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Abstract

A well-known open problem on the behavior of optimal paths in random graphs in the
strong disorder regime, formulated by statistical physicists, and supported by a large
amount of numerical evidence over the last decade (Braunstein et al. in Phys Rev
Lett 91(16):168701, 2003; Braunstein et al. in Int J Bifurc Chaos 17(07):2215-2255,
2007; Chen et al. in Phys Rev Lett 96(6):068702, 2006; Wu et al. in Phys Rev Lett
96(14):148702, 2006) is as follows: for a large class of random graph models with
degree exponent t € (3, 4), distances in the minimal spanning tree (MST) on the giant
component in the supercritical regime scale like 7=/~ _The aim of this paper
is to make progress towards a proof of this conjecture. We consider a supercritical
inhomogeneous random graph model with degree exponent t € (3, 4) that is closely
related to Aldous’s multiplicative coalescent, and show that the MST constructed by
assigning i.i.d. continuous weights to the edges in its giant component, endowed with
the tree distance scaled by n~ =3/ =D converges in distribution with respect to the
Gromov—Hausdorff topology to a random compact real tree. Further, almost surely,
every point in this limiting space either has degree one (leaf), or two, or infinity (hub),
both the set of leaves and the set of hubs are dense in this space, and the Minkowski
dimension of this space equals (r — 1)/(r — 3). The multiplicative coalescent, in
an asymptotic sense, describes the evolution of the component sizes of various near-
critical random graph processes. We expect the limiting spaces in this paper to be
the candidates for the scaling limit of the MST constructed for a wide array of other
heavy-tailed random graph models.
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1 Introduction

Consider a finite, connected, and weighted graph (V, E, b), where (V, E) is the under-
lying graph and b : E — [0, 00) is the weight function. A spanning tree of (V, E) is
a tree that is a subgraph of (V, E) with vertex set V. A minimal spanning tree (MST)
T of (V, E, b) satisfies

Zb(e) = min { Z b(e) : T'is aspanning tree of (V, E)}. (1)

eeT eeT’
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The MST is one of the most studied functionals in combinatorial optimization. Study-
ing this object when the edge weights and potentially the underlying graph is random
has stimulated an enormous body of work in probabilistic combinatorics and geomet-
ric probability. The papers [9, 13, 15, 17, 19, 20, 22, 38, 49-52, 56, 59, 66—69, 72]
and the references therein give a non-exhaustive account of the enormous literature
on the probabilistic study of MSTs.

We are interested in the global geometric properties of the MST, e.g., the diameter
and the typical distance. In the early 2000s, several major conjectures were made
about the intrinsic geometry of MSTs in the statistical physics community where
this object arises as models of disordered networks, but until very recently, there
were few rigorous mathematical results on this problem. Consider a finite connected
graph G = (V, E), and assign costs exp(fe,.) to the edges e € E where g > 0.
An optimal path P in G between u, v € V minimizes the total cost Y ecp €Xp(Bee)
among all paths P’ between u and v. This model interpolates between the first passage
percolation regime (the weak disorder regime) and the minimal spanning tree regime
(strong disorder regime). Assuming that ., ¢ € E, are pairwise distinct, it is easy to
see that for sufficiently large values of g, the optimal path between any two vertices
u and v is the path P that minimizes the maximal edge weight max.cp’ €, among
all paths P’ connecting u and v in G. It is well-known (see Lemma 4.3) that this is
simply the path connecting u and v in the MST of G constructed using the weights ¢,
e € E. Thus, the number of edges or the hopcount /,,, in the optimal path between
two typical vertices in the presence of strong disorder is simply the length of the path
in the MST connecting two typical vertices.

Motivated by the availability of data on a host of real-world networks as well as
the impact of complex networks in our daily lives, the last few years have witnessed
an explosion in the formulation and study of mathematical models of networks. These
models try to capture properties of networks observed empirically. Of relevance to us is
the heavy-tailed nature of the empirical degree distribution. To study this phenomenon,
a plethora of random graph models have been proposed that have heavy-tailed degree
distributions with some degree exponent T € (1, oo]. A precise definition of the degree
exponent will not be needed in the sequel, so we instead refer the reader to [45, 54, 55]
for a detailed discussion on the random graph models now available to practitioners.

Coming back to disordered networks, in the 2000s, statistical physicists predicted
[32, 33, 39, 73] that if the underlying graph posseses a heavy-tailed degree distribution
with exponent 7, then in the presence of strong disorder, /), exhibits the following
scaling behavior:

n(@=3)/(@-D , ifte(3,4), *

n'3, ifr >4,
lopt {

where n denotes the number of vertices in the underlying graph, and further, such

behavior should be universal, i.e., in principle should apply to a wide array of random
graph models.

The above conjecture is related to the universality of the intrinsic geometry of

the MST, proving which in full generality remains open to date. Only recently, there

has been some progress in the T > 4 regime. In [6], it was shown that the MST
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of the complete graph on n vertices constructed using i.i.d. Unif[0, 1] edge weights,
endowed with the tree distance scaled by /3 and the uniform probability measure
on the vertices, converges in distribution to a random compact R-tree .# . Further,
almost surely, .# is binary and the Minkowski dimension of .# equals 3. This result
can be seen as a confirmation of (2) for the case t = oo. The limiting space .# is
expected to be the scaling limit of the MST of a variety of random discrete structures
including random graphs with degree exponent T > 4. A first step in this broader
program of establishing universality of .# was taken in [8], where it was shown that
the scaling limit of the MST of the random 3-regular (simple) graph as well as the
3-regular configuration model, with the tree distance scaled by n=1/3,is 6!/3 . ..

On the other hand, the problem has stayed completely openinthe v € (3, 4) regime.
The aim of this work is to study the MST in this regime and prove the existence
of the scaling limit of the MST. We will consider a supercritical inhomogeneous
random graph (IRG) model that corresponds to the rank-1 case of the general class
of IRGs studied in [30]. We will show that under certain assumptions, the MST on
the giant component of this random graph, endowed with the tree distance scaled
by n=(*=3/=D converges in distribution with respect to the Gromov—Hausdorff
topology to a random compact R-tree. We will then study the topological properties
of the scaling limit. We will show that almost surely, every point in this limiting space
either has degree one (leaf), or two, or infinity (hub), and that both the set of leaves
and the set of hubs are dense in this space. Further, the Minkowski dimension of this
space equals (r — 1)/(r — 3) almost surely. Note the contrasting characteristics of
such a space in comparison to the space .Z .

The inhomogeneous random graph model considered in this paper is of special
interest as it is closely related to the multiplicative coalescent [10, 11]. The evolution
of a large class of dynamic random graph models around the point of phase transition
can be well-approximated [24, 26] by the multiplicative coalescent, and we expect
that this fact can be leveraged to establish universality of the scaling limits obtained
in this paper. We defer further discussion regarding the general program to establish
universality to Sect.8. Our main result proves convergence of the MST viewed as a
metric space, which in particular implies distributional convergence of the diameter of
the MST rescaled by n~(*=3/(t=D _This presents some rigorous evidence supporting
the prediction in (2), although the asymptotic behavior of the typical distance claimed
in (2) does not follow from this alone. The scaling limit of the typical distance can be
deduced if one were able to establish distributional convergence of the MST viewed
as a metric measure space. This strengthening of our result can be achieved if one
additional estimate is proved. This will also be discussed in Sect. 8.

1.1 Organization of the paper

A reasonable amount of notation regarding notions of convergence of metric space-
valued random variables as well as R-trees is required. To quickly get to the main
result, we first define the random graph models of interest in Sect. 2, and then describe
the main result in Sect. 3. Various definitions and preparatory results are then given in
Sect.4. In Sect. 5, we show that it is equivalent to work with a modified random graph

@ Springer



Geometry of the minimal... 733

model; this will make many of our calculations easier. A key step in the proof of our
main result is relating the MST in the supercritical graph to the MST in the critical
window; this is accomplished in Sect.6. Then we complete the proof of the main
result in Sect.7. In Sect.8 we discuss possible extensions and how the scaling limit
obtained here can be shown to be universal. We also discuss how our main result can
be strengthened to convergence with respect to the Gromov—Haussdorff—Prokhorov
topology. A few technical proofs are relegated to Appendix A.

2 Random graph models

We start by describing the class of random graph models of interest for this paper. Start
with the vertex set [n] := {1, 2, ..., n}, and suppose each vertex i € [n] has a weight
wlf”) > 0 attached to it; intuitively this measures the propensity or attractiveness of
this vertex in the formation of links. We assume that the vertices are labeled so that
w(l”) > w(z") > o> wd Write w® = (w(l"), ., wi™), and let
) (1)
i W

AL, I=i#j=n, 3
Ly

gij :=4;(w"”) =
where L, is the total weight given by

Ly= Y w". )

i€[n]

Now construct arandom graph on [n] by placing an edge between i and j independently
for each i < j € [n] with probability g;;. This random graph model corresponds to
the rank-1 case of the general class of IRGs studied by Bollobds, Janson, and Riordan
[30]. We will denote this random graph by (_}n. A closely related model [30, 65] is
obtained by using the edge connection probabilities

q;; = q;;(w") =1 —exp(-=w"w}"/Ly), (5)

and will be denoted by G,. In the regime of interest for this paper, as shown in [58], this
model is equivalent to the Chung-Lu model [40—43] and the Britton—Deijfen—Martin-
Lof model [34]. Probabilists will be more familiar with the above random graph via its
connection to one of the most famous stochastic coalescent models—the multiplicative
coalescent. We describe only a special case and refer the interested reader to [10, 11,
14, 21] for more general constructions of this specific model as well as other coalescent
models.

Definition 2.1 (Finite state multiplicative coalescent) Fix a finite vertex set ¥ and a
collection of nonnegative vertex weights x = (xv TS ”//). Start at time zero with
each vertex v € 7 being in a separate cluster of size x,. At any time r > 0 we
will have a collection of connected clusters with the weight of a cluster " given by
Wy (€) = ZU < Xv. Consider the continuous time Markov chain where two existing
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734 S.Bhamidi, S. Sen

Fig.1 The MST on the component of the vertex 1in G, with w; = 3(n/i)*, where = 3.05and n = 80000

distinct clusters 6, and %6}, merge at rate #4 (6,) - #x (%)) into a single cluster of size
W5 (Ca) + W (p). Write (MC (7, x), t); t = 0) for this process.

Associated with the above dynamics is the following random graph related to G,.

Definition 2.2 (Random graph ¢ ((“//, x), t) ) Consider a finite set 7', nonnegative
weights (x,; v € ¥),and 1 > 0. Let 4((7, x), t) be the random graph on vertex set
¥ obtained by independently placing edges between pairs of vertices u, v € ¥ with
probability 1 — exp(—zxyxy).

The following lemma is easy to check from the above description of the dynamics.

Lemma 2.3 Foranyt > 0, the ordered sequence of weights of the connected compo-
nents of G((V, x), t) has the same distribution as the ordered sequence of weights of
clusters of MC((V, x), t).
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Fig.2 The MST on the component of the vertex 1in G, with w; = 3(n/i)%, where t = 3.95and n = 80000

The random graph ¢ is essentially the same as G, with the parameters expressed in
a different way. This connection between the random graph G,, and the multiplicative
coalescent will play a major role in our proofs.

We now specify how the vertex weights w™ are chosen. For the rest of this paper,
we will work with a fixed exponent T € (3, 4). We will use the following notation for
constants associated to this exponent:

1 T—2 T—3
o= , p = , and n:= .
T—1

(6)

Assumption 2.4 Consider a sequence (w(”’; n > 1) of weight sequences, where

w® = (w”, w, .. wy) with w(” > wi” > ... > wy”

following:

> (. Then we assume the
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(i) Supercriticality condition: Let L, be as in (4). Then

n (n)\2
.. Z':l(w-)
pi=liminf ==~ > 1
n—>oo

(i) Foreachi > 1, there exists 6 > 0 such that

Cw® " 172 .
A0 e S e )) =
Zj:](wj)

(iii) There exist constants A1, Ay € (0, 00) such thatforalln > 2and 1 <i <n/2,
n\o ( n\o
Ay (—) = win) < A (—) .
l l

3
(iv) Foralln > 2, wd > A, (logn)z nt,

Assumption 2.4 (i) ensures supercriticality of the random graph model, and
Assumption 2.4 (ii) corresponds to the condition in [11, Display (19)]. It should be
possible to relax Assumption 2.4 (iii) and (iv) with a more intricate analysis; however,
we do not pursue it here. We will discuss this briefly in Sect. 8.

Note that Assumption 2.4 implies that foralln > 2 andn/2 <i <n,

o
Wl < wl, <294, <24, (?) . )
Write
Pmtr = (Al, Ar, T, v) (8)

for the parameters in Assumption 2.4. The following lemma is easy to verify and gives
two natural settings that give rise to weights satisfying the above condition. The proof
is omitted.

Lemma 2.5 Suppose F is a cumulative distribution function (cdf) with support in
[0, 00) such that for some Tt € (3,4), Br > 4/n, and cp € (0, 00),

limsup (x PrF(x)) < oo, lim x™ " '[1 = F(x)] =cr, and
x40 X—>00
o0 o0
/ x%F(dx) > / xF(dx).
0 0

Consider w® = (w}'”, 1<i< n) obtained via one of the following:

(@) Letw!” =[1—F]7'(i/(n+ 1)) for1 <i <n.
(b) Let Wy, ..., W, be i.i.d. random variables with cdf F, and let w(l") > ... >
be the corresponding ordered values.
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Then under (a), (w("), n > 1) satisfies Assumption 2.4. Under (b), we can construct
w™, n > 1, on the same probability space such that Assumption 2.4 is satisfied almost
surely in this space with a deterministic v, and random A1, A;, and 91-*, i>1.

Write € (1, G,,) (resp. € (1, G,)) for the component of vertex 1 in the graph G,
(resp. G,). For any component € of G, or G,, write # (¢) = Yiew wlf”). The
following result states some basic properties of these two random graphs. The notations
Op(-) and ®p(-) used in the sequel are as explained at the end of Sect.4.1.

Proposition 2.6 The following hold under Assumption 2.4:

(a) We have, 7/(‘5(1, Gn)) = Op(n), and
max {# (€¢) : € component in G, and € # €(1,Gn)} = Op(logn). (9)

We call € (1, G,) the giant component in G,. Further, an analogous result holds
for the random graph G,

(b) By [30, Theorem 3.13], if further the empirical distribution n™ > ien] S{wlf")}
converges to a cdf with tail exponent t € (3,4), then the degree distribution of
G, (resp. G,) converges in probability to a deterministic distribution with tail
exponent T.

The claim that % (¢'(1, G,)) = ©p(n) follows from Proposition 6.8, (42), and
Lemma 5.1. The proof of (9) is similar to that of Lemma 6.26. Proposition 2.6 (b) is
not important for this study, but it gives some justification as to why these models are
used to understand real world systems. We now define the central object of interest in
this paper.

Definition 2.7 (Minimal spanning tree) Let U = (U;j; 1 <i < j < n) be a collec-
tion of i.i.d. Unif [0, 1] random variables, and let Uj; = U;j for 1 <i < j < n. Let
M" denote the minimal spanning tree on the giant component of G, using the edge
weights (Uij ; {7, j}is an edge in € (1, Gn)). Define M" in analogous way.

We make a convention here that we will follow throughout this paper:

When a finite connected graph H is viewed as a metric space, the underlying
set will be the collection of vertices in H joined by line segments of unit length
that represent the edges in H, and the distance between two points will be the
minimum of the lengths of paths connecting the two points. For any metric space
(X,d) and a > 0, a - X will denote the metric space (X, a - d), i.e, the space
where the distance is scaled by a.

Using this convention, we can view M" and M" as (random) compact metric spaces.
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738 S.Bhamidi, S. Sen

3 Main result

Recall that the lower and upper box counting dimensions of a compact metric space
X are given by

dim(X) = lim jnf &L X D)
sl0- log(1/9)

ﬁ(X) := lim sup w
840 log(1/8)

, and

respectively, where .4/ (X, §) is the minimum number of closed balls with radius 8
required to cover X. If dim(X) = dim(X), then the box-counting dimension or the
Minkowski dimension of X exists and equals this common value. For an R-graph X
and any point x € X, let deg(x ; X) denote the degree of x in X; see Sect.4.3 for the
relevant definitions. We write

LX) :={x € X :deg(x; X) =1}, and
H(X) = {x € X : deg(x; X) = o0} (10)

for the set of leaves and the set of hubs in X respectively. Recall the notation from (6).

Theorem 3.1 Under Assumption 2.4 on the weight sequence, there exists a random
compact R-tree M 9" whose law depends only on 6 := (Qi* ;1> 1) such that

n oML % as n— oo, (11)

with respect to the Gromov—Hausdorff topology. Further, almost surely,

(a) deg (x; %) € {1,2, 00} forall x € .4?;

(b) both the set of leaves L") and the set of hubs MY are dense in #°" ;
and

(c) the Minkowski dimension of M 0" satisfies

dim(///o*):%=2:;.

Moreover, (11) continues to hold under Assumption 2.4 if we replace M" by M".

It should be possible to lift the Gromov—Hausdorff convergence in (11) to conver-
gence with respect to the Gromov—Hausdorff—Prokhorov topology. For this, it would
suffice to prove an additional technical condition. We will discuss this further in Sect. 8.
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4 Definitions and preliminary results
4.1 Notation

Throughout this paper, C, C’ etc. will denote constants that depend only on Pmtr as
defined in (8), and their values may change from line to line. Special constants will be
indexed by the relevant equations, e.g., C45 etc., and their values will depend only on
Pmtr unless specified otherwise. If a constant depends on any parameter other than
Pmtr, then that will be explicitly mentioned when the constant is first introduced. For
example, Co; = Cp1(A) appearing in the statement of Theorem 6.1 below depends
on Pmtr and A.

A claim holds “for all large n” or ‘Vn’ will imply that there exists no > 1 depending
only on Pmtr such that the claim holds for all n > ng. If the threshold depends on
any other parameter, then that will be explicitly mentioned, and it will be assumed,
without explicit mention, that such a threshold is chosen bigger than all thresholds
involving n that depend only on Pmitr and were previously introduced in the proof. For
example, n46 = n46(x) appearing around (46) depends on Pmir and «, and although
not explicitly mentioned, is chosen so that it is bigger than the threshold involving n
above which (41) and (42) hold.

Similarly, all thresholds involving X or ¢ will depend only on Pmtr unless specified
otherwise when the threshold is first introduced.

A relation of the form a =< b will mean that there exist C, C’ > 0 depending only on
Pmtr such that Ca < b < C’b. Here, a, b could be elements of two sequences, or two
functions defined on the same domain. As an example, consider the following claim
made around (36) below: “...for all large n, i, (u) < u'/® for (x,u) € 12" This
statement can be rewritten as follows: There exist C, C’ > 0, and ny > 1 depending
only on Pmtr such that Cu'/* < i; (u) < C'u'/® forall n > ng and (A, u) € 12,

For a set S, we use |S| or #S to denote the number of elements in S. For any
graph H, we write V(H) and E(H) for the set of vertices and the set of edges of H
respectively. We write | H| for the number of vertices in H, i.e., |H| = |V (H)|. For
any finite connected graph H = (V, E), we write sp(H) for the number of surplus
edges in H, i.e., sp(H) := |E| — |V| 4+ 1. For a finite (not necessarily connected)
graph H, we let

max sp(H) = max { sp(¢) : € connected component of H} . (12)

Similarly, we write diam(H ) for the maximum of the diameters (with respect to graph
distance) of all the components in H. We will write LP(H) to denote the length of the
longest self-avoiding path in H. For a rooted tree 7', ht(7T") will denote the height of
T, i.e., the distance to the farthest leaf from the root of T'.

For a graph H = (V, E) and v € V, we write (v, H) to denote the component
of vin H.For V' C V, we write H \ V' to denote the restriction of H to the vertex set
V \ V’.If the vertices in H have weights y = (y,; v € V) associated to them, then
for any subgraph Ho in H, we write #y(Ho) = }_,cy g, Yv for the weight or mass
of Hy as measured by the prescribed vertex weights. When the weight sequence is w,
we omit the subscript and simply write 7 (-).
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For two real valued random variables X, Y we write X <¢q Y for the stochas-
tic domination relation between the distributions of these random variables. We use
Poi(-), Unif (-) and Bernoulli(-) to respectively denote Poisson, uniform, and Bernoulli
distributions with parameters in - that will be specified in the setting of interest.

For a non-negative function n +— g(n), we write f(n) = O(g(n)) when
| f(n)|/g(n) is uniformly bounded, and f(n) = o(g(n)) when lim,_, », f(n)/g(n) =
0. Furthermore, we write f(n) = ©(g(n)) if f(n) = O(g(n)) and g(n) = O(f(n)).

We let i>, —P>, and =5 respectively denote convergence in distribution, con-
vergence in probability, and almost sure convergence. For a sequence of random
variables (X,; n > 1) and a sequence of positive real numbers (b,; n > 1), we write
X, = Op(by) if the sequence of laws of (X, /b,; n > 1) is tight, and X,, = op(b;,)

if X, /by —d> 0 as n — oo. Further, we write X,, = Op(b,) if X,, = Op(b,) and
1/X, = Op(1/b,). For simplicity, we will freely omit ceilings and floors; this will
not affect the argument.

4.2 Convergence of metric spaces

The following five topologies will be relevant to us: (i) the Hausdorff topology on
closed subsets of a compact metric space, (ii) the Gromov—Hausdorff (GH) topology
on Ggy—the isometry equivalence classes of compact metric spaces, (iii) the marked
Gromov—Hausdorff topology on the isometry equivalence classes of triples of the
form (X ,C, d), where (X, d) is a compact metric space and C € X is closed, (iv) the
Gromov—Hausdorff—Prokhorov (GHP) topology on the isometry equivalence classes
of compact metric measure spaces, and (v) the Gromov-weak topology on the isometry
equivalence classes of metric measure spaces. The Hausdorff distance and the GHP
distance will be denoted by dy( -, -) and dgup( -, -) respectively. We refer the reader
to [36] for background on the topologies in (i) and (ii). For the topologies in (iii)
and (iv), we will primarily follow [64] and [1, 6] respectively. For the Gromov-weak
topology, we refer the reader to [18, 53]. The definitions and results related to the
topologies in (i)—(iv) needed in this paper can be found in one place in [8, Section
3.2].

4.3 R-trees and R-graphs

For any metric space (X, d), a geodesic between x1, x € X is an isomeric embedding
f :10,d(x1,x2)] — X such that f(0) = x; and f(d(xl, xg)) =x. (X,d)isa
geodesic space if there is a geodesic between any two points in X. An embedded cycle
in X is a subset of X that is a homeomorphic image of the unit circle S'.

Definition 4.1 (Real trees [47, 62]) A compact geodesic metric space (X, d) is called
areal tree or R-tree if it has no embedded cycles.

For a metric space (X, d),x € X,and ¢ > 0, let B(x,¢; X) := {y eX :dy,x) <

£}. We next recall some definitions and constructs from [6]. We refer the reader to [6,
Section 2.3] for a detailed treatment.
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Definition 4.2 (R-graphs [6]) A compact geodesic metric space (X, d) is called an
R-graph if for every x € X, there exists ¢ > 0 such that (B(x, & X), d|(x.e: x)) is
an R-tree.

The core of an R-graph (X, d), denoted by Core(X), is the union of all the sim-
ple arcs having both endpoints in embedded cycles of X. If it is non-empty, then
(Core(X), d) is an R-graph with no leaves. We define Conn(X) to be the set of all
x € X such that x belongs to an embedded cycle in X.

Clearly, Conn(X) € Core(X). By [6, Theorem 2.7], if X is an R-graph with
a non-empty core, then (Core(X), d) can be represented as (k(X), e(X), [), where
(k(X), e(X)) is a finite connected multigraph in which all vertices have degree at least
3and! : e(X) — (0, 00) gives the edge lengths of this multigraph. We denote by
sp(X) the number of surplus edges in (k(X), e(X)). Onany R-graph (X, d) there exists
a unique o-finite Borel measure len called the length measure such that if x, x2 € X
and [x1, x2] is a geodesic path between x; and x; then len([x 1 xz]) = d(x1, x2). Note
that

Z I(e) = len( Core(X)). (13)

ece(X)

Clearly, len(Conn(X)) < len(Core(X)) < oo. If Conn(X) # @ (in which case
len( Conn(X )) > 0), we write lenconn(x) for the restriction of the length measure to
Conn(X) normalized to be a probability measure, i.e.,

1 0 len(-)
en =
Conn(X) len(Conn(X))
For an R-graph (X, d) and x € X, choose ¢ > 0 such that B(x, ¢ ; X) is an R-tree,
and define the degree of x as

deg(x ; X) := |{connected components of B(x, &; X) \ {x}}].

Note that the value of deg(x ; X) is independent of the choice of ¢.

Since any finite connected graph, viewed as a metric space, is an R-graph, the
above definitions make sense for any finite connected graph H. Note the difference
between e(H ) defined above and E (H)-the set of edges in H. Note also that in this
case, the graph theoretic 2-core of H, viewed as a metric space, coincides with the
space Core(H) as defined above, and len(Core(H)) equals the number of edges in the
graph theoretic 2-core of H.

4.4 Some properties of MSTs

Suppose H = (V, E, b) is a weighted, connected, and labeled graph. Assume that
b(e) # b(e') whenever e # ¢'. We now state a useful property of the MST.
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Lemma 4.3 (Minimax paths property) Let H = (V, E, b) be as above. Then the MST
T of H is unique. Further, T has the following property: Any path (xo, . .., X,) with
x; € Vand {x;, xj+1} € E(T) satisfies

/

max b({xi, xi1)) < max b({xj xj1)

for any path (x, ..., x,) with {x}, x}H} € E and xo = x|, and x,, = x;,. In words,
the maximum edge weight in the path in the MST connecting two given vertices is
smallest among all paths in G connecting those two vertices.

Moreover, T is the only spanning tree of G with the above property.

The above lemma is just a restatement of [59, Lemma 2]; see also [ 16, Proposition 2.1].
We record the following useful observations that follow directly from Lemma 4.3:

Observation 4.1 The MST can be constructed just from the ranks of the different edge
weights. This fact is not needed in the sequel, but it shows that the laws of M" and M"
will remain unchanged if we used a set of exchangeable and pairwise distinct edge
weights instead of U as in Definition 2.7.

Observation 4.2 Let H = (V, E, b) be a connected and labeled graph with pairwise
distinct edge weights. Let u € [0, 0o0) and % be a component of the graph G* =
(V, E"), where E"* C E contains only those edges e for which b(e) < u. Then the
restriction of the MST of (V, E, b) to € is the MST of (V (%), E(€), blg«)).

This fact is extremely useful as it can be used to connect the structure of the MST
to the geometry of components of the graph under percolation.

4.5 Cycle-breaking

In this section we recall two procedures from [6] that can be applied to R-graphs and
combinatorial graphs. We refer the reader to [6, Sections 3.1 and 3.2] for a detailed
treatment. Recall the notation k(X), e(X), (I(e), e € e(X)), and sp(X) introduced
below Definition 4.2.

Definition 4.4 (Cycle-breaking (CB), [6, Section 3.2]) Let X be an R-graph. If X
has no embedded cycles, then set CB(X) = X. Otherwise, sample x € X using the
measure lenconn(x). Endow X \ {x} with the intrinsic metric: the distance between two
points is the minimum of the lengths of paths in X \ {x} that connect the two points.
Set CB(X) to be the completion of X \ {x} with respect to the intrinsic metric. (Thus,
CB(X) is also an R-graph.)

For k > 2, we inductively define CB*(X) to be the space CB (CB"_1 (X )). (Thus,
at the k-th step, if CB¥~1(X) has an embedded cycle, then we are using the measure
to lenc,, cpi—1(x)) to sample a point.)

Note that CBX(X) = CB*X)(X) forall k > sp(X), i.e., the spaces CB¥ (X) remain
the same after all cycles have been cut open. We denote this final space (which is a
real tree) by CB>®(X).

Next we define a cycle-breaking process for discrete graphs.
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Definition 4.5 (Cycle-breaking for discrete graphs (CBD), [6, Section 3.1]) Let H =
(V, E) be a finite connected graph. Sample ¢ € E uniformly. If (V, E \ {e}) is
connected, set CBD(H) = (V, E\{e}). Otherwise, set CBD(H) = H. Inductively
set CBD**!(H) = CBD(CBD*(H)), k > 1.

Almost surely, the graphs CBDX (H) are the same (and are all trees) for all large
values of k. We denote this tree by CBD*(H).

Suppose H is a finite connected graph. Let f1, ..., fi be the edges of H that get
removed in the process (CBDk(H), k > 1).Clearly, s = sp(H).For 1 <i <s,lety;
be a uniformly sampled point on f;. It is easy to see that viewing H as an R-graph,
the completion of the space H \ {y1, ..., ys} with repect to the intrinsic metric has the

same distribution as CB*°(H). In this coupling, CBD*°(H) is a subspace of CB*°(H),
and

di(CBD*(H), CB*(H)) < 1. (14)

We now state a lemma that connects cycle-breaking to MSTs.
Lemma 4.6 Suppose H is a finite connected graph. Then CBD*°(H) has the same
law as the MST of H constructed by assigning exchangeable pairwise distinct weights

to the edges in H.

Lemma 4.6 follows easily from Lemma 4.3. A proof can be found in [6, Proposition
3.5]. For r € (0, 1) define .27, to be the set of all R-graphs X that satisty

sp(X) + len(Core(X)) < 1/r, and min len(e) > r. (15)
ece(X)

The following theorem will allow us to prove convergence of MSTs from GHP con-
vergence of the underlying graphs.

Theorem 4.7 Fixr € (0, 1). Suppose (X, d) and (X,,, d,), n > 1, are R-graphs in <7,

such that (X,,, d,) — (X, d) asn — oow.r.t. GH topology. Further, suppose for each
n > 1, (X,, dy) is isometric to &, - H,, where Hy,, n > 1, are finite connected graphs

and &, — 0. Then as n — 00, &, - CBD*®(H,) i) CB*(X) w.r.t. GH topology.

Theorem 4.7 follows from [6, Theorem 3.3] and (14).

5 A slightly different model

Recall the definition of L, from (4), and let

n
=Y W =L, —w. (16)
i=2
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Analogous to (3) and (5), define

q — q”(w(n)) =1 /\( () (”)/En) and qij = qij(w(n))
=1—exp(—w"w ;’”/Zn) (17)

for1 <i # j < n. Note that under Assumption 2.4, for all large n, ¢;; = w(")w(")/ﬁ
forall 1 <i # j < n.Let G, (resp. G,,) be the random graph on [1] obtained by
placing an edge between i and j independently for each i < j € [n] with probability
qij (resp. gij).

Lemma 5.1 Under Assumption 2.4, there exists a coupling of G, and G, such that
]P’(Gn =+ Gn) — 0 as n — oo. Similar assertions hold for the pairs (Gn , G,,), and

(Gn. Gy).

Proof We will prove the assertion for (_}n and G,,, a similar argument works for the
other pairs. Under Assumption 2.4, max; ; (w;" w"” Hwas n) = O(n~").By[58, Corollary
2.12], it is enough to prove that Zi#j (q;j — q,j) /4ij — 0,as n — co. Now, under
Assumption 2.4, for all large n,

= IRy 2 2
)ik I L (1 - ﬁ—") <L (ﬂ> <Cn.
iz i iz Ln b \Ln
This completes the proof. O

Similar to Definition 2.7, let M" denote the minimal spanning tree on % (1, G,)
using the edge weights (Uj;; {i, j} € E(€(1,Gy))). Define M" as the MST on
%(1, G,) in an analogous way. In view of Lemma 5.1, it is enough to prove Theo-
rem 3.1 for M" and M". Hence, from now on we will only work with the random
graphs G,, and G,,. This will make some of the computations simpler.

6 Relating the MST with the components in the critical window

We will now need some notation. Recall that £, = Y/, w!", and define
oy’ =n"! Z(w“”)2 and v, 1= noy" [t . (18)

(Note that once again we have omitted the weight of vertex 1 in the formulae.) Using
Assumption 2.4, it is easy to see that liminf, ..o v, = v > 1. Without loss of
generality, we can assume the following:

Assumption 6.1 Foralln > 1,v, > v =1+ (v — 1)/2.
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For A > 0, define

A1
pl= (1 + n_")_ (19)

Vn
Let U be as in Definition 2.7. For any subgraph H of G,, we write
Ul|, = (Uij: {i. j} € E(H)). (20)
In words, U ‘ p 1s the collection of edge weights corresponding to the edges in H.

Definition 6.2 (The graph C_}n (A)) Fix A > 0. Let C_},, (A) be the subgraph of C_}n with
edge set

{ti.j}: {i.j} € E(Gy) and U;; < p}}.

Forv € [n], let %—f ) = %(v, Gn (k)). Let A_d)’f denote the MST on 65-1" (A) constructed
using U

Gy

Thus, M" = M} forall A > (v, —1)n". Note thatif p} € [0, 1]and w{"w{’ /¢, < 1
foralli # j € [n],then G, (A)is arandom graph on [r] with independent edge connec-
tion probabilities ( p’)f wl(.")w(j") [ 1<i<j< n) Note also that by Observation 4.2,
M} is a subtree of M)’fz whenever 0 < A < Az. In particular, Mj' is a subtree of M"
forall A > 0.

Definition 6.3 (The graph G, (1)) Fix A > 0. Let G, (1) be the random graph on [n]
obtained by placing an edge between i and j independently for eachi # j € [n] with
probability 1 —exp (—pfw;")w;.")/ﬁn) forl <i < j <n.Leté]' (M) =¢(1,G,(V).

We are now ready to state the result that connects M” to M .

Theorem 6.1 Under Assumptions 2.4 and 6.1, for every A € (0, 1/2], there exist
A1 = A1(A) = 1, no1 = np1(A) > 2, and Co1 = Ca1(A) > 0 such that for n > ny
and ) € [A21, (v — D)n"],

_ _ n" n" Cyy

]P(dH(M;? , M”) > P + (logn)1/6> < ﬁ . 21
Remark 1 Note that W(%(l, G,,)) = ©,(n), while it turns out (see (43), (42), and
Lemma 7.4) that for large (and fixed) A, 7 (€7'(1)) = Op(AV/T=InP) = op(n).
Thus, the above result shows that despite this major gap in their respective masses,
n". M # approximates n~"7 - M" quite well when A is large. However, as we will
see later (see (145) and [29, Theorem 1.2(c)]), if A is kept fixed and n — oo, n™7 -
M ' converges in distribution in the GH sense to a limiting compact R-tree whose

Minkowski dimension is (t — 2)/(r — 3), whereas dim(//!o*) =(t—-1)/( —3).
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Thus, the intrinsic geometry of M 2 has features significantly different from that of
M". Similar results were proved in [6] in the context of the MST of the complete
graph.

Theorem 6.1 follows upon combining the next two propositions.

Proposition 6.4 Under Assumptions 2.4 and 6.1, there exists ¢y € (0,v' — 1), and
for every A € (0, 1/2], there exist A21 = A21(A) > 1, nyp = np(A) > 1, and
Cor = Cp(A) > 0 such that for n > ny and A € [Aa1, €22n"],

- _ n" Cxn
P<dH(M)r»l ’ Mgzzn”) z )\1—A> = ﬁ 22

Proposition 6.5 Under Assumptions 2.4 and 6.1, for all large n,
Vi Vi —1/6 n -1
]P’(dH(ann, M") = (logn)™ "n ) <n .

The rest of Sect. 6 is devoted to the proofs of Propositions 6.4 and 6.5. In Sect. 6.1
below, we first explain the rationale behind proving these two results, and then the
proofs are completed in several steps in the following sections. From now on, all results
will be proved under Assumptions 2.4 and 6.1, and we will not mention this explicitly.

6.1 The general strategy

The scaling limit of the MST of the complete graph viewed as a metric measure
space was established in [6] relying on the results of [2, 3, 7]. This was an important
breakthrough, and the limiting space is—quoting the authors of [6]-“one of the first
scaling limits to be identified for any problem from combinatorial optimisation." This
proof has four key ingredients: (i) One of them is deriving the critical scaling limit
of the Erd6és-Rényi random graph. The scaling limit of the maximal components of
the Erd8s-Rényi random graph inside the critcal window was established in [3] with
respect to the GH topology. This was strengthened to convergence with respect to
the GHP topology in [6]. (ii) Consider the MST 21, on the complete graph K, on
n vertices constructed using i.i.d. Uniform[0, 1] edge weights U;;, 1 <i < j < n.
Now, for A > 0, consider the subgraph of K,, with vertex set [n] and edge set {{i JJY
l<i<j=<n Uj=< n~l + An_4/3}; let M, 5. denote the restriction of M, to
the maximal component in this graph. An important step in the proof is getting a
tail bound on the Hausdorff distance between 21, , and 2, for large fixed A. This
bound was obtained in [7]. In words, this result states that 91, , is quite close to N,
in the GH sense if A is sufficiently large, and thus, the structure of 91, viewed as a
metric space is essentially determined in the late stages of the critical window. (Note
that the authors of [7] prove their results in the slightly different setting of a random
graph process evolving through the addition of edges in discrete time. However, this
result translates to the setting mentioned above in a straighforward way.) (iii) The
third ingredient is proving a tail bound on the maximal number of vertices in the trees
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obtained by removing the edges of 9, 5 from 9, for large A. This was established
in [6, Lemma 4.11]. (iv) Finally, certain topological properties of the scaling limit
were established in [6]. This included showing that the Minkowski dimension of the
limiting space is 3 almost surely; the proof of this result also made use of the results
in [2].

The scaling limit of 91, with respect to the GH topology was established in [6] by
combining the critical scaling limit of the Erdés-Rényi random graph mentioned in
(i) with the tail bound in (ii) via the results of [6, Section 3]. This can be strengthened
to GHP convergence by using the bound in (iii) and using the fact that the number of
vertices in the trees obtained by removing the edges of 901, ; from 21, satisfy a certain
exchangeability propoerty; see the proof of [6, Proposition 4.8] and [8, Lemma 6.19
and Remark 5].

In the context of the multiplicative coalescent in the regime of interest in this paper,
the critical metric scaling limit of the maximal components was obtained in [29, 35]
(we will need slightly tweaked versions of these results in our proof as will be discussed
in Sect.7.1 below). The missing ingredient for proving the convergence in (11) was
the analogue of the result in (ii) mentioned above in the present setting. Theorem 6.1
provides this tail bound. Once we have this bound, it can be combined with the critical
scaling limit in a manner similar to [6] to deduce the claimed GH convergence in (11).
The techniques used in the proof of Proposition 6.4 to analyze the graph G, (i) will
also be useful in Sects. 7.4 and 7.5 where we prove the claimed Minkowski dimension
in Theorem 3.1 (¢).

Now, the tail bound mentioned in (ii) above was established in [7] in two stages: (a)
First, a bound on the Hausdorff distance between 90, ,1/3 (10 n)-1 and M, (going from
the barely supercritical regime to the purely supercritical regime) is proved using a
variation of Prim’s algorithm [71]; this approach used in [7] is explained in Algorithm 1
in Sect. 6.8. (b) Next, the Hausdorff distance between 91,5 and 90, ,1/3 (10 -1 (from
the critical window to the barely supercritical regime) is bounded for fixed A > O.
This step makes use of [63, Theorem 7] which, in words, says that the identity of
the maximal component in the Erd6s-Rényi random graph process gets fixed in the
late critical window. The desired bound is then established by considering time points
in a suitably chosen geometric progression in the interval [A, n'/3(logn)~!], and
estimating the Hausdorff distance between the MSTs of the maximal components at
consecutive time points in this progression. This technique of proving a property of
a random graph process by considering time points where the consecutive points are
neither too close nor too far away was previously used in [63, Sections 4 and 6] where
it was termed the “scanning method.”

Proposition 6.5 stated above gives a bound on the Hausdorff distance between /"
and M;’zznn—the MST on the component of the vertex 1 in the purely supercritical
regime where the graph is only slightly supercritical. This gives a result analogous to
the one derived in [7] (mentioned in (a) above) for the model of interest in this paper.
In our setting, applying Algorithm 1 directly would not yield the desired bound; rather
we have to use a modification of this approach (explained in Algorithm 2 in Sect. 6.8).
Proposition 6.4 proves the complementary bound by connecting ]l71)’\1 to M;’zznn. In
the proof of Proposition 6.4, we use the scanning method as in [7, 63]. Here, the
bulk of the work lies in choosing an appropriate geometric progression to which
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the scanning method can be applied, and bounding the Hausdorff distance between
the MSTs at successive time points in this progression. This requires several new
techniques. In particular, we rely on a new method of getting tail bounds on heights
of branching processes recently developed in [4], concentration inequalities proved
in [5], and results on the relation between connected components of inhomogeneous
rank-1 graphs and p-trees derived in [28, 29].

In Sect. 6.2 below, we will define two processes called ‘breadth-first walks’ that
will help us analyze the random graph models of interest. In Sect. 6.3, we use a con-
centration inequality for the suprema of the centered breadth-first walk (which relies
on a similar inequality derived in [5]) to prove bounds on the lower tails of the total
weight of the component of 1 in G, (1) as well as the sum of the squares of the vertex
weights in the component of 1 in G, (). These bounds hold for a range of values of
A where G, ()) passes from the late critcal window to the purely supercritical regime.
We also show that when 4 is in this range, the probability that many of the high-weight
vertices are contained in the component of 1 is lower bounded by an appropriately
chosen function of A. In particular, these results will allow us to show that for A in
this range, if the component of 1 is removed from G, (1), then the rest of the graph is
sufficiently subcritical. In Sect. 6.4, we obtain a tail bound on the height of a branching
process closely related to the random graph G, (). Here, we use a technique devel-
oped in [4]. Now, as mentioned above, we aim to use the scanning method to prove
the claimed bound in Proposition 6.4. With this in mind and building on the results of
Sects. 6.2, 6.3, and 6.4, we achieve the following in Sects. 6.5 and 6.6: (1) We define
81 > 0 such that the scanning method can be applied to a geometric progression of
time points where the common ratio is (1 4 §1/2). We also define a random graph
H,(, 81) such that dy (M}, M e /2)) can be stochastically bounded in terms of
the longest self-avoiding path in H, (X, 41). (2) We prove a tail bound on the diameter
of H, (A, 81). This is done by establishing height bounds for a random tree that has
(potentially) three layers, each of which resembles a multitype branching process. The
offspring distributions in these three layers and the depths of the different layers are
chosen in a suitable way to obtain the desired bound. (3) We obtain a lower bound for
the probability that each component of H, (A, §1) is either a tree or is unicyclic. Here,
we make use of a construction of a connected component of a rank-1 inhomogeneous
random graph using p-trees [28, 29]. We then use these results and apply the scanning
method to complete the proof of Proposition 6.4 in Sect.6.7. Finally, the proof of
Proposition 6.5 is given in Sect. 6.8. As mentioned above, here we use a modification
of the approach used in the proof of [7, Lemma 4].

6.2 An exploration process

Fix A > 0. It will be useful in the proof to express G, (A) in a reparametrized form.
Define

w™ A w!”
XY= and 6= (1+7)W’ 1<izn
np(az ) n ”a(a )

@ Springer



Geometry of the minimal... 749

Write x™ = (x;", i € [n]), and o2 (x™) := Y7, (x")*. (Note that similar to (18),

x;") is not included in the sum.) Then

or(x™)=n"", and (x+n'7)x;”> =9}',‘i for je[n]. (24)
Further, by Assumption 2.4, for eachi > 1,
(az(x(")))flx;") =n"-x" -0, as n— o0, (25)

Now note that for2 <i < j <n,

pr(ZEE) 2 (g L) (26)
ot oa(xm) )7

and consequently,

GaM) E 4, (1) = g(([n], x™), A+ (az(x(’”))_l> , 27)

where the latter is as in Definition 2.2.

Let 9,7 (A) = 9, () \ [1]. A useful tool in the study of the random graph ¢, (1)
is the “breadth-first walk" process (Z;’f(u), u > O) associated with a breadth-first
exploration of the random graph ¢, (1), which we describe next. This is very much in
the spirit of [11], although our breadth-first walk (defined in (29)) is slightly different
from the one considered in [11], as it is easier to analyze.

For 2 < j < n, let the size of vertex j be x;”). Choose v(1) from [n] \ {1} in a
size-biased way, i.e., IP’(v(l) = v) x x™, v € [n]\{1}. Explore the component of v(1)
in ¢, (1) in a breadth-first fashion. Let &' be the height of the breadth-first tree, and
for0 <i < hl,let Geni1 be the set of vertices in the i-th generation of the breadth-first
tree. For ¢t > 2, having explored the component of v(1), ..., v(t — 1), choose v(¢) in
a size-biased way from the remaining vertices, explore its component in ¢, (1) in a
breadth-first fashion, let 4’ be the height of its breadth-first tree, and for 0 < i < h’,
let Gen be the set of vertices in the i-th generation of the breadth-first tree. Stop when
all vertices j € [n] \ {1} have been found.

Using properties of exponential random variables, it can be easily checked that the
above collection of random variables can be constructed in the following way: Recall
the relations from (24). Let & ]" 2 < j < n, be independent random variables such that

1y~ Exp((» + (ag(x(")))_l)x;’”) , orequivalently, £}, ~ Exp(@j”i\) . (29
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To simplify notation we will write 5}“ instead of 5;7, 5~ Let v(1) be such that ‘55(1) =
min {5}1 2<j< n} and set Gen(l) = {v(l)}. Inductively define

Gen}z{je[n]\u} :
i—2 i—1
§ < [5:7<1>+Z DB ATED DD xé”)“forl <i<h'+1,
k=0 veGen,l k=0 veGeni
where
h' + 1 = min {izl : Gen}:@}.
For t > 2, let v(¢) be such that
1—1 h*
£l =min{§]'-' 12<j<nand j¢ UUGenf}.
k=1i=0

Set Genf) = {v(t)}, and define Genf, 1 <i < h' + 1, in a manner analogous to the
case t = 1. Stop when all vertices j € [n] \ {1} have been found.
We define the breadth-first walk as

707 (u) = —u + Z xPU{EN <uf, u=0. (29)

2<j=n

The correspondence described above allows one to prove various properties of ¢, (1)
by studying the process Z; . Here we make note of an elementary property of Z}"~
that will be useful to us: Suppose ¢, (1) and éj’.’, 2 < j < n, are coupled by means of
the correspondence described above. Then in this coupling, for 1 <t < m,

Zy Gy —) = Z:’_(gg(t) + Wew (cg(v(,), %n_()‘))>>
t—1
= _%-1’)1(!) + Z W <(€(v(k), g (K))) <0,
k=1

where m denotes the number of components in ¢, (). This leads to the following:

Lemma 6.6 In the above coupling, if for some 0 < uy < uy, Zf’f(u) > 0 foru €
[u1, uzl, then there exists a component €* in 9,~ (A) such that W, (‘g*) > Uy —uj.

Note that we can explore ¥, (1) starting from the vertex 1 in a manner similar to
the exploration of ¢, (A). In this case, we define the breadth-first walk as

7Oy = x" —u + Z OWE <), u=0, (30)

2<j=n
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where éj’.’, 2 < j < n,are as in (28). (Here we append a “(1)” to specify that the
process starts at vertex 1.) As in the case of ¢, (1), there is a natural coupling between
“,(\) and E]’.’, 2<j<n.

Lemma 6.7 In the above coupling,
W (€(1,9,(1)) =inf {u >0 : Z5"(w) =0}.

Let us get back to the process Zf’f(-). Using (28) and the second identity in (24),
it can be directly checked that for any u > 0,

n (n)

j=2

€1y

Note that @;")(-) is a strictly concave function (in u). In particular, for any A > 0,
®{"(-) has a unique positive zero, which we will denote by s (1). Define

n u0™, 4 exp(—ud") — 1)
n n 2( Jok Jix
¢ ) = (6]}

Jj=2

(32)

(1)
ub i
for u > 0 (the value at u = 0 is understood to be the limit of goi")(u) asu | 0), so that

O (u) = du — ugy” (u) /(1 +rn~"). (33)

From now on, we will drop the dependence on 7 in the superscripts and simply write
0., xj,x,and w; to ease notation. Recall the constants A1, A from Assumption 2.4.
Consider the interval

)\ 1/2 ny\1/2
70 .— 2 (03" n“(0y") (34)
' Al ’ A22a+1 ’

Foru € I, define i; (u) = min {i > 1: 6; yu < 1}. From the definition of 7™ and
Assumption 2.4 (iii), it follows that 3 < iy (u) < n/2 foru € I™. Writing

12 ={(u) : 0<A<n"/10, ueI®}, (35)
we have, for all large n,
i) < u® for (h,u)e I™?2. (36)
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Define the function g(s) :=s+e¢7° — 1 fors > O._Since g(s) < s on [0, 1] while
g(s) < s on[1, 00), using Assumption 2.4 we have, Vn and for all (A, u) € 12,

ir(u)—1 n
ug () = Y 0a(8in) + Y 0 (u6;,)’
j=2 j=irw)
i (u)—1 n
=u Z +u? > (05.)° 37)
J=in(u)

Using (36), we see that Vn and for all (A, u) € 1™,

i (u)—1
u Z lA(u)) =y u1200 o yt=2 (38)

whereas Assumption 2.4 (iii) and (7) yield

(i)' 7 <t (39)

Combining (37), (38), and (39), we get, ¥ and for all (A, u) € 1™?2,
N T2
u(pA ) <u*"~. (40)

Now let us switch back to CD(”)( ). Usmg the asymptotics for <p(")( ) in (40), choose
X41 > 1large enough and 41 € (O, 25 A (v = 1)) small so that ¥n,

2 (n) 1/2 (n) 1/2
(£> >0, and oW “(22") ) <0,

CD(H) —l’l
A eqn’ Ay 2a+1

Adq

and consequently, the unique positive zero s™ (1) of q><}:1>(.) satisfies, Vn,
sP) e I for A € [Aag, ea1n"]. 41

(Note that g41 € (O, oA W - 1)) implies that Vn, &41 < (v, —1).) Thus, (40), (33),
and the relation CD(”)( “”()»)) = 0 implies, Vn,

sO) =< A= for A e [Agr, 41n"]. (42)
6.3 The component of the vertex 1in G, (1)

Recall the notation €7’ (1) from Definition 6.3. In this section we will study properties
of €} (1). We start with a lower bound on # (¢} (1)).
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Proposition 6.8 There exists kg € (0, 1/4) such that the following holds for all k €
(0, ko]: there exists ny3 = naz (k) and A4z = raz(k) > Aa1 such that for all n > na3
and ) € [A43, e41n"],

P(% (€(1, %)) = (1 - 2/<)s<">(x)) >1—exp(—CAYE) @3

and consequently, JP’(W(%I"(A)) > (1 — 2K)s(")(k)( ("))1/2 ) > 1 — exp( -
AV,

We will make use of the next two results in the proof of Proposition 6.8. Recall the
independent exponential random variables 5}’, 2 < j <n, from (28).

Lemma 6.9 ( [5, Lemma 6.3]) There exists a constant C4q4 > 0 such that for all
s > 1/Caa, y = 1/Cuq4, for all large n, and A € [1,n"],

<3li]i: ZQM( £ <uj - (575“)>

Remark 2 The resultin [5, Lemma 6.3] is given in a slightly different setting. However,
the key ingredient in its proof is the Klein-Rio bound [60, Theorem 1.1]. Applying [60,
Theorem 1.1], the proof of [5, Lemma 6.3] boils down to establishing a uniform upper
bound on the variance of a certain collection of functionals, and an upper bound on the
expectation of the supremum of the said collection of functionals. This is achieved in
the proof of [5, Lemma 6.3] and in [5, Lemma 6.4]. Now, using Assumption 2.4 (iii)
and (7), those same arguments can be used to prove Lemma 6.9. Further, examining
the proofs of [5, Lemma 6.3 and Lemma 6.4] will reveal that the constant C44 can be
chosen so that it depends only on Aj, A», and t. We omit the proof of Lemma 6.9 as
no new idea is involved.

> ysr23> <exp(— Cauyloglogy).

(44)

The next lemma describes technical properties of the function <p<") defined in (32).
For fixed « > 0, define analogous to the set 12,

7. (U<n>)l/2 ne . (U(n>)1/2
)2 . _ . n 2 2
1 .—{(A,u).ngfn/IO,ue[ A , A 20t :H

Lemma 6.10 There exist C45 > 0 and ko € (0, 1/4) such that for all large n, for all
k € (0, ko), and (A, u) € 12,

“”(Ku) 9" (1 = K)u) - 1
(n)(u) (n)(u) 14 Cusx :

(45)
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Proof of Proposition 6.8 assuming Lemma 6.10: Recall the function ®}” from (31) and
its connection to <p/(\") from (33). By (41) and (42), for any x € (0, ko], there exist A4 =
Aae(k) = A1 and ngg = nge(k) such that ()», S(”)()»)) € Ilé")’z for all A € [A46, €411"]
and n > nge. Then for n > nye and A € [Ag, €4107],

1 @ (s ()
1+an~ 1+ Cysk )
Kk Cys
1+kCas

(1= K)s™ () = (1 — k)s™ () <x _

=0 —-x)s™Q)-A- ( ) > C46K)\% ; (46)

where the first inequality uses (33) and Lemma 6.10, the second step follows from the
definition of 5™ (1) which implies that ¢} (s" (1)) = A - (1 + An~"), and the final
step follows from (42). Similarly, for all n > n4 and A € [Agg, c41n7],

¢§:l) (/cs(") ()\)) > Cuer 20 F72/=3) 47)

Now recall the process ZZ’_ from (29), and note that for any u > 0,

n

_ n,— 9', n n
n’?(Z;’ (u) —E[Z" (u)]) =y m(n{gj <u}-P(e" < u)) :

j=2
(48)
Thus, by Lemma 6.9, there exists A49 > A4; such that Vn and A € [Aa9, €411™],
P< sup (A +n")|Z8 () — ]E[Z;l’_(u)]‘
u<s™ ()
1 3 1 1
> 273 (s (W) 7 ) <exp(— CA73 loglog A 73). (49)

3

Using (42), n and . € [hao, e41n"], A7 (s () T < CAZT 5. Now using (46),
(47), and (49) together with the concavity of CID():’) and the fact that (t —1)/(2(r —3)) <
(t —2)/(r —3), we can find A50 = As0(k) > d41 and ns59 = ns0(x) such that for all
n > nso and A € [Asg, e41n"],

P(Z;’_(u) > 0 forevery u € [ks" (W), (1 — K)S””(A)]) >1—exp(— C)Li) )
(50)

By Lemma 6.6, on the event in (50), there exists a component ™ in ¢, (1) with
Wi (€*) > (1 — 2k)s™ (1). Now we can generate 4, (1) by first generating ¢, (1),
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and then independently sampling the edges from vertex 1 to the vertex set [n] \ {1}.
Thus, for all n > nsy and A € [Asg, €41n"],

P(Wx(%(l, 4,0)) < (1— 2K>s<")<x>)

< exp ( — C)\f;) + exp ( —( +nMx -1 - 2K)s(")(k)) ,

where the second term is an upper bound for the probability that vertex 1 is not
connected to the component €™* of mass at least (1 — 2«)s®™ (1). Now an application
of (42) and (25) completes the proof of Proposition 6.8. O

Let us now turn to the proof of Lemma 6.10.

Proof of Lemma 6.10: Recall the definition of 1™% from (35). Let f : [0, o0) — [0, 1]
be given by f(u) := 1- e " —ue . Note that f(u) < 1 foru > 1 while f(u) < u?
for u € [0, 1]. Thus, Vn and for (A, u) € 12,

in(u)—1

n

—ub; —ub _
E Gj’x(l—e"/»*—uej,ke uf)‘ = E 9/A+ E /)Lue,x =u’ s
=2

J=ix(u)
(51)

where the last step uses arguments similar to the ones leading to (40). Now for any
u>0,ke€(0,1),ands € [1 —«, 1],

n n

1> 0,2 (b0 —uf e ) <> ub?, (1—e ™ %2). (52)
j=2 j=2

For all large n and (A, ku) € 12,

i (ku)—1
ZG (1= e = Z 07 u+ Z 7 u(kud) 2
J=i(ku)
n
= (i) e 3 (810)° =k, 53)
Jj=i(ku)

where we have used Assumption 2.4 (iii), (7), and (36). Combining (51), (52), and
(53), we see that there exists xg € (0, 1/4) small such that Vn and for all « € (0, «g],

n
D01 —eih —ub; e ) < u™? for (hu)e IV (54)
=2
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uniformly over s € [1 — «, 1]. Hence, Vn, for any « € (0, ko], and (A, u) € 2,

o (u) 307k (1= e70in) 4 e70in — g=(1=Iu0j)

P ((1 = i)u) (A= wu- 9" (1 = K)u)

— <ZGJ )L( 1_ e qu,A) +efu9j_;t _ e*(]*l()uejj)t))
uf

- <20] A/ 1 — e M0jn _ u9j_xe_“91’-”)ds) > Cysk ,
Cuf «

where the second step uses (40), and the last step uses (54). It thus follows that ¥n,
forall k € (0, ko] and (A, u) € 12,

(n) (n) 1—
@, (ku) S (( K)M) < 1 ’
0" (u) 0" (u) 1+ Caske

where the first inequality follows since <p<")( -) is an increasing function. This completes
the proof of Lemma 6.10. O

Next, we study the sum of squares of weights in the component of vertex 1, as well
as the inclusion of maximal weight vertices within this component.

Proposition 6.11 There exist 8o > 0 and ,55 > l41 such that the following hold for
all large n and for ) € [As5, e41n"]:

IP( Z 07, < —|—80)A> <exp(—=Ckr), and (55)
JEC (1, (M), j#1
AL/m

log® A

IP’(j ¢ ¢(1,%9,(\) forsome 1< j < ) <exp(—Clog™X). (56)

Proof of (55): Define ;" : [0, 00) — [0, c0) by
3 ) —Ze (1—efinny.

Since (1 —e™) > (s — 1 4+ ¢7*)/s for s € (0, 00), we have U (u) > @) (u) for
u > 0. Further, Vn and for (A, u) € 1™?2,

n
(i @) — @) = > 05 (1 = e —ub) o5y = uT2 < ugpl” (),
j=2

where the penultimate step uses (51), and the last step uses (40). Hence, there exists
80 > 0 such that ¥n and for (A, u) € ™2, ¢ (u) > (1 + 380)¢;" (u). Combined
with (41), we see that Vnand A € [Aa1, €410,
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v, (s () = (1+380)¢;” (s (2)) - (57)
Let kg be as in Lemma 6.10, and choose k1 € (0, x¢] small so that
(1 = 2k1)(1 4+ 3680) = (1 +250) . (58)

Recall the process Z:{‘“) from (30). By Proposition 6.8 and Lemma 6.7, writing n59 =
n43(k1) and Asg = Aq3(k1), we have, for all n > nsg and A € [Asg, g41n"],

P(Z;™ () hits zero before (1 — 2k1)s™ (1)) < exp (— CAYT) . (59)

Consider the coupling between ¥, (1) and the random variables E}?, 2 <j<mn,as
mentioned below (30). Then note that in this coupling, on the complement of the event
in (59), j € ‘5(1, A (A)) whenever SJ'.’ < (1 —2k1)s™()), and consequently,

oo 02, =302 el < (- 25" (W)

JEE (1, (1). j#1 j=2
n
=> 0, (11{5;? < (1 =2k)s" W)} = P(&] < (1 = 2i1)s™ (A)))
j=2

+ (1= 2k)s ™ () = TV + T

To lower bound Tg'), note that 1| —e™* > s(1 —e™%) foralls € (0, 1) and u > 0.
Thus, ;" (1 —2k1)s™ (1)) = (1=2k1)¥” (s™(1)). Thus, Vn and A € [A41, e41n"],

PO = 265 (1) = (1= 26)(1 +380)9” (s (2) = (1 +260)h,  (60)

where the first step uses (57), and the second step uses (58) and the definition of s™ (1.).
Turning to i(l"), an application of the bounded difference inequality shows that Vn
and A € [1, g41n"],

P(T" < —8or) < exp (— CA%). (61)

Combining (59), (60), and (61), it follows that there exists Ag> > As9 such that Vn
and A € [Ag2, e41n"],

IP’( Z 912’)» < (1—{—80))») 5exp(—CA2/\rIT3) §exp(—Ck). (62)
JEC(1,9, (1)), j#1

This completes the proof of (55). O
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)Ll/VI
Proof of (56): Write ), for Z;Og zk , and note that Vn and A € a1, €411"],

S WP(Er > (1= 265" (0)) = 3 wexp (= 0541 = 2615 (1)

A/m
<Z*exp<__)ﬂ ) logAexp(—Clog%‘A)SC’exp(—C”log%‘k),

(63)

where the second step uses (42), and the last step uses the fact 3 > 1.

Now consider again the coupling between %, (1) and the random variables & ;‘,
2 < j < n,as mentioned below (30). As already noted below (59), in this coupling, on
the complement of the event in (59), j € €'(1, %, (1)) whenever 1 < (1=2k1)s™ (h).
Thus, combining (63) and (59) completes the proof. O

6.4 Height bounds for a branching process

Recall the definition of v, from (18), and define v; = w; /v, for2 <i <n.Let V, be
a random variable with distribution

Z Zvl du} =~ Zwi-sm}. (64)
=2 Vi 5 tn i=2

Let Poi(V,,) denote a random variable that conditional on V), is distributed as a Poisson
random variable with mean V;,. We will need the following property of the random
variable Poi(V,,).

Lemma 6.12 There exist Cés > Ces > 0 such that foralln > 1,
Cis/u™ 2 > P(Poi(Vy) > u) > Ces/u" "2 for 1<u<uv2. (65)

The proof of Lemma 6.12 is given in Sect. 1. The main result of this section, stated
in the next proposition, describes height asymptotics of a branching process 7,, with
offspring distribution Poi(V,,). Note that E[Poi(Vn)] = 1, so that T}, is finite almost
surely.

Proposition 6.13 There exists yx > 0 and C > 0 such that for y € (0, y«] and all
n>1,

C
IP)(ht(Tn) = Vnn) = W.

The proof of this result uses a technique recently developed in [4]. For a random
variable X, define Lévy’s concentration function as

O(X,u):=supP(x <X <x+u), u=>0.
xeR
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Let (X;: i > 1) be an i.i.d. sequence with X 4 Poi(V,) — 1. Let (Sk; k=0)bea
random walk with Sy — Sx—1 = Xx, k > 1, and for x € Z, write P, for the probability
distribution of this random walk when Sy = x. By [46, Theorem 3.1] there exists a
(universal) constant C > 0 such that for any x € Z, under P,,

O(Si. u) < cu k=1, (66

Ve B[ - X 1{[X) = Xo| < )]

We start with the following lemma.

Lemm_a 6.14 LetY = X1 — X3. Let By > 0 be such that Vn, one has Bin® <uvy/2—1.
Then ¥Yn and for any u € [1, ,B*n"‘],

E[Y*1{|Y| < u}] = Cu*"".

Proof Choose A € (0, 1) such that C¢5 = 2Cé5A’_2. Then an application of
Lemma 6.12 shows that ‘?/n, forany u € [2/A, B:n*land y € [1, uA],

. . . Ces (o
P(Poi(Vy) € [y, ul) = P(Poi(V,) = y) — P(Poi(V},) > u) > T usz
Ces Ces _ Cos

= (MA)‘(—Z - ut—2 = ut—2" (67)
Hence, ¥n and for any u € [2/A, B.n®],
u
E[Y21{|Y| <u}] = 2/ YP(u = Y] = y)dy
0
ul
> 2P(X, = _1)/ YP(u = Xy 12 y)dy
1
“A Cgsy 4
> 2P(X, = —1)/ Ddy > CP(Xy = —1)u*"",  (68)
1 u
where the penultimate step uses (67). Now, using Assumption 2.4,
1 & ¢ L nye
P(Xa=—1) =E[e7"] = =) jwie™ 2 = ) (5) €@ =c">0.
i=2 i=n/4
(69)

This yields the desired result for u € [2/A, B,n®]. Now, an argument similar to the
one used in (69) will show that P(X; = 0) > C > 0, which would in turn imply that
foru € [1,2/A],

E[Y*1{|Y| <u}] = P(X; =O)P(Xo = —1) > C' > C'u*""(A/2)* 7.
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Using this last observation we extend the lower bound to the interval
u €[1, Bn*l. O

Proof of Proposition 6.13: Consider the intervals I; = [2!~1, 2/+2) for I > 1. Define

k
Tl ::min{kzl : sup Px< {Sjell}>§1/2}.
=1

el
X 1 j

By (66) and Lemma 6.14, when 2142 < B«n%, we have ¥n and a large constant
C70 > 0,

C2[+2
O(Se e, 27%) < <1/2, (70)
70 \/C7021(T_2) (21+2)(4—r)

Hence, \;’n,
ra < C102' TP for 1 <1 < m(By), (71)

where m(B) := max {k € Z-o : 2F < |pn“]} for B > 0.

For the rest of this proof, we will work with the random walk (Sk k> O) started
at So = 1, i.e., we will work under the measure P;. Let & = inf {k >0: 8 = 0}.
By [4, Proposition 1.7],

£—1
1

ht(T)) <sg 3 Y — =:3-J,(£). 72

t(T) <sq gsk (&) (72)

Following [4] we derive tail bounds for J,(£) by decomposing the trajectory of the
random walk into various “scales” which we now define. Let {o = 0 and Ry = 1. For
i > 0, define the stopping times ;11 = min {t > ¢; : S; ¢ [2%~1,2R*2)} "and let
Ri4+1 = max {l D Sq41 > 21}.

Next, for 0 < k£ < &, let A(k) denote the scale of S at time k. Precisely, let
j = max {i G < k} be the most recent epoch for a change in scale, and let
A(k) = R;j. Finally, for [ > 1, define

£—1
1
T =Y —{AGK) =1} .

par

Now consider 8 € [4n~%, B,], and note that Vn and for any such choice of 8, m(8) > 2,
where m (-) is as defined below (71). Define

by = 18(m(/6) — 1+ 142logy (m(B) — 1 + 1)), 1<l<m(B).
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Then Vn,

me) me
n —
> ST < 18C7 > F(m(ﬁ)—l+1+2log2 (m(ﬁ)—l+l)> ol-2)

=1 =1

o ( +21log; j)
< 36C7p2 P Zl e SO (13
=

where the first step uses (71), and in the second step we have made the substitution
j=m(B)—1+1.

Note that maxo<i<¢—1 A(k) < m(B) on the event {maxofksg S < L,Bn“J}.
Hence, ¥n and for B ed4n%, B,],

P (Jn (&) > c73(/3n“>’3)

m(p) m(p) by
n
P1<0111ka§$ Sk > Lﬁn"‘J> + Pl< PR AMCEDS F)

=1 =1

IA

) byl A T
n
< B ] +ZP1(J;1I(§)2 2[_1> EW—FZ?.W’

=1 =1

where the first step uses (73), the second step follows from a simple application of the
optional stopping theorem, and the third step follows from [4, Theorem 3.6]. Using
the expression for by, the above bound yields, Vn and for 8 € [4n™¢, B,],

. ) 5 c
Pl 1,6 =C ) < < .
1( (§) = C73(Bn") ) = B + ; 296 (m(B) — [ + 1)2 = Bn

(74)
To reparametrize from B to y as in the statement of Proposition 6.13, write y =
3C;3B773, and y, = 3C;65 —3. Then (72) and (74) give the desired result for all

large n and for y € [3C7347 31, ¥«]. Now choose a larger constant to make the
bound work for y € (0, 3C734"3p "] and forall n > 1. This completes the proof. O

6.5 Diameter outside the component of the vertex 1

For A > 0 and § > 0, let H, (X, §) be the random graph constructed in the following
way: Let the vertex set be

7 =\ V(€70). (75)

and place edges independently between i, j € ¥, with probability 1 — exp( -
Plisspwiw;/En).
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Proposition 6.15 There exist 51 > 0, €76 € (0, e4;] and A76 > rss such that for all
large n, for ) € [A7s, €76n"], and for every A € (0, 1/2],

n T
P(diam (Ha (2, 81)) = ) < A exp (— CA%). (76)

n
)LI—A

Let us specify here how we choose the thresholds. Choose A7¢ > M55, 676 € (0, €411,
o0 € (0,1/2),and §; > 0 such that

)—1/2 - (1 +380) —20)

. 40> and eg<l
- (1 + &76)2 -2

=10
(77)

0 (76

where y4 is as in Proposition 6.13, and Jy is as in Proposition 6.11.
Leti; < iy < --- be the vertices in 7} For 1 < k < [/]|, write Gies(ix; 1) for the
component of ix in H,(A, 8)\{i1, ..., ix—1}. Write
Pi()=P(- |¢'M), and Ei[-]=E[ - |¢]W)]. (78)

Now,

n n
]P1<diam (Ho(h,81)) > /\:’_A> < ZH’H(diam (Gresi: 1) = A?_A). (79)
k

For I <k < |7/, let

o=\ i ik ) (80)
Note that for any s > 0,

Bernoulli(1 — ¢™) <¢q Poi(s) (81)

and consequently, the breadth-first exploration tree of @es(ix; A) starting from iy is
upper bounded by a multitype branching process with state space 7,  in which the

type of the root is ik, and any vertex of type i has Poi( pz’l A Wi /E,,) many type j
children for i, j € 7/;x/ &~ This leads us to the following definition which will be useful
in the proof.

Definition 6.16 For A > 0, D C [n], and i € D, let MTBPQ”'(D) be a multitype
branching process tree with type space D that is rooted at a vertex of type i, and in
which a vertex of type j has Poi( p?] o W) Wk /Z,,) many children of type k for each

j,k e D.Let MTBPfl(D) = MTBPg’i (D), and note that in this case a vertex of type
J has Poi(w jwyg /v, £,) many children of type k.

The bounds in the next lemma will be crucial for dealing with diam (‘Kres(ik; A)).
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Lemma6.17 Forany» > 0,1 <k <|¥]|, and h > 0,
Py (diam (Gres(ixs A)) = h) < Py (ht (MTBP,* (7)) = h/2).

Further, for anyi € D C [n], and h € Z+y,
IP’(ht (MTBP; (D)) > h) < exp ((1+8)han") ~IP’<ht (MTBP!,(D)) > h) )

Proof The first assertion follows from the discussion above Deﬁnition 6.16. For the
second assertion, write { = 14-(1+81)An~", and note that MTBP! (D) can be obtained
as a subtree of MTBP (D) by killing every child independently with probability
1 — ¢~ 1. Write <7 for the event in which ht (MTBPﬁ’i (D)) = h, and no vertex in the
leftmost path of length /4 starting from the root in MTBPﬁ”’ (D) is killed. Then

P() = {hIP’(ht (MTBP}'(D)) > h)

>exp(—(1+ 81)hkn’7)IP’<ht (MTBP; (D)) > h)

To finish the proof, note that .’ implies ht (MTBPL (D)) > h. O

We next record two properties of the above branching process. Let V), be as defined
around (64).

Lemma 6.18 Fixi € [n]\ {1}. Consider MTBPZ([n]\{l}), and erase the types of all
vertices. Then this tree has the same distribution as a branching process tree where the
root has Poi(w,- / vn) many children, and every other vertex has Poi(V,) many children.

This result was noted in the discussion above [65, Proposition 3.2]. We will briefly
include the proof.

Proof of Lemma 6.18: Note that MTBP!, ([n] \ {1}) can be constructed by starting from
the root and inductively continuing through the generations as follows: to each vertex
of type j assign Poi(w;/v,) many children, and conditional on this step, declare the
type of every child independently to be k € {2, ..., n} with probability wy /¢,. Thus,
in the tree obtained by erasing the types of every vertex in MTBP; ([n]\{ 1 }), the root
has Poi(w; /v,) many children, and every other vertex has Poi(wy /v, ) many children,
where P(Y = j) = w;/ly, j = 2,...,n. The proof is complete upon noting that

wy /v, 4 V. |
The next lemma follows easily from Definition 6.16.

Lemma 6.19 Consideri € D € D' C [n]\ {l1}. Then MTBPZ(D) can be coupled
with MTBP!, (D) so that the former is a subtree of the latter.
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Given 7, we will now construct a three layer branching process (L3BP), which

we will use to obtain tail bounds on ht (MTBPQ‘ (”i/)f k)) Let o be as in (77), and
A € (0, 1/2] be as in the statement of Proposition 6.15.

Definition 6.20 For A > 0 and 1 < k < ||, consider the following (potentially)
three layer process L3BP;f (1):

(a) Layer 1: Start MTBP; (”//)\/), and run this process up to generation (1 —
20)n" /(20172). Call this the first layer. If there is at least one vertex in generation
(1 —20)n"/(211~2), then we say that the first layer has been fully activated.

(b) Layer 2: If the first layer is fully activated, then starting from every vertex v in
generation (1 —20)n" /(22.!~2), run independent MTBPYP*” ([n]\[k]) processes
up to generation on” /(211 ~2), where type(v) € [n] denotes the type of the vertex
v. Call this the second layer. If any of these branching processes survives up
to generation on”/(21'=2), then we say that the second layer has been fully
activated; in this case, there is at least one vertex in generation (1 — o)n"/ (ZAI’A)
of L3BP)F(A).

(c) Layer 3: If the second layer is fully activated, then starting from every vertex v
in generation (1 — o)n”/(22'=2), run independent MTBP;YPG(U)([n] \ {1}) pro-
cesses. Call this the third layer. If any of these branching processes survives up to
generation pn” /(211 72), then we say that the third layer has been fully activated.

Write SZ‘ , for the event that all three layers have been fully activated, and note that
ik, = {ht (L3BPS (1) > n/@A1 =)} Since ¥, € ¥ and ¥, C [n]\[k] C
[7]\{1}, using Lemma 6.19, ht (MTBPi,k (”1//\’,()) =g ht (L3BP£{‘ (1))- In particular,

. n .
P (e (MTBPE () = 375 ) < Fa(El)- 52)

For . > 0, define €, , := {27,607, 1{j € €/'(1)} = (1 + 0)2}. Note that by
(55) and (27), Vn and for A € [Ass5, €410],

]P)(szz,)») <exp ( - CA) . (83)

Lemma 6.21 We have, for all A € (0, 1/2], for all large n, and for A € [A7s, €76n"),
on the event €, ;,

+1 T+l

]P’l(S;k’A) < CAT3k w1 exp(

L+ - 2Q)AA>
21 +e7)? )’

for1 <k < |7}l
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Proof Fixk € {1,...,|%|}and A € (0, 1/2]. Write I'>.3 for the number of vertices

in generation (1 — @)n"/(2A'=2) of LSBPZ‘ (A) (i.e., vertices at the end of the second
layer), whose subtree in the third layer has height at least on /(2A!~2). Clearly,

Pi(3¥,) < Ei[2s]. (84)

Hence, it is enough to find an upper bound for E; [F2w3].

For j > 1, let Gen(j) be the set of vertices in the j-th generation of L3BP* (1),
and let Y (j) = ZUGGen( ) Weype(v) denote the sum of weights of vertices in the j-th
generation. Conditioning on the first two layers, using Lemma 6.18 for the branching
processes in the third layer, and then using Proposition 6.13 for the height of such
branching processes, we get, Vn and for all A € [A76, €7617],

Ei[[es] £ —— ~E1[Y<%)} . (85)
na(Q/AI—A)m 21

It can be checked by a direct computation that in the second layer,
(1—o)n" (1 —o)n"
m () | = ey (s
_on" _ (1 —=20)n"
T
where Ry = Z;f:k L1 wjz /(v €,). Similarly, in the first layer,

(1 —20)n" w3 (1 —20)n"
() | = (2 o ) [ (s 1)

i€

(1-20)n"

w? 2 I-A
=...= * Wiy,

vl
jey/}h, ntn

which combined with (86) and (85) yields, Vn and for all A € [A76, €7617],

(1—20)n" 2
J

2 n on'l
1 Wk w] -4 w= WA
E{|T ~ < CAT3 —_— ,
1[T23] < x<na)x( E v,,Z) X(Z vnﬁn>

. A n .
jev] Jj=k+1

(87)
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where we have used the relation w;, < wy. Writing Ak for k A (n/2), we have

n w2 k 2
Y Loi-y Z
1-2 P2
j=k+1 Vntn j=2 V”K” e =7 ¢
"(AKYT C'(k/2)"
“1_ ( )51_ (/)’ (88)
n" n"
where the first step uses the relation
n
Y wnln) =1, (89)
and the second step uses Assumption 2.4. Further, on the event €, ;,
20 - (n)
Z 2>L-(1+8))\—$-(1+8M
J - —n)2 0)A = n —n)2 07 -
JeEr o, (14 An—1) n(1 4 An=")
Thus, forn > 2 and 1 € (0, e76n"], on &, ,
wj wj (1 + 80)% (14 50)>
2o =t X = T = W e
jery Vntn JeE 0. j#1 Vntn ( n=")"n ( £76)°n
(90)

Using (87), (88), (90), and the inequality 1 — u < e™%, we get, Vn and for A €
[A76, e761"],

14+ 80)(1 —20)A2 Co1 k"
]El[szg]SC)»% xk“xexp(—( + 90)( 0) )xexp(— o )

2(1 + &76)? A=A
On
on the event &, ;. Since sup,,- uTIe U < 00, and A7g > Agq; > 1,
Cok" Co1 k" A =3
exp(—)\l—A <exp| — . SCk—n
for L > A76, which combined with (91) yields the desired result. 0

@ Springer



Geometry of the minimal... 767

F_’roof of Proposition 6.15: Combining Lemma 6.17, (82), and Lemma 6.21, we see that
Vn, for all A € [A76, €76n"], A € (0, 1/2],and 1 < k < |/]], on the event &, ;,

n
P, <diam ((gres(ik; )‘)) z )Lll/lA>

1l (1 +80)(1 —20)A2 (14822
< C)\r—3k 7—1 — -
= exp ( 21+ 675)> P 2

(2SN 51 Sor
< CAT3k 7T exp ) 92)

where the last step uses the second relation in (77). Combining (92) with (79) and (83)
completes the proof. O

6.6 Maximum surplus outside the component of the vertex 1

Let H, (A, §1) and e7¢6 be as in the setting of Proposition 6.15. Our aim in this section
is to prove the following result.

Proposition 6.22 There exists g3 > Ass5 such that Vn and ) € [Xo3, €76n"],
]P’(maxsp (Hp (2, 81)) > 2) < C/Vx. (93)

The proof of this proposition will require some results from [28, 29], which we
will now recall briefly. Fix a finite vertex set #" and write G%" for the space of all
simple connected graphs with vertex set #". For fixed ¢ > 0 and probability mass
function ¢ = (gu, v € %), define a probability distribution Peon( - : ¢, a, #) on G
as follows:

1
Peon(G: . a, V) = Za. [T (1—exp(-agig))
’ (i, ))EE(G)
[] exp(—agiq)). for G e G, (94)
(. J))¢E(G)

where Z(q, a) is a normalizing constant so that Peon (G"; ¢, a, ¥) = 1.

For ¢ > 0, consider the random graph & (([n], w), ¢) from Definition 2.2, and
write (4, i > 1) for its components in decreasing order of their masses. Let '@ :=
V (%) be the vertex set of ¢;, i > 1, and note that (”I/(”; i> 1) is a random partition
of [n].

Proposition 6.23 ([28, Proposition 6.1]) Conditional on the partition (7/ @ j > 1),
define

Wy

2
" ==—"——ve??), and a? =1t Z wy ), i>1.
D ver o Wy

vell
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For each fixedi > 1, let G; € (G,Cy%) be a connected simple graph with vertex set V.
Then

IP’(‘K,- =G; Vi=1|(V? i> 1)) =[[Peon(Gi: . a”. 7?).

i>1

Thus, the random graph ¢ (([n], w™), #) can be generated in two stages: (i)
Stage I: Generate the partition of the vertices into different components, i.e., generate
(7; i > 1). (i) Stage IT: Conditional on the partition, generate the internal structure
of each component according to the law Peon (-5 ¢, a®”, ¥”) independently across
different components.

In Proposition 6.24 given below we will describe an algorithm to generate such
connected components. To state this result, we need some definitions.

For fixed m > 1, write T,, for the set of all rooted trees with vertex set [m]. Let
T be the collection of all plane trees with m vertices where the vertices are labeled
by elements of [m]. Thus, an element of T;’,{d is arooted tree with vertex set [m] where
the children of each vertex are arranged from right to left. For t € ’H‘,‘i{d andi € [m],
let P(i; t) be the following set of vertices: j € P(i; t) if and only if the parent of j is
a strict ancestor of i in t, and j lies on the right of the path connecting i to the root of
t. Let

Pty :={G.j) :ie[m], jePi; v}

For a probability mass function ¢ = (ql, R qm) with ¢; > O for all i € [m] and
a > 0, define

L(t)y=L(t;a,q) = l_[ [M} exp( Z aqiqj), teT,(;;d.

(i, j1eE® 49i4; (. j)ePt)
(95)

Considert € ']I‘;)nrd, and suppose the vertices of t, arranged in a depth-first order, are
v(1), ..., v(m), with v(1) being the root. Define the function fi(-) = fi(-;a, q) on
[0, 1] as follows:

A=Y gp i) S5 <) qum

JeP(v(i);t) k<i—1 k<i

and fi(1) = 0. Clearly,

1
> g = fo fe(s)ds (96)

(i,))€P(t)
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Now, since | +s5 < e® <1+ se® forany s > 0,

{i.J}EE® 44id; li.J}eE®

= exp (a > qiqj> < exp (aqmax) -

{i.j}eE®

where gmax = maxe[n q;. Hence,

1
1 < L(t) <exp (aqmax) - exp <a/ ft(s)ds> . 97
0

Associated to the probability mass function ¢ there is a random tree model called
a g-tree [37, 70] which we now define. (This random tree is usually referred to as a
p-tree, but we instead use ¢ to avoid confusion with p¥ as defined in (19).) Fort € T,
and v € [m], write d, (t) for the number of children of v in tree t. Then the law of the
q-tree, denoted by Py, is defined as follows:

Ptree(t) = Ptree(t; lI) = 1_[ qf,i”(t), te Tm (98)

ve[m]

Generating a random ¢-tree having distribution Pgee, and then assigning a uniform
random order to the children of every vertex in this tree gives a random element in
Tﬁ{d with law Pyrq(-; g) given by

dy(t
g ®

iy @O

Pord(t) = Pora(t; ) = t e T (99)

Using L(-) to tilt Pyg results in the following distribution:

L(t)

| teTod, 100
E[L(T,)] © (100)

P(:rd(t) = Porg(t) -

where Ty ~ Porq.

Proposition 6.24 ([28, Proposition 7.4]) Fix m > 1, a > 0, and a probability mass
function q on [m] with min; g¢; > 0. Construct a random connected graph on [m] as
follows:

(a) First generate Tq* having distribution P}, as in (100).
(b) Conditional on T}, add the edge {i, j} with probability 1 — exp ( — aqiqj) inde-
pendently for (i, j) € EP(Tq*).

Then the resulting random graph is distributed as ]Pcon( 5 q,a, [m]) on Gfr?;}
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Note that in the above construction, the number of surplus edges in the resulting
graph equals the number of edges added in part (b) of the construction. Using (81)
and (96), we see that the number of surplus edges in the random graph resulting in the
above construction is stochastically dominated by Y, where

1
(Y | Tq*) ~ Poi(a/o qu*(s)ds).

Hence, if 4., is distributed as ]P’COH( -3 q,a, [m]), then by Proposition 6.24,

2 E[llfr, 1% - L(T)]
E[L(Ty)]

< a®exp (agmax) - E[Il f1, 1% - exp (all fr, )] (101)

P(sp (%on) = 2) < P(Y = 2) <a® E[l fr;13] = a

where T; ~ Pyq. Here, the second step uses the fact that IP(Poi(s) > 2) < 52 for all
s > 0, and the final step uses (97). The next result gives a tail bound on || f7, [|co-

Lemma 6.25 There exists a universal constant C > 0 such that for every m > 1,
probability mass function ¢ on [m] with min; g; > 0, and x > e,

P (Il f7,llo = xlqll2) < exp (— Cxlog(logx)).

Lemma 6.25 follows by combining [28, Lemma 7.9] and [29, Lemma 4.9]. We are
now ready to prove Proposition 6.22.

Proof of Proposition 6.22: Let P;(-) and E;(-) be as in (78). We will write ), for
Zje‘//A” where 7] is as in (75). Let &, be as defined before (83). Then, for n > 2
and A € (0, g76n"], on the event &, ;,

2

(148 w;
1 J
( + nl >21vn€n

w?
n J
Plsan 2 e

- <1+ (1 +51)K><1 _ (L+50)2 )
n' (1 + &76)%n"
A (14 60) Ado
<t (00 - g < g a0
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where the second step uses (90), and the final step uses the second relation in (77),
Consequently,

IE%( @) = %)

% component
of Hy (,51)

< né -EI[Z 1wy - W(%(v, Hn(x,an)ﬂ
= %-lev(l - )

2
= Plissyn. s 21w/ n

CVa n" c’
SnTp'leg'<T>§ﬁ, (103)

where the first step uses Markov’s inequality, the second step uses [5, Lemma 4.5],
the third step uses (102), and the final step uses the relation Z?: 1 w? = 0(n).
For A > Ass, define

AL/
Gékzenﬁkﬂ{je%ln(k)forall 1<j<— } (104)
' log” A
For A > 0, let
By = { EV/(%))z < n2pk1/2}, (105)
¢ component
of Hy (%,81)

and note that B, , is the complement of the event studied in (103). On the event B, 3,
W (€) <n”)~'* for all components € of H,(x, 81). (106)

Leti; < ir < ...and Ges(ix; A) be as defined before (78). Then

n
P, < Z 912,1 > Glzy)h +2(1 4+ 61) ZQ;J for some component € of H, (A, 81)>

JjEC j=2
n
<PI(B,)+ ) P ({ Y0 =00, +20048) Zef,k} N SBM) :
k JEGres (ik; A) j=2

(107)

Using (106), we can choose Ag3 > As5 such that Vn and for A > A93, on the event
%I’l,)\.’

Wi Gresliic 1) < 1 for 1<k <[%]. (108)
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Analogous to the exploration mentioned before Lemma 6.7, conditional on %1” A),
Gres (ix; 1) can be explored in a breadth-first manner starting from iy, and # (‘Kres (ik; A))
will have the same distribution as the hitting time of zero by the corresponding breadth-
first walk. Let 57,(1+61)A’ 2 < j < n,beasin (28) with A replaced by (1 + §1)A. Using

(108), ¥n and for A € [Ao3, e76n"], forevery 1 < k < 1771,

Pl({ Z Qf,x2912,x+2(1+31)29]3’,\}ﬂ%n,x)

J €Cres (ix; 1) j=2
n n
=P (%A + D0 ME (apn < 1) 2 67, +201+8) 29/3,0
J=ik j=2
¢ ¢’ do—1
§exp<——>§exp<— — >§exp<—C”ik°‘ ,
> izik Gj,x s JH

(109)

where the second step follows from the bounded difference inequality. Combining
(109) with (107) and (103), we see that Van and for A € [Ag3, €76n”], on the event
€,

n
P, ( Z Qf,x > 912,)\ +2(1 +61) 291311 for some component ¢ of Hy, (A, 81)>
s j=2
C C//
< —+ exp( — C/k4°‘1> <—. (110)
wt X e 7
k>21/1/log? A

Now, using Proposition 6.23, conditional on %7’ (1), we can generate the compo-
nents of H, (X, 8;) in two steps: first generate the random partition (7/ @ > 1) of
7, into component vertex sets, and then conditionally generate the internal structure
of each component. Here, the relevant parameters are

W _ (0. O ._ Wy | @
q" =(q);ve? )'_(—7/(7/@)’ veV > and
i i 2
a” = p{i s (P (VD)) [t . (111)
We will write

IPyptn(') = P( . ’Cgln()‘) , (4//(,-); i
Epn() :=E( - |€7T0), (75 i

1)) , and
D).

vV 1V
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For A > O,IetiB;M = %n,,\ﬂ{ Zje%ﬂ w? < C112n2® for each component ¢ of H, (A,
81)}, where

n
Ci12 := sup {(ef,mnn +2(14+80) Y 07, )03 in> 1} . (112)
=2
Writing ¢, = max {g{’ : v € #?}, we get, Vn and for A € (0, g76n"], on the

event %;,x’ fori > 1,

) ey wd)'?

@) @) (GNP —
a" g = a4 12 = Plipsa

¢, o)
4/ @) A (YD
VU e PO (113)
n nP

C
< —_—
= / )

(114)

where the last step uses (106). Hence, Vn and for A € [1, e76n"], on the event %;’ o
fori > 1,

Poin (sp(67) > 2) < g )

©)" - exp (Vg
B[ /1,0, I3 - exp (a1 1, lloo) ]

@) @) )

(a
[
= (@llg®12)* - exp (aVg

|fT (,) ”oo @) 0 ”qu(,') ”OO
e exp (allg 2 - o —
llg113 llg®l2

<Cc(Wr)’n?, (115)

-E

where the first step uses (101), and the final step uses Lemma 6.25 together with the
bounds in both (113) and (114). Consequently, Vr and for A € [1, g7¢n"], on the event

’
n,A°

G
IP’pm<maxsp(H (x, 81))>2> <CZ ”//("// )) < 5_

Thus, to complete the proof it is enough to show that Vnand A € [Lo3, €76n™],
P((B),,)) < CA/2 (116)
To this end, observe that ¥ and for A € [Lo3, 76n™],

((‘Bn ) ) ((@;M)C) + ]E[Il@; Pl((%n ) )]
P((€,,)) + Cr~ % < exp (— C'log™ 1) +exp(—C'A) + CA™/2,
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where the second inequality uses (103) and (110), and the final inequality uses Propo-
sition 6.11. This completes the proof of (116), and hence of Proposition 6.22. O

6.7 Proof of Proposition 6.4

Let &1 be as chosen in (77). Let §, and €37 be given by
82 = 51/2, and & = 876/2.

For A > 0, let H, (), 82) be the random graph on the vertex set ”17}5 = [n]\V(‘gl” (A))
obtained by placing edges independently between i, j € ”17)\’ with probability 1 A
n wiw; /Ll )
(P(1+52)x iWjltn _
Since 1 —e™ <u A lforallu > 0, 6] (1) can be coupled with €7' (1) so that the
Eormer is a subgraph of the latter. Further, we can choose A117 > A7 V Xo3 such that
Vnand A € [A117, €220,

Pliasyatiw;/ln < 1 —exp (= plipspawiw;/ln) (117)

for all i, j € [n]. Then it follows that Vnand A € [A117, €2on"],
dH (M)Yf ’ ME11+52)A) de 1 + LP(I:I)’[()"v 82)) de 1 + LP(HII()"v 81)) ’ (1 18)

where H, (X, &1) is as in the setting of Proposition 6.15, and LP(:) is as defined below
(12). It is easy to check that for any finite graph H,

1+LP(H) <1+ 8-diam(H) - (maxsp(H) + 1)

<
< 8(diam(H) + 1)( maxsp(H) +1). (119)

Combining (118) and (119), we see that for any A e (0, 1/2], Vn and A €
[A117, e22n™],

- = 24n"
Pldu| My Myisyn | = 577a
. n
< ]P’(] + diam (H, (%, 81)) > W) —HP’(max sp (Hn (2, 81)) = 2)

< IP’(diam (Ha(2, 81)) = #im) + P(max sp (Hn (X, 81)) = 2)

< C()\?; exp ( — C/AA/z) + k_1/2>

<V sup [uiﬂf% exp (— C'u/?) + 1] , (120)

u>1
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where the third inequality follows from Proposition 6.15 and Proposition 6.22. Now
forany Aj17 < A < epn’,

ko
dH<Mf* M:zzn"> = ZdH(M?H-ﬁz)jA’ M(nl+32)f'+lx)’ (121)
=0

where ko = ko(n,A) =min {j > 0 : (1+8)/ T4 > exn"}. Using (121) and (120),
the proof of Proposition 6.4 can be completed via a simple union bound. Note that

ko o)

24n" 24n" 1 _ Ciopn” n"

< =
cNI=A/2 — 2 1=A)2 3j/4 1-A/2 — 3y 1-A"
j=0 ((1 + 52)")») / A=A/ =0 (14 82)37/ A=A/ A

(122)

where the last step is true for A > Ao; = A21(A), and A2 > A117 is chosen in a way
sothat Cip < A2A1/2. We then choose 177 (A) > 1 so that the interval [A2; (A), gxon]
is nonempty for n > n»>(A). The rest of the argument is routine. O

6.8 Proof of Proposition 6.5
To simplify notation, we will write
Yn = €xn'.

Before starting the proof of Proposition 6.5, we need two elementary lemmas.

Lemma6.26 For C_> 0, write ,(C) for the event that W(€) < Clogn for all
components € of G,(y,) other than €' (vy). Then for every k > 0, there exists
C23 = Cy23(k) < 00 and njz3 = nj23(k) such that forn > nj3,

P(€,(Cr23)) = 1 —n"%. (123)

The proof of Lemma 6.26 will be given in Sect. 2.

Lemma 6.27 (a) Suppose k,mg € Z-g, and xo, x1,...,xr € (0,1) with xo9 <
min {xj 1l <j< k}. Further, assume that Z;O), 1 <i<mg and ZV,...,Z®
are independent random variables such that Z}O) ~ Unif [xg, 1], i =1, ..., mg, and

A NUnif[xj’ 11, j=1,...,k Then

. ) . mo
P( min Z° < min Z9 ) > .
1<i<myg 1<j<k mo + k

(b) Suppose in addition to the parameters and random variables in (a), we have, for
some k,mo € Z~q, another collection of numbers X, X1, .. ., i; e (0, 1) with xo <

min {)?1 1<l < 12} Further, assume that Zi(o), 1 <i <mgy, and Z(l), e, Z(E) are
independent random variables that are also independent of the collection of random
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variables in (a) such that Z;O) ~ Unif [Xp, 11, i = 1, ..., Mo, and Z® ~ Unif [x;, 1],
I=1,...,k Then

. . 5 . ; .5 m mg
P( min Z”A min Z” < min Z9 A min_Z" ) > AN——s.
1<i<mg 1<i<iip l<j<k 1<i<k mo+k g4k

Proof We only prove (b). We start with a specific construction of the ran-
dom variables in (b). First generate my + k i.i.d. Unif [xg, 1] random variables

YI(O), e, Y,ﬁfg, Y™, ..., Y® and independent of this collection, generate g + & i.i.d.
Unif [%g, 1] random variables 171(0), o, 17;"?)), Y, . ¥®. Since xo < min {x; :

1<j< k} and Xo < min {)?l 1<l < l;} we can construct the random variables
in (b) on the same probability space as the above collection of random variables such
that

70 =y for i=1,....,myg, ZV =7 for i=1,...,mm0,

ZV>YY for j=1,....,k, and ZO =YD for 1=1,... k.

Then note that the probability in Lemma 6.27 (b) is lower bounded by

P(lmin YA min ¥” < min Y9 A min_Y(l)) =:POM),
<i=mo

1<i<myg 1<j<k 1<i<k

say. Let Min := min {Yl(o), e Y,ﬁ%, Yo, ..., Y”‘)}, and similarly define Min. By
symmetry,

mo
n'10+l?'

P(S)T|Min<%)=%,
mo

and P(OM | Min < Min) =

Hence the claim follows. O

Given (_;n (y») and the edge weights U ] Gu(y)» V€ CAN construct the restriction of

M" to G, (y,). For any vertex v ¢ V(‘K-l" (yn)), in order to find the path in M" that
connects 1\71}’,‘” to the restriction of M" to %-17()/,1), we can proceed via the following
algorithm.

Algorithm 1 In this algorithm, we will join connected components of G (yy) sequen-
tially using edges from E(G,) \ E(G,(yn)). We will refer to a collection of connected
components joined by such edges as a “cluster.”

(a) Look at the edges in E(Gn)\E(G,, (vn)) going out of %’”-[’ (vn). Add the edge with
the minimum weight to Céf(y,,), thereby connecting it to another component of
Gn(yn)-

(b) Repeat sequentially with the current cluster of v. At the k + 1-th step, we look
at the edges (if any) that are in £ (C_}n)\E ((_;n(yn)), and have one endpoint in the
current cluster of v (i.e., the cluster after the addition of the k-th edge) and one
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endpoint outside of this cluster. We then add the edge with the minimum weight
among all the outgoing edges from the cluster, i.e., including the ones considered
in the first k steps.

(c) Stop if v gets connected to 55-1” (¥n), or if there are no outgoing edges from the
current cluster of v. In the latter case, v ¢ €(1, én).

Using Lemma 4.3, it is easy to see that if v € € (1, G,,), then every edge added
in Algorithm 1 is an edge in M”". Now, the two-layered randomness present in the
problem (presence/absence of edges and edge weights) makes Algorithm 1 hard to
analyze directly. Loosely speaking, the problem arises from the fact that if 7' (%) is
small for some component & of C_}n(yn) other than ‘5_1” (¥n), then we cannot say that
there are enough edges in E (GO\E(Gy(yn)) that connect € to ‘K_{’(yn) with high
probability— something we need for the argument to work. So instead we will work
with the following modified algorithm. Let

nl/4

= Gogm e

tn

Algorithm 2 The word “cluster” will have the same meaning as in Algorithm 1.

(a) Lookatthe edgesin E(G)\E (G (yn)) that connect ‘5-5’ (yn) to [n]\(V (‘ﬁ_f (y,,)) U
1% (%_1" (¥n))). i.e., we do not check for edges that connect 7 (yn) 10 El (yn). Add
the edge with the minimum weight to ‘éjl(yn), thereby connecting it to another
component of Gy Vn).

(b) Repeat for another (¢, — 1) many steps in a manner similar to Algorithm 1, but
without checking for edges that connect the current cluster to %_1” (), or until there
are no outgoing edges from the current cluster to vertices that are not in CK_I” (Yn)-

(c) After the t,-th edge has been added, if the algorithm has not terminated already,
look at the edges (if any) that are in E ((-}n) \E (C_}n (vn)), and have one endpoint in
the current cluster and one endpoint outside of this cluster. Let us emphasize that
at this step, we are checking for edges that connect the current cluster to ‘5-1" Vn)-
We then add the edge with the minimum weight among all the outgoing edges
from the current cluster, thereby connecting it to another component of (-}n(yn).
Stop if this component is %_1”()/,1).

(d) Else, ignore the edges (if any) found at the (#, 4+ 1)-th step between ‘5_1” (Vn)
and the cluster of v, and continue as in (b) for another t, many steps. Thus, for
j=t+2,...,2t, + 1, the j-th edge added will be between the current cluster
of v and a vertex that is not in ‘5-1” (vn). At step 2(#, + 1), again check for new
edges that connect the current cluster of v to its complement (including edges that
connect the cluster of v to %—1" (vn)), and at this step the edges found in step (¢, + 1)
that connect to ‘5-1" (v») will again be considered.

(e) Continue while checking for possible new edges that connect the current cluster
of v to ‘@51"()/,1) every (t, + 1) steps. Stop if we connect to ‘5_1” (yn) (this is only
possible at step j(t, + 1) for some j > 1), or if no new edge can be added to the
current cluster.
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The next lemma states a simple property relating the two algorithms.

Lemma 6.28 For v ¢ Cf-ln(y,l) and any iy > 1, if v gets connected to %—1”()/,,) after
the addition of ig + 1 many edges in Algorithm 1, then Algorithm I and Algorithm 2
coincide up to the addition of iy edges.

Define the event

B, = {W (@) = (1= 260)s™ () - n” - (03”) '/,

wp|C| < W (€) < C123(2) - logn for all other components % of (-;n(yn) , and

degree of all v € [n]\ V(%] (yn)) in G, is < (10gn)3/2} . (125)

Here, the first line corresponds to the event of interest in Proposition 6.8, and the
second line corresponds to the event in Lemma 6.26 with « = 2. By (56), Vn,

1/n

IP’(j c (6_1”()/”) for 1 <j < y”—S) >1 —exp(—Clog3°‘n). (126)
(log vn)

By Assumption 2.4 (iii) and (7), for any j > )/nl/" (log y) 3, wj < 2%As(n/ j)* <

Clog** n for all large n. Now the degree of a vertex v in G, is distributed as
> v Bernoulli(wvw i/ Kn), where the summands are independent random variables.

Thus, using (126), a union bound and Bennett’s inequality [31] shows that Vn,

P(degree of some v € [n] \ V(‘K-l” (vn)) in G is > (log n)3/2>
<nexp(—C 10g3”‘ n). (127)
Combining (127), Proposition 6.8, and Lemma 6.26 yields, Vn,
P(BS) < 2/n*. (128)

Write
Pr(-) = ]P’( . | ((-},,(y”), G, restricted to [n] \ V(Cg-ln(yn)))) ,

and let Eo[-] denote the corresponding expectation. Under I, for any realization of
(Gn (), G, restricted to [n]\V (‘51" (yn)), the rest of the edges in G, and the weights
associated to the edges in E (C-},,) \E (Gn(yn)) can be generated as follows: Let

E.={{i,j} : 1<i#j<n, atleastone of i or j isin V(€] (yn)) .
and {i, j} ¢ E(€7' (va))} -
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Let g;; be as in (17). Place the edges {i, j} € E,. independently with respective
probabilities

(1 -}, )ai;

= “mY . (1 — o \PiWi
(1_19%1)671-;“1—6?,-,-)_(1+0(” ) - (1=r3,) . (129)

Vn e n

where the O (n™") term is uniform over {i, j} € E., and pJ is asin (19). Adding these
edges would generate the complete set of edges E(G,). Now assign i.i.d. Unif [ Py, 11
weights to the edges in E(Gn) \ E(Gn (Yn))-

Fix avertex v ¢ <glﬂ (¥n)- Suppose Algorithm 2 started from CK_U" (y,) terminates after
the addition of K edges; let jo > 0 be such that jo(t, + 1) < K < (jo+ D(tx + 1).
LetT; := (j A jo)(h1 + 1) for j > 0. If the path in M” connecting v to M;’n has
length > (log n)fl/ .7 then ¥n, on the event B, Algorithm 1 started from € ()
will run for at least

n" wy, Cw,n"

> +1
(logn)® ~ wa+ Cis@Togn = (1ogn)

many steps. Using Lemma 6.28, we see that Algorithm 2 started from ‘K_v” (vn) will run
for at least Cw,n" ( log n) /6 many steps. Using (124) and Assumption 2.4 (iv), we
see that in this case, for all large n, theevents A, j =1,2, ..., n"/2 (log n)7/12, will

take place, where
A = {Tj = j(ta + 1) and the T}-th edge in Algorithm 2 does not connect to ‘5-1”()/")} .

Both T'; and 2l ; depend on v, but we will suppress this dependence to simplify notation.

Lemma 6.29 For all large n, on the event B,, P, (Q(g(n)) < 1/n3f0r anyv ¢ ‘5-1" Vn)»
where g(n) = n”/z(log n)’/12,

Proof The proof recursively analyzes 2 ;, j > 1. We will discuss how to analyze 2,
and 2 in detail; the argument for a general j is similar. Let S; be the sequence of
the first (77 — 1) v 0 edges added to the cluster of v in Algorithm 2 (arranged in the
order they were added). To bound P> (Qll), we will actually prove an upper bound on
P,(2 | S1 = s1) that is uniform over the choice of s; with P,(S; = s;) > 0 and
length(s1) = t,, where length(s;) denotes the number of edges in the sequence s;.
Call such a choice of s; tenable.

Since the status of the edges (presence or absence) connecting to ‘5-1” (y,) are not
checked in the first ¢, steps of Algorithm 2, the probability of these edges being present
under P> (-|S; = s1) is the same as in (129) for any tenable choice of edges s;. Let
& C E(G,) be the set of edges found between the cluster of v and ‘5_]” (y») in the
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T1-th step in Algorithm 2. For any tenable s,

Ex[I11 ]St =s1] = (1+0m™)-(1-p) Z Z w;wj.

le‘é)”(y yJ in cluster of
v at time t,

Now, the weight of the cluster of v after the #,-th edge has been added in Algorithm 2
is at least #, w,,. Further, for all large n, on the event B,,, 7/(‘51” (yn)) > Cn by virtue
of (42), and consequently, for any tenable s,

Ea[I£11]S1 = s1] = 2Ci30tawy, - (130)

Letting ¢ = {|£’1| > C130t,,wn}, using Bennet’s inequality [31] and Assump-
tion 2.4(iv), we see that there exist nj3; > 1 and Cj3; > 0 depending only on
Pmtr such that for all n > ny31, on the event B,,, for any tenable sy,

. 7/6
Py (€ | S = s1) < exp ( — Ci31(logn)”’°). (131)
Hence, for all n > n31, on the event ®B,,, for any tenable s,

Pz(ﬂ] | S| = S]) < Pz(Q{] N & | S = S1) +]P’2(in | S| = S])
Po(2 | € N {S1 =s1}) +exp (= Cizi(logn)”®) . (132)

We will bound the first term on the right side of (132) with the help of Lemma 6.27 (a).
To this end, note that on € N {S; = s}, in the T}-th step, we have found mo >
C130t, w, many edges connecting the cluster of v to %—1” (vn)- The weights associated
with these edges are i.i.d. Unif[xg, 1] random variables, where xo = p]’jn. Next, on
B,,, the number of vertices in the cluster of v after the addition of the ¢,-th edge
is at most C123(2) - (1 + t,) logn/w,, and the degree of each of these vertices in
G, is at most (logn)3/2. Hence, the number of outgoing edges from the cluster of v
at this point that do not connect to ‘5" (yn) is k < C123(2) - (1 + t,)(ogn)>/?Jw,.
Conditional on the values of the weights Uij, {i, j} € s1, the weights of these k edges
are independent Unif [x;, 1] random variables for some x; > xo, j =1, ..., k. Thus,
using Lemma 6.27 (a), we get, on the event B,,, for any tenable s,

— _ Ci30taWn
B( | n{si =si}) <1 - mmmena d vt e, - (139)
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Combining (132) and (133), we see that there exists 7134 > n131 such that on the event
By,

Pz(ml) < max Pz(ﬂl |S] = Sl)

s1 tenable

<1= < Ciaotywy >
B C130twn + C123(2) - (1 + ,)(logn)>/2 Jw,

B 7/6 _ (logm)'/?
+exp (— Ciai(logn)™”) <1 CranT (134)
where the last step uses Assumption 2.4 (iv), and holds for n > ny34.
Now let us move to 2. We first note that P2 () = P2 (%2 N ;). Thus,
Pz(mz) < Pz(mz | A N Qfl) . Pz(ﬂl) + ]P’z(in) . (135)

Let S(zl) be the sequence of the first (7> — 1) Vv 0 edges added in Algorithm 2 (arranged
in the order they were added), and let Sg) be the collection of edges found between
%!"(yn) and the cluster of v in the Tj-th step in Algorithm 2. Write S» = (55", S5” )-
Call s; = (sy’, s5") tenable if length(sg)) =2t, 4+ 1, [s5’| = Ci30t,wy, and P(S, =
s2) > 0. To bound P> (25 | 2 N €}) appearing on the right side of (135), it is enough
to prove a bound on P (Q[z | Sy = sz) that is uniform over all tenable s;.

Let &, be the collection of new edges found between ‘5_1" (y) and the cluster of v
in the T»-th step; we emphasize that these edges were not present in &7. Let €, =
{I&1 = Cizotawy }. Then, for all n > ny31, on the event B,,, for any tenable s,

PQ(Q{Q \ Sy = Sz) < ]PQ(Q[Q Nne, | N Sg) +]P)2(€§ | N Sz)
<Py (22| €N {S2 = s2}) +exp (= C131(logn) ), (136)

where the last step follows from an argument similar to the one leading to (131). We
will bound the first term on the right side of (136) with the help of Lemma 6.27 (b). To
this end, note that on & N{S, = s5}, in the T»-th step, we have found 7iig > Ci30t,wy,
many new edges connecting the cluster of v to CK-I” (vn). The weights associated with
these edges are i.i.d. Unif [Xp, 1] random variables, where Xo = pﬁn. By an argument
similar to the one used while analyzing 2(;, on the event ‘B, the number of outgoing
edges from the cluster of v that do not connect to %—1” (y») and were found after the
T1-th step is k < C123(2) - (1 + t,)(log n)5/2/wn. Conditional on the values of the
weights U;j, {i, j} € sg), the weights of these k edges are independent Unif [, 1]
random variables for some X; > xp,/ =1,..., k. Note also that conditional on the
values of the weights U;;, {i, j} € s(z'), the weights associated with the mg > C130t,wn
edges found between ‘5_1” (v») and the cluster of v in the T7-th step are i.i.d. Unif [x(’), 1]
random variables, where x6 is the weight of the (¢, 4+ 1)-th edge in s(z”, and the weights
associated with the k” (say) outgoing edges from the cluster of v that do not connect
to ‘5-1"()/,,) and were found in the first 77 steps are independent Unif [x;., 1] random

variables for some x} > x, j = 1,...,k". Thus, using Lemma 6.27 (b), we get, on
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the event 8B, for any tenable s,

Ci3otywy
Py (o [ Er NS =s01) <1 —
(2% | { b Ci30tawn + C123(2) - (1 + t,)(logn)>/2 /wy,

which combined with (136) shows that for n > n34, on the event B,,,
1/2

(logn)

(Q[z}ml NE) < max Pr(A ’ Sp=s)<1-— Craan'?

137
sy tenable ( )
Now going back to (135) and using (131), (134), and (137), we see that for n > n34,
on the event B,,,

172

Pz(mz) - (1 B (logn)

W) +exp (- C131(logn)7/6) .

Turning to the events 2 ; for 3 < j < g(n), we define €; in a manner analogous to
¢ and &;. Proceeding similarly, we can show that for n > ny34 and 2 < j < g(n),
on the event B,

Jj+1 J J
P>(241) =P2(ﬂmi> 5192( | () @ne) ) 2 () + Y Pa(€)
i=1 i=1 i=1
1/2
- <] _ (logn)

W) P2(2;) + j exp (= Ci31(logn)”*)

(1_<logn)1/2>f“ JG+D

Cyasgn/? 2

<

exp (— C131(logn)”).

For the third step, we need to use the analogue of Lemma 6.27 for (j + 1) collections
of independent uniform random variables. However, this generalization is straightfor-
ward. This completes the proof of Lemma 6.29. O

Completing the Proof of Proposition 6.5: Combining (128) with Lemma 6.29 and using
a union bound over v ¢ 67 (y,,), we get, for all large n,

IP’(dH(]V[ﬁn , 1\7[”) > (logn)]/ﬁn”) <3/n’.

This completes the proof. O

7 Proof of Theorem 3.1

We will complete the proof in five steps. As observed in Sect. 5, it is enough prove the
result for M" and M".
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7.1 Existence of the scaling limit

Our aim in this section is to show that there exists a random compact R-tree .#' o
whose law depends only on 0* such that (11) is satisfied if we replace M" by M" or
M".

Note that (25), the first relation in (24), Assumption 2.4 (iii), and (7) imply that x ™,
n > 1, satisfies [29, Assumption 1.6] with the limiting sequence #*. Now consider
the random graph %, (1) as in (27). Then [29, Theorem 1.8] shows that the largest
components (arranged according to their masses) of ¢, (1), endowed with the graph
distance scaled by n~" and the probability measure that assigns mass proportional
to x, to each vertex v in a component, converges in distribution to a sequence of
random metric measure spaces with respect to the product topology induced by the
Gromov-weak topology on each coordinate. We claim that in a similar manner, we
can show that for every A € R there exists a random metric measure space Sf " whose
law depends only on A and 0* such that as n — oo,

n . %(1, 9, (A)) LN Sf* w.r.t. the Gromov-weak topology , (138)

where the measure onn~7-%'(1, 4, (1)) assigns mass x, [ #4 (¢'(1, %, ()»)))]71 to each
vertex v in (1, %, (1)). We briefly explain how this can be done. The proof of [29,
Theorem 1.8], applied to the special case ¢, (1), can be divided into two steps: (i) In [29,
Theorem 4.5], it is proved that under some assumptions, a related connected random
graph has a scaling limit in the Gromov-weak topology. (ii) Then the arguments of
[29, Section 5.1] show that the maximal connected components of %, (1) satisfy the
assumptions in [29, Theorem 4.5]. A key result needed to complete step (ii) is [11,
Proposition 9] (restated in [29, Proposition 5.2]), which shows that a breadth-first walk
of ¢, (1) defined in [11] converges in distribution w.r.t. the Skorohod J; topology to a
limiting process. In a similar way (see also the proof of [23, Theorem 2.4]), one can
prove that for any A > 0, the breadth-first walk of ¢, ()) started from the vertex 1 as
given by (30) satisfies

o0
n - 20 (u) LN ZOw) == 0F 4 A+ 29;‘(11{;,51,} —ub¥), u=0 (139
j=2

with respect to the Skorohod J; topology on D[0, 00), where &; ~ Exp(@}*), j>1,
are independent random variables. Now using (139), the rest of the arguments in [29,
Section 5.1] repeated verbatim would show that the vertex weights in 4 (1 .Y, (A))
satisfy the assumptions of [29, Theorem 4.5], which would then yield (138). For
concreteness, we describe the construction of Sf "

Construction 7.1 Define %, := inf {u >0: Z)(\')(u) < O}, and %, = {1} U {j >
2:§ < Qﬁ} Let

yi=2- ( > (9;)2)1/2, and 9 := (9; : ( > (9,.*)2>1/2; Jje %).

J Ge%;\ l’Egg)L
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Set

5 =2 ( > (91-*)2>_1/2 90, 7).

ieB,
where Yoo (-, -) is as given in [29, Definition 2.2].

Next, we claim that under Assumption 2.4, Sf " s compact almost surely, and
further, as n — o0,

w1 (1, % 0)) —> 8P w.rt. the GHP topology. (140)

To deduce (140) from (138), we need to prove that n=7 - %(1, %(A)) satisfies a
global lower mass-bound; see [18, Theorem 6.1] and [29, Lemma 6.1]. The global
lower mass-bound was established in [29] under the stronger [29, Assumption 1.1].
This stronger assumption was needed to prove [29, Lemma 6.7], which relied on
a tail bound on the heights of branching processes established in [61, Theorem 2].
The result in [61, Theorem 2] was proved for a (conditioned) branching process with
a given offspring distribution, whereas in the random graph setting, one needs to
consider branching processes with varying offspring distributions for different n; e.g.,
the offspring distributions of interest in this paper are Poi(V,,), n > 1, where V,, is as
defined around (64). To get around this difficulty, [29, Assumption 1.1] was used in the
proof of [29, Lemma 6.6] to stochastically upper bound the offspring distributions for
different n by a single offspring distribution to which [61, Theorem 2] is applicable.
However, instead of [29, Lemma 6.7], we can now appeal to Proposition 6.13 (which
relies on the techniques developed in the more recent work [4]), and avoid the use
of the stronger [29, Assumption 1.1]. Then the rest of the argument from [29] carries
over in an identical way under Assumption 2.4 to establish the desired global lower
mass-bound for n™" - €(1, %,(1)), which then yields (140). Let us also note that the
construction of 5/{’ ' given above together with the almost sure compactness of 5{) '

shows that .Sf “isan R-graph almost surely. Further, (27) and (140) imply

n~ -6 (A LN Sf* w.r.t. the GH topology. (141)

The next result shows that Theorem 4.7 can be applied to the sequence n™"- 7' (1),
n > 1. Let .o/, be as defined around (15).

Lemma 7.2 Fix A > 0. Then we can construct Sf*, n~"-€'(A), n > 1, and a positive

random variable R on the same probability space such that n=" - €} (1) 2% Sf*
w.r.t. the GH topology as n — o0, and ]P’(n_” -ET ) € g eventually) =1

Remark 3 We will omit the proof of Lemma 7.2, as this result is essentially contained
in [29]. We only make a brief comment on how this result follows. Recall the notation
(k(X ), e(X )) for an R-graph X from Sect.4.3 and the probability distribution P¢q,
given by (94). For m > 1, a > 0, and a probability mass function p = (p1, ..., pm)
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on [m] with p;1 > pp > --- > p, > 0, write S?Nm (p, a) for a random graph with
distribution Peon (-, p, a, [m]). Let Y5 (-, -) be as given in [29, Definition 2.2]. Now,
as mentioned at the beginning of this section, the key ingredient in the proof of (138)
is [29, Theorem 4.5], which shows that under [29, Assumption 4.4],

Ipll2 - Gon(p. @) > Goo(6, v) (142)

with respect to Gromov-weak topology as m — 0. It also follows from the proof of
[29, Lemma 4.12] and [29, (4.23)] that under [29, Assumption 4.4],

D (D (P, @) —> sp (%8, 7)) (143)

jointly with the convergence in (142). Now, from the proof of [29, Theorem 4.5], it
can be easily deduced that

Ipll - <len(Core (Gn(p.a@)), min len(e))
ece(Fn(p.a))

d
— | len( Core (95 (0, v)), min len(e))
( ( ( o v ) ece(Y(0,y))

jointly with the convergences in (142) and (143). These results directly translate into
the corresponding convergences for 7' (1), which then yield the claim in Lemma 7.2.

We will now deduce the existence of the MST scaling limit from Lemma 7.2 and
Theorem 6.1. As mentioned in Sect. 6.1, the argument for combining these two results
to get the GH scaling limit of M” is similar to the one used in [6]. Using Lemma 7.2
and Theorem 4.7, we get

™" CBD® (47 (1)) > CB®(8?") =: . wat. the GH topology  (144)

asn — o0. Similar to Lemma_S.l, for any A > 0, there exist couplings of G, (1) and
G, (1) such that P(G, (1) # G,(1)) — 0 asn — oc. This fact, together with (144)
and Lemma 4.6, gives, for any A > 0,

n. M} LN //lf* w.r.t. the GH topology (145)

as n — 00. As discussed below Definition 6.2, M )’f is a subtree of M ;’/ whenever 0 <
A < A .For0 < A < A/, consider the sequence of marked spaces (n_’7~1\-4f, s n‘”-M}f),
n > 1. Since E///fﬁ* is compact almost surely, [64, Proposition 9] implies that this
sequence is tight in the marked GH topology. Thus, by passing to a subsequence, we
can assume that

(W ) s (Y ) (146)
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with respect to the marked GH topology. On the right side of (146), we have a coupling
of A )f’,* and (///f " in which the latter is a subspace of the former. Since dy (A7I , M ) <
dy (1\_4/(’ M”), an application of Theorem 6.1 shows that for all A € (0, 1/2], in the
coupling of (146),

P(du(af, 40 > 27 H2) < Co(a) - 2712 (147)

for A’ > A > A21(A). This implies that for A’ > A > A1 (A),
dpr<Law(///f*), Law(,///",*)> <A AL o) ATV (148)

where Law(-) denotes the law of a random object, and dp; (-, -) denotes the Prokhorov
distance. Thus, (Law(/// f oA 0) is a Cauchy sequence in the space of probability
measures on Sgy. Since Ggy is Polish, the space of probability measures on Ggy
is complete under dp; (-, -). Hence, there exists a random compact metric space .#' o

whose law depends only on * such that //{f LN 9 w.rt. the GH topology as

A — 00. Since ///f* is an R-tree for any A, [48, Lemma 2.1] shows that % is an
R-tree almost surely. From (148), we further get

dpy <Law(///f*), Law(//lo*)) <AL Cop(A)ATV2 (149)

for A > A21(A). Now, Theorem 6.1 and (149) coupled with an application of the
triangle inequality yield

lim sup dpr<Law(n_” . A7I”), Law(///o*)>

n—oo

<272 4 Cp1(A) - A7%) + lim sup dPr(Law(n_” MY, Law(/{f))

n—oo

for any A > A1 (A). Now using (145) and letting 1. — oo gives

n i L 4% wrt. the GH topology (150)

as n — oo. Finally, Lemma 5.1 shows that (150) continues to hold if we replace M"
by M".

7.2 The degrees of points in sl

In this section we will prove Theorem 3.1 (a). Recall the definition of degree from
Sect. 4.3 and the notation .Z(-) and 7 () from (10). From Construction 7.1 and the
construction of the space ¥ (-, -) using an inhomogeneous continuum random tree
(ICRT) given in [29, Section 2.3.1], it follows that the set of points in Sf " with infinite
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degree is countably infinite, and all other points in Sf " either have degree 1 or 2. Since
///f* = CBOO(S{’*), the same is true of ///f*, i.e., the set %(%f*) is countably
infinite and deg (x ; ///f*) € {1, 2} forall x € ///f* \ jf(///f*).

By an argument similar to the one leading to (146), we can assume that for any
A>1,

(W M) - () (151)

with respect to the marked GH topology along a suitable subsequence (which may
depend on A). In the coupling between ,///f “and .2 on the right side of (151),
the former is a closed subset of the latter. Hence, .#%" has infinitely many points of
infinite degree almost surely.

Now, Theorem 6.1 and (151) imply that for all A > 1,

P(du(Af, ") > 2712) < Cisn 12, (152)
in the coupling of (151). In this coupling, on the event
0, = |du(a?, ") <172, (153)

%" can be obtained by attaching countably many R-trees each having diameter at
most 22~ 12 to ///f . Hence, on ©;, any x € P that satisfies

(A) 3 <deg (x; ///0*) < o0, and
(By) all deg (x; .#%") of the components in .#®" \ {x} have diameter > 21~!/?

must also satisfy x € ///0*, and each of the deg (x ; ///0*) components in i \ {x}
must have a non-empty intersection with ./, f *. But this implies that deg (x ; M, f *) >
3, which in turn implies that deg (x ; ///f *) = 00, and consequently, deg (x /A 0*) =
oo — a contradiction. Hence, on the event D, there does not exist x € .# 0" satisfying
(A) and (B;) as above. This observation combined with (152) shows that forall A > 1,

P(z"* > 2)\—1/2> < Cisor~ 172, (154)
where
" = sup { min { diam(7) : . component of Vi \ {x}} :
X € //0*, 3 <deg (x;///o*) < oo}

Here supremum of an empty set is defined as zero. Then z?" = 0if and only if there
does not exist x € .#% with 3 < deg (x; ///0*) < 00. Now, letting A — oo in (154)

shows that Z¢" = 0 almost surely, which concludes the proof of Theorem 3.1 (a).
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7.3 Leaves and hubs of .7 9"

In this section we will prove Theorem 3.1 (b). Consider 6 as in Construction 7.1. Then
in the ICRT corresponding to 0 , both the set of leaves and the set of hubs are dense
almost surely. (We refer the reader to [12, 37] for background on ICRTs.) From the
construction of the space %o (-, -) given in [29, Section 2.3.1], the same is true for
Yo (5 )7), and consequently for Sf*. Since ///f* = CBOO(S{)*), both f(///f*) and
(M) are dense in 47"

Fix k > 1, and consider A > 1 large so that 312 < /k. Consider the coupling
between ///f* and .#?" as in (151). On the event ©;, defined in (153), any point in
*® is within distance 2~1/2 from a point in .. 0" and consequently within distance
21~1/2 from a point in y“f(///f*) Since %(///f) - %”(///0*), using (152), we see
that

]P(///”* - U Bk //"")) >1—Cisoa™ 2.
xeH( M)
Letting 1. — oo, we get

]P’(Vk =1, 4" = ) Bkl //"”‘)) =1,
xe (M)

which shows that 27 (.#°%") is dense in .# " almost surely.

We now turn to the leaves of .#Z?" . Once again, fix k > 1, and consider A > 1 large
so that 31~1/2 < 1/k. Arguing as before, on the event D;, any x € % is within
distance 21~!/2 from a point x’ € .,2”(///)?*) Ifx' e f(//lo*), then we are done.

Otherwise, .#®" \ {x'} has a component .7 that is a subset of .Z?" \ 44 *. Further,

7 contains a point x” € .,2”(///0*) such that x” is within distance 31~!/? of x. The
rest is routine.

7.4 The upper Minkowski dimension
The aim of this section is to prove
dim(.#%") < 1/ almost surely. (155)

We will make use of the following result in our proof.

Proposition 7.3 There exist L1s¢ > Aq1 and €156 € (0, £41) such that for all large n
and A € [A156, €1561n"],

P(Sp (€7 0) = 0156,\1/") <exp(—Ch). (156)
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The proof of Proposition 7.3 relies on the following result which will also be useful
in Sect.7.5.

Lemma?7.4 There exist Cis7, 1157 > 1 and €157 > O such that for all large n, 1 €
[A157. e157n"] and u > C1572.1/ =),

p(% (“(1.%0))) = u) < exp (= Cu). (157)

The proof of Lemma 7.4 will be given at the end of this section.
Proof of Proposition 7.3: In view of (27), it is enough to prove the claimed bound for
sp (¢'(1, %,(0))). Using (33) and (40), Yn and for (A, u) € 1™?,

=2
O (u) < u—Cu™2 < a3

which together with (41) and the strict concavity of <I>(A”)(~) implies that ¥n, and A €
[Aa1, e41n"],

=2
sup () = sup D (u) < Cisshv3 . (158)
u>0 0<u<s™ (1)

Recall from (30) the breadth-first walk Z;"(-) of €'(1,%,())) started from the
vertex 1. Let Gen“) be the set of vertices in the i-th generation of the breadth-first
tree of € (1, %, (k)) rooted at the vertex 1. Then on the event {%(‘5(1 9, (A))) <
C572Y/=9} in the coupling of Lemma 6.7,

MaxGen" := max Z nx, 1 j > O} < sup n - ZyOw).

0<u<Cisal/(t=3)
veGen<l) Su=ts?

(159)

Finally, note that (31) and (48) imply, for any u > 0,

"z D) = nllx; + Zm<ﬂ{§" < u} — ]P’(é;‘J" < u)) + (ID():’)(M).
(160)

Combining (158), (159), (160) with Lemma 7.4, and applying Lemma 6.9 with s =

_r3
C157)»1/(t73) and y = C158(C157) 2 ), we see that there exists Aig1 > A41 V Ais7
such that Vn and A € [A161, €1561n"],

P({%((%(L %(/\)))> > C157Wl‘3} U {MaXGen(l) > 2C)5gh 3 })

<exp(—Cir), (161)
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where €156 := €41 A €157. Conditional on the breadth-first tree 7 (note that 7' is a plane
tree with vertex labels) of € (1, ¢,(1)), the rest of the edges in (1, ¥,(1)) can be
generated by placing edges independently with probability 1 — exp ( —(A+ n”)xuxu)
for every u, v € V(T), where u # v, and either (i) u, v € Gen(j” for some j > 1, or
(i) u e Gen(jljrl and v € Gen” for some j > 1, and v lies on the right side of the
ancestral line of u. Using (81), we see that conditional on 7', on the complement of
the event in (161), for any A € [Ai61, €15617],

sp (€'(1, %, (1)) =sq Poi((e156 + 1) Z Xy - 2 - MaxGenV) <44 Poi(CA /7).
ueV(T)

Now the proof of Proposition 7.3 can be completed by combining (161) with standard
tail bounds for a Poisson random variable. O

We are now ready to prove the claimed upper bound on ﬁ(/// 0*). Recall the
process MTBP from Definition 6.16. Fix A € (0, 1/2]. Then for any A > 27,

P(diam (GO \ [P F2]) = n"/,\)

< > P(diam <<5(i, GaW)\ [i — 1])) > n"/)\)

A+8)/n<j<p

<.e Z ]P’(ht (MTBP;([n] \[i — 1])) > n”/(z)\)), (162)

A+8)/n<j<p

where the last step uses arguments similar to the ones used in the proof of Lemma 6.17.
To bound the summands in the last step in (162), we can use an argument similar to
the one used in Sect.6.5.

Definition 7.5 For A > land 2 < i < n, consider the following (potentially) two
layer process L2BP; (1):

(a) Layer 1: Start MTBPL ([n]\[i —1]), and run this process up to generation n” / (41).
Call this the first layer. If there is at least one vertex in generation n”/(41), then
we say that the first layer has been fully activated.

(b) Layer 2: If the first layer is fully activated, then starting from every vertex v in
generation n"/(4A), run independent MTBPZype(U) ([n] \ {1}) processes. Call this
the second layer. If any of these branching processes survives up to generation
n'l/(41), then we say that the second layer has been fully activated.
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Let yx beasinProposition6.l3.Then‘;’n,foranyZ <i<nandA € [l/y,, n/10],

H”(ht <MTBP§,([n] \[i — 1])) > n"/(ZA)) < IP(ht (L2BP, (1)) > n"/(2k)>

by 1 |
< Cwi(Zw?/(ann)> (4)\) 3T < CliTY AT cexp ( — C”i”/)»),
Jj=i

(163)

where we have used Proposition 6.13 and arguments similar to the ones used in the
proof of Lemma 6.21. Combining (163) with (162), and calculations similar to the
ones in the proof of Lemma 6.21 show that Vn and for A € [27 v (y*)’], n/10],

P(diam (G \ 11 1F]) > n"/,\) < Ciga(A) -exp(—CA%).  (164)

Recall the notation .4/(-, -) introduced at the beginning of Sect.3. Now note that
on the complement of the event in (164),

N(EF ), 207 /2) < 20T/ (165)

By (144), forany k > l and A > 1,

P(A (Y, 3/1) = k) < lim sup IP’(JV(CBDOO(%{’(A)), 2n'7/x> > k). (166)

n—o00

Since CBD*® (‘51" (A)) can be covered by .4 (‘61" ), 2n”/A) +sp (‘51” (A)) many 2n" /A
balls, combining (164), (165), and (166) with Proposition 7.3, we see that there exists
M167 > 1 such that for all A > Aj47,

P(A (Y, 3/3) > 22058/ < (1 4 Craa(A)) exp (= C12).  (167)

In the coupling on the right side of (151),
W(///o*, 3.7+ du (2, //f*)) < (¥, 37,
which combined with (167) and Theorem 6.1 shows that for all A > A1 (A) V Aig7,
P(A (", 43.71F8) > 20 0FD/) < Cyge(A) - 27V2 (168)

Replacing A by k* in (168) for large integer values of k, an application of the Borel-
Cantelli lemma gives

, log N (?, 4k=40-2) 14 A
lim sup =
k— 00 log (k4(1—A)/4) n(l—A)

almost surely. (169)
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Sandwiching 8 between 4k~*(1=%) and 4(k 4+ 1)~*1~%) and letting § | 0, we can
show using (169) that dim(%o*) < (14 A)/(n(1 — A)) almost surely. We complete
the proof of (155) by letting A | 0.

Proof of Lemma 7.4: By (40), Vn and for (A, u) € 12,
@ (u) = 2C 70u™ . (170)
Thus, using (33) and (170), we see that Vn,
OV () < au—10 - ug)” u)/11 < u(r —20C170u" 3 /11) < —Ciyu™ 2,

whenever (A, u) € 12 and 9Cy7ou”™ 3 > 112, and consequently,
P(%’/x (¢(1.% ) = u) <P(zZ;"u) = 0)

n
< P(ﬂ"}ﬂ + 29,',;\<11{;75u} — P&} < M)) > C170Mt2) :

j=2

where the first step uses Lemma 6.7, and the last step uses (160). Now an application
of Lemma 6.9 will yield the bound in (157), and this bound will be valid for all large

n, for & € [Ais7, e1s7n"] and u € [Cs7A1/ ) n“(az(”))l/z/(Aﬂ““)], where
Ci57 = (1 1/(9C170))1/(T_3), and A157 and €157 are appropriately chosen constants.

Finally, this bound can be extended to all u > C157A'/"=3 by simply noting that the
probability on the left side of (157) is zero if u > ), x; < n®. O

7.5 The lower Minkowski dimension

In this section we will prove
di_m(///o*) > 1/n almost surely, (171)

which combined with (155) will complete the proof of Theorem 3.1 (c). To that end,
let us first introduce some notation. For disjoint A, B € [n] and r > 1, we write
A <> B to mean there exist 1 <t<r,vo€ A, v € B,and vy, ...,v—1 € [n]\{1}
such that the edges {v;, vi+1},i =0, ...,t — 1, are presentin G, (1). If A = {i}, then
. . . r . . r
we simply write i <— B instead of {i{} <> B.
Next, note that if 4" (X, u) < k for some metric space (X, d), u > 0, and k > 1,

thenforany xi, ..., xx+1 € X, thereexistl <i < j < k+1suchthatd(x;, x;) < 2u.
Hence, for any xq, ..., xo; € X,
#{2 <i <2k : _rr[l'inl]d(xi,xj) <2u} >k, (172)
jeli—
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since otherwise, we would be able to find 1 = i; < iy < ... < ixy4+1 < 2k such that
the minimum of the pairwise distances between these k + 1 points is more than 2u.

For A € (0, 1/2],choose 1174 (A) > As5VAis7 suchthat)»l/”(log)»y3 > A(1=8)/n
for all A > A174(A). For A € (0,1/2] and A > X174(A), choose n174(X) > 1 such
that A < (841 A€l 57)n’7 foralln > ny74(%). (Thus, these thresholds are chose in a way
so that the bounds in (56) and (157) are applicable whenever A > A174 and n > n174.)
Letting

1+h

/2
D= {li1C "), and i < [i— 11},
we see that for A > Ay74, n > nj74, and

h=2A/(t —3), (173)
P(W(n”-%{’(k), (2x1+ﬁ)*1) <2 - A>)

1 Ny 1+h
51@({#{251'5111“” i )

> 2‘x37<“A)} N {i eCMVi< M“‘“})
+ ]P’(Eli < A%(log )»)73 such that i ¢ ‘K{%k))

1 1
< IP’({#{2 <i<2"" 7 holds} > 2‘%“‘“}) +exp (— Clog™ 3)

=8
1
<2 n=8) Z P(Z;) +exp (— Clog*® 1), (174)

where the first step uses the observation around (172), the second step uses (56), and
the last step uses Markov’s inequality.

On the event Z;, consider a shortest path y from i to [i — 1]. Then depending on
where the shortest path from 1 to y meets y, we may consider three possibilities as in
Fig.3. Hence,

e(ii

j=1

1

<]EC5"()») {](—”—/—lj——ﬁ)l}>>

<{ie‘€1”(/\)} ( Ml}))

J

i-1  n o+ AN+

( U {ke‘fln()»)}o{k<—>i}o{k<—>j}>>, (175)
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where o denotes disjoint occurrence of events. Writing ) 4 for sum over r =
0,1,...,—1+n"/A"" we have, for any i # j,

h
P(i & J)

n n n

2<vy,..., v <0

N ww; w2 w2
< 1+ — J LI U
B ZD ( * nn) ( Uy ) Z <Un£n> (Vnen)

2<v1,...,v:<n
AHﬁ wiw; n'l wiw; C
< 1 DT < e < . (176
ZD ( + ) (Vnen ) — )\1+ﬁ (vngn - Al-ﬁ-ﬁi(xja ( )

where the third step uses (89), and the last step uses Assumption 2.4 (iii) and (7). Note
also thatfor2 < j <n,

P(j e 61 0)) < Y P(j' € 67 W)P({j. j'} € E(Ga(1)

j/eln]
u)
<> P J P(j € €M)
J'€ln]

= pfz E[7 (67 ()] < Cpﬁ% IR

n

/)Ll/(f—3)
<C

ot (177)

where the penultimate uses Lemma 7.4 and is valid for A > A;74 and n > ny74. Thus,
combining (175), (176), and (177), an application of the BK inequality shows, for
A > A74,n > ny74,and 2 <i <n,

' 1/(z=3) 1
P(@i) =C <]1{j:1} + j ))LlJrﬁiaja

i—1 n 1/(r=3)
A 1 1
+CZ Z < ke .)LlJrﬁl'ako( ' A]+ﬁj°‘k°‘>

4—1 7—4 71-2t 2t-7
SC/<)»T3_ﬁ'iT1 4+ A T3 _2ﬁ.i171 )’ (178)

where the last step follows from some routine calculations. Combining (178) with
(174) shows that for A > Aj74 and n > ny74,
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ﬂl+ﬁ ﬂﬁ

< nhAMh

Fig. 3 The vertex j € [i — 1] satisfies dist(i, j) = minj/E[i,]J dist(i, j"), where dist denotes the graph
distance in G (A). In the leftmost figure, j = 1 is possible, and 2 < j < i — I in the other two figures. In
the rightmost figure,i + 1 <k <n

IF’(JV(n_” PGy, ()T < 2‘%“‘“)

—4 2t-7

N C/|:)\‘r”—ﬁ. <M“‘A))T A EE (A;(l—m) o }

=exp (— Clog™ 1) + C/[AA(H)_H + )LA(71231)_M]
<exp(— Clog™A) + C"x=2/073) (179)

where the last step uses (173).
By (141), forany k > 1 and A > 1,

IP’(JV(Sf*, @+ < k) < lim sup ]P’<</V<n_'7 6O, (2x1+ﬁ)‘1> < k),

n—oo

which together with (179) yields, for A > X174,

P(”“A*’ (@+h ™) < 2_11;(1&) < exp(— Clog™ 2) + C'A~2/=Y,
(180)

Note that JV(S{)* r) <sd JV(///)?*, r) =< JV(///G*, r) for any r > 0, where the
first relation follows since .Z. f f = CBOO(Sf *), and the second relation follows from
the existence of the coupling between .///f “and 2% as appears on the right side of
(151). Hence, (180) continues to hold if we replace Sf* by M Let g =g(A) =
2(t — 3)/A. Using (180) with Vs replacing 5{’*, and letting A — oo along the
sequence (kg , k> 1), we get, via an application of the Borel-Cantelli lemma,
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loge/y((//lo*, (4kg(1+ﬁ))_1> A
lim inf

>
k—00 log (4ke(1+M) T+ h)

almost surely

for any A € (0, 1/2]. Sandwiching § between (4k81+0) ™" and (4(k + 1)s0+M)~!
and letting § | 0, we conclude that for any A € (0, 1/2],

% 1—-A
dim(.#%) > ———— almost surely.
dim(.#") = n(L+ ) Y

We complete the proof of (171) by letting A | 0, and using (173).

8 Discussion

The random graph models considered in this paper are closely related to the multi-
plicative coalescent—a fact that was crucial in our proof. It is easy to argue heuristically
that around the point of phase transition, many standard models of dynamic random
graphs evolve roughly like the multiplicative coalescent. This intuition was formalized
in [24], where it was shown that the continuum scaling limits for maximal components
in the critical regime for a number of random graph models including the configura-
tion model (under appropriate moment assumptions), the stochastic block model, and
bounded size rules all have the same limit (up to constant scaling factors) as that of the
Erdds-Rényi random graph established in [3]. In the heavy-tailed regime as considered
in this paper, continuum limits for maximal components of critical inhomogeneous
random graphs were first established in [29]. These results were then leveraged in [26]
to establish the scaling limit of the critical configuration model.

We expect a similar program to be carried out building on the results of this paper for
establishing universality of the MST for a host of random graph models. The two most
important models for which this problem remains open are (i) the configuration model
and (simple) random graphs with given degree sequence with tail exponent t € (3, 4),
and (ii) a sequence of edge weighted graphs converging to a graphon whose leading
eigenfunction is an element of LP[0, 1]\ L3[0, 1] for some p € (2,3). We expect
that for both these models, the scaling limit of the MST on the giant components of
these models, under suitable assumptions, will be the same as the ones obtained in
this paper.

We now briefly remark on the assumptions in this paper. As mentioned before,
Assumption 2.4 (i) implies supercriticality of the random graph model, whereas
Assumption 2.4 (ii) corresponds to the condition in [11, Display (19)]. It should be pos-
sible to relax Assumption 2.4 (iii) and Assumption 2.4 (iv). For example, our proof of
Proposition 6.13—a key ingredient used to establish tail bounds on the diameter outside
the component of the vertex 1-does not require the full force of Assumption 2.4 (iii).
This proof only uses the relation

P(V, > u) =< 1/u"% forall n>2, and u€[l, vo].
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Similarly, it should be possible to relax Assumption 2.4 (iii) and Assumption 2.4 (iv)
and still carry out the other steps in our proof at the cost of a more intricate analysis.
In the context of critical inhomogeneous random graphs, [35] establishes conver-
gence of the maximal components as well as compactness of the scaling limit under a
weaker integrability condition [35, Display (9)]. For the critical heavy-tailed config-
uration model, [25] proves GHP convergence of the maximal components under [25,
Assumptions 1 and 2], and [44] works with i.i.d. degrees having a power-law. However,
all these papers deal only with the critical regime. It is not clear what the necessary
and sufficient conditions are for results such as Theorem 3.1 to hold, as proving such
a result requires careful control over the complement of the maximal component in
the critical window as well as the barely supercritical regime. Establishing such a
necessary and sufficient condition remains a challenging open problem.

We close this section with a discussion on the possible extension of the convergence
in (11) with respect to the stronger GHP topology. Let u” (resp. ") denote the uniform
probability measure on the vertices of M" (resp. M™). View (n_” -M", ;L”) and
(=7 M", ") as random metric measure spaces.

Conjecture 8.1 Under Assumption 2.4 on the weight sequence, there exists a random
compact measured R-tree (//l 0, ,u) whose law depends only on 0* such that

(n™"-M", pu) LN (///0*, K), as n— oo, (181)

with respect to the GHP topology. Further, almost surely, the measure [ is nonatomic,
ie.,

P(u(fx)) =0 forall x e #%) =1, (182)

and v is concentrated on the set of leaves of #' 0*, ie.,

P(u(.ﬁf(//lo*)) = 1) =1. (183)

Moreover, (181) continues to hold under Assumption 2.4 if we replace the left side by
(w7 B, ).

In the context of the complete graph, the analogues of (181) and (182) were proved in
[6] and [8] respectively. In order to prove (181), it is enough to establish the following:

Let T{fl. i=1,..., I;;’, be the trees in the forest obtained by removing from M" the
vertices in /" and all edges incident to the vertices in M}'. Let ¥}' := max, _; T)f’ -
<i<k? 152
Then for all ¢ > 0,
lim lim sup ]P()?)t’ > en) =0. (184)

A—00 p—o0

As mentioned in Sect. 6.1, in the setting of the complete graph, the analogoue of (184)
was established in [6, Lemma 4.11]. We briefly describe why proving (184) suffices.
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Consider a degree sequence d = (dl, e, dn), and let CM4 (resp. IUSd) be a
configuration model (resp. uniform simple random graph) with degree sequence d.
(The reader can consult [8, Section 1.2 and Display (6.48)] for a quick overview of the
definitions and the relevant properties of these models. We refer the reader to [54, 55]
for a more detailed treatment.) Let U,, ¢ € E ((CMd), be i.i.d. Uniform[0, 1] random
variables conditional on CMY. Let M4 be the MST of the component of the vertex
1 constructed using these edge weights. Fix p € (0, 1), and let (CM?, the graph with
vertex set [n] and edge set {e cE ((CMd) U, <p } Let ‘6[‘,1(1) denote the component
of the vertex 1 in (CM‘;, and Mg be the restriction of M9 to %I‘,i( 1). For each vertex v in
%1‘,1(1 ),letd, , denote the degree of vin ‘5;,1 (1), and define d;‘?’;ﬂ := dy—dy, p. Note that
M4 can be viewed as Mg together with a collection of trees each of which is attached
to a vertex of Mg via an edge; for every v € V(Mg), let ‘Ig’;)p, 1 <i <ry,p,denote
the trees that are attached to v (arranged following some deterministic rule). For every
vE V(Mg), append (dfjj’;ﬂ — Ty, p) Many zeros to the sequence (|‘3,'£’)p ,1<i< rU,p)
and let (Aff,)p, 1<i< dl"j‘f’;ﬂ) be a uniform permutation of the resulting sequence;
use independent permutations for different v € V(Mg) that are also independent of
all the other random variables being considered. Then conditional on (CM‘; and M g,
the family

(Ag’;)p 1<i< dﬁj’;ﬂ, vE ‘5[‘3(1)) of random variables is exchangeable. (185)
The proof of (185) is similar to the proof of [8, Display (7.4)].

Now, using [58, Corollary 2.12], it is enough to prove (181) for an IRG with an
equivalent kernel. Let G,, be the random graph on [n] obtained by placing an edge
between i and j independently for each i < j € [n] with probability

w,‘w]‘
A .
wiw; + Y g Wk

qij ‘=

This is referred to as the Britton—Deijfen—Martin-Lof model [34]. This model has the
following nice property: For v € [n], let D, denote the degree of v of G,,, and define
D, = (Dl, R Dn). Then

(Go|D,=d) £ Us? £ (CM? | CM is simple) . (186)

See [55, Theorem 7.18] for a proof of (186). For any degree sequence d, let g(d) :=
IE”(CMd is simple). Then using [57, Theorem 1.4], it can be shown that there exists
¢ > 0 such that

lim P(g(Dy) =) = 1. (187)

Define M”, @n A), ]l//ff, and f’;’f in a manner analogous to M", C_}n A), 1\7153, and 17){’
respectively. Once again, we can use [58, Corollary 2.12] to transfer the results proved
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for the models considered earlier in this paper to the random graph G,. Then (184)
and Theorem 6.1 imply that for any ¢ > 0,

lim lim sup (IP’(?{’ > ¢n) +]P’(dH(1I/}”’ M;f) > sn")) =0. (188)

A—00 p—o0

Further, by (140), Lemma 4.6, and [6, Theorem 3.3], for every A > 0,

(0" My, v N A" w.rt. the GHP topology (189)

as n — oo, where ﬁ;w is the probability measure that assigns mass proportional to
w, to each vertex v in M}, and ///f "t = CBOO(S{’*) is endowed with the measure

inherited from S)L .
For v € [n], let D, ; denote the degree of v in G (1), and let Dﬁ"/’{”l := Dy — Dy,
Using (189), it is not too difficult to show that

(n7- M, ﬁﬁ’avaﬂ) LN A" w.rt. the GHP topology

asn — oo, where ,un avail ; is the probability measure that assigns mass proportional to

Davall to each vertex v in M . Let 1" denote the uniform probability measure on the

vertices of M". Then using (188), (189), (186), (185), (187), and [27, Lemma 7.5], it
can be shown that for all & > 0,

lim lim sup IP’(dGHp<(n” .M, ,TI") (n7’7 . M;f , ﬁZ’a"ail)> > g) =0.

A=>00 p—o0

The rest is routine.
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Appendix A.
Proof of Lemma 6.12

By Assumption 2.4, foralln > 4and 2 < j <n/2,

@ Springer



800 S.Bhamidi, S. Sen

and hence, P(V, > u) < 1/u*?foralln > 4andu € (vy)2, v2]. Further, if v,» > 1,
then for u € [1, vy 21,

v c C C
/2
S5 2 P(Va 2 u) 2 P(Va 2 vapp) > 2 > 2 > o
n

Thus, ]P’(Vn > u) = l/uf_2 foralln > 4and u € [1, va].
Let us first prove the claimed lower bound in (65). For n > 4 and k > 2, we have

. A » uk—1
IP’(POl(V,,) > k) = E|:/0 e 7= 1)!du]

v uk*l v uk*l
j— —u _ —u__
= /0 e i 1)!]P’(Vn > u)du > /1 e U 1)!]P’(V,, > u)du
v uk—l 1
> —u ——du =: — % — 1
> C/] e *—Dlu=2 u C((Zl %) (3:3) , (190)

where T, T, and T3 are respectively the integrals [~ fol , and fvozo of the integrand
in the penultimate step. Then for k > 2,

_Tk—t+2) k2 1

T = Tk k12 T g2 (19
and
1 uk—l 1 1
TH= | e du < . 192
2 /Oe k-2 =,k Dixk—1+2) (192)

Next, note that for any § > 0, u — ube—u/2

quently, for 3 <k < vy/2,

is decreasing on [25, 00), and conse-

—M/2d =2 = .
N ] S

T < e—v2/20126—1+1 /oo e—vzv/2<—T+1 5 e—vg(evz)k \/z
B (k - 1)! v

where the last step follows from Stirling’s approximation for (k — 1)!. Using the fact
that suple(evz)x/x)C =e"2, we get, for3 <k <vy/2,

T3 < CVi/wi (193)

From (190), (191), (192), and (193), we see that there exists ko > 3 such that for all
large n and for kg < k < v2/2,

C C'Vk C

>
kT2 Ur—l - kT2 ’
2

P(Poi(V,) = k) >
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where we have used the scaling asymptotics of v, from Assumption 2.4. Choosing a
smaller constant C if necessary, the above bound can be extended to k € { 1,..., ko}
andtoalln > 1.

Now we prove the claimed upper bound in (65). Proceeding as in (190), we see that
foranyn > 4 and k > 2,

k—1

(k—l)!IED

(e no_ kel
< d - PV, > u)d
_/0 k- D! ”/1 C o =

e vkl oo ! CQ<C’
T A s LD TR e Tl

P(Poi(Vy) > k) = /v2 e (Vy > uw)du
0

where the last step uses (191). This completes the proof. O

Proof of Lemma 6.26

We can construct G, (y,) in the following steps:

(a) Generate ‘5_1” Vn/2).

(b) Place edges independently between i, j € [n]\V (€' (y4/2)), i # j, with respec-
tive probabilities p)’ﬁn gij» where g;; is as in (17).

(c) Place edges independently between i € V(%] (y,/2)) and j € [n1\V (€} (yx/2))
with respective probabilities

(PY, = P}, 12)dij _ enwiw;
1- P;n/zqij T 2updy,

9

where the last step holds for all large n.

Since 1 —e™ < u A lforallu > 0, # (€] (va/2)) <sa # (€] (vn/2)). Further,
€22 < €41. Hence, an application of Proposition 6.15 and (42) shows that

P(# (€} (ya/2)) = Croan) > 1 —exp (— Cn®) (194)

for all large n. Suppose for some K, > 0, W (6.) > K.logn for some component
©x of G (yn), and €, # €' (v,). Then the component &, will be constructed in step
(b) above, and there will be no edges between %, and ‘@”_1” (v /2) in step (c). Now,
conditional on steps (a) and (b), on the event {7/(%—1"()/,, /2)) = Cioan}, the expected
number of edges between %, and ‘5-1" (vn/2) in step (c) is

€22
>
2v,4,

X Croan x K,logn > Ci95K, logn (195)

for all large n. Now the proof can be completed by combining (194) with an application
of Bennett’s inequality [31].
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