ

(n)

j,λ + exp(−uθ
(n)

j,λ) − 1
)
=: �

(n)

λ (u).

(31)

Note that �
(n)

λ (·) is a strictly concave function (in u). In particular, for any λ > 0,
�

(n)

λ (·) has a unique positive zero, which we will denote by s(n)(λ). Define

ϕ
(n)

λ (u) :=
n∑

j=2

(
θ

(n)

j,λ

)2
(
uθ

(n)

j,λ + exp(−uθ
(n)

j,λ) − 1
)

uθ
(n)

j,λ

(32)

for u ≥ 0 (the value at u = 0 is understood to be the limit of ϕ
(n)

λ (u) as u ↓ 0), so that

�
(n)

λ (u) = λu − uϕ
(n)

λ (u)
/(

1+ λn−η
)
. (33)

From now on, wewill drop the dependence on n in the superscripts and simplywrite
θ j,λ, x j , x, andw j to ease notation. Recall the constants A1, A2 fromAssumption 2.4.
Consider the interval

I (n) :=
[
2 · (σ (n)

2

)1/2

A1
,
nα

(
σ

(n)

2

)1/2

A22α+1

]
. (34)

For u ∈ I (n), define iλ(u) = min
{
i ≥ 1 : θi,λu < 1

}
. From the definition of I (n) and

Assumption 2.4 (iii), it follows that 3 ≤ iλ(u) ≤ n/2 for u ∈ I (n). Writing

I (n),2 = {
(λ, u) : 0 ≤ λ ≤ nη/10 , u ∈ I (n)

}
, (35)

we have, for all large n,

iλ(u) � u1/α for (λ, u) ∈ I (n),2 . (36)
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Define the function g(s) := s+ e−s − 1 for s ≥ 0. Since g(s) � s2 on [0, 1] while
g(s) � s on [1,∞), using Assumption 2.4 we have, ∀n and for all (λ, u) ∈ I (n),2,

uϕ
(n)

λ (u) �
iλ(u)−1∑

j=2

θ j,λ
(
uθ j,λ

) +
n∑

j=iλ(u)

θ j,λ
(
uθ j,λ

)2

� u
iλ(u)−1∑

j=2

1

j2α
+ u2

n∑

j=iλ(u)

(
θ j,λ

)3
. (37)

Using (36), we see that ∀n and for all (λ, u) ∈ I (n),2,

u
iλ(u)−1∑

j=2

1

j2α
� u · (iλ(u)

)1−2α � u · u(1−2α)/α � uτ−2 , (38)

whereas Assumption 2.4 (iii) and (7) yield

0 ≤ u2
n∑

j=iλ(u)

(
θ j,λ

)3 ≤ Cu2
n∑

j=iλ(u)

1

j3α
≤ C ′u2

(
iλ(u)

)1−3α ≤ C ′′uτ−2 . (39)

Combining (37), (38), and (39), we get, ∀n and for all (λ, u) ∈ I (n),2,

uϕ
(n)

λ (u) � uτ−2 . (40)

Now let us switch back to �
(n)

λ (·). Using the asymptotics for ϕ
(n)

λ (·) in (40), choose
λ41 ≥ 1 large enough and ε41 ∈

(
0, 1

10 ∧ (ν′ − 1)
)
small so that ∀n,

�
(n)

λ41

(
2
(
σ

(n)

2

)1/2

A1

)
> 0 , and �

(n)

ε41nη

(
nα

(
σ

(n)

2

)1/2

A22α+1

)
< 0 ,

and consequently, the unique positive zero s(n)(λ) of �
(n)

λ (·) satisfies, ∀n,

s(n)(λ) ∈ I (n) for λ ∈ [λ41, ε41n
η]. (41)

(Note that ε41 ∈
(
0, 1

10 ∧ (ν′ − 1)
)
implies that ∀n, ε41 < (νn − 1).) Thus, (40), (33),

and the relation �
(n)

λ

(
s(n)(λ)

) = 0 implies, ∀n,

s(n)(λ) � λ1/(τ−3) for λ ∈ [λ41, ε41n
η]. (42)

6.3 The component of the vertex 1 in Gn(�)

Recall the notation C n
1 (λ) from Definition 6.3. In this section we will study properties

of C n
1 (λ). We start with a lower bound on W

(
C n
1 (λ)

)
.
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Proposition 6.8 There exists κ0 ∈ (0, 1/4) such that the following holds for all κ ∈
(0, κ0]: there exists n43 = n43(κ) and λ43 = λ43(κ) ≥ λ41 such that for all n ≥ n43
and λ ∈ [λ43, ε41nη],

P

(
Wx

(
C

(
1,Gn(λ)

)) ≥ (1− 2κ)s(n)(λ)

)
≥ 1− exp

( − Cλ1/(τ−3)) , (43)

and consequently, P

(
W

(
C n
1 (λ)

) ≥ (1 − 2κ)s(n)(λ)
(
σ

(n)

2

)1/2
nρ

)
≥ 1 − exp

( −
Cλ1/(τ−3)

)
.

We will make use of the next two results in the proof of Proposition 6.8. Recall the
independent exponential random variables ξnj , 2 ≤ j ≤ n, from (28).

Lemma 6.9 ( [5, Lemma 6.3]) There exists a constant C44 > 0 such that for all
s ≥ 1/C44, y ≥ 1/C44, for all large n, and λ ∈ [1, nη],

P

(
sup
u≤s

∣∣∣∣
n∑

j=2

θ j,λ

(
1l
{
ξnj ≤ u

} − P
(
ξnj ≤ u

))∣∣∣∣ ≥ ys
τ−3
2

)
≤ exp

( − C44y log log y
)
.

(44)

Remark 2 The result in [5, Lemma 6.3] is given in a slightly different setting. However,
the key ingredient in its proof is the Klein-Rio bound [60, Theorem 1.1]. Applying [60,
Theorem 1.1], the proof of [5, Lemma 6.3] boils down to establishing a uniform upper
bound on the variance of a certain collection of functionals, and an upper bound on the
expectation of the supremum of the said collection of functionals. This is achieved in
the proof of [5, Lemma 6.3] and in [5, Lemma 6.4]. Now, using Assumption 2.4 (iii)
and (7), those same arguments can be used to prove Lemma 6.9. Further, examining
the proofs of [5, Lemma 6.3 and Lemma 6.4] will reveal that the constant C44 can be
chosen so that it depends only on A1, A2, and τ . We omit the proof of Lemma 6.9 as
no new idea is involved.

The next lemma describes technical properties of the function ϕ
(n)

λ defined in (32).
For fixed κ > 0, define analogous to the set I (n),2,

I (n),2
κ :=

{
(λ, u) : 0 ≤ λ ≤ nη/10 , u ∈

[
2 · (σ (n)

2

)1/2

A1κ
,
nα · (σ (n)

2

)1/2

A22α+1

] }
.

Lemma 6.10 There exist C45 > 0 and κ0 ∈ (0, 1/4) such that for all large n, for all
κ ∈ (0, κ0], and (λ, u) ∈ I (n),2

κ ,

ϕ
(n)

λ (κu)

ϕ
(n)

λ (u)
≤ ϕ

(n)

λ

(
(1− κ)u

)

ϕ
(n)

λ (u)
≤ 1

1+ C45κ
. (45)
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Proof of Proposition 6.8 assuming Lemma 6.10: Recall the function �
(n)

λ from (31) and
its connection to ϕ

(n)

λ from (33). By (41) and (42), for any κ ∈ (0, κ0], there exist λ46 =
λ46(κ) ≥ λ41 and n46 = n46(κ) such that

(
λ, s(n)(λ)

) ∈ I (n),2
κ for all λ ∈ [λ46, ε41nη]

and n ≥ n46. Then for n ≥ n46 and λ ∈ [λ46, ε41nη],

�
(n)

λ

(
(1− κ)s(n)(λ)

) ≥ (1− κ)s(n)(λ)

(
λ − 1

1+ λn−η
· ϕ

(n)

λ (s(n)(λ))

1+ C45κ

)

= (1− κ)s(n)(λ) · λ ·
(

κC45

1+ κC45

)
≥ C46κλ

τ−2
τ−3 , (46)

where the first inequality uses (33) and Lemma 6.10, the second step follows from the
definition of s(n)(λ) which implies that ϕ

(n)

λ (s(n)(λ)) = λ · (1 + λn−η), and the final
step follows from (42). Similarly, for all n ≥ n46 and λ ∈ [λ46, ε41nη],

�
(n)

λ

(
κs(n)(λ)

) ≥ C46κ
2λ(τ−2)/(τ−3). (47)

Now recall the process Zn,−
λ from (29), and note that for any u ≥ 0,

nη

(
Zn,−

λ (u) − E
[
Zn,−

λ (u)
]) =

n∑

j=2

θ j,λ

(1+ λn−η)

(
1l
{
ξnj ≤ u

} − P
(
ξnj ≤ u

))
.

(48)

Thus, by Lemma 6.9, there exists λ49 ≥ λ41 such that ∀n and λ ∈ [λ49, ε41nη],

P

(
sup

u≤s(n)(λ)

(
λ + nη

)∣∣∣∣Z
n,−
λ (u) − E

[
Zn,−

λ (u)
]∣∣∣∣

≥ λ
1

τ−3
(
s(n)(λ)

) τ−3
2

)
≤ exp

( − Cλ
1

τ−3 log log λ
1

τ−3
)
. (49)

Using (42), ∀n and λ ∈ [λ49, ε41nη], λ 1
τ−3

(
s(n)(λ)

) τ−3
2 ≤ Cλ

τ−1
2(τ−3) . Now using (46),

(47), and (49) together with the concavity of�(n)

λ and the fact that (τ−1)/(2(τ−3)) <

(τ − 2)/(τ − 3), we can find λ50 = λ50(κ) ≥ λ41 and n50 = n50(κ) such that for all
n ≥ n50 and λ ∈ [λ50, ε41nη],

P

(
Zn,−

λ (u) > 0 for every u ∈ [
κs(n)(λ), (1− κ)s(n)(λ)

]) ≥ 1− exp
( − Cλ

1
τ−3

)
.

(50)

By Lemma 6.6, on the event in (50), there exists a component C � in G−
n (λ) with

Wx(C �) ≥ (1 − 2κ)s(n)(λ). Now we can generate Gn(λ) by first generating G−
n (λ),

123



Geometry of the minimal... 755

and then independently sampling the edges from vertex 1 to the vertex set [n] \ {1}.
Thus, for all n ≥ n50 and λ ∈ [λ50, ε41nη],

P

(
Wx

(
C

(
1,Gn(λ)

)) ≤ (1− 2κ)s(n)(λ)

)

≤ exp

(
− Cλ

1
τ−3

)
+ exp

(
− (

λ + nη
)
x1 · (1− 2κ)s(n)(λ)

)
,

where the second term is an upper bound for the probability that vertex 1 is not
connected to the component C � of mass at least (1− 2κ)s(n)(λ). Now an application
of (42) and (25) completes the proof of Proposition 6.8. ��

Let us now turn to the proof of Lemma 6.10.

Proof of Lemma 6.10: Recall the definition of I (n),2 from (35). Let f : [0,∞) → [0, 1]
be given by f (u) := 1− e−u − ue−u . Note that f (u) � 1 for u ≥ 1 while f (u) � u2

for u ∈ [0, 1]. Thus, ∀n and for (λ, u) ∈ I (n),2,

n∑

j=2

θ j,λ
(
1− e−uθ j,λ − uθ j,λe

−uθ j,λ
) �

iλ(u)−1∑

j=2

θ j,λ +
n∑

j=iλ(u)

θ j,λ
(
uθ j,λ

)2 � uτ−2,

(51)

where the last step uses arguments similar to the ones leading to (40). Now for any
u ≥ 0, κ ∈ (0, 1), and s ∈ [1− κ, 1],

∣∣
n∑

j=2

θ j,λ
(
uθ j,λe

−usθ j,λ − uθ j,λe
−uθ j,λ

)∣∣ ≤
n∑

j=2

uθ2j,λ
(
1− e−κuθ j,λ

)
. (52)

For all large n and (λ, κu) ∈ I (n),2,

n∑

j=2

θ2j,λu
(
1− e−κuθ j,λ

) �
iλ(κu)−1∑

j=2

θ2j,λu +
n∑

j=iλ(κu)

θ2j,λu
(
κuθ j,λ

)

� u
(
iλ(κu)

)1−2α + κu2
n∑

j=iλ(κu)

(
θ j,λ

)3 � κτ−3uτ−2 , (53)

where we have used Assumption 2.4 (iii), (7), and (36). Combining (51), (52), and
(53), we see that there exists κ0 ∈ (0, 1/4) small such that ∀n and for all κ ∈ (0, κ0],

n∑

j=2

θ j,λ
(
1− e−uθ j,λ − uθ j,λe

−usθ j,λ
) � uτ−2 for (λ, u) ∈ I (n),2

κ (54)

123



756 S. Bhamidi, S. Sen

uniformly over s ∈ [1− κ, 1]. Hence, ∀n, for any κ ∈ (0, κ0], and (λ, u) ∈ I (n),2
κ ,

ϕ
(n)

λ (u)

ϕ
(n)

λ

(
(1− κ)u

) − 1 =
∑n

j=2 θ j,λ
(
κ
(
1− e−uθ j,λ

) + e−uθ j,λ − e−(1−κ)uθ j,λ
)

(1− κ)u · ϕ(n)

λ

(
(1− κ)u

)

≥ 1

Cuτ−2 ·
( n∑

j=2

θ j,λ

(
κ
(
1− e−uθ j,λ

) + e−uθ j,λ − e−(1−κ)uθ j,λ

))

= 1

Cuτ−2 ·
( n∑

j=2

θ j,λ

∫ 1

1−κ

(
1− e−uθ j,λ − uθ j,λe

−uθ j,λs
)
ds

)
≥ C45κ ,

where the second step uses (40), and the last step uses (54). It thus follows that ∀n,
for all κ ∈ (0, κ0] and (λ, u) ∈ I (n),2

κ ,

ϕ
(n)

λ (κu)

ϕ
(n)

λ (u)
≤ ϕ

(n)

λ

(
(1− κ)u

)

ϕ
(n)

λ (u)
≤ 1

1+ C45κ
,

where the first inequality follows since ϕ
(n)

λ (·) is an increasing function. This completes
the proof of Lemma 6.10. ��

Next, we study the sum of squares of weights in the component of vertex 1, as well
as the inclusion of maximal weight vertices within this component.

Proposition 6.11 There exist δ0 > 0 and λ55 ≥ λ41 such that the following hold for
all large n and for λ ∈ [λ55, ε41nη]:

P

( ∑

j∈C (1,Gn(λ)), j �=1

θ2j,λ ≤ (1+ δ0)λ

)
≤ exp(−Cλ) , and (55)

P

(
j /∈ C

(
1,Gn(λ)

)
for some 1 ≤ j ≤ λ1/η

log3 λ

)
≤ exp

( − C log3α λ
)
. (56)

Proof of (55): Define ψ
(n)

λ : [0,∞) → [0,∞) by

ψ
(n)

λ (u) :=
n∑

j=2

θ2j,λ
(
1− e−θ j,λu

)
.

Since (1 − e−s) ≥ (s − 1 + e−s)/s for s ∈ (0,∞), we have ψ
(n)

λ (u) ≥ ϕ
(n)

λ (u) for
u ≥ 0. Further, ∀n and for (λ, u) ∈ I (n),2,

u
(
ψ

(n)

λ (u) − ϕ
(n)

λ (u)
) =

n∑

j=2

θ j,λ
(
1− e−uθ j,λ − uθ j,λe

−uθ j,λ
) � uτ−2 � uϕ

(n)

λ (u) ,

where the penultimate step uses (51), and the last step uses (40). Hence, there exists
δ0 > 0 such that ∀n and for (λ, u) ∈ I (n),2, ψ

(n)

λ (u) ≥ (1 + 3δ0)ϕ
(n)

λ (u). Combined
with (41), we see that ∀n and λ ∈ [λ41, ε41nη],

123



Geometry of the minimal... 757

ψ
(n)

λ

(
s(n)(λ)

) ≥ (1+ 3δ0)ϕ
(n)

λ

(
s(n)(λ)

)
. (57)

Let κ0 be as in Lemma 6.10, and choose κ1 ∈ (0, κ0] small so that

(1− 2κ1)(1+ 3δ0) ≥ (1+ 2δ0) . (58)

Recall the process Zn,(1)
λ from (30). By Proposition 6.8 and Lemma 6.7, writing n59 =

n43(κ1) and λ59 = λ43(κ1), we have, for all n ≥ n59 and λ ∈ [λ59, ε41nη],

P
(
Zn,(1)

λ (·) hits zero before (1− 2κ1)s
(n)(λ)

) ≤ exp
( − Cλ1/(τ−3)) . (59)

Consider the coupling between Gn(λ) and the random variables ξnj , 2 ≤ j ≤ n, as
mentioned below (30). Then note that in this coupling, on the complement of the event
in (59), j ∈ C

(
1,Gn(λ)

)
whenever ξnj ≤ (1− 2κ1)s(n)(λ), and consequently,

∑

j∈C (1,Gn(λ)), j �=1

θ2j,λ ≥
n∑

j=2

θ2j,λ · 1l{ξnj ≤ (1− 2κ1)s
(n)(λ)

}

=
n∑

j=2

θ2j,λ

(
1l
{
ξnj ≤ (1− 2κ1)s

(n)(λ)
} − P

(
ξnj ≤ (1− 2κ1)s

(n)(λ)
))

+ ψ
(n)

λ

(
(1− 2κ1)s

(n)(λ)
) := T(n)

1 + T(n)

2 .

To lower bound T(n)

2 , note that 1− e−su ≥ s(1− e−u) for all s ∈ (0, 1) and u ≥ 0.
Thus,ψ(n)

λ

(
(1−2κ1)s(n)(λ)

) ≥ (1−2κ1)ψ
(n)

λ

(
s(n)(λ)

)
. Thus, ∀n and λ ∈ [λ41, ε41nη],

ψ
(n)

λ

(
(1− 2κ1)s

(n)(λ)
) ≥ (1− 2κ1)(1+ 3δ0)ϕ

(n)

λ

(
s(n)(λ)

) ≥ (1+ 2δ0)λ , (60)

where the first step uses (57), and the second step uses (58) and the definition of s(n)(λ).
Turning to T(n)

1 , an application of the bounded difference inequality shows that ∀n
and λ ∈ [1, ε41nη],

P
(
T(n)

1 ≤ −δ0λ
) ≤ exp

( − Cλ2
)
. (61)

Combining (59), (60), and (61), it follows that there exists λ62 ≥ λ59 such that ∀n
and λ ∈ [λ62, ε41nη],

P

( ∑

j∈C (1,Gn(λ)), j �=1

θ2j,λ ≤ (1+ δ0)λ

)
≤ exp

( − Cλ2∧
1

τ−3
) ≤ exp

( − Cλ
)
. (62)

This completes the proof of (55). ��
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Proof of (56): Write
∑

∗ for
∑ λ1/η

log3 λ

j=2 , and note that ∀n and λ ∈ [λ41, ε41nη],
∑

∗P
(
ξnj ≥ (1− 2κ1)s

(n)(λ)
) =

∑
∗ exp

( − θ j,λ(1− 2κ1)s
(n)(λ)

)

≤
∑

∗ exp
(
− C

jα
λ

1
τ−3

)
≤ λ1/η

log3 λ
exp

( − C log3α λ
) ≤ C ′ exp

( − C ′′ log3α λ
)
,

(63)

where the second step uses (42), and the last step uses the fact 3α > 1.
Now consider again the coupling between Gn(λ) and the random variables ξnj ,

2 ≤ j ≤ n, as mentioned below (30). As already noted below (59), in this coupling, on
the complement of the event in (59), j ∈ C

(
1,Gn(λ)

)
whenever ξnj ≤ (1−2κ1)s(n)(λ).

Thus, combining (63) and (59) completes the proof. ��

6.4 Height bounds for a branching process

Recall the definition of νn from (18), and define vi = wi/νn for 2 ≤ i ≤ n. Let Vn be
a random variable with distribution

1∑n
i=2 vi

n∑

i=2

vi · δ{vi } = 1

�n

n∑

i=2

wi · δ{vi } . (64)

Let Poi(Vn) denote a random variable that conditional on Vn is distributed as a Poisson
random variable with mean Vn . We will need the following property of the random
variable Poi(Vn).

Lemma 6.12 There exist C ′
65 > C65 > 0 such that for all n ≥ 1,

C ′
65/u

τ−2 ≥ P
(
Poi(Vn) ≥ u

) ≥ C65/u
τ−2 for 1 ≤ u ≤ v2/2. (65)

The proof of Lemma 6.12 is given in Sect. 1. The main result of this section, stated
in the next proposition, describes height asymptotics of a branching process Tn with
offspring distribution Poi(Vn). Note that E

[
Poi(Vn)

] = 1, so that Tn is finite almost
surely.

Proposition 6.13 There exists γ∗ > 0 and C > 0 such that for γ ∈ (0, γ∗] and all
n ≥ 1,

P
(
ht(Tn) ≥ γ nη

) ≤ C

nαγ 1/(τ−3)
.

The proof of this result uses a technique recently developed in [4]. For a random
variable X , define Lévy’s concentration function as

Q(X , u) := sup
x∈R

P
(
x ≤ X ≤ x + u

)
, u > 0.
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Let
(
Xi ; i ≥ 1

)
be an i.i.d. sequence with X1

d= Poi(Vn) − 1. Let
(
Sk ; k ≥ 0

)
be a

random walk with Sk − Sk−1 = Xk , k ≥ 1, and for x ∈ Z, write Px for the probability
distribution of this random walk when S0 = x . By [46, Theorem 3.1] there exists a
(universal) constant C > 0 such that for any x ∈ Z, under Px ,

Q(Sk, u) ≤ Cu√
k · E[(

X1 − X2
)21l

{∣∣X1 − X2
∣∣ ≤ u

}] , k ≥ 1 . (66)

We start with the following lemma.

Lemma 6.14 Let Y = X1−X2. Let β∗ > 0 be such that ∀n, one has β∗nα ≤ v2/2−1.
Then ∀n and for any u ∈ [

1, β∗nα
]
,

E
[
Y 21l

{|Y | ≤ u
}] ≥ Cu4−τ .

Proof Choose 
 ∈ (0, 1) such that C65 = 2C ′
65


τ−2. Then an application of
Lemma 6.12 shows that ∀n, for any u ∈ [2/
, β∗nα] and y ∈ [1, u
],

P
(
Poi(Vn) ∈ [y, u]) = P

(
Poi(Vn) ≥ y

) − P
(
Poi(Vn) > u

) ≥ C65

yτ−2 − C ′
65

uτ−2

≥ C65

(u
)τ−2 − C ′
65

uτ−2 = C ′
65

uτ−2 . (67)

Hence, ∀n and for any u ∈ [2/
, β∗nα],

E
[
Y 21l

{|Y | ≤ u
}] = 2

∫ u

0
yP

(
u ≥ |Y | ≥ y

)
dy

≥ 2P
(
X2 = −1

) ∫ u


1
yP

(
u ≥ X1 + 1 ≥ y

)
dy

≥ 2P
(
X2 = −1

) ∫ u


1

C ′
65y

uτ−2 dy ≥ CP
(
X2 = −1

)
u4−τ , (68)

where the penultimate step uses (67). Now, using Assumption 2.4,

P
(
X2 = −1

) = E
[
e−Vn

] = 1

�n

n∑

i=2

wi e
−wi /νn ≥ C

n

n/2∑

i=n/4

(n
i

)α

e−C ′( ni )α ≥ C ′′ > 0 .

(69)

This yields the desired result for u ∈ [2/
, β∗nα]. Now, an argument similar to the
one used in (69) will show that P(X1 = 0) ≥ C > 0, which would in turn imply that
for u ∈ [1, 2/
],

E
[
Y 21l

{|Y | ≤ u
}] ≥ P(X1 = 0)P(X2 = −1) ≥ C ′ ≥ C ′u4−τ (
/2)4−τ .
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Using this last observation we extend the lower bound to the interval
u ∈ [1, β∗nα]. ��
Proof of Proposition 6.13: Consider the intervals Il = [2l−1, 2l+2) for l ≥ 1. Define

rnl := min

{
k ≥ 1 : sup

x∈Il
Px

( k⋂

j=1

{
S j ∈ Il

})
≤ 1/2

}
.

By (66) and Lemma 6.14, when 2l+2 ≤ β∗nα , we have ∀n and a large constant
C70 > 0,

Q
(
SC702l(τ−2) , 2l+2) ≤ C2l+2

√
C702l(τ−2)(2l+2)(4−τ)

≤ 1/2, (70)

Hence, ∀n,

rnl ≤ C702
l(τ−2), for 1 ≤ l ≤ m(β∗), (71)

where m(β) := max
{
k ∈ Z>0 : 2k ≤ �βnα�} for β > 0.

For the rest of this proof, we will work with the random walk
(
Sk ; k ≥ 0

)
started

at S0 = 1, i.e., we will work under the measure P1. Let ξ = inf
{
k ≥ 0 : Sk = 0

}
.

By [4, Proposition 1.7],

ht(Tn) �sd 3
ξ−1∑

k=0

1

Sk
=: 3 · Jn(ξ) . (72)

Following [4] we derive tail bounds for Jn(ξ) by decomposing the trajectory of the
random walk into various “scales” which we now define. Let ζ0 = 0 and R0 = 1. For
i ≥ 0, define the stopping times ζi+1 = min

{
t ≥ ζi : St /∈ [

2Ri−1, 2Ri+2
)}
, and let

Ri+1 = max
{
l : Sζi+1 ≥ 2l

}
.

Next, for 0 ≤ k ≤ ξ , let �(k) denote the scale of S at time k. Precisely, let
j = max

{
i : ζi ≤ k

}
be the most recent epoch for a change in scale, and let

�(k) = R j . Finally, for l ≥ 1, define

Jnl(ξ) :=
ξ−1∑

k=0

1

Sk
1l {�(k) = l} .

Nowconsiderβ ∈ [4n−α, β∗], andnote that∀n and for any such choice ofβ,m(β) ≥ 2,
where m(·) is as defined below (71). Define

bl := 18

(
m(β) − l + 1+ 2 log2

(
m(β) − l + 1

))
, 1 ≤ l ≤ m(β) .

123



Geometry of the minimal... 761

Then ∀n,
m(β)∑

l=1

blrnl
2l−1 ≤ 18C70

m(β)∑

l=1

1

2l−1

(
m(β) − l + 1+ 2 log2

(
m(β) − l + 1

)) · 2l(τ−2)

≤ 36C702
(m(β)+1)(τ−3)

∞∑

j=1

( j + 2 log2 j)

2 j(τ−3)
≤ C73(βn

α)τ−3 , (73)

where the first step uses (71), and in the second step we have made the substitution
j = m(β) − l + 1.
Note that max0≤k≤ξ−1 �(k) ≤ m(β) on the event

{
max0≤k≤ξ Sk < �βnα�}.

Hence, ∀n and for β ∈ [4n−α, β∗],

P1

(
Jn(ξ) ≥ C73(βn

α)τ−3
)

≤ P1

(
max
0≤k≤ξ

Sk ≥ �βnα�
)
+ P1

( m(β)∑

l=1

Jnl(ξ) ≥
m(β)∑

l=1

blrnl
2l−1

)

≤ 1

�βnα� +
m(β)∑

l=1

P1

(
Jnl(ξ) ≥ blrnl

2l−1

)
≤ 1

�βnα� +
m(β)∑

l=1

1

2l
· 2

2bl/18
,

where the first step uses (73), the second step follows from a simple application of the
optional stopping theorem, and the third step follows from [4, Theorem 3.6]. Using
the expression for bl , the above bound yields, ∀n and for β ∈ [4n−α, β∗],

P1

(
Jn(ξ) ≥ C73(βn

α)τ−3
)
≤ 1

�βnα� +
m(β)∑

l=1

2

2m(β)+1
(
m(β) − l + 1

)2 ≤ C

βnα
.

(74)

To reparametrize from β to γ as in the statement of Proposition 6.13, write γ =
3C73β

τ−3, and γ∗ = 3C73β
τ−3∗ . Then (72) and (74) give the desired result for all

large n and for γ ∈ [3C734τ−3n−η, γ∗]. Now choose a larger constant to make the
bound work for γ ∈ (0, 3C734τ−3n−η] and for all n ≥ 1. This completes the proof. ��

6.5 Diameter outside the component of the vertex 1

For λ ≥ 0 and δ > 0, let Hn(λ, δ) be the random graph constructed in the following
way: Let the vertex set be

V ′
λ := [n] \ V (

C n
1 (λ)

)
, (75)

and place edges independently between i, j ∈ V ′
λ with probability 1 − exp

( −
pn(1+δ)λwiw j/�n

)
.
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Proposition 6.15 There exist δ1 > 0, ε76 ∈ (0, ε41] and λ76 ≥ λ55 such that for all
large n, for λ ∈ [λ76, ε76nη], and for every 
 ∈ (0, 1/2],

P

(
diam

(
Hn(λ, δ1)

) ≥ nη

λ1−


)
≤ Cλ

τ+1
τ−3 exp

( − C ′λ

)
. (76)

Let us specify here howwe choose the thresholds. Chooseλ76 ≥ λ55, ε76 ∈ (0, ε41],
� ∈ (0, 1/2), and δ1 > 0 such that

� · (λ76
)−1/2 ≤ γ∗ ,

(1+ δ0)(1− 2�)

(1+ ε76)2
− (1+ δ1) ≥ δ0

2
, and ε76 ≤ �

10
,

(77)

where γ∗ is as in Proposition 6.13, and δ0 is as in Proposition 6.11.
Let i1 < i2 < · · · be the vertices in V ′

λ . For 1 ≤ k ≤ |V ′
λ |, write Cres(ik; λ) for the

component of ik in Hn(λ, δ1)\
{
i1, . . . , ik−1

}
. Write

P1(·) = P
( · ∣∣C n

1 (λ)
)
, and E1[·] = E

[ · ∣∣C n
1 (λ)

]
. (78)

Now,

P1

(
diam

(
Hn(λ, δ1)

) ≥ nη

λ1−


)
≤

∑

k

P1

(
diam

(
Cres(ik; λ)

) ≥ nη

λ1−


)
. (79)

For 1 ≤ k ≤ |V ′
λ |, let

V ′
λ,k := V ′

λ \ {
i1, i2, . . . , ik−1

}
. (80)

Note that for any s > 0,

Bernoulli
(
1− e−s) �sd Poi(s) , (81)

and consequently, the breadth-first exploration tree of Cres(ik; λ) starting from ik is
upper bounded by a multitype branching process with state space V ′

λ,k in which the
type of the root is ik , and any vertex of type i has Poi

(
pn(1+δ1)λ

wiw j/�n
)
many type j

children for i, j ∈ V ′
λ,k . This leads us to the following definition which will be useful

in the proof.

Definition 6.16 For λ ≥ 0, D ⊆ [n], and i ∈ D, let MTBPλ,i
n (D) be a multitype

branching process tree with type space D that is rooted at a vertex of type i , and in
which a vertex of type j has Poi

(
pn(1+δ1)λ

w jwk/�n
)
many children of type k for each

j, k ∈ D. Let MTBPin(D) = MTBP0,in (D), and note that in this case a vertex of type
j has Poi(w jwk/νn�n) many children of type k.

The bounds in the next lemma will be crucial for dealing with diam
(
Cres(ik; λ)

)
.
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Lemma 6.17 For any λ ≥ 0, 1 ≤ k ≤ |V ′
λ |, and h > 0,

P1
(
diam

(
Cres(ik; λ)

) ≥ h
) ≤ P1

(
ht

(
MTBPλ,ik

n

(
V ′

λ,k

)) ≥ h/2
)
.

Further, for any i ∈ D ⊆ [n], and h ∈ Z>0,

P

(
ht

(
MTBPλ,i

n (D)
) ≥ h

)
≤ exp

(
(1+ δ1)hλn−η

) · P
(
ht

(
MTBPin(D)

) ≥ h

)
.

Proof The first assertion follows from the discussion above Definition 6.16. For the
second assertion,write ζ = 1+(1+δ1)λn−η, and note thatMTBPin(D) can be obtained
as a subtree of MTBPλ,i

n (D) by killing every child independently with probability
1− ζ−1. Write A for the event in which ht

(
MTBPλ,i

n (D)
) ≥ h, and no vertex in the

leftmost path of length h starting from the root in MTBPλ,i
n (D) is killed. Then

P(A ) = ζ−h
P

(
ht

(
MTBPλ,i

n (D)
) ≥ h

)

≥ exp
( − (1+ δ1)hλn−η

)
P

(
ht

(
MTBPλ,i

n (D)
) ≥ h

)
.

To finish the proof, note that A implies ht
(
MTBPin(D)

) ≥ h. ��
We next record two properties of the above branching process. Let Vn be as defined

around (64).

Lemma 6.18 Fix i ∈ [n] \ {1}. Consider MTBPin
([n]\{1}), and erase the types of all

vertices. Then this tree has the same distribution as a branching process tree where the
root has Poi

(
wi/νn

)
many children, and every other vertex has Poi(Vn)many children.

This result was noted in the discussion above [65, Proposition 3.2]. We will briefly
include the proof.

Proof of Lemma 6.18: Note that MTBPin
([n] \ {1}) can be constructed by starting from

the root and inductively continuing through the generations as follows: to each vertex
of type j assign Poi(w j/νn) many children, and conditional on this step, declare the
type of every child independently to be k ∈ {2, . . . , n} with probability wk/�n . Thus,
in the tree obtained by erasing the types of every vertex in MTBPin

([n]\{1}), the root
has Poi(wi/νn)many children, and every other vertex has Poi(wY /νn)many children,
where P

(
Y = j

) = w j/�n , j = 2, . . . , n. The proof is complete upon noting that

wY /νn
d= Vn . ��

The next lemma follows easily from Definition 6.16.

Lemma 6.19 Consider i ∈ D ⊆ D′ ⊆ [n] \ {1}. Then MTBPin(D) can be coupled
withMTBPin(D

′) so that the former is a subtree of the latter.
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Given V ′
λ , we will now construct a three layer branching process (L3BP), which

we will use to obtain tail bounds on ht
(
MTBPikn

(
V ′

λ,k

))
. Let � be as in (77), and


 ∈ (0, 1/2] be as in the statement of Proposition 6.15.

Definition 6.20 For λ > 0 and 1 ≤ k ≤ |V ′
λ |, consider the following (potentially)

three layer process L3BPikn (λ):

(a) Layer 1: Start MTBPikn (V ′
λ), and run this process up to generation (1 −

2�)nη/(2λ1−
). Call this the first layer. If there is at least one vertex in generation
(1− 2�)nη/(2λ1−
), then we say that the first layer has been fully activated.

(b) Layer 2: If the first layer is fully activated, then starting from every vertex v in
generation (1−2�)nη/(2λ1−
), run independentMTBPtype(v)

n
([n]\[k]) processes

up to generation �nη/(2λ1−
), where type(v) ∈ [n] denotes the type of the vertex
v. Call this the second layer. If any of these branching processes survives up
to generation �nη/(2λ1−
), then we say that the second layer has been fully
activated; in this case, there is at least one vertex in generation (1−�)nη/(2λ1−
)

of L3BPikn (λ).
(c) Layer 3: If the second layer is fully activated, then starting from every vertex v

in generation (1 − �)nη/(2λ1−
), run independent MTBPtype(v)
n

([n] \ {1}) pro-
cesses. Call this the third layer. If any of these branching processes survives up to
generation �nη/(2λ1−
), then we say that the third layer has been fully activated.

Write Fik
n,λ for the event that all three layers have been fully activated, and note that

F
ik
n,λ = {

ht
(
L3BPikn (λ)

) ≥ nη/(2λ1−
)
}
. Since V ′

λ,k ⊆ V ′
λ and V ′

λ,k ⊆ [n]\[k] ⊆
[n]\{1}, using Lemma 6.19, ht

(
MTBPikn

(
V ′

λ,k

)) �sd ht
(
L3BPikn

(
λ
))
. In particular,

P1

(
ht

(
MTBPikn

(
V ′

λ,k

)) ≥ nη

2λ1−


)
≤ P1

(
F
ik
n,λ

)
. (82)

For λ > 0, define En,λ := {∑n
j=2 θ2j,λ1l

{
j ∈ C n

1 (λ)
} ≥ (1+ δ0)λ

}
. Note that by

(55) and (27), ∀n and for λ ∈ [λ55, ε41nη],

P
(
Ec
n,λ

) ≤ exp
( − Cλ

)
. (83)

Lemma 6.21 We have, for all 
 ∈ (0, 1/2], for all large n, and for λ ∈ [λ76, ε76nη],
on the event En,λ,

P1
(
F
ik
n,λ

) ≤ Cλ
τ+1
τ−3 k−

τ+1
τ−1 exp

(
− (1+ δ0)(1− 2�)λ


2(1+ ε76)2

)
,

for 1 ≤ k ≤ |V ′
λ |.
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Proof Fix k ∈ {1, . . . , |V ′
λ |} and 
 ∈ (0, 1/2]. Write �2�3 for the number of vertices

in generation (1− �)nη/(2λ1−
) of L3BPikn (λ) (i.e., vertices at the end of the second
layer), whose subtree in the third layer has height at least �nη/(2λ1−
). Clearly,

P1
(
F
ik
n,λ

) ≤ E1
[
�2�3

]
. (84)

Hence, it is enough to find an upper bound for E1
[
�2�3

]
.

For j ≥ 1, let Gen( j) be the set of vertices in the j-th generation of L3BPik (λ),
and let Y ( j) = ∑

v∈Gen( j) wtype(v) denote the sum of weights of vertices in the j-th
generation. Conditioning on the first two layers, using Lemma 6.18 for the branching
processes in the third layer, and then using Proposition 6.13 for the height of such
branching processes, we get, ∀n and for all λ ∈ [λ76, ε76nη],

E1
[
�2�3

] ≤ C

nα
(
�/λ1−


) 1
τ−3

· E1

[
Y

(
(1− �)nη

2λ1−


)]
. (85)

It can be checked by a direct computation that in the second layer,

E1

[
Y

(
(1− �)nη

2λ1−


)]
= RkE1

[
Y

(
(1− �)nη

2λ1−

− 1

)]

= . . . = (
Rk

) �nη

2λ1−
 E1

[
Y

(
(1− 2�)nη

2λ1−


)]
, (86)

where Rk = ∑n
j=k+1 w2

j/(νn�n). Similarly, in the first layer,

E1

[
Y

(
(1− 2�)nη

2λ1−


)]
=

( ∑

j∈V ′
λ

w2
j

νn�n

)
E1

[
Y

(
(1− 2�)nη

2λ1−

− 1

)]

= . . . =
( ∑

j∈V ′
λ

w2
j

νn�n

) (1−2�)nη

2λ1−
 · wik ,

which combined with (86) and (85) yields, ∀n and for all λ ∈ [λ76, ε76nη],

E1
[
�2�3

] ≤ Cλ
1

τ−3 ×
(

wk

nα

)
×

( ∑

j∈V ′
λ

w2
j

νn�n

) (1−2�)nη

2λ1−
 ×
( n∑

j=k+1

w2
j

νn�n

) �nη

2λ1−


,

(87)
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where we have used the relation wik ≤ wk . Writing ∧k for k ∧ (n/2), we have

n∑

j=k+1

w2
j

νn�n
= 1−

k∑

j=2

w2
j

νn�n
≤ 1− C

n1−2α

∧k∑

j=2

1

j2α

≤ 1− C ′(∧k)η
nη

≤ 1− C ′(k/2)η

nη
, (88)

where the first step uses the relation

n∑

j=2

w2
j/(νn�n) = 1 , (89)

and the second step uses Assumption 2.4. Further, on the event En,λ,

∑

j∈C n
1 (λ), j �=1

w2
j ≥

n2ασ
(n)

2

(1+ λn−η)2
· (1+ δ0)λ = νn�n

nη(1+ λn−η)2
· (1+ δ0)λ .

Thus, for n ≥ 2 and λ ∈ (0, ε76nη], on En,λ,

∑

j∈V ′
λ

w2
j

νn�n
= 1−

∑

j∈C n
1 (λ), j �=1

w2
j

νn�n
≤ 1− (1+ δ0)λ

(1+ λn−η)2nη
≤ 1− (1+ δ0)λ

(1+ ε76)2nη
.

(90)

Using (87), (88), (90), and the inequality 1 − u ≤ e−u , we get, ∀n and for λ ∈
[λ76, ε76nη],

E1
[
�2�3

] ≤ Cλ
1

τ−3 × k−α × exp

(
− (1+ δ0)(1− 2�)λ


2(1+ ε76)2

)
× exp

(
− C91kη

λ1−


)

(91)

on the event En,λ. Since supu≥0 u
τ

τ−3 e−u < ∞, and λ76 ≥ λ41 ≥ 1,

exp

(
− C91kη

λ1−


)
≤ exp

(
− C91kη

λ

)
≤ C

(
λ

kη

) τ
τ−3

for λ ≥ λ76, which combined with (91) yields the desired result. ��
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Proof of Proposition 6.15: Combining Lemma 6.17, (82), and Lemma 6.21, we see that
∀n, for all λ ∈ [λ76, ε76nη], 
 ∈ (0, 1/2], and 1 ≤ k ≤ |V ′

λ |, on the event En,λ,

P1

(
diam

(
Cres(ik; λ)

) ≥ nη

λ1−


)

≤ Cλ
τ+1
τ−3 k−

τ+1
τ−1 exp

(
− (1+ δ0)(1− 2�)λ


2(1+ ε76)2

)
exp

(
(1+ δ1)λ




2

)

≤ Cλ
τ+1
τ−3 k−

τ+1
τ−1 exp

(
− δ0λ




4

)
, (92)

where the last step uses the second relation in (77). Combining (92) with (79) and (83)
completes the proof. ��

6.6 Maximum surplus outside the component of the vertex 1

Let Hn(λ, δ1) and ε76 be as in the setting of Proposition 6.15. Our aim in this section
is to prove the following result.

Proposition 6.22 There exists λ93 ≥ λ55 such that ∀n and λ ∈ [λ93, ε76nη],

P

(
max sp

(
Hn(λ, δ1)

) ≥ 2

)
≤ C/

√
λ . (93)

The proof of this proposition will require some results from [28, 29], which we
will now recall briefly. Fix a finite vertex set V and write G

con
V for the space of all

simple connected graphs with vertex set V . For fixed a > 0 and probability mass
function q = (

qv, v ∈ V
)
, define a probability distribution Pcon( · ; q, a,V ) onGcon

V
as follows:

Pcon
(
G; q, a,V

) := 1

Z(q, a)

∏

(i, j)∈E(G)

(
1− exp(−aqiq j )

)

∏

(i, j)/∈E(G)

exp(−aqiq j ) , for G ∈ G
con
V , (94)

where Z(q, a) is a normalizing constant so that Pcon(G
con
V ; q, a,V ) = 1.

For t ≥ 0, consider the random graph G
(([n],w(n)

)
, t

)
from Definition 2.2, and

write (Ci , i ≥ 1) for its components in decreasing order of their masses. Let V (i) :=
V (Ci ) be the vertex set of Ci , i ≥ 1, and note that

(
V (i); i ≥ 1

)
is a random partition

of [n].
Proposition 6.23 ([28, Proposition 6.1]) Conditional on the partition

(
V (i); i ≥ 1

)
,

define

q(i) :=
(

wv∑
v∈V (i) wv

; v ∈ V (i)

)
, and a(i) := t

( ∑

v∈V(i)

wv

)2

, i ≥ 1.
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For each fixed i ≥ 1, let Gi ∈ G
con
V (i) be a connected simple graph with vertex set V

(i).
Then

P

(
Ci = Gi ∀i ≥ 1

∣∣ (
V (i); i ≥ 1

)) =
∏

i≥1

Pcon
(
Gi ; q(i), a(i),V (i)

)
.

Thus, the random graph G
(([n],w(n)

)
, t

)
can be generated in two stages: (i)

Stage I:Generate the partition of the vertices into different components, i.e., generate(
V (i); i ≥ 1

)
. (ii) Stage II:Conditional on the partition, generate the internal structure

of each component according to the law Pcon
( · ; q(i), a(i),V (i)

)
independently across

different components.
In Proposition 6.24 given below we will describe an algorithm to generate such

connected components. To state this result, we need some definitions.
For fixed m ≥ 1, write Tm for the set of all rooted trees with vertex set [m]. Let

T
ord
m be the collection of all plane trees with m vertices where the vertices are labeled

by elements of [m]. Thus, an element of Tord
m is a rooted tree with vertex set [m]where

the children of each vertex are arranged from right to left. For t ∈ T
ord
m and i ∈ [m],

let P (i; t) be the following set of vertices: j ∈ P (i; t) if and only if the parent of j is
a strict ancestor of i in t, and j lies on the right of the path connecting i to the root of
t. Let

P (t) := {
(i, j) : i ∈ [m] , j ∈ P (i; t)}.

For a probability mass function q = (
q1, . . . , qm

)
with qi > 0 for all i ∈ [m] and

a > 0, define

L(t) = L(t; a, q) :=
∏

{i, j}∈E(t)

[
exp(aqiq j ) − 1

aqiq j

]
exp

( ∑

(i, j)∈P (t)

aqiq j

)
, t ∈ T

ord
m .

(95)

Consider t ∈ T
ord
m , and suppose the vertices of t, arranged in a depth-first order, are

v(1), . . . , v(m), with v(1) being the root. Define the function ft(·) = ft( · ; a, q) on
[0, 1] as follows:

ft(s) =
∑

j∈P (v(i);t)
q j , if

∑

k≤i−1

qv(k) ≤ s <
∑

k≤i
qv(k) ,

and ft(1) = 0. Clearly,

∑

(i, j)∈P (t)

qiq j =
∫ 1

0
ft(s)ds . (96)
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Now, since 1+ s ≤ es ≤ 1+ ses for any s ≥ 0,

1 ≤
∏

{i, j}∈E(t)

[
exp(aqiq j ) − 1

aqiq j

]
≤

∏

{i, j}∈E(t)

exp
(
aqiq j

)

= exp

(
a

∑

{i, j}∈E(t)

qiq j

)
≤ exp

(
aqmax

)
,

where qmax = max j∈[m] q j . Hence,

1 ≤ L(t) ≤ exp
(
aqmax

) · exp
(
a

∫ 1

0
ft(s)ds

)
. (97)

Associated to the probability mass function q there is a random tree model called
a q-tree [37, 70] which we now define. (This random tree is usually referred to as a
p-tree, but we instead use q to avoid confusion with pnλ as defined in (19).) For t ∈ Tm

and v ∈ [m], write dv(t) for the number of children of v in tree t. Then the law of the
q-tree, denoted by Ptree, is defined as follows:

Ptree(t) = Ptree(t; q) =
∏

v∈[m]
qdv(t)
v , t ∈ Tm . (98)

Generating a random q-tree having distribution Ptree, and then assigning a uniform
random order to the children of every vertex in this tree gives a random element in
T
ord
m with law Pord( · ; q) given by

Pord(t) = Pord(t; q) =
∏

v∈[m]

qdv(t)
v

(dv(t))! , t ∈ T
ord
m . (99)

Using L(·) to tilt Pord results in the following distribution:

P�
ord(t) := Pord(t) · L(t)

E[L(Tq)] , t ∈ T
ord
m , (100)

where Tq ∼ Pord.

Proposition 6.24 ([28, Proposition 7.4]) Fix m ≥ 1, a > 0, and a probability mass
function q on [m] with mini qi > 0. Construct a random connected graph on [m] as
follows:

(a) First generate T �
q having distribution P�

ord as in (100).
(b) Conditional on T �

q , add the edge {i, j} with probability 1− exp
( − aqiq j

)
inde-

pendently for (i, j) ∈ P (T �
q ).

Then the resulting random graph is distributed as Pcon
( · ; q, a, [m]) on G

con[m].
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Note that in the above construction, the number of surplus edges in the resulting
graph equals the number of edges added in part (b) of the construction. Using (81)
and (96), we see that the number of surplus edges in the random graph resulting in the
above construction is stochastically dominated by Y , where

(
Y

∣∣ T �
q
) ∼ Poi

(
a

∫ 1

0
fT �

q
(s)ds

)
.

Hence, if Gcon is distributed as Pcon
( · ; q, a, [m]), then by Proposition 6.24,

P
(
sp

(
Gcon

) ≥ 2
) ≤ P

(
Y ≥ 2

) ≤ a2 · E[‖ fT �
q
‖2∞

] = a2 · E
[‖ fTq‖2∞ · L(Tq)

]

E
[
L(Tq)

]

≤ a2 exp
(
aqmax

) · E[‖ fTq‖2∞ · exp (
a‖ fTq‖∞

)]
, (101)

where Tq ∼ Pord. Here, the second step uses the fact that P
(
Poi(s) ≥ 2

) ≤ s2 for all
s > 0, and the final step uses (97). The next result gives a tail bound on ‖ fTq‖∞.

Lemma 6.25 There exists a universal constant C > 0 such that for every m ≥ 1,
probability mass function q on [m] with mini qi > 0, and x ≥ e,

P
(‖ fTq‖∞ ≥ x ||q||2

) ≤ exp
( − Cx log(log x)

)
.

Lemma 6.25 follows by combining [28, Lemma 7.9] and [29, Lemma 4.9]. We are
now ready to prove Proposition 6.22.

Proof of Proposition 6.22: Let P1(·) and E1(·) be as in (78). We will write
∑

1 for∑
j∈V ′

λ
, where V ′

λ is as in (75). Let En,λ be as defined before (83). Then, for n ≥ 2
and λ ∈ (0, ε76nη], on the event En,λ,

pn(1+δ1)λ
·
∑

1
w2

j

�n
=

(
1+ (1+ δ1)λ

nη

)∑
1

w2
j

νn�n

≤
(
1+ (1+ δ1)λ

nη

)(
1− (1+ δ0)λ

(1+ ε76)2nη

)

≤ 1+ λ

nη

((
1+ δ1

) − (1+ δ0)

(1+ ε76)2

)
≤ 1− λδ0

2nη
, (102)
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where the second step uses (90), and the final step uses the second relation in (77),
Consequently,

P1

( ∑

C component
of Hn (λ,δ1)

(
W (C )

)2 ≥ n2ρ√
λ

)

≤
√

λ

n2ρ
· E1

[ ∑
1wv ·W

(
C

(
v, Hn(λ, δ1)

))]

≤
√

λ

n2ρ
·
∑

1wv ·
(

wv

1− pn(1+δ1)λ
· ∑ 1w

2
j/�n

)

≤ C
√

λ

n2ρ
·
∑

1w
2
v ·

(
nη

λ

)
≤ C ′

√
λ

, (103)

where the first step uses Markov’s inequality, the second step uses [5, Lemma 4.5],
the third step uses (102), and the final step uses the relation

∑n
j=1 w2

j = O(n).
For λ ≥ λ55, define

E′
n,λ = En,λ ∩

{
j ∈ C n

1 (λ) for all 1 ≤ j ≤ λ1/η

log3 λ

}
. (104)

For λ > 0, let

Bn,λ :=
{ ∑

C component
of Hn (λ,δ1)

(
W (C )

)2
< n2ρλ−1/2

}
, (105)

and note thatBn,λ is the complement of the event studied in (103). On the eventBn,λ,

W (C ) ≤ nρλ−1/4 for all components C of Hn(λ, δ1) . (106)

Let i1 < i2 < . . . and Cres(ik; λ) be as defined before (78). Then

P1

( ∑

j∈C
θ2j,λ ≥ θ21,λ + 2(1+ δ1)

n∑

j=2

θ3j,λ for some component C of Hn(λ, δ1)

)

≤ P1
(
Bc

n,λ

) +
∑

k

P1

({ ∑

j∈Cres(ik ;λ)

θ2j,λ ≥ θ21,λ + 2(1+ δ1)

n∑

j=2

θ3j,λ

} ⋂
Bn,λ

)
.

(107)

Using (106), we can choose λ93 ≥ λ55 such that ∀n and for λ ≥ λ93, on the event
Bn,λ,

Wx
(
Cres(ik; λ)

) ≤ 1 for 1 ≤ k ≤ |V ′
λ | . (108)
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Analogous to the exploration mentioned before Lemma 6.7, conditional on C n
1 (λ),

Cres(ik; λ) canbe explored in abreadth-firstmanner starting from ik , andWx
(
Cres(ik; λ)

)

will have the same distribution as the hitting time of zero by the corresponding breadth-
first walk. Let ξnj,(1+δ1)λ

, 2 ≤ j ≤ n, be as in (28) with λ replaced by (1+ δ1)λ. Using

(108), ∀n and for λ ∈ [λ93, ε76nη], for every 1 ≤ k ≤ |V ′
λ |,

P1

({ ∑

j∈Cres(ik ;λ)

θ2j,λ ≥ θ21,λ + 2(1+ δ1)

n∑

j=2

θ3j,λ

} ⋂
Bn,λ

)

≤ P1

(
θ2ik ,λ +

n∑

j=ik

θ2j,λ1l
{
ξnj,(1+δ1)λ

≤ 1
} ≥ θ21,λ + 2(1+ δ1)

n∑

j=2

θ3j,λ

)

≤ exp

(
− C

∑n
j=ik θ4j,λ

)
≤ exp

(
− C ′

∑
j≥ik j−4α

)
≤ exp

(
− C ′′i4α−1

k

)
,

(109)

where the second step follows from the bounded difference inequality. Combining
(109) with (107) and (103), we see that ∀n and for λ ∈ [λ93, ε76nη], on the event
E′
n,λ,

P1

( ∑

j∈C
θ2j,λ ≥ θ21,λ + 2(1+ δ1)

n∑

j=2

θ3j,λ for some component C of Hn(λ, δ1)

)

≤ C√
λ
+

∑

k≥λ1/η/ log3 λ

exp

(
− C ′k4α−1

)
≤ C ′′

√
λ

. (110)

Now, using Proposition 6.23, conditional on C n
1 (λ), we can generate the compo-

nents of Hn(λ, δ1) in two steps: first generate the random partition
(
V (i); i ≥ 1

)
of

V ′
λ into component vertex sets, and then conditionally generate the internal structure

of each component. Here, the relevant parameters are

q(i) = (
q (i)
v ; v ∈ V (i)

) :=
(

wv

W (V (i))
; v ∈ V (i)

)
, and

a(i) = pn(1+δ1)λ

(
W (V (i))

)2/
�n . (111)

We will write

Pptn(·) := P
( · ∣∣C n

1 (λ) , (V (i); i ≥ 1)
)
, and

Eptn(·) := E
( · ∣∣C n

1 (λ) , (V (i); i ≥ 1)
)
.
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Forλ > 0, letB′
n,λ := Bn,λ∩

{ ∑
j∈C w2

j ≤ C112n2α for each component C of Hn(λ,

δ1)
}
, where

C112 := sup

{(
θ21,ε76nη + 2(1+ δ1)

n∑

j=2

θ3j,ε76nη

) · σ (n)

2 : n ≥ 1

}
. (112)

Writing q (i)
max := max

{
q (i)
v : v ∈ V (i)

}
, we get, ∀n and for λ ∈ (0, ε76nη], on the

event B′
n,λ, for i ≥ 1,

a(i)q (i)
max ≤ a(i)‖q(i)‖2 = pn(1+δ1)λ

·
(
W (V (i))

)2

�n
·
( ∑

v∈V (i) w2
v

)1/2

W (V (i))

≤ C · W (V (i))

n
· nα = C · W (V (i))

nρ
(113)

≤ C

λ1/4
, (114)

where the last step uses (106). Hence, ∀n and for λ ∈ [1, ε76nη], on the event B′
n,λ,

for i ≥ 1,

Pptn
(
sp(Ci ) ≥ 2

) ≤ (
a(i)

)2 · exp (
a(i)q (i)

max

)

· E[‖ fTq(i)‖2∞ · exp (
a(i)‖ fTq(i)‖∞

)]

= (
a(i)‖q(i)‖2

)2 · exp (
a(i)q (i)

max

)

· E
[‖ fTq(i)‖2∞

‖q(i)‖22
· exp

(
a(i)‖q(i)‖2 ·

‖ fTq(i)‖∞
‖q(i)‖2

)]

≤ C
(
W (V (i))

)2
n−2ρ , (115)

where the first step uses (101), and the final step uses Lemma 6.25 together with the
bounds in both (113) and (114). Consequently, ∀n and for λ ∈ [1, ε76nη], on the event
B′

n,λ,

Pptn

(
max sp

(
Hn(λ, δ1)

) ≥ 2

)
≤ C

∑

i

(
W (V (i))

)2

n2ρ
≤ C√

λ
.

Thus, to complete the proof it is enough to show that ∀n and λ ∈ [λ93, ε76nη],
P
(
(B′

n,λ)
c) ≤ Cλ−1/2. (116)

To this end, observe that ∀n and for λ ∈ [λ93, ε76nη],
P
(
(B′

n,λ)
c) ≤ P

(
(E′

n,λ)
c) + E

[
1lE′

n,λ
· P1

(
(B′

n,λ)
c)]

≤ P
(
(E′

n,λ)
c) + Cλ−1/2 ≤ exp

( − C ′ log3α λ
) + exp(−C ′λ) + Cλ−1/2 ,
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where the second inequality uses (103) and (110), and the final inequality uses Propo-
sition 6.11. This completes the proof of (116), and hence of Proposition 6.22. ��

6.7 Proof of Proposition 6.4

Let δ1 be as chosen in (77). Let δ2 and ε22 be given by

δ2 := δ1/2 , and ε22 := ε76/2 .

For λ ≥ 0, let Hn(λ, δ2) be the random graph on the vertex set V ′
λ := [n]\V (

C n
1 (λ)

)

obtained by placing edges independently between i, j ∈ V ′
λ with probability 1 ∧(

pn(1+δ2)λ
wiw j/�n

)
.

Since 1− e−u ≤ u ∧ 1 for all u ≥ 0, C n
1 (λ) can be coupled with C n

1 (λ) so that the
former is a subgraph of the latter. Further, we can choose λ117 ≥ λ76 ∨ λ93 such that
∀n and λ ∈ [λ117, ε22nη],

pn(1+δ2)λ
wiw j/�n ≤ 1− exp

( − pn(1+δ1)λ
wiw j/�n

)
(117)

for all i, j ∈ [n]. Then it follows that ∀n and λ ∈ [λ117, ε22nη],

dH

(
Mn

λ , Mn
(1+δ2)λ

)
�sd 1+ LP

(
Hn(λ, δ2)

) �sd 1+ LP
(
Hn(λ, δ1)

)
, (118)

where Hn(λ, δ1) is as in the setting of Proposition 6.15, and LP(·) is as defined below
(12). It is easy to check that for any finite graph H ,

1+ LP(H) ≤ 1+ 8 · diam(H) · (max sp(H) + 1
)

≤ 8
(
diam(H) + 1

)(
max sp(H) + 1

)
. (119)

Combining (118) and (119), we see that for any 
 ∈ (0, 1/2], ∀n and λ ∈
[λ117, ε22nη],

P

(
dH

(
Mn

λ , Mn
(1+δ2)λ

)
≥ 24nη

λ1−
/2

)

≤ P

(
1+ diam

(
Hn(λ, δ1)

) ≥ nη

λ1−
/2

)
+ P

(
max sp

(
Hn(λ, δ1)

) ≥ 2

)

≤ P

(
diam

(
Hn(λ, δ1)

) ≥ nη

(2λ)1−
/2

)
+ P

(
max sp

(
Hn(λ, δ1)

) ≥ 2

)

≤ C

(
λ

τ+1
τ−3 exp

( − C ′λ
/2) + λ−1/2
)

≤ Cλ−1/2 sup
u≥1

[
u

1
2+ τ+1

τ−3 exp
( − C ′u
/2) + 1

]
, (120)
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where the third inequality follows from Proposition 6.15 and Proposition 6.22. Now
for any λ117 ≤ λ ≤ ε22nη,

dH

(
Mn

λ , Mn
ε22nη

)
≤

k0∑

j=0

dH

(
Mn

(1+δ2) jλ
, Mn

(1+δ2) j+1λ

)
, (121)

where k0 = k0(n, λ) = min
{
j ≥ 0 : (1+ δ2)

j+1λ ≥ ε22nη
}
. Using (121) and (120),

the proof of Proposition 6.4 can be completed via a simple union bound. Note that

k0∑

j=0

24nη

(
(1+ δ2) jλ

)1−
/2 ≤ 24nη

λ1−
/2

∞∑

j=0

1

(1+ δ2)3 j/4
= C122nη

λ1−
/2 ≤ nη

λ1−

, (122)

where the last step is true for λ ≥ λ21 = λ21(
), and λ21 ≥ λ117 is chosen in a way
so that C122 ≤ λ


/2
21 . We then choose n22(
) ≥ 1 so that the interval [λ21(
), ε22nη]

is nonempty for n ≥ n22(
). The rest of the argument is routine. ��

6.8 Proof of Proposition 6.5

To simplify notation, we will write

γn = ε22n
η .

Before starting the proof of Proposition 6.5, we need two elementary lemmas.

Lemma 6.26 For C > 0, write Cn(C) for the event that W (C ) ≤ C log n for all
components C of Gn(γn) other than C n

1 (γn). Then for every κ > 0, there exists
C123 = C123(κ) < ∞ and n123 = n123(κ) such that for n ≥ n123,

P
(
Cn(C123)

) ≥ 1− n−κ . (123)

The proof of Lemma 6.26 will be given in Sect. 2.

Lemma 6.27 (a) Suppose k,m0 ∈ Z>0, and x0, x1, . . . , xk ∈ (0, 1) with x0 ≤
min

{
x j : 1 ≤ j ≤ k

}
. Further, assume that Z (0)

i , 1 ≤ i ≤ m0, and Z (1), . . . , Z (k)

are independent random variables such that Z (0)
i ∼ Unif [x0, 1], i = 1, . . . ,m0, and

Z ( j) ∼ Unif [x j , 1], j = 1, . . . , k. Then

P

(
min

1≤i≤m0
Z (0)
i < min

1≤ j≤k
Z ( j)

)
≥ m0

m0 + k
.

(b) Suppose in addition to the parameters and random variables in (a), we have, for
some k,m0 ∈ Z>0, another collection of numbers x0, x1, . . . , xk ∈ (0, 1) with x0 ≤
min

{
xl : 1 ≤ l ≤ k

}
. Further, assume that Z (0)

i , 1 ≤ i ≤ m0, and Z (1), . . . , Z (k) are
independent random variables that are also independent of the collection of random
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variables in (a) such that Z (0)
i ∼ Unif [x0, 1], i = 1, . . . ,m0, and Z (l) ∼ Unif [xl , 1],

l = 1, . . . , k. Then

P

(
min

1≤i≤m0
Z (0)
i ∧ min

1≤i≤m0

Z (0)
i < min

1≤ j≤k
Z ( j) ∧ min

1≤l≤k
Z (l)

)
≥ m0

m0 + k
∧ m0

m0 + k
.

Proof We only prove (b). We start with a specific construction of the ran-
dom variables in (b). First generate m0 + k i.i.d. Unif [x0, 1] random variables
Y (0)
1 , . . . ,Y (0)

m0 ,Y
(1), . . . ,Y (k), and independent of this collection, generatem0+ k i.i.d.

Unif [x0, 1] random variables Y (0)
1 , . . . ,Y (0)

m0
,Y (1), . . . ,Y (k). Since x0 ≤ min

{
x j :

1 ≤ j ≤ k
}
and x0 ≤ min

{
xl : 1 ≤ l ≤ k

}
, we can construct the random variables

in (b) on the same probability space as the above collection of random variables such
that

Z (0)
i = Y (0)

i for i = 1, . . . ,m0 , Z (0)
i = Y (0)

i for i = 1, . . . ,m0 ,

Z ( j) ≥ Y ( j) for j = 1, . . . , k , and Z (l) ≥ Y (l) for l = 1, . . . , k .

Then note that the probability in Lemma 6.27 (b) is lower bounded by

P

(
min

1≤i≤m0
Y (0)
i ∧ min

1≤i≤m0

Y (0)
i < min

1≤ j≤k
Y ( j) ∧ min

1≤l≤k
Y (l)

)
=: P(M) ,

say. Let Min := min
{
Y (0)
1 , . . . ,Y (0)

m0 ,Y
(1), . . . ,Y (k)

}
, and similarly define Min . By

symmetry,

P
(
M

∣∣Min < Min
) = m0

m0 + k
, and P

(
M

∣∣Min < Min
) = m0

m0 + k
.

Hence the claim follows. ��
Given Gn(γn) and the edge weights U

∣∣
Gn(γn)

, we can construct the restriction of

Mn to Gn(γn). For any vertex v /∈ V
(
C n
1 (γn)

)
, in order to find the path in Mn that

connects Mn
γn

to the restriction of Mn to C n
v (γn), we can proceed via the following

algorithm.

Algorithm 1 In this algorithm, we will join connected components of Gn(γn) sequen-
tially using edges from E(Gn)\ E(Gn(γn)). We will refer to a collection of connected
components joined by such edges as a “cluster."

(a) Look at the edges in E(Gn)\E(Gn(γn)) going out of C n
v (γn). Add the edge with

the minimum weight to C n
v (γn), thereby connecting it to another component of

Gn(γn).
(b) Repeat sequentially with the current cluster of v. At the k + 1-th step, we look

at the edges (if any) that are in E(Gn)\E(Gn(γn)), and have one endpoint in the
current cluster of v (i.e., the cluster after the addition of the k-th edge) and one
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endpoint outside of this cluster. We then add the edge with the minimum weight
among all the outgoing edges from the cluster, i.e., including the ones considered
in the first k steps.

(c) Stop if v gets connected to C n
1 (γn), or if there are no outgoing edges from the

current cluster of v. In the latter case, v /∈ C (1,Gn).

Using Lemma 4.3, it is easy to see that if v ∈ C (1,Gn), then every edge added
in Algorithm 1 is an edge in Mn . Now, the two-layered randomness present in the
problem (presence/absence of edges and edge weights) makes Algorithm 1 hard to
analyze directly. Loosely speaking, the problem arises from the fact that if W (C ) is
small for some component C of Gn(γn) other than C n

1 (γn), then we cannot say that
there are enough edges in E(Gn)\E(Gn(γn)) that connect C to C n

1 (γn) with high
probability– something we need for the argument to work. So instead we will work
with the following modified algorithm. Let

tn := nη/4

(log n)1/3
. (124)

Algorithm 2 The word “cluster" will have the same meaning as in Algorithm 1.

(a) Look at the edges in E(Gn)\E(Gn(γn)) that connectC n
v (γn) to [n]\

(
V

(
C n

v (γn)
)∪

V
(
C n
1 (γn)

))
, i.e., we do not check for edges that connect C n

v (γn) to C n
1 (γn). Add

the edge with the minimum weight to C n
v (γn), thereby connecting it to another

component of Gn(γn).
(b) Repeat for another (tn − 1) many steps in a manner similar to Algorithm 1, but

without checking for edges that connect the current cluster toC n
1 (γn), or until there

are no outgoing edges from the current cluster to vertices that are not in C n
1 (γn).

(c) After the tn-th edge has been added, if the algorithm has not terminated already,
look at the edges (if any) that are in E(Gn)\ E(Gn(γn)), and have one endpoint in
the current cluster and one endpoint outside of this cluster. Let us emphasize that
at this step, we are checking for edges that connect the current cluster to C n

1 (γn).
We then add the edge with the minimum weight among all the outgoing edges
from the current cluster, thereby connecting it to another component of Gn(γn).
Stop if this component is C n

1 (γn).
(d) Else, ignore the edges (if any) found at the (tn + 1)-th step between C n

1 (γn)

and the cluster of v, and continue as in (b) for another tn many steps. Thus, for
j = tn + 2, . . . , 2tn + 1, the j-th edge added will be between the current cluster
of v and a vertex that is not in C n

1 (γn). At step 2(tn + 1), again check for new
edges that connect the current cluster of v to its complement (including edges that
connect the cluster of v toC n

1 (γn)), and at this step the edges found in step (tn+1)
that connect to C n

1 (γn) will again be considered.
(e) Continue while checking for possible new edges that connect the current cluster

of v to C n
1 (γn) every (tn + 1) steps. Stop if we connect to C n

1 (γn) (this is only
possible at step j(tn + 1) for some j ≥ 1), or if no new edge can be added to the
current cluster.
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The next lemma states a simple property relating the two algorithms.

Lemma 6.28 For v /∈ C n
1 (γn) and any i0 ≥ 1, if v gets connected to C n

1 (γn) after
the addition of i0 + 1 many edges in Algorithm 1, then Algorithm 1 and Algorithm 2
coincide up to the addition of i0 edges.

Define the event

Bn :=
{
W

(
C n
1 (γn)

) ≥ (1− 2κ0)s
(n)(γn) · nρ · (σ (n)

2

)1/2
,

wn|C | ≤ W (C ) ≤ C123(2) · log n for all other components C of Gn(γn) , and

degree of all v ∈ [n] \ V (
C n
1 (γn)

)
in Gn is ≤ (log n)3/2

}
. (125)

Here, the first line corresponds to the event of interest in Proposition 6.8, and the
second line corresponds to the event in Lemma 6.26 with κ = 2. By (56), ∀n,

P

(
j ∈ C n

1 (γn) for 1 ≤ j ≤ γ
1/η
n

(log γn)3

)
≥ 1− exp

( − C log3α n
)
. (126)

By Assumption 2.4 (iii) and (7), for any j > γ
1/η
n (log γn)

−3, w j ≤ 2αA2(n/ j)α ≤
C log3α n for all large n. Now the degree of a vertex v in Gn is distributed as∑

j �=v Bernoulli
(
wvw j/�n

)
, where the summands are independent random variables.

Thus, using (126), a union bound and Bennett’s inequality [31] shows that ∀n,

P

(
degree of some v ∈ [n] \ V (

C n
1 (γn)

)
in Gn is > (log n)3/2

)

≤ n exp(−C log3α n) . (127)

Combining (127), Proposition 6.8, and Lemma 6.26 yields, ∀n,

P
(
Bc

n

) ≤ 2/n2 . (128)

Write

P2(·) = P

(
· ∣∣ (Gn(γn) , Gn restricted to [n] \ V (

C n
1 (γn)

)))
,

and let E2[·] denote the corresponding expectation. Under P2, for any realization of(
Gn(γn) , Gn restricted to [n]\V (

C n
1 (γn)

)
, the rest of the edges inGn and theweights

associated to the edges in E(Gn) \ E(Gn(γn)) can be generated as follows: Let

E� = {{i, j} : 1 ≤ i �= j ≤ n , at least one of i or j is in V
(
C n
1 (γn)

)
,

and {i, j} /∈ E
(
C n
1 (γn)

)}
.
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Let q̄ i j be as in (17). Place the edges {i, j} ∈ E� independently with respective
probabilities

(
1− pnγn

)
q̄ i j(

1− pnγn
)
q̄i j + (1− q̄ i j )

= (
1+ O(n−η)

) · (1− pnγn
)wiw j

�n
, (129)

where the O(n−η) term is uniform over {i, j} ∈ E�, and pn• is as in (19). Adding these
edgeswould generate the complete set of edges E(Gn). Now assign i.i.d. Unif [pnγn , 1]
weights to the edges in E(Gn) \ E(Gn(γn)).

Fix a vertex v /∈ C n
1 (γn). SupposeAlgorithm 2 started fromC n

v (γn) terminates after
the addition of K edges; let j0 ≥ 0 be such that j0

(
tn + 1

) ≤ K < ( j0 + 1)
(
tn + 1

)
.

Let Tj := ( j ∧ j0)
(
tn + 1

)
for j ≥ 0. If the path in Mn connecting v to Mn

γn
has

length ≥ (
log n

)−1/6
nη, then ∀n, on the event Bn , Algorithm 1 started from C n

v (γn)

will run for at least

nη

(
log n

)1/6 × wn

wn + C123(2) log n
≥ Cwnnη

(
log n

)7/6 + 1

many steps. Using Lemma 6.28, we see that Algorithm 2 started from C n
v (γn)will run

for at least Cwnnη
(
log n

)−7/6 many steps. Using (124) and Assumption 2.4 (iv), we
see that in this case, for all large n, the events A j , j = 1, 2, . . . , nη/2(log n)7/12, will
take place, where

A j =
{
Tj = j

(
tn + 1

)
and the Tj -th edge in Algorithm 2 does not connect to C n

1 (γn)
}
.

Both Tj andA j depend on v, butwewill suppress this dependence to simplify notation.

Lemma 6.29 For all large n, on the eventBn, P2
(
Ag(n)

) ≤ 1/n3 for any v /∈ C n
1 (γn),

where g(n) = nη/2(log n)7/12.

Proof The proof recursively analyzes A j , j ≥ 1. We will discuss how to analyze A1
and A2 in detail; the argument for a general j is similar. Let S1 be the sequence of
the first (T1 − 1) ∨ 0 edges added to the cluster of v in Algorithm 2 (arranged in the
order they were added). To bound P2

(
A1

)
, we will actually prove an upper bound on

P2
(
A1

∣∣ S1 = s1
)
that is uniform over the choice of s1 with P2

(
S1 = s1

)
> 0 and

length(s1) = tn , where length(s1) denotes the number of edges in the sequence s1.
Call such a choice of s1 tenable.

Since the status of the edges (presence or absence) connecting to C n
1 (γn) are not

checked in the first tn steps of Algorithm 2, the probability of these edges being present
under P2(·|S1 = s1) is the same as in (129) for any tenable choice of edges s1. Let
E1 ⊆ E(Gn) be the set of edges found between the cluster of v and C n

1 (γn) in the
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T1-th step in Algorithm 2. For any tenable s1,

E2
[|E1|

∣∣ S1 = s1
] = (

1+ O(n−η)
) · (1− pnγn

) ∑

i∈C n
1 (γn)

∑

j in cluster of
v at time tn

wiw j

�n
.

Now, the weight of the cluster of v after the tn-th edge has been added in Algorithm 2
is at least tnwn . Further, for all large n, on the eventBn ,W

(
C n
1 (γn)

) ≥ Cn by virtue
of (42), and consequently, for any tenable s1,

E2
[|E1|

∣∣S1 = s1
] ≥ 2C130tnwn . (130)

Letting E1 = {|E1| ≥ C130tnwn
}
, using Bennet’s inequality [31] and Assump-

tion 2.4 (iv), we see that there exist n131 ≥ 1 and C131 > 0 depending only on
Pmtr such that for all n ≥ n131, on the event Bn , for any tenable s1,

P2
(
Ec
1

∣∣ S1 = s1
) ≤ exp

( − C131
(
log n

)7/6)
. (131)

Hence, for all n ≥ n131, on the event Bn , for any tenable s1,

P2
(
A1

∣∣ S1 = s1
) ≤ P2

(
A1 ∩ E1

∣∣ S1 = s1
) + P2

(
Ec
1

∣∣ S1 = s1
)

≤ P2
(
A1

∣∣E1 ∩
{
S1 = s1

}) + exp
( − C131

(
log n

)7/6)
. (132)

We will bound the first term on the right side of (132) with the help of Lemma 6.27 (a).
To this end, note that on E1 ∩

{
S1 = s1

}
, in the T1-th step, we have found m0 ≥

C130tnwn many edges connecting the cluster of v to C n
1 (γn). The weights associated

with these edges are i.i.d. Unif[x0, 1] random variables, where x0 = pnγn . Next, on
Bn , the number of vertices in the cluster of v after the addition of the tn-th edge
is at most C123(2) · (1 + tn) log n/wn , and the degree of each of these vertices in
Gn is at most (log n)3/2. Hence, the number of outgoing edges from the cluster of v

at this point that do not connect to C n
1 (γn) is k ≤ C123(2) · (1 + tn)(log n)5/2/wn .

Conditional on the values of the weightsUi j , {i, j} ∈ s1, the weights of these k edges
are independent Unif [x j , 1] random variables for some x j ≥ x0, j = 1, . . . , k. Thus,
using Lemma 6.27 (a), we get, on the event Bn , for any tenable s1,

P2
(
A1

∣∣E1 ∩
{
S1 = s1

}) ≤ 1− C130tnwn
C130tnwn+C123(2)·(1+tn)(log n)5/2/wn

. (133)
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Combining (132) and (133), we see that there exists n134 ≥ n131 such that on the event
Bn ,

P2
(
A1

) ≤ max
s1 tenable

P2
(
A1

∣∣ S1 = s1
)

≤ 1−
(

C130tnwn

C130tnwn + C123(2) · (1+ tn)(log n)5/2/wn

)

+ exp
( − C131

(
log n

)7/6) ≤ 1− (log n)1/2

C134nη/2 , (134)

where the last step uses Assumption 2.4 (iv), and holds for n ≥ n134.
Now let us move to A2. We first note that P2

(
A2

) = P2
(
A2 ∩ A1

)
. Thus,

P2
(
A2

) ≤ P2
(
A2

∣∣A1 ∩ E1
) · P2

(
A1

) + P2
(
Ec
1

)
. (135)

Let S(1)
2 be the sequence of the first (T2−1)∨0 edges added in Algorithm 2 (arranged

in the order they were added), and let S(2)
2 be the collection of edges found between

C n
1 (γn) and the cluster of v in the T1-th step in Algorithm 2. Write S2 = (

S(1)
2 , S(2)

2

)
.

Call s2 = (
s(1)
2 , s(2)

2

)
tenable if length(s(1)2 ) = 2tn + 1, |s(2)

2 | ≥ C130tnwn , and P
(
S2 =

s2
)

> 0. To bound P2
(
A2

∣∣A1 ∩E1
)
appearing on the right side of (135), it is enough

to prove a bound on P2
(
A2

∣∣ S2 = s2
)
that is uniform over all tenable s2.

Let E2 be the collection of new edges found between C n
1 (γn) and the cluster of v

in the T2-th step; we emphasize that these edges were not present in E1. Let E2 ={|E2| ≥ C130tnwn
}
. Then, for all n ≥ n131, on the event Bn , for any tenable s2

P2
(
A2

∣∣ S2 = s2
) ≤ P2

(
A2 ∩ E2

∣∣ S2 = s2
) + P2

(
Ec
2

∣∣ S2 = s2
)

≤ P2
(
A2

∣∣E2 ∩ {S2 = s2}
) + exp

( − C131
(
log n

)7/6)
, (136)

where the last step follows from an argument similar to the one leading to (131). We
will bound the first term on the right side of (136) with the help of Lemma 6.27 (b). To
this end, note that onE2∩

{
S2 = s2

}
, in the T2-th step, we have foundm0 ≥ C130tnwn

many new edges connecting the cluster of v to C n
1 (γn). The weights associated with

these edges are i.i.d. Unif [x0, 1] random variables, where x0 = pnγn . By an argument
similar to the one used while analyzing A1, on the eventBn , the number of outgoing
edges from the cluster of v that do not connect to C n

1 (γn) and were found after the
T1-th step is k ≤ C123(2) · (1 + tn)(log n)5/2/wn . Conditional on the values of the
weights Ui j , {i, j} ∈ s(1)

2 , the weights of these k edges are independent Unif [xl , 1]
random variables for some xl ≥ x0, l = 1, . . . , k. Note also that conditional on the
values of the weightsUi j , {i, j} ∈ s(1)

2 , the weights associatedwith them0 ≥ C130tnwn

edges found betweenC n
1 (γn) and the cluster of v in the T1-th step are i.i.d. Unif [x ′0, 1]

random variables, where x ′0 is the weight of the (tn+1)-th edge in s(1)
2 , and the weights

associated with the k′ (say) outgoing edges from the cluster of v that do not connect
to C n

1 (γn) and were found in the first T1 steps are independent Unif [x ′j , 1] random
variables for some x ′j ≥ x ′0, j = 1, . . . , k′. Thus, using Lemma 6.27 (b), we get, on
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the event Bn , for any tenable s2,

P2
(
A2

∣∣E2 ∩
{
S2 = s2

}) ≤ 1− C130tnwn

C130tnwn + C123(2) · (1+ tn)(log n)5/2/wn
,

which combined with (136) shows that for n ≥ n134, on the event Bn ,

P2
(
A2

∣∣A1 ∩ E1
) ≤ max

s2 tenable
P2

(
A2

∣∣ S2 = s2
) ≤ 1− (log n)1/2

C134n
η/2 . (137)

Now going back to (135) and using (131), (134), and (137), we see that for n ≥ n134,
on the event Bn ,

P2
(
A2

) ≤
(
1− (log n)1/2

C134nη/2

)2

+ exp
( − C131

(
log n

)7/6)
.

Turning to the events A j for 3 ≤ j ≤ g(n), we define E j in a manner analogous to
E1 and E2. Proceeding similarly, we can show that for n ≥ n134 and 2 ≤ j ≤ g(n),
on the event Bn ,

P2
(
A j+1

) = P2

( j+1⋂

i=1

Ai

)
≤ P2

(
A j+1

∣∣∣∣
j⋂

i=1

(
Ai ∩ Ei

)) · P2
(
A j

) +
j∑

i=1

P2
(
Ec
i

)

≤
(
1− (log n)1/2

C134nη/2

)
· P2

(
A j

) + j exp
( − C131

(
log n

)7/6)

≤
(
1− (log n)1/2

C134nη/2

) j+1

+ j( j + 1)

2
exp

( − C131
(
log n

)7/6)
.

For the third step, we need to use the analogue of Lemma 6.27 for ( j + 1) collections
of independent uniform random variables. However, this generalization is straightfor-
ward. This completes the proof of Lemma 6.29. ��
Completing the Proof of Proposition 6.5: Combining (128) with Lemma 6.29 and using
a union bound over v /∈ C n

1 (γn), we get, for all large n,

P

(
dH

(
Mn

γn
, Mn) ≥ (

log n
)−1/6

nη

)
≤ 3/n2 .

This completes the proof. ��

7 Proof of Theorem 3.1

We will complete the proof in five steps. As observed in Sect. 5, it is enough prove the
result for Mn and Mn .
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7.1 Existence of the scaling limit

Our aim in this section is to show that there exists a random compact R-tree M θ∗

whose law depends only on θ∗ such that (11) is satisfied if we replace Mn by Mn or
Mn .

Note that (25), the first relation in (24), Assumption 2.4 (iii), and (7) imply that x(n),
n ≥ 1, satisfies [29, Assumption 1.6] with the limiting sequence θ∗. Now consider
the random graph Gn(λ) as in (27). Then [29, Theorem 1.8] shows that the largest
components (arranged according to their masses) of Gn(λ), endowed with the graph
distance scaled by n−η and the probability measure that assigns mass proportional
to xv to each vertex v in a component, converges in distribution to a sequence of
random metric measure spaces with respect to the product topology induced by the
Gromov-weak topology on each coordinate. We claim that in a similar manner, we
can show that for every λ ∈ R there exists a random metric measure space S θ∗

λ whose
law depends only on λ and θ∗ such that as n → ∞,

n−η · C (
1,Gn(λ)

) d−→ S θ∗
λ w.r.t. the Gromov-weak topology , (138)

where themeasure on n−η ·C (
1,Gn(λ)

)
assignsmass xv

[
Wx

(
C

(
1,Gn(λ)

))]−1 to each
vertex v in C

(
1,Gn(λ)

)
. We briefly explain how this can be done. The proof of [29,

Theorem1.8], applied to the special caseGn(λ), can be divided into two steps: (i) In [29,
Theorem 4.5], it is proved that under some assumptions, a related connected random
graph has a scaling limit in the Gromov-weak topology. (ii) Then the arguments of
[29, Section 5.1] show that the maximal connected components of Gn(λ) satisfy the
assumptions in [29, Theorem 4.5]. A key result needed to complete step (ii) is [11,
Proposition 9] (restated in [29, Proposition 5.2]), which shows that a breadth-first walk
of Gn(λ) defined in [11] converges in distribution w.r.t. the Skorohod J1 topology to a
limiting process. In a similar way (see also the proof of [23, Theorem 2.4]), one can
prove that for any λ ≥ 0, the breadth-first walk of Gn(λ) started from the vertex 1 as
given by (30) satisfies

nη · Zn,(1)
λ (u)

d−→ Z (1)
λ (u) := θ∗1 + λu +

∞∑

j=2

θ∗j
(
1l{ξ j≤u} − uθ∗j

)
, u ≥ 0 (139)

with respect to the Skorohod J1 topology on D[0,∞), where ξ j ∼ Exp(θ∗j ), j ≥ 1,
are independent random variables. Now using (139), the rest of the arguments in [29,
Section 5.1] repeated verbatim would show that the vertex weights in C

(
1,Gn(λ)

)

satisfy the assumptions of [29, Theorem 4.5], which would then yield (138). For
concreteness, we describe the construction of S θ∗

λ .

Construction 7.1 Define Zλ := inf
{
u ≥ 0 : Z (1)

λ (u) ≤ 0
}
, and Bλ := {1} ∪ {

j ≥
2 : ξ j ≤ Zλ

}
. Let

γ := Zλ ·
( ∑

j∈Bλ

(
θ∗j

)2
)1/2

, and θ :=
(

θ∗j ·
( ∑

i∈Bλ

(
θ∗i

)2
)−1/2

; j ∈ Bλ

)
.
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Set

S θ∗
λ = Zλ ·

( ∑

i∈Bλ

(
θ∗i

)2
)−1/2

· G∞
(
θ , γ

)
,

where G∞(· , ·) is as given in [29, Definition 2.2].

Next, we claim that under Assumption 2.4, S θ∗
λ is compact almost surely, and

further, as n → ∞,

n−η · C (
1,Gn(λ)

) d−→ S θ∗
λ w.r.t. the GHP topology. (140)

To deduce (140) from (138), we need to prove that n−η · C (
1,Gn(λ)

)
satisfies a

global lower mass-bound; see [18, Theorem 6.1] and [29, Lemma 6.1]. The global
lower mass-bound was established in [29] under the stronger [29, Assumption 1.1].
This stronger assumption was needed to prove [29, Lemma 6.7], which relied on
a tail bound on the heights of branching processes established in [61, Theorem 2].
The result in [61, Theorem 2] was proved for a (conditioned) branching process with
a given offspring distribution, whereas in the random graph setting, one needs to
consider branching processes with varying offspring distributions for different n; e.g.,
the offspring distributions of interest in this paper are Poi(Vn), n ≥ 1, where Vn is as
defined around (64). To get around this difficulty, [29, Assumption 1.1] was used in the
proof of [29, Lemma 6.6] to stochastically upper bound the offspring distributions for
different n by a single offspring distribution to which [61, Theorem 2] is applicable.
However, instead of [29, Lemma 6.7], we can now appeal to Proposition 6.13 (which
relies on the techniques developed in the more recent work [4]), and avoid the use
of the stronger [29, Assumption 1.1]. Then the rest of the argument from [29] carries
over in an identical way under Assumption 2.4 to establish the desired global lower
mass-bound for n−η · C (

1,Gn(λ)
)
, which then yields (140). Let us also note that the

construction of S θ∗
λ given above together with the almost sure compactness of S θ∗

λ

shows that S θ∗
λ is an R-graph almost surely. Further, (27) and (140) imply

n−η · C n
1 (λ)

d−→ S θ∗
λ w.r.t. the GH topology. (141)

The next result shows that Theorem 4.7 can be applied to the sequence n−η ·C n
1 (λ),

n ≥ 1. Let Ar be as defined around (15).

Lemma 7.2 Fix λ ≥ 0. Then we can construct S θ∗
λ , n−η ·C n

1 (λ), n ≥ 1, and a positive

random variable R on the same probability space such that n−η · C n
1 (λ)

a.s.−→ S θ∗
λ

w.r.t. the GH topology as n → ∞, and P
(
n−η · C n

1 (λ) ∈ AR eventually
) = 1.

Remark 3 We will omit the proof of Lemma 7.2, as this result is essentially contained
in [29]. We only make a brief comment on how this result follows. Recall the notation(
k(X), e(X)

)
for an R-graph X from Sect. 4.3 and the probability distribution Pcon

given by (94). For m ≥ 1, a > 0, and a probability mass function p = (p1, . . . , pm)
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on [m] with p1 ≥ p2 ≥ · · · ≥ pm > 0, write G̃ m(p, a) for a random graph with
distribution Pcon(·,p, a, [m]). Let G∞(· , ·) be as given in [29, Definition 2.2]. Now,
as mentioned at the beginning of this section, the key ingredient in the proof of (138)
is [29, Theorem 4.5], which shows that under [29, Assumption 4.4],

‖p‖2 · G̃ m(p, a)
d−→ G∞

(
θ , γ

)
(142)

with respect to Gromov-weak topology as m → ∞. It also follows from the proof of
[29, Lemma 4.12] and [29, (4.23)] that under [29, Assumption 4.4],

sp
(
G̃ m(p, a)

) d−→ sp
(
G∞(θ , γ )

)
(143)

jointly with the convergence in (142). Now, from the proof of [29, Theorem 4.5], it
can be easily deduced that

‖p‖2 ·
(
len

(
Core

(
G̃ m(p, a)

))
, min
e∈e(G̃ m (p,a))

len(e)

)

d−→
(
len

(
Core

(
G∞(θ, γ )

)
, min
e∈e(G∞(θ ,γ ))

len(e)

)

jointly with the convergences in (142) and (143). These results directly translate into
the corresponding convergences for C n

1 (λ), which then yield the claim in Lemma 7.2.

We will now deduce the existence of the MST scaling limit from Lemma 7.2 and
Theorem 6.1. As mentioned in Sect. 6.1, the argument for combining these two results
to get the GH scaling limit of Mn is similar to the one used in [6]. Using Lemma 7.2
and Theorem 4.7, we get

n−η · CBD∞(
C n
1 (λ)

) d−→ CB∞(
S θ∗
λ

) =: M θ∗
λ w.r.t. the GH topology (144)

as n → ∞. Similar to Lemma 5.1, for any λ ≥ 0, there exist couplings of Gn(λ) and
Gn(λ) such that P

(
Gn(λ) �= Gn(λ)

) → 0 as n → ∞. This fact, together with (144)
and Lemma 4.6, gives, for any λ ≥ 0,

n−η · Mn
λ

d−→ M θ∗
λ w.r.t. the GH topology (145)

as n → ∞. As discussed below Definition 6.2, Mn
λ is a subtree of Mn

λ′ whenever 0 ≤
λ ≤ λ′. For 0 ≤ λ ≤ λ′, consider the sequence ofmarked spaces

(
n−η ·Mn

λ′ , n
−η ·Mn

λ

)
,

n ≥ 1. Since M θ∗
λ′ is compact almost surely, [64, Proposition 9] implies that this

sequence is tight in the marked GH topology. Thus, by passing to a subsequence, we
can assume that

(
n−η · Mn

λ′ , n−η · Mn
λ

) d−→ (
M θ∗

λ′ , M θ∗
λ

)
(146)
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with respect to the marked GH topology. On the right side of (146), we have a coupling
ofM θ∗

λ′ andM θ∗
λ in which the latter is a subspace of the former. Since dH

(
Mn

λ , Mn
λ′

) ≤
dH

(
Mn

λ , Mn
)
, an application of Theorem 6.1 shows that for all 
 ∈ (0, 1/2], in the

coupling of (146),

P
(
dH

(
M θ∗

λ , M θ∗
λ′

)
> λ−1+


) ≤ C21(
) · λ−1/2 (147)

for λ′ ≥ λ ≥ λ21(
). This implies that for λ′ ≥ λ ≥ λ21(
),

dPr

(
Law

(
M θ∗

λ

)
, Law

(
M θ∗

λ′
)) ≤ λ−1+
 + C21(
) · λ−1/2 , (148)

whereLaw (·) denotes the law of a random object, and dPr(· , ·) denotes the Prokhorov
distance. Thus,

(
Law (M θ∗

λ ) , λ ≥ 0
)
is a Cauchy sequence in the space of probability

measures on SGH. Since SGH is Polish, the space of probability measures on SGH
is complete under dPr(· , ·). Hence, there exists a random compact metric spaceM θ∗

whose law depends only on θ∗ such that M θ∗
λ

d−→ M θ∗ w.r.t. the GH topology as
λ → ∞. Since M θ∗

λ is an R-tree for any λ, [48, Lemma 2.1] shows that M θ∗ is an
R-tree almost surely. From (148), we further get

dPr

(
Law

(
M θ∗

λ

)
, Law

(
M θ∗)

)
≤ λ−1+
 + C21(
) · λ−1/2 (149)

for λ ≥ λ21(
). Now, Theorem 6.1 and (149) coupled with an application of the
triangle inequality yield

lim sup
n→∞

dPr

(
Law

(
n−η · Mn), Law

(
M θ∗)

)

≤ 2
(
λ−1+
 + C21(
) · λ−1/2) + lim sup

n→∞
dPr

(
Law

(
n−η · Mn

λ

)
, Law

(
M θ∗

λ

))

for any λ ≥ λ21(
). Now using (145) and letting λ → ∞ gives

n−η · Mn d−→ M θ∗ w.r.t. the GH topology (150)

as n → ∞. Finally, Lemma 5.1 shows that (150) continues to hold if we replace Mn

by Mn .

7.2 The degrees of points inM �∗

In this section we will prove Theorem 3.1 (a). Recall the definition of degree from
Sect. 4.3 and the notation L (·) and H (·) from (10). From Construction 7.1 and the
construction of the space G∞(· , ·) using an inhomogeneous continuum random tree
(ICRT) given in [29, Section 2.3.1], it follows that the set of points in S θ∗

λ with infinite

123



Geometry of the minimal... 787

degree is countably infinite, and all other points in S θ∗
λ either have degree 1 or 2. Since

M θ∗
λ = CB∞(

S θ∗
λ

)
, the same is true of M θ∗

λ , i.e., the set H (M θ∗
λ ) is countably

infinite and deg
(
x ; M θ∗

λ

) ∈ {
1, 2

}
for all x ∈ M θ∗

λ \H (M θ∗
λ ).

By an argument similar to the one leading to (146), we can assume that for any
λ ≥ 1,

(
n−η · Mn , n−η · Mn

λ

) d−→ (
M θ∗ , M θ∗

λ

)
(151)

with respect to the marked GH topology along a suitable subsequence (which may
depend on λ). In the coupling between M θ∗

λ and M θ∗ on the right side of (151),
the former is a closed subset of the latter. Hence, M θ∗ has infinitely many points of
infinite degree almost surely.

Now, Theorem 6.1 and (151) imply that for all λ ≥ 1,

P
(
dH

(
M θ∗

λ , M θ∗) > λ−1/2) ≤ C152λ
−1/2 . (152)

in the coupling of (151). In this coupling, on the event

Dλ := {
dH

(
M θ∗

λ , M θ∗) ≤ λ−1/2} , (153)

M θ∗ can be obtained by attaching countably many R-trees each having diameter at
most 2λ−1/2 toM θ∗

λ . Hence, on Dλ, any x ∈ M θ∗ that satisfies

(A) 3 ≤ deg
(
x ; M θ∗) < ∞, and

(Bλ) all deg
(
x ; M θ∗) of the components inM θ∗ \ {x} have diameter > 2λ−1/2

must also satisfy x ∈ M θ∗
λ , and each of the deg

(
x ; M θ∗) components inM θ∗ \ {x}

must have a non-empty intersection withM θ∗
λ . But this implies that deg

(
x ; M θ∗

λ

) ≥
3, which in turn implies that deg

(
x ; M θ∗

λ

) = ∞, and consequently, deg
(
x ; M θ∗) =

∞ – a contradiction. Hence, on the eventDλ, there does not exist x ∈ M θ∗ satisfying
(A) and (Bλ) as above. This observation combined with (152) shows that for all λ ≥ 1,

P

(
Zθ∗ > 2λ−1/2

)
≤ C152λ

−1/2 , (154)

where

Zθ∗ := sup

{
min

{
diam(T ) : T component of M θ∗ \ {x}} :

x ∈ M θ∗ , 3 ≤ deg
(
x;M θ∗) < ∞

}
.

Here supremum of an empty set is defined as zero. Then Zθ∗ = 0 if and only if there
does not exist x ∈ M θ∗ with 3 ≤ deg

(
x;M θ∗) < ∞. Now, letting λ → ∞ in (154)

shows that Zθ∗ = 0 almost surely, which concludes the proof of Theorem 3.1 (a).
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7.3 Leaves and hubs ofM �∗

In this section we will prove Theorem 3.1 (b). Consider θ as in Construction 7.1. Then
in the ICRT corresponding to θ , both the set of leaves and the set of hubs are dense
almost surely. (We refer the reader to [12, 37] for background on ICRTs.) From the
construction of the space G∞(·, ·) given in [29, Section 2.3.1], the same is true for
G∞

(
θ , γ

)
, and consequently for S θ∗

λ . Since M θ∗
λ = CB∞(

S θ∗
λ

)
, both L

(
M θ∗

λ

)
and

H
(
M θ∗

λ

)
are dense in M θ∗

λ .
Fix k ≥ 1, and consider λ ≥ 1 large so that 3λ−1/2 < 1/k. Consider the coupling

between M θ∗
λ and M θ∗ as in (151). On the event Dλ defined in (153), any point in

M θ∗ is within distance λ−1/2 from a point inM θ∗
λ , and consequently within distance

2λ−1/2 from a point inH
(
M θ∗

λ

)
. SinceH

(
M θ∗

λ

) ⊆ H
(
M θ∗), using (152), we see

that

P

(
M θ∗ =

⋃

x∈H (M θ∗ )

B
(
x, k−1 ; M θ∗)

)
≥ 1− C152λ

−1/2 .

Letting λ → ∞, we get

P

(
∀k ≥ 1 , M θ∗ =

⋃

x∈H (M θ∗ )

B
(
x, k−1 ; M θ∗)

)
= 1 ,

which shows that H (M θ∗) is dense inM θ∗ almost surely.
We now turn to the leaves ofM θ∗ . Once again, fix k ≥ 1, and consider λ ≥ 1 large

so that 3λ−1/2 < 1/k. Arguing as before, on the event Dλ, any x ∈ M θ∗ is within
distance 2λ−1/2 from a point x ′ ∈ L

(
M θ∗

λ

)
. If x ′ ∈ L

(
M θ∗), then we are done.

Otherwise, M θ∗ \ {x ′} has a component T that is a subset of M θ∗ \M θ∗
λ . Further,

T contains a point x ′′ ∈ L
(
M θ∗) such that x ′′ is within distance 3λ−1/2 of x . The

rest is routine.

7.4 The upper Minkowski dimension

The aim of this section is to prove

dim
(
M θ∗) ≤ 1/η almost surely. (155)

We will make use of the following result in our proof.

Proposition 7.3 There exist λ156 ≥ λ41 and ε156 ∈ (0, ε41) such that for all large n
and λ ∈ [λ156, ε156nη],

P

(
sp

(
C n
1 (λ)

) ≥ C156λ
1/η

)
≤ exp

( − Cλ
)
. (156)
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The proof of Proposition 7.3 relies on the following result which will also be useful
in Sect. 7.5.

Lemma 7.4 There exist C157, λ157 ≥ 1 and ε157 > 0 such that for all large n, λ ∈
[λ157, ε157nη] and u ≥ C157λ

1/(τ−3),

P

(
Wx

(
C

(
1,Gn(λ)

)) ≥ u

)
≤ exp

( − Cu
)
. (157)

The proof of Lemma 7.4 will be given at the end of this section.

Proof of Proposition 7.3: In view of (27), it is enough to prove the claimed bound for
sp

(
C

(
1,Gn(λ)

))
. Using (33) and (40), ∀n and for (λ, u) ∈ I (n),2,

�
(n)

λ (u) ≤ λu − Cuτ−2 ≤ C ′λ
τ−2
τ−3 ,

which together with (41) and the strict concavity of �
(n)

λ (·) implies that ∀n, and λ ∈
[λ41, ε41nη],

sup
u≥0

�
(n)

λ (u) = sup
0≤u≤s(n)(λ)

�
(n)

λ (u) ≤ C158λ
τ−2
τ−3 . (158)

Recall from (30) the breadth-first walk Zn,(1)
λ (·) of C (1,Gn(λ)) started from the

vertex 1. Let Gen(1)
i be the set of vertices in the i-th generation of the breadth-first

tree of C (1,Gn(λ)) rooted at the vertex 1. Then on the event
{
Wx

(
C

(
1,Gn(λ)

)) ≤
C157λ

1/(τ−3)
}
, in the coupling of Lemma 6.7,

MaxGen(1) := max

{ ∑

v∈Gen(1)
j

nηxv : j ≥ 0

}
≤ sup

0≤u≤C157λ
1/(τ−3)

nη · Zn,(1)
λ (u) .

(159)

Finally, note that (31) and (48) imply, for any u ≥ 0,

nηZn,(1)
λ (u) = nηx1 +

n∑

j=2

θ j,λ

(1+ λn−η)

(
1l
{
ξnj ≤ u

} − P
(
ξnj ≤ u

)) + �
(n)

λ (u) .

(160)

Combining (158), (159), (160) with Lemma 7.4, and applying Lemma 6.9 with s =
C157λ

1/(τ−3) and y = C158
(
C157

)− τ−3
2 λ, we see that there exists λ161 ≥ λ41 ∨ λ157

such that ∀n and λ ∈ [λ161, ε156nη],

P

({
Wx

((
C (1,Gn(λ))

)) ≥ C157λ
1

τ−3

} ⋃ {
MaxGen(1) ≥ 2C158λ

τ−2
τ−3

})

≤ exp
( − Cλ

)
, (161)
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where ε156 := ε41∧ε157. Conditional on the breadth-first tree T (note that T is a plane
tree with vertex labels) of C (1,Gn(λ)), the rest of the edges in C (1,Gn(λ)) can be
generated by placing edges independently with probability 1− exp

(− (λ+ nη)xuxv

)

for every u, v ∈ V (T ), where u �= v, and either (i) u, v ∈ Gen(1)
j for some j ≥ 1, or

(ii) u ∈ Gen(1)
j+1 and v ∈ Gen(1)

j for some j ≥ 1, and v lies on the right side of the
ancestral line of u. Using (81), we see that conditional on T , on the complement of
the event in (161), for any λ ∈ [λ161, ε156nη],

sp
(
C (1,Gn(λ))

) �sd Poi
(
(ε156 + 1)

∑

u∈V (T )

xu · 2 ·MaxGen(1)) �sd Poi
(
Cλ1/η

)
.

Now the proof of Proposition 7.3 can be completed by combining (161) with standard
tail bounds for a Poisson random variable. ��

We are now ready to prove the claimed upper bound on dim
(
M θ∗). Recall the

process MTBP from Definition 6.16. Fix 
 ∈ (0, 1/2]. Then for any λ ≥ 2η,

P

(
diam

(
Gn(λ) \ [

λ
1
η
(1+
)]) ≥ nη/λ

)

≤
∑

λ(1+
)/η≤i≤n

P

(
diam

(
C

(
i,Gn(λ) \ [i − 1])

)
≥ nη/λ

)

≤ √
e

∑

λ(1+
)/η≤i≤n

P

(
ht

(
MTBPin

([n] \ [i − 1])
)
≥ nη/(2λ)

)
, (162)

where the last step uses arguments similar to the ones used in the proof of Lemma 6.17.
To bound the summands in the last step in (162), we can use an argument similar to
the one used in Sect. 6.5.

Definition 7.5 For λ ≥ 1 and 2 ≤ i ≤ n, consider the following (potentially) two
layer process L2BPin(λ):

(a) Layer 1: StartMTBPin([n]\[i−1]), and run this process up to generation nη/(4λ).
Call this the first layer. If there is at least one vertex in generation nη/(4λ), then
we say that the first layer has been fully activated.

(b) Layer 2: If the first layer is fully activated, then starting from every vertex v in
generation nη/(4λ), run independent MTBPtype(v)

n
([n] \ {1}) processes. Call this

the second layer. If any of these branching processes survives up to generation
nη/(4λ), then we say that the second layer has been fully activated.
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Letγ∗ be as inProposition 6.13. Then∀n, for any 2 ≤ i ≤ n andλ ∈ [1/γ∗ , nη/10],

P

(
ht

(
MTBPin

([n] \ [i − 1])
)
≥ nη/(2λ)

)
≤ P

(
ht

(
L2BPin(λ)

) ≥ nη/(2λ)

)

≤ Cwi

(∑

j≥i
w2

j/(νn�n)

) nη

4λ (
4λ

) 1
τ−3 · n−α ≤ C ′i−α · λ 1

τ−3 · exp ( − C ′′iη/λ
)
,

(163)

where we have used Proposition 6.13 and arguments similar to the ones used in the
proof of Lemma 6.21. Combining (163) with (162), and calculations similar to the
ones in the proof of Lemma 6.21 show that ∀n and for λ ∈ [2η ∨ (γ∗)−1, nη/10],

P

(
diam

(
Gn(λ) \ [

λ
1
η
(1+
)]) ≥ nη/λ

)
≤ C164(
) · exp ( − Cλ


)
. (164)

Recall the notation N (· , ·) introduced at the beginning of Sect. 3. Now note that
on the complement of the event in (164),

N
(
C n
1 (λ), 2nη/λ

) ≤ λ(1+
)/η . (165)

By (144), for any k ≥ 1 and λ ≥ 1,

P
(
N

(
M θ∗

λ , 3/λ
) ≥ k

) ≤ lim sup
n→∞

P

(
N

(
CBD∞(

C n
1 (λ)

)
, 2nη/λ

)
≥ k

)
. (166)

SinceCBD∞(
C n
1 (λ)

)
can be covered byN

(
C n
1 (λ), 2nη/λ

)+sp
(
C n
1 (λ)

)
many2nη/λ

balls, combining (164), (165), and (166) with Proposition 7.3, we see that there exists
λ167 ≥ 1 such that for all λ ≥ λ167,

P
(
N

(
M θ∗

λ , 3/λ
)

> 2λ(1+
)/η
) ≤ (

1+ C164(
)
)
exp

( − Cλ

)
. (167)

In the coupling on the right side of (151),

N

(
M θ∗ , 3λ−1 + dH

(
M θ∗ , M θ∗

λ

)) ≤ N
(
M θ∗

λ , 3λ−1) ,

which combined with (167) and Theorem 6.1 shows that for all λ ≥ λ21(
) ∨ λ167,

P
(
N

(
M θ∗ , 4λ−1+


)
> 2λ(1+
)/η

) ≤ C168(
) · λ−1/2 . (168)

Replacing λ by k4 in (168) for large integer values of k, an application of the Borel-
Cantelli lemma gives

lim sup
k→∞

logN
(
M θ∗ , 4k−4(1−
)

)

log
(
k4(1−
)/4

) ≤ 1+ 


η(1− 
)
almost surely. (169)
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Sandwiching δ between 4k−4(1−
) and 4(k + 1)−4(1−
) and letting δ ↓ 0, we can
show using (169) that dim

(
M θ∗) ≤ (1+
)/(η(1−
)) almost surely. We complete

the proof of (155) by letting 
 ↓ 0.

Proof of Lemma 7.4: By (40), ∀n and for (λ, u) ∈ I (n),2,

ϕ
(n)

λ (u) ≥ 2C170u
τ−3 . (170)

Thus, using (33) and (170), we see that ∀n,

�
(n)

λ (u) ≤ λu − 10 · uϕ
(n)

λ (u)/11 ≤ u
(
λ − 20C170u

τ−3/11
) ≤ −C170u

τ−2 ,

whenever (λ, u) ∈ I (n),2 and 9C170uτ−3 ≥ 11λ, and consequently,

P

(
Wx

(
C

(
1,Gn(λ)

)) ≥ u

)
≤ P

(
Zn,(1)

λ (u) ≥ 0
)

≤ P

(
nηx1 +

n∑

j=2

θ j,λ

(
1l{ξnj ≤u} − P

(
ξnj ≤ u

)) ≥ C170u
τ−2

)
,

where the first step uses Lemma 6.7, and the last step uses (160). Now an application
of Lemma 6.9 will yield the bound in (157), and this bound will be valid for all large
n, for λ ∈ [λ157, ε157nη] and u ∈ [

C157λ
1/(τ−3) , nα

(
σ

(n)

2

)1/2
/(A22α+1)

]
, where

C157 = (
11/(9C170)

)1/(τ−3), and λ157 and ε157 are appropriately chosen constants.
Finally, this bound can be extended to all u ≥ C157λ

1/(τ−3) by simply noting that the
probability on the left side of (157) is zero if u >

∑
i xi � nα . ��

7.5 The lower Minkowski dimension

In this section we will prove

dim
(
M θ∗) ≥ 1/η almost surely, (171)

which combined with (155) will complete the proof of Theorem 3.1 (c). To that end,
let us first introduce some notation. For disjoint A, B ⊆ [n] and r ≥ 1, we write
A

r←→ B to mean there exist 1 ≤ t ≤ r , v0 ∈ A, vt ∈ B, and v1, . . . , vt−1 ∈ [n]\{1}
such that the edges {vi , vi+1}, i = 0, . . . , t − 1, are present in Gn(λ). If A = {i}, then
we simply write i

r←→ B instead of {i} r←→ B.
Next, note that if N (X , u) ≤ k for some metric space (X , d), u ≥ 0, and k ≥ 1,

then for any x1, . . . , xk+1 ∈ X , there exist 1 ≤ i < j ≤ k+1 such that d(xi , x j ) ≤ 2u.
Hence, for any x1, . . . , x2k ∈ X ,

#
{
2 ≤ i ≤ 2k : min

j∈[i−1] d(xi , x j ) ≤ 2u
} ≥ k , (172)
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since otherwise, we would be able to find 1 = i1 < i2 < . . . < ik+1 ≤ 2k such that
the minimum of the pairwise distances between these k + 1 points is more than 2u.

For
 ∈ (0, 1/2], chooseλ174(
) ≥ λ55∨λ157 such thatλ1/η
(
log λ

)−3
> λ(1−
)/η

for all λ ≥ λ174(
). For 
 ∈ (0, 1/2] and λ ≥ λ174(
), choose n174(λ) ≥ 1 such
that λ <

(
ε41∧ε157

)
nη for all n ≥ n174(λ). (Thus, these thresholds are chose in a way

so that the bounds in (56) and (157) are applicable whenever λ ≥ λ174 and n ≥ n174.)
Letting

Di :=
{[i] ⊆ C n

1 (λ) , and i
nη/λ1+h←−−−→ [i − 1]} ,

we see that for λ ≥ λ174, n ≥ n174, and

h := 2
/(τ − 3) , (173)

P

(
N

(
n−η · C n

1 (λ) ,
(
2λ1+h

)−1) ≤ 2−1λ
1
η
(1−
)

)

≤ P

({
#
{
2 ≤ i ≤ λ

1
η
(1−
) : i nη/λ1+h←−−−→ [i − 1]}

≥ 2−1λ
1
η
(1−
)

} ⋂ {
i ∈ C n

1 (λ) ∀ i ≤ λ
1
η
(1−
)

})

+ P

(
∃i ≤ λ

1
η
(
log λ

)−3 such that i /∈ C n
1 (λ)

)

≤ P

({
#
{
2 ≤ i ≤ λ

1
η
(1−
) : Di holds

} ≥ 2−1λ
1
η
(1−
)

})
+ exp

( − C log3α λ
)

≤ 2λ−
1
η
(1−
) ·

λ
1
η (1−
)

∑

i=2

P
(
Di

) + exp
( − C log3α λ

)
, (174)

where the first step uses the observation around (172), the second step uses (56), and
the last step uses Markov’s inequality.

On the event Di , consider a shortest path γ from i to [i − 1]. Then depending on
where the shortest path from 1 to γ meets γ , we may consider three possibilities as in
Fig. 3. Hence,

Di ⊆
( i−1⋃

j=1

({
j ∈ C n

1 (λ)
} ◦ {

j
nη/λ1+h←−−−→ i

}))

⋃ ( i−1⋃

j=2

({
i ∈ C n

1 (λ)
} ◦ {

j
nη/λ1+h←−−−→ i

}))

⋃ (( i−1⋃

j=2

n⋃

k=i+1

{
k ∈ C n

1 (λ)
} ◦ {

k
nη/λ1+h←−−−→ i

} ◦ {
k

nη/λ1+h←−−−→ j
}))

, (175)
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where ◦ denotes disjoint occurrence of events. Writing
∑

� for sum over t =
0, 1, . . . ,−1+ nη/λ1+h , we have, for any i �= j ,

P
(
i

nη/λ1+h←−−−→ j
)

≤
∑

�
∑

2≤v1,...,vt≤n

(
pnλ

wiwv1

�n

)(
pnλ

wv1wv2

�n

)
. . .

(
pnλ

wvtw j

�n

)

≤
∑

�

(
1+ λ

nη

)t+1(wiw j

νn�n

) ∑

2≤v1,...,vt≤n

(
w2

v1

νn�n

)
. . .

(
w2

vt

νn�n

)

≤
∑

�

(
1+ λ

nη

) nη

λ1+h
(

wiw j

νn�n

)
≤ nη

λ1+h
· e ·

(
wiw j

νn�n

)
≤ C

λ1+h iα jα
, (176)

where the third step uses (89), and the last step uses Assumption 2.4 (iii) and (7). Note
also that for 2 ≤ j ≤ n,

P
(
j ∈ C n

1 (λ)
) ≤

∑

j ′∈[n]
P
(
j ′ ∈ C n

1 (λ)
)
P
({ j, j ′} ∈ E(Gn(λ))

)

≤
∑

j ′∈[n]
pnλ

w jw j ′

�n
P
(
j ′ ∈ C n

1 (λ)
)

= pnλ
w j

�n
· E[

W
(
C n
1 (λ)

)] ≤ Cpnλ
w j

�n
· nρλ1/(τ−3)

≤ C ′ λ1/(τ−3)

jα
, (177)

where the penultimate uses Lemma 7.4 and is valid for λ ≥ λ174 and n ≥ n174. Thus,
combining (175), (176), and (177), an application of the BK inequality shows, for
λ ≥ λ174, n ≥ n174, and 2 ≤ i ≤ n,

P
(
Di

) ≤ C
i−1∑

j=1

(
1l{ j=1} + λ1/(τ−3)

jα

)
1

λ1+h iα jα

+ C
i−1∑

j=2

n∑

k=i+1

(
λ1/(τ−3)

kα
· 1

λ1+h iαkα
· 1

λ1+h jαkα

)

≤ C ′
(

λ
4−τ
τ−3−h · i τ−4

τ−1 + λ
7−2τ
τ−3 −2h · i 2τ−7

τ−1

)
, (178)

where the last step follows from some routine calculations. Combining (178) with
(174) shows that for λ ≥ λ174 and n ≥ n174,
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Fig. 3 The vertex j ∈ [i − 1] satisfies dist(i, j) = min j ′∈[i−1] dist(i, j ′), where dist denotes the graph
distance in Gn(λ). In the leftmost figure, j = 1 is possible, and 2 ≤ j ≤ i − 1 in the other two figures. In
the rightmost figure, i + 1 ≤ k ≤ n

P

(
N

(
n−η · C n

1 (λ) ,
(
2λ1+h

)−1) ≤ 2−1λ
1
η
(1−
)

)

≤ exp
( − C log3α λ

)

+ C ′
[
λ

4−τ
τ−3−h ·

(
λ

1
η
(1−
)

) τ−4
τ−1 + λ

7−2τ
τ−3 −2h ·

(
λ

1
η
(1−
)

) 2τ−7
τ−1

]

= exp
( − C log3α λ

) + C ′
[
λ



(
4−τ
τ−3

)
−h + λ



(
7−2τ
τ−3

)
−2h

]

≤ exp
( − C log3α λ

) + C ′′λ−
/(τ−3) , (179)

where the last step uses (173).
By (141), for any k ≥ 1 and λ ≥ 1,

P

(
N

(
S θ∗
λ ,

(
4λ1+h

)−1) ≤ k

)
≤ lim sup

n→∞
P

(
N

(
n−η · C n

1 (λ),
(
2λ1+h

)−1
)
≤ k

)
,

which together with (179) yields, for λ ≥ λ174,

P

(
N

(
S θ∗
λ ,

(
4λ1+h

)−1) ≤ 2−1λ
1
η
(1−
)

)
≤ exp

( − C log3α λ
) + C ′λ−
/(τ−3) .

(180)

Note that N
(
S θ∗
λ , r

) �sd N
(
M θ∗

λ , r
) �sd N

(
M θ∗ , r

)
for any r > 0, where the

first relation follows since M θ∗
λ = CB∞(

S θ∗
λ

)
, and the second relation follows from

the existence of the coupling between M θ∗
λ and M θ∗ as appears on the right side of

(151). Hence, (180) continues to hold if we replace S θ∗
λ by M θ∗ . Let g = g(
) :=

2(τ − 3)/
. Using (180) with M θ∗ replacing S θ∗
λ , and letting λ → ∞ along the

sequence
(
kg, k ≥ 1

)
, we get, via an application of the Borel-Cantelli lemma,
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lim inf
k→∞

logN

(
M θ∗ ,

(
4kg(1+h)

)−1
)

log
(
4kg(1+h)

) ≥ 1− 


η(1+ h)
almost surely

for any 
 ∈ (0, 1/2]. Sandwiching δ between
(
4kg(1+h)

)−1 and
(
4(k + 1)g(1+h)

)−1

and letting δ ↓ 0, we conclude that for any 
 ∈ (0, 1/2],

dim
(
M θ∗) ≥ 1− 


η(1+ h)
almost surely.

We complete the proof of (171) by letting 
 ↓ 0, and using (173).

8 Discussion

The random graph models considered in this paper are closely related to the multi-
plicative coalescent–a fact that was crucial in our proof. It is easy to argue heuristically
that around the point of phase transition, many standard models of dynamic random
graphs evolve roughly like themultiplicative coalescent. This intuition was formalized
in [24], where it was shown that the continuum scaling limits for maximal components
in the critical regime for a number of random graph models including the configura-
tion model (under appropriate moment assumptions), the stochastic block model, and
bounded size rules all have the same limit (up to constant scaling factors) as that of the
Erdős-Rényi random graph established in [3]. In the heavy-tailed regime as considered
in this paper, continuum limits for maximal components of critical inhomogeneous
random graphs were first established in [29]. These results were then leveraged in [26]
to establish the scaling limit of the critical configuration model.

We expect a similar program to be carried out building on the results of this paper for
establishing universality of theMST for a host of random graph models. The twomost
important models for which this problem remains open are (i) the configuration model
and (simple) random graphs with given degree sequence with tail exponent τ ∈ (3, 4),
and (ii) a sequence of edge weighted graphs converging to a graphon whose leading
eigenfunction is an element of L p[0, 1] \ L3[0, 1] for some p ∈ (2, 3). We expect
that for both these models, the scaling limit of the MST on the giant components of
these models, under suitable assumptions, will be the same as the ones obtained in
this paper.

We now briefly remark on the assumptions in this paper. As mentioned before,
Assumption 2.4 (i) implies supercriticality of the random graph model, whereas
Assumption 2.4 (ii) corresponds to the condition in [11, Display (19)]. It should be pos-
sible to relax Assumption 2.4 (iii) and Assumption 2.4 (iv). For example, our proof of
Proposition 6.13–a key ingredient used to establish tail bounds on the diameter outside
the component of the vertex 1–does not require the full force of Assumption 2.4 (iii).
This proof only uses the relation

P
(
Vn ≥ u

) � 1/uτ−2 for all n ≥ 2, and u ∈ [1, v2] .
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Similarly, it should be possible to relax Assumption 2.4 (iii) and Assumption 2.4 (iv)
and still carry out the other steps in our proof at the cost of a more intricate analysis.
In the context of critical inhomogeneous random graphs, [35] establishes conver-
gence of the maximal components as well as compactness of the scaling limit under a
weaker integrability condition [35, Display (9)]. For the critical heavy-tailed config-
uration model, [25] proves GHP convergence of the maximal components under [25,
Assumptions 1 and 2], and [44]workswith i.i.d. degrees having a power-law.However,
all these papers deal only with the critical regime. It is not clear what the necessary
and sufficient conditions are for results such as Theorem 3.1 to hold, as proving such
a result requires careful control over the complement of the maximal component in
the critical window as well as the barely supercritical regime. Establishing such a
necessary and sufficient condition remains a challenging open problem.

We close this section with a discussion on the possible extension of the convergence
in (11)with respect to the strongerGHP topology. Letμn (resp.μn) denote the uniform
probability measure on the vertices of Mn (resp. Mn). View

(
n−η · Mn, μn

)
and(

n−η · Mn, μn
)
as random metric measure spaces.

Conjecture 8.1 Under Assumption 2.4 on the weight sequence, there exists a random
compact measured R-tree

(
M θ∗ , μ

)
whose law depends only on θ∗ such that

(
n−η · Mn, μn) d−→ (

M θ∗ , μ
)
, as n → ∞ , (181)

with respect to the GHP topology. Further, almost surely, the measureμ is nonatomic,
i.e.,

P
(
μ({x}) = 0 for all x ∈ M θ∗) = 1 , (182)

and μ is concentrated on the set of leaves of M θ∗ , i.e.,

P

(
μ

(
L (M θ∗)

) = 1

)
= 1 . (183)

Moreover, (181) continues to hold under Assumption 2.4 if we replace the left side by(
n−η · Mn, μn

)
.

In the context of the complete graph, the analogues of (181) and (182) were proved in
[6] and [8] respectively. In order to prove (181), it is enough to establish the following:
Let T n

λ;i , i = 1, . . . , knλ , be the trees in the forest obtained by removing from Mn the

vertices inMn
λ and all edges incident to the vertices inMn

λ . LetY
n
λ := max1≤i≤knλ

∣∣T n
λ;i

∣∣.
Then for all ε > 0,

lim
λ→∞ lim sup

n→∞
P
(
Yn

λ > εn
) = 0 . (184)

As mentioned in Sect. 6.1, in the setting of the complete graph, the analogoue of (184)
was established in [6, Lemma 4.11]. We briefly describe why proving (184) suffices.
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Consider a degree sequence d = (
d1, . . . , dn

)
, and let CMd (resp. USd) be a

configuration model (resp. uniform simple random graph) with degree sequence d.
(The reader can consult [8, Section 1.2 and Display (6.48)] for a quick overview of the
definitions and the relevant properties of these models. We refer the reader to [54, 55]
for a more detailed treatment.) Let Ue, e ∈ E(CMd), be i.i.d. Uniform[0, 1] random
variables conditional on CM

d. Let Md be the MST of the component of the vertex
1 constructed using these edge weights. Fix p ∈ (0, 1), and let CMd

p the graph with

vertex set [n] and edge set {e ∈ E(CMd) : Ue ≤ p
}
. LetC d

p (1) denote the component

of the vertex 1 inCMd
p, and Md

p be the restriction of M
d toC d

p (1). For each vertex v in

C d
p (1), let dv,p denote the degree of v inC d

p (1), and define davailv,p := dv−dv,p. Note that

Md can be viewed as Md
p together with a collection of trees each of which is attached

to a vertex of Md
p via an edge; for every v ∈ V (Md

p), let T
(i)
v,p, 1 ≤ i ≤ rv,p, denote

the trees that are attached to v (arranged following some deterministic rule). For every
v ∈ V (Md

p), append (davailv,p −rv,p)many zeros to the sequence
(∣∣T(i)

v,p

∣∣, 1 ≤ i ≤ rv,p
)

and let
(



(i)
v,p, 1 ≤ i ≤ davailv,p

)
be a uniform permutation of the resulting sequence;

use independent permutations for different v ∈ V (Md
p) that are also independent of

all the other random variables being considered. Then conditional on CM
d
p and Md

p ,
the family

(

(i)

v,p ; 1 ≤ i ≤ davailv,p , v ∈ C d
p (1)

)
of random variables is exchangeable . (185)

The proof of (185) is similar to the proof of [8, Display (7.4)].
Now, using [58, Corollary 2.12], it is enough to prove (181) for an IRG with an

equivalent kernel. Let Ĝn be the random graph on [n] obtained by placing an edge
between i and j independently for each i < j ∈ [n] with probability

q̂i j := wiw j

wiw j + ∑n
k=1 wk

.

This is referred to as the Britton–Deijfen–Martin-Löf model [34]. This model has the
following nice property: For v ∈ [n], let Dv denote the degree of v of Ĝn , and define
Dn := (

D1, . . . , Dn
)
. Then

(
Ĝn

∣∣ Dn = d
) d= US

d d= (
CM

d ∣∣ CMd is simple
)
. (186)

See [55, Theorem 7.18] for a proof of (186). For any degree sequence d, let g(d) :=
P
(
CM

d is simple
)
. Then using [57, Theorem 1.4], it can be shown that there exists

c > 0 such that

lim
n→∞ P

(
g(Dn) ≥ c

) = 1 . (187)

Define M̂n , Ĝn(λ), M̂n
λ , and Ŷ n

λ in a manner analogous to Mn , Gn(λ), Mn
λ , and Yn

λ

respectively. Once again, we can use [58, Corollary 2.12] to transfer the results proved
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for the models considered earlier in this paper to the random graph Ĝn . Then (184)
and Theorem 6.1 imply that for any ε > 0,

lim
λ→∞ lim sup

n→∞

(
P
(
Ŷ n

λ > εn
) + P

(
dH

(
M̂n, M̂n

λ

)
> εnη

)) = 0 . (188)

Further, by (140), Lemma 4.6, and [6, Theorem 3.3], for every λ ≥ 0,

(
n−η · M̂n

λ , μ̂
n,w
λ

) d−→ M θ∗
λ w.r.t. the GHP topology (189)

as n → ∞, where μ̂
n,w
λ is the probability measure that assigns mass proportional to

wv to each vertex v in M̂n
λ , and M θ∗

λ = CB∞(
S θ∗
λ

)
is endowed with the measure

inherited from S θ∗
λ .

For v ∈ [n], let Dv,λ denote the degree of v in Ĝn(λ), and let Davail
v,λ := Dv − Dv,λ.

Using (189), it is not too difficult to show that

(
n−η · M̂n

λ , μ̂
n,avail
λ

) d−→ M θ∗
λ w.r.t. the GHP topology

as n → ∞, where μ̂
n,avail
λ is the probability measure that assigns mass proportional to

Davail
v,λ to each vertex v in M̂n

λ . Let μ̂
n denote the uniform probability measure on the

vertices of M̂n . Then using (188), (189), (186), (185), (187), and [27, Lemma 7.5], it
can be shown that for all ε > 0,

lim
λ→∞ lim sup

n→∞
P

(
dGHP

((
n−η · M̂n , μ̂n) ,

(
n−η · M̂n

λ , μ̂
n,avail
λ

))
> ε

)
= 0 .

The rest is routine.
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Appendix A.

Proof of Lemma 6.12

By Assumption 2.4, for all n ≥ 4 and 2 ≤ j ≤ n/2,

∑ j
i=2 vi∑n
i=2 vi

= 1

�n

j∑

i=2

wi � 1

n

j∑

i=2

(n
i

)α �
(
j

n

)1−α

� 1

vτ−2
j

,
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and hence, P
(
Vn ≥ u

) � 1/uτ−2 for all n ≥ 4 and u ∈ (vn/2, v2]. Further, if vn/2 ≥ 1,
then for u ∈ [1, vn/2],

vτ−2
n/2

uτ−2 ≥ P
(
Vn ≥ u

) ≥ P
(
Vn ≥ vn/2

) ≥ C

vτ−2
n/2

≥ C
(
A2 · 2α

)τ−2 ≥ C
(
2αA2u

)τ−2 .

Thus, P
(
Vn ≥ u

) � 1/uτ−2 for all n ≥ 4 and u ∈ [1, v2].
Let us first prove the claimed lower bound in (65). For n ≥ 4 and k ≥ 2, we have

P
(
Poi(Vn) ≥ k

) = E

[ ∫ Vn

0
e−u uk−1

(k − 1)!du
]

=
∫ v2

0
e−u uk−1

(k − 1)!P(Vn ≥ u)du ≥
∫ v2

1
e−u uk−1

(k − 1)!P(Vn ≥ u)du

≥ C
∫ v2

1
e−u uk−1

(k − 1)!
1

uτ−2 du =: C(
T1 − T2 − T3

)
, (190)

where T1,T2, and T3 are respectively the integrals
∫ ∞
0 ,

∫ 1
0 , and

∫ ∞
v2

of the integrand
in the penultimate step. Then for k ≥ 2,

T1 = �(k − τ + 2)

�(k)
� kk−τ+3/2

kk−1/2 = 1

kτ−2 , (191)

and

T2 =
∫ 1

0
e−u uk−1

(k − 1)!
1

uτ−2 du ≤ 1

(k − 1)! × (k − τ + 2)
. (192)

Next, note that for any δ > 0, u �→ uδe−u/2 is decreasing on [2δ,∞), and conse-
quently, for 3 ≤ k ≤ v2/2,

T3 ≤ e−v2/2vk−τ+1
2

(k − 1)!
∫ ∞

v2

e−u/2du = 2
e−v2vk−τ+1

2

(k − 1)! � e−v2(ev2)k

kk
·
√
k

vτ−1
2

,

where the last step follows from Stirling’s approximation for (k − 1)!. Using the fact
that supx≥1(ev2)

x/xx = ev2 , we get, for 3 ≤ k ≤ v2/2,

T3 ≤ C
√
k/vτ−1

2 . (193)

From (190), (191), (192), and (193), we see that there exists k0 ≥ 3 such that for all
large n and for k0 ≤ k ≤ v2/2,

P
(
Poi(Vn) ≥ k

) ≥ C

kτ−2 − C ′√k

vτ−1
2

≥ C

2kτ−2 ,
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where we have used the scaling asymptotics of v2 from Assumption 2.4. Choosing a
smaller constant C if necessary, the above bound can be extended to k ∈ {

1, . . . , k0
}

and to all n ≥ 1.
Now we prove the claimed upper bound in (65). Proceeding as in (190), we see that

for any n ≥ 4 and k ≥ 2,

P
(
Poi(Vn) ≥ k

) =
∫ v2

0
e−u uk−1

(k − 1)!P(Vn ≥ u)du

≤
∫ 1

0

uk−1

(k − 1)!du +
∫ v2

1
e−u uk−1

(k − 1)!P(Vn ≥ u)du

≤ 1

k! + C
∫ v2

1
e−u uk−1

(k − 1)!
1

uτ−2 du ≤ 1

k! + CT1 ≤ C ′

kτ−2 ,

where the last step uses (191). This completes the proof. ��

Proof of Lemma 6.26

We can construct Gn(γn) in the following steps:

(a) Generate C n
1 (γn/2).

(b) Place edges independently between i, j ∈ [n]\V (
C n
1 (γn/2)

)
, i �= j , with respec-

tive probabilities pnγn qi j , where qi j is as in (17).

(c) Place edges independently between i ∈ V
(
C n
1 (γn/2)

)
and j ∈ [n]\V (

C n
1 (γn/2)

)

with respective probabilities

(
pnγn − pnγn/2

)
qi j

1− pnγn/2qi j
≥ ε22wiw j

2νn�n
,

where the last step holds for all large n.

Since 1 − e−u ≤ u ∧ 1 for all u ≥ 0, W
(
C n
1 (γn/2)

) �sd W
(
C n
1 (γn/2)

)
. Further,

ε22 < ε41. Hence, an application of Proposition 6.15 and (42) shows that

P
(
W

(
C n
1 (γn/2)

) ≥ C194n
) ≥ 1− exp

( − Cnα
)

(194)

for all large n. Suppose for some K� > 0, W (C�) > K� log n for some component
C� of Gn(γn), and C� �= C n

1 (γn). Then the component C� will be constructed in step
(b) above, and there will be no edges between C� and C n

1 (γn/2) in step (c). Now,
conditional on steps (a) and (b), on the event

{
W

(
C n
1 (γn/2)

) ≥ C194n
}
, the expected

number of edges between C� and C n
1 (γn/2) in step (c) is

≥ ε22

2νn�n
× C194n × K� log n ≥ C195K� log n (195)

for all large n. Now the proof can be completed by combining (194)with an application
of Bennett’s inequality [31].
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