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Abstract
We investigate three related problems concerning sampling minorities in attributed networks. This is guided by a general 
attributed network model which can incorporate several levels of homophily and heterophily, and whose degree and Page-
rank distributions have known properties. The first problem investigates sampling schemes that favor the representation of 
the minority over majority nodes and give preference to “more popular” minority nodes (i.e. higher degree/Page-rank) for a 
given homophily scenario. We show that (in-)degree and Page-rank sampling schemes increase the probability of sampling 
a minority node. The second problem concerns the relative ranking of minorities compared to majorities in degree and 
Page-rank based sampling schemes for several homophily and heterophily scenarios. We provide analytical conditions for 
the minority nodes to rank higher as a function of the model parameters for the degree based samplings and investigate the 
problem numerically for Page-rank based sampling schemes. The third problem considers subgraph sampling schemes and 
the bias of the proportion of minority nodes in top ranked degree nodes in several homophily and heterophily scenarios. 
Finally, the results and findings obtained from the sampling analysis are assessed on real-world networks.
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1  Introduction

Attributed networks are graphs in which nodes (or edges) 
have attributes (features). In real-world networks, the attrib-
utes across connections will co-vary and are not independ-
ent. One standard phenomenon in many such real world 

systems is homophily (Shrum et al. 1988; McPherson et al. 
2001; Mislove et al. 2010), i.e., node pairs with similar 
attributes being more likely connected than node pairs with 
discordant attributes. For instance, many social networks 
show this property, which is the tendency of individuals to 
associate with others who are similar to them, e.g., with 
respect to the gender, ethnicity, political ideologies. A con-
trasting co-variation phenomenon is heterophily, where 
nodes with similar attributes (or the same type) “repel” each 
other. Additionally, the distribution of user attributes over 
the network is usually uneven, with coexisting groups of dif-
ferent sizes, e.g., one ethnic group (majority) may dominate 
other (minority). The networks are further used for ranking 
individuals according to their centrality scores (measured via 
functionals such as degree or Page-rank scores) which fur-
ther exacerbate inequalities in representation of minorities 
in the network through algorithms such as recommendation 
systems that use the underlying network structure (Espín-
Noboa et al. 2022), or effect the flow of information and 
the perceptions of minorities within the network (Lee et al. 
2019). Another major direction for understanding the role of 
attributes is the maximization of influence problem. Since 
the pioneering work (Granovetter 1978), followed by the 
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path-breaking (Kempe et al. 2003) in the setting of computer 
science and combinatorial optimization, the main goal has 
been to understand, in the context of viral marketing, which 
set of individuals in the network to seed, with information or 
a product, so as to maximize its spread. While Kempe et al. 
(2003) has lead to a thriving research direction, in the last 
two years there has been significant realization as well as 
understanding that ignoring attributes of individuals within 
the network, and in particular the impact of homophilly in 
the connectivity as well as strength of ties between indi-
viduals, can significantly hamper the efficacy of proposed 
algorithms as well as conclusions (Aral and Walker 2012; 
Aral and Dhillon 2018) both in the context of empirical sys-
tems (Caliò and Tagarelli 2021) and even in the context of 
the standard benchmarking pipelines used to check the per-
formance of algorithms (Sziklai and Lengyel 2022, 2024). 
Further Caliò and Tagarelli (2021) tackles the significant 
challenges around the attribute diversity of the seed set for 
influence maximization via approximation schemes for sub-
modular functions. Optimizing such functions in practice 
leads to running diffusion schemes via sampling from the 
underlying node set according to specified distributions and 
then running influence cascades from these nodes.

Attributed network models play a major role in 
understanding the impact of the network evolution with 
homophily/heterophily and preferential attachment in 
the representation of the minority group. Here, homoph-
ily (Shrum et al. 1988; McPherson et al. 2001; Mislove 
et al. 2010) corresponds to the fundamental finding in 
many social network settings of node pairs with similar 
attributes being likelier connected than node pairs with 
discordant attributes. A precise quantitative version of 
this measure is given in Sect. 2.1. Preferential attachment 
(Barabási and Albert 1999) refers to the notion that when 
new nodes enter a networked system, they tend to con-
nect to pre-existing nodes with probability proportional 
to some monotonically increasing function of the degree 
of the existing nodes, thus reinforcing the popularity of 
current nodes. Once again, a precise definition is given 
in Sect. 2.1. In this context, the use of models were initi-
ated in Karimi et al. (2018), where the authors used fluid 
limit analysis to study the limiting degree distributions for 
two attributes (minority and majority). Through numeri-
cal simulations, they showed the effect of homophily 
and heterophily in reducing or amplifying the ranking of 
minority nodes in the network according to their degree. 
Inequality for Page-rank scores centrality measure and the 
representation of minority amongst high ranking nodes 
were studied in Espín-Noboa et al. (2022) using a similar 
model in the case of a directed network where nodes can 
became active to connect to other nodes. In both works, 
the impact of sampling in the ranking of minority nodes 
was not considered.

Given that large networks can only be partially observed, 
sampling has been an activate area of research across differ-
ent subjects (see e.g. Antunes et al. 2021a, b and the refer-
ences therein). Initial research on sampling has shown that 
conclusions from samples depend on network properties (e.g. 
scale free), the characteristic of the measure of interest (e.g. 
degree), and the sampling method and rate used (Leskovec 
and Faloutsos 2006). A related question is whether sampling 
preserves the representation/ranking of minority nodes, or 
perhaps increases their visibility in the sample, when com-
pared with the whole network. Sampling in networks with 
homophily/heterophily has received little attention in the lit-
erature. The bias of classical sampling methods in preserving 
the ranking of nodes and visibility of minorities under a simi-
lar model as in Karimi et al. (2018) was investigated in Wag-
ner et al. (2017). However, the analysis was based only on 
empirical results. In a different direction (Espín-Noboa et al. 
2021), synthetic models are used to understand the accuracy 
of prediction of attribute labels given partial information of 
the labels of a subset of seeded nodes; the goal is to under-
stand the impact of homophily/heterophily and preferential 
attachment driven growth characteristics of the underlying 
network on the accuracy of classifiers and inference algo-
rithms. In Antunes et al. (2023b), random walk sampling 
algorithms are considered to infer several functionals of 
attribute networks such as homophily/heterophily measures, 
attribute and degree distributions per attribute.

The aim of this paper is to provide analytical and numeri-
cal results for three related problems concerning represen-
tation, ranking and bias of minorities based on the degree 
and Page-rank centrality measures in sampling attributed 
networks (extending the knowledge in the literature Karimi 
et al. 2018; Espín-Noboa et al. 2022; Wagner et al. 2017).

To this end, we consider a dynamic random directed net-
work model generalizing (Karimi et al. 2018) where each 
arriving node connects to a fixed number of nodes (out-
going edges) depending on its attribute. The probability that 
each edge connects to a node of the network is proportional 
to its degrees (raised to the power of a parameter � ≥ 0 ) and 
a function that measures the propensity of the attributes of 
the nodes to interact. This allows to represent the two main 
mechanisms of the formation found in social networks: pref-
erential attachment ( 𝛼 > 0 ) and homophily/heterophily. We 
give analytical results for the degree and Page-rank distribu-
tions per attribute in the setting where popularity depends in 
a linear fashion on the current number of connections of a 
node (the regime � = 1 ) as the size of the network increases. 
In general, the models considered in this paper, with self-
reinforcement, where nodes with high degree have a higher 
propensity to obtain future connections, are non-trivial to 
analyze analytically; in the specific regime � = 1 , it turns out 
(Antunes et al. 2023a; Jordan 2013) that network functionals 
can be derived for the degree and Page-rank distributions. 
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The general sublinear case, where popularity of nodes is a 
sublinear function of the current degree ( � ∈ (0, 1) ) in the 
context of attributed network models, is open till date, and 
is studied numerically in this paper. The results imply that 
while degree distribution tail exponents depend on the attrib-
ute type, Page-rank score distributions have the same tail 
exponent across attributes; thus in the context of extremal 
behavior or most “popular nodes”, measuring the central-
ity of nodes using their degree is much more affected by 
attribute information, than a more global Page-rank central-
ity; for example in the hompophilic regime, while minority 
attributes are automatically disadvantaged by degree central-
ity, this is not the case with Page-rank centrality. Moreover, 
the mean behavior of the limiting Page-rank score distribu-
tions can be explicitly described and shown to depend on 
the attribute type. We use the model in the case of minority 
and majority nodes to investigate:

(a)	  Sampling a Rare Minority: An area of significant 
research interest in the context of network sampling 
comprises settings where there is a particular rare minor-
ity which has higher propensity to connect within itself 
as opposed to majority nodes; for substantial recent 
applications and impact of such questions, see (Mouw 
and Verdery 2012; Merli et al. 2016; Stolte et al. 2022). 
In such setting, devising schemes where one gets a non-
trivial representation of minorities is challenging if the 
sample size is much smaller than the network size. Sam-
pling schemes such as uniform sampling often struggle 
to find a non-trivial proportion of minority nodes for 
further downstream sociological explorations; see for 
example (Stolte et al. 2022; Merli et al. 2016) for ques-
tions related to mental health questions and demographic 
or social profiles, related to rare minorities within large 
populations. Additionally, uniform sampling does not 
give preference to “more popular” minority nodes, i.e., 
higher degree/Page-rank nodes. Therefore, it is desirable 
to explore the network locally around the initial (uni-
formly sampled) random node and try to travel towards 
the “centre”, thereby traversing edges along their natural 
direction. However, to avoid high sampling costs, the 
explored set of nodes should not be too large. This leads 
us to analyze several sampling schemes based on (in-)
degree and Page-rank centrality measures. We quantify 
explicitly the probability of sampling a minority node 
in a linear network ( � = 1 ) in the case that each arrival 
node connects to only one node of the network (i.e. tree 
network) and investigate the problem numerically for 
other network configurations (non-linear and non-tree 
networks). The results show that sampling schemes 
based on Page-rank centrality increase the probability 
of sampling a minority node and its “popularity” (higher 
degree and Page-rank).

(b)	  Centrality-Based Sampling and Higher Ranking of 
Minorities: We consider sampling schemes based on 
the degree and Page-rank centrality and investigate 
conditions for the minority nodes to rank higher (i.e. 
the proportion of the minority nodes in the sample is 
higher than for the majority nodes). For the degree cen-
trality we provide explicit conditions for higher rank 
when a small fraction of nodes is sampled as a function 
of the model parameters (node attribute probabilities 
and out-degrees) in a linear network and several net-
work scenarios: heterophily, homogeneous homoph-
ily (homogenous mixing) and asymmetric homophily. 
For the Page-rank centrality the results are investigated 
numerically and provide insights for the minority nodes 
to rank higher in the same scenarios.

(c)	  Bias of Subgraph Samplings in Ranking Through 
Degree Centrality: We consider a different sampling 
schemes from (b) where nodes (resp., edges) are sam-
pled and the induced (resp., incident) subgraph is 
observed. The goal is to measure the bias of sampled 
subgraph in the proportion of the minority nodes in the 
top percentile of high degree nodes. For the tree linear 
network we provide an analytical result to compute the 
bias for induced subgraph sampling. The sign of the 
bias which represents under or over representation of 
minorities in the subgraph samplings is then investi-
gated numerically for the homophily and heterophily 
scenarios as a function of the model parameters.

The details of the derivation of the analytical results 
for the special network configurations using stochastic 
approximations are defered to the technical report (Antunes 
et al. 2023a). Finally, the analytical and numerical results 
are assessed on real-world networks with several levels of 
homophily and heterophily showing a good agreement with 
the findings of the sampling analyses in the considered net-
work model.

This paper is a significant extension of the conference 
paper (Antunes et al. 2024) including: (1) a new Sect. 3 with 
the limiting distributions of the degree and Page-rank meas-
ures per attribute and their properties which are numeri-
cally illustrated for finite size networks; (2) the results of 
the degree centrality based sampling and higher ranking of 
minorities in Sect. 5.1 have been extended to several network 
configurations which are now visualized through plots; (3) 
a new Sect. 5.2 is included with Page-rank centrality based 
sampling and higher ranking of minorities; (4) a new Sect. 6 
is added that investigates the bias of subgraph samplings in 
ranking through degree centrality measures; (5) a separate 
section with real-world networks (Sect. 7) including addi-
tional datasets provides evidence of the similarities to the 
considered model and the network sampling analyse; (6) 
finally, parts of the remaining sections have been improved 
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including an algorithm to generate the attributed dynamical 
model in Sect. 2.1.

2 � Preliminaries

In this section, we introduce the network model, homophily 
and heterophily measures, and the network scenarios con-
sidered in our experiments.

2.1 � Dynamic attributed network model

We describe a network model where nodes have attributes 
which modulate the evolution dynamics of the network. This 
will have impact on the network structure and thus on the rank-
ing of the nodes based on the network centrality measures. Let 
A = {1, 2,… , L} be a finite set of the attribute labels. We 
describe the dynamics of a sequence of growing networks from 
an initial state. At time 0, a base connected directed network 
G0 with n0 nodes is given, where every node v ∈ G0 has an 
attribute a(v) in A. At each discrete time n = 1, 2,… , a node 
enters the network. The probability that an arriving node has 
attribute a is �a independent of the current network. An enter-
ing node of attribute type a connects to the network through 
ma ≥ 1 outgoing edges. The propensity with which a node with 
attribute b attaches to a node with attribute a is given by �a,b . 
Let �(= (�a,b)a,b∈A) be the propensity matrix. Additionally, let 
� ≥ 0 be the preferential attachment parameter associated with 
the strength of popularity of a node. A node u that arrives at 
time n, connects any of its ma(u) edges independently to a node 
v ∈ Gn−1 according to

where deg(v) is the degree of node v at time n − 1 (if |G0| = 1 , 
then we set deg(v) = 1) . The attachment probabilities capture 
the combined effect of attribute types and node popularity 
in network evolution. A description of the algorithm to con-
struct the dynamic network is given in Algorithm 1.

(1)ℙ(u → v|Gn−1, a(u)) ∝ �a(v),a(u)[deg(v)]
� ,

Algorithm 1   Dynamic Attributed Network Model

The model includes several classes of network dynam-
ics. For instance, if �a,b = 1 for all a, b ∈ A , then there is no 
dependence of the attributes on the evolution of the network. 
In this case, if � = 1 , we have the classical Barabási-Albert 
model (Barabási and Albert 1999) (linear with � = 1 ) and 
with 0 < 𝛼 < 1 the sublinear preferential attachment model. 
When � = 0 the incoming nodes attach to pre-existing nodes 
based purely on their attribute and are agnostic to the degree 
information—uniform attachment model.

2.2 � Dyadicity and heterophilicity measures

The proposed model incorporates several features found in 
real world social networks such as homophily and heteroph-
ily. There are several ways to measure these characteristics 
of networks. Here, we use dyadicity and heterophilicity pro-
posed in Park and Barabási (2007) for signed networks and 
that conveniently apply to directed networks. For a directed 
network, let V and E denote, respectively, the set of nodes 
and edges of the network. Let also Va represent the set of 
nodes with attribute a and Eab the set of directed edges from 
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nodes with attribute a to nodes with attribute b. Dyadicity 
for an attribute is defined as

where p = |E|∕(|V|(|V| − 1)) is the edge density. Heterophi-
licity Hab is given by

Dyadicity and heterophilicity measure, respectively, the 
connectedness between nodes with the same and different 
attributes when compared to a random configuration of the 
network (i.e., when all edges are randomly distributed). If 
Da > 1 and Hab < 1 , then nodes with attribute a attract each 

Da = |Eaa|∕(|Va|(|Va| − 1)p), a ∈ A,

Hab = |Eab|∕(|Va||Vb|p), a, b ∈ A, a ≠ b.

other and connections from nodes with attribute a to nodes 
with attribute b are repelled (homophily). On the other, 
Da < 1 and Hab > 1 represent heterophily. These quantities 
can be asymmetric among node attributes. Illustrations of 
the network structures generated with Algorithm 1 for linear 
and uniform attachment model for two attributes with homo-
phily and heterophily are shown in Fig. 1. Throughout the 
paper, nodes with attribute 1 will be referred as minority and 
attribute 2 as majority. The synthetic datasets are generated 
and experiments are conducted in this paper with R package 
igraph (Csardi and Nepusz 2006). A summary of the main 
notation is given in Table 1.

Fig. 1   Networks generated with the dynamic attributed network 
model (500 nodes, �1 = 0.2 ): (left) � = 1 , homophily �11 = �22 = 2 , 
�12 = �21 = 1 ; (middle) � = 1 , heterophily �11 = �22 = 1 , 
�12 = �21 = 2 ; (right) � = 0 , homophily �11 = �22 = 2 , �12 = �21 = 1 . 
The red circles represent attribute 1 (minority) nodes and green 

attribute 2 (majority) nodes with sizes proportional to the degrees. 
The dyadicity and heterophilicity measures are: (left) D1 = 1.652 , 
D2 = 1.109 , H12 = 0.838 , H21 = 0.56 ; (middle) D1 = 0.846 , 
D2 = 0.699 , H12 = 1.038 , H21 = 2.190 ; (right) D1 = 1.613 , 
D2 = 1.109 , H12 = 0.847 , H21 = 0.564 (color figure online)

Table 1   Summary of the main 
notation

Notation Description

Gn Graph at time n generated with the dynamic attributed network model
A Set of attribute labels
�a Probability of an arriving node having attribute a
ma Number of edges a node with attribute a entering the network connects to 

pre-existing nodes
�a,b Propensity of node with attribute b to connect to node with attribute a
� Preferential attachment parameter
deg(v) Degree of node v
V Set of nodes of the network
E Set of edges of the network
Va Set of nodes of the network with attribute a
Eab Set of directed edges from nodes with attribute a to nodes with attribute b
Da Dyadicity of nodes with attribute a
Hab Heterophilicity from nodes with attribute a to nodes with attribute b
pa(k) (limit) Probability that a node with attribute a has degree k
Rc(v) Page-rank score of node v ∈ Gn with damping factor c and Rc(v) ∶= nRc(v)

|B| Number of elements of set B
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2.3 � Network homophily and heterophily scenarios

In our experiments, we consider mainly three network sce-
narios using different configurations of the propensity matrix 
� . The heterophily scenario assumes �11 = �22 = 1 and 
�12 = �21 = K , where K is large. The homogenous homoph-
ily scenario takes �12 = �21 = 1 and �11 = �22 = K for large 
K. The last configuration is the asymmetric homophily sce-
nario, namely, 𝜅11 = K ≫ 1 and �22 = �12 = �21 = 1 . We let 
the proportion of minorities �1 be small and investigate tree 
networks ( m1 = m2 = 1 ) and non-tree networks ( m1 > 1 or 
m2 > 1).

3 � Distributions of centrality measures

In this section, we discuss analytical and numerical proper-
ties of the asymptotic distributions of the degree and Page-
rank per attribute of the network model. These two centrality 
measures are used to sample and rank nodes in the following 
sections. The details (proofs) of the theoretical results can 
be found in Antunes et al. (2023a).

3.1 � Degree distribution

For a linear network Gn ( � = 1) , as n tends to infinity, the 
limiting probability mass function (p.m.f.) of the degree of 
nodes with attribute a is given by

 where Γ denotes the gamma function and

pa(k) =
2

�
a

Γ
(
ma +

2

�
a

)
Γ(k)

Γ
(
k + 1 +

2

�
a

)
Γ(ma)

, k ≥ ma,

The quantity �a carries no special meaning and enters 
into the tail exponent in (3) below. The quantity �

a
 can be 

interpreted as the normalized sum of the degrees of nodes 
with attribute a as n tends to infinity and can be computed 
explicitly [ �

a
 , a ∈ A , are the minimizers of a function given 

in Antunes et al. (2023a), Equation (4.1)]. For each a ∈ A , 
we have

The result implies that the limiting degree distribution 
follows a power-law with exponent 2∕�

a
 dependent on the 

attribute. This agrees with the empirical evidence also found 
in real-world social networks (see Sect. 7).

In contrast, in the case of the uniform attachment model 
( � = 0) and ma = 1 (for simplicity, although the result can 
be extended to ma ≥ 2 ), the limiting degree distribution of 
attribute a is geometric with parameter 1∕(1 + �a) and has 
exponential tail.

Figure 2 shows the empirical degree distribution of Gn 
and the limiting distribution for several attributed networks, 
with parameters specified in the figure caption. We consider 
linear and uniform attachment networks with homophily and 
attributes 1 (minority) and 2 (majority). In all the cases, the 
bulk of the distribution per attribute type is approximated 
well by the limiting distribution. (We note that horizontal 
points for large degree values in the empirical distributions 
are due to the effect of the finite size of the network.) For the 
linear network ( � = 1 ) with m1 = m2 = 1 (Fig. 2, left), the 
maximum likelihood estimates of the empirical tail expo-
nents are 2.347 and 1.734 which are close, respectively, 
to 2∕�

1
≈ 2.566 and 2∕�

2
≈ 1.917 [given by (2)], where 

the majority attribute has a heavier tail. For m2 = 2 and 
m1 = 1 (Fig. 2, middle), the exponents of the fitted power-
law distributions are 2.143 and 1.772 and 2∕�

1
≈ 2.211 and 

(2)�a = 2 −
ma�a

�
a

.

(3)pa(k) ∼ k−(1+2∕�a), as k tends to infinity .
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Fig. 2   Empirical and limiting degree distributions of homophily networks with 50,000 nodes, �1 = 0.2 , �11 = �22 = 2 , �12 = �21 = 1 : (left) 
� = 1 , m1 = m2 = 1 ; (middle) � = 1 , m1 = 2 , m2 = 1 ; (right) � = 0 , m1 = m2 = 1
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2∕�
2
≈ 1.920 . Finally, for the uniform attachment network 

(Fig. 2, right), the empirical and the limiting exponential 
tails of the distributions also show a good agreement.

3.2 � Page‑rank distribution

We recall first the definition of the Page-rank scores with 
damping factor c (Page et al. 1999). For attributed network 
model Gn , the Page-rank scores of nodes v ∈ Gn with damp-
ing factor c is the stationary distribution {Rc(v) ∶ v ∈ Gn} of 
a random walk with jumps. At each step, with probability c, 
the walk follows an outgoing edge chosen uniformly at ran-
dom among the possible available choices from the current 
node location in the network, while with probability 1 − c , 
it jumps to a uniformly selected node of the network. The 
Page-rank scores of the nodes are given as the solution to 
the linear system of equations:

where V−(v) is the set of nodes with edges pointed to v and 
deg+(u) is the out-degree of node u. At nodes with zero 
out-degree, the random walk stays in place with probability 
c and jumps to a uniformly chosen node with probability 
1 − c . A high Page-rank value of a node results from the 
node either having a high in-degree or having an in-bound 
neighbor with a high Page-rank score.

Several asymptotic properties for the Page-rank scores of 
the linear dynamic attributed network model can be derived 
(Antunes et al. 2023a). It will be easier to describe the 
results in terms of the graph normalized Page-rank scores 
{Rc(v) ∶ v ∈ Gn} ∶= {nRc(v) ∶ v ∈ Gn} (Garavaglia et  al. 
2020). As n tends to infinity, the limiting distribution func-
tion of the (normalized) Page-rank scores per attribute has a 
power law tail with the same exponent 2∕�c across all attrib-
utes, where �c can be explicitly computed [see Antunes et al. 
2023a, Equation (4.5)]. This implies that for linear networks 

(4)Rc(v) =
1 − c

|V|
+ c

∑

u∈V−(v)

Rc(u)

deg+(u)
, v ∈ Gn

generated with this model, the tail exponent of the limiting 
Page-rank scores distribution does not depend on the attrib-
ute type, in contrast with the result on the asymptotic degree 
distribution in Sect. 3.1.

Additionally, if all rows of the matrix � are identical, then 
it can be shown that in this case �c = 1 + c for any c ∈ (0, 1) 
and �a = 1 for all a ∈ A . This implies that the limiting Page-
rank tail exponent is 2∕(1 + c) and the tail exponent of the 
limiting degree distribution is 2. In particular, these expo-
nents are independent of the out-degree ma of nodes. How-
ever, as in the case of only one attribute studied in Banerjee 
and Huang (2023), the out-degree significantly influences 
the degree separation between the “hubs” (maximal degree 
nodes) and the remaining nodes. Although the degree tail 
exponents are the same across attributes in this case, increas-
ing the out-degree of a given type will lead to the maximal 
degree node coming from the same type with high prob-
ability. On the other hand, when ma = m ≥ 1 for all a ∈ S , 
the tail exponents for the limiting Page-rank distribution, 
as well as the limiting degree distribution, match in the tree 
( ma = 1 ) and non-tree ( ma > 1 ) cases.

In spite of the degree exponent of the limiting the Page-
rank distribution being insensitive to the attribute type, 
the bulk of the distribution depends on the attribute. This 
implies for instance, that the average Page-rank of nodes per 
attribute differs and can also be explicitly computed from 
the model as n tends to infinity [see Antunes et al. 2023a, 
Equation (4.6)].

In the case of uniform attachment model ( � = 0 ) with 
ma = 1 , a ∈ S (which can also be extended to non-tree set-
ting), the power-law tail result for Page-rank also holds but 
now with exponent 1/c, while the degree distributions have 
exponential tails dependent on the attribute. This might 
appear surprising and seems to be new in the literature of 
network models. Intuitively, this can be understood by noting 
that as stated above, a high Page-rank value of a node results 
from having a high in-degree or an in-bound neighbor with 
a high Page-rank score. For the dynamic network discussed 

1e−04

1e−02

1e+00

1 10 100 1000
Page−rank

c.
c.

d.
f.

Min
Maj

1e−04

1e−02

1e+00

1 10 100 1000
Page−rank

c.
c.

d.
f.

Min
Maj

1e−04

1e−02

1e+00

1 10 100 1000
Page−rank

c.
c.

d.
f.

Min
Maj

Fig. 3   Empirical complementary c.d.f. of the Page-rank distributions of homophily networks with 50,000 nodes, �1 = 0.2 , �11 = �22 = 2 , 
�12 = �21 = 1 : (left) � = 1 , m1 = m2 = 1 ; (middle) � = 1 , m1 = 2 , m2 = 1 ; (right) � = 0 , m1 = m2 = 1
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here, “older” nodes tend to have higher in-degrees and are 
typically close to other high degree (and high Page-rank) 
nodes. This reinforcement results in the Page-rank having 
heavier tails than degree.

Figure 3 depicts the empirical complementary cumulative 
distribution function (c.c.d.f.) of the Page-rank distributions 
for linear and uniform attachment networks with homoph-
ily using the same parameters as in Fig. 2 with damping 
factor c = 0.85 . For � = 1 and m1 = m2 = 1 , the maximum 
likelihood estimates of the empirical tail exponents are 
1.195 (minority) and 1.058 (majority) which are close to 
2∕�c ≈ 1.079 . However, the average (normalized) Page-
rank for minority and majority are 0.517 and 1.120, resp. 
With m1 = 2 , m1 = 1 , the exponents of the fitted power-law 
distributions are 1.114 (minority) and 1.110 (majority) and 
2∕�c ≈ 1.047 . For uniform attachment network, we have 
1.190 (minority) and 1.138 (majority) and 1∕c ≈ 1.176.

4 � Network sampling representation for rare 
minority

In this section, we consider the network model in a setting 
where there is a particular rare minority (attribute 1) which 
has higher propensity to connect within itself as opposed 
to majority nodes. In the context of network sampling, we 
devise schemes that increase the probability of sampling a 
minority node and therefore its representation in the sample.

4.1 � Sampling methods

In the above setting, uniform and (total) degree-based sam-
pling schemes are not efficient in sampling rare minorities 
if the sample size is much smaller than the network size 
and will be considered as baseline methods for comparison. 
Sampling methods that explore the network locally around 
the initial (uniformly sampled) random node by traversing 
edges along their natural direction have a higher efficacy for 
sampling rare minorities. We will propose such sampling 
schemes which are based on in-degree and Page-rank cen-
trality measures.

Uniform sampling (Unif): sample a node uniformly at 
random from Gn.

Sampling proportional to degree (Deg): pick a node at 
random from the network and then sample a neighbor of this 
node uniformly at random.

Sampling proportional to in-degree (InDeg): select a 
node at random and then sample a node from one of its 
outgoing edges chosen at random. If the root node is picked 
(in a tree-network) then the root is sampled.

Sampling proportional to Page-rank with damping fac-
tor c ( PRc ): pick a node uniformly at random from the net-
work and then generate each time independently a geometric 

random variable X with parameter (1 − c) with support start-
ing at zero. Starting from the picked node, walk X steps at 
random using the directions of edges. The terminal node is 
sampled. If the root node is reached before X steps in a tree 
network, pick this node as the sampled node. Sampling a 
node with probability proportional to the Page-rank scores 
{Rv,c(n) ∶ v ∈ Gn} as defined in Sect. 3.2 is equivalent to 
the local algorithm PRc in the context of the (tree) network 
model (Chebolu and Melsted 2008).

Fixed length walk sampling ( FixLM ): Set M ≥ 0 . Consider 
the same implementation of the Page-rank scheme but now 
the number of walk steps taken is fixed and equal to M. 
Since M = 0 and M = 1 corresponds, respectively, to uni-
form sampling and sampling proportional to in-degree, we 
will consider M ≥ 2.

4.2 � Tree networks

We consider an asymmetric homophily scenario, where type 
1 (minority) nodes are relatively rare compared to type 2 
(majority) nodes and newly entering majority nodes have 
equal propensity to connect to minority or majority nodes. 
Minorities have relatively much higher propensity to con-
nect to other minority nodes, as compared to majority nodes, 
namely,

We analyze a linear ( � = 1) tree network of large size 
where a and � are dependent, that is, � = D

√
a , where D is a 

positive constant. Let v be a node sampled from the network 
Gn and a(v) its attribute, under the above sampling schemes. 
Table 2 summarizes our findings for the asymptotic prob-
ability of sampling a minority node under the above sam-
pling schemes (the results are proved in the technical report 
Antunes et al. 2023a). We investigate how the relative per-
formances of these schemes hold in a non-asymptotic regime 
for (sub-)linear tree and non-tree networks.

We generate a linear tree network with |V| = 105 nodes, 
a = 0.003 (D = 1) where the probability that a node enter-
ing the network has attribute 1 (minority) is very small, 

(5)

𝜅11 = 𝜅22 = 𝜅12 = 1, 𝜅21 = a, 𝜋1 =
𝜃

1 + 𝜃
, a, 𝜃 ≪ 1.

Table 2   Linear tree network: asymptotic sampling probabilities of a 
minority node as n → ∞ , a → 0+

Sampling ℙ(a(v) = 1|Gn)

Unif D
√
a + O(a)

Deg 2D
√
a − (4D2 +

1

2
)a + O(a3∕2)

InDeg 3D
√
a + O(a)

PRc ( c → 1 ) and FixLM (2D2−
1

2
+
√
(2D2−1∕2)2+4D2)

(2D2+
1

2
+
√
(2D2−1∕2)2+4D2)

+ O(a)
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�1 ≈ 0.052 . The homophily and structural characteristics of 
the network are given in Table 3 (Syn. 1). Note that D1 is 
large while D2 is close to 1, and H12(< 1) is smaller than 
H21 corresponding to an asymmetric homophily. We esti-
mate the probability of sampling a minority node (in each 
trial) for the sampling schemes defined above. We repeat 
the procedure to sample a node for each scheme 104 times 
and compute the proportion of minority nodes which were 
sampled. Additionally, we also compute the average of the 
degree-rank and Page-rank of the minority nodes sampled 
with respect to the whole network. The ranks are expressed 
as percent, where higher rank corresponds to smaller top 
percent. For example, a 5% result means that the minority 
nodes sampled are on average in top 5% of nodes with the 
highest degree (Page-rank) in the whole network. The results 
are given in Table 4. The probability of sampling a minor-
ity node under uniform sampling is close to the asymptotic 
value 

√
a ≈ 0.055 and does not give preference to “more 

popular” nodes (with higher degree or Page-rank). Sampling 
proportional to degree approximately doubles the chance to 
pick a minority node approaching 2

√
a −

9

2
a ≈ 0.096 and 

leads to a higher rank. The results improve with sampling 
proportional to in-degree which agrees with the asymptotic 

analysis. For sampling proportional to Page-rank (PRc) with 
c = k∕(k + 1) , k ∈ ℕ , the mean number of walk steps is k. 
The number of steps being random does not improve the 
results. If the value of c is close to 0, PRc is akin to uni-
form sampling. On the other hand, when c is large, the walk 
can hit the root. This can be explained by the diameter of 
the network which is 18 (in the tree case, it is O(log |V|) ). 
These drawbacks explain partly the good performance of 
fixed length walk sampling which also has the higher rank 
of the minority sampled nodes. This sampling scheme gives 
preference to nodes with a higher Page-rank as well.

We next consider the sub-linear tree network with 
� = 0.25 and a = 0.02 (D = 1) which gives �1 ≈ 0.124 . 
The characteristics of the generated network are given in 
Table 3 (Syn. 2). We estimate the probability of sampling 
a minority and its importance for each sampling scheme 
using 104 runs—see Table 5. The qualitative comparison of 
the performance of the sampling schemes is the same as in 
the linear case. However, the number of steps for sampling 
proportional to Page-rank and fixed length walk sampling is 
larger. The diameter of the generated network is 25.

Table 3   Synthetic networks: 
structural properties (see 
Table 1 for the used notation)

|V| |E| D1 D2 H12 H21
|E11|
|E|

|E22|
|E|

|E12|
|E|

|E21|
|E|

|V1|
|V|

|V2|
|V|

Syn. 1 105 99999 18.74 0.961 0.029 1.837 0.050 0.864 0.002 0.085 0.052 0.948
Syn. 2 105 99999 7.155 0.988 0.133 1.052 0.108 0.760 0.015 0.117 0.123 0.877
Syn. 3 25,000 46907 3.722 1.078 0.042 0.488 0.057 0.828 0.009 0.106 0.124 0.876

Table 4   Linear tree network 
(Syn. 1): estimated probability 
of sampling a minority node, 
and its average degree-rank and 
Page-rank in the network

Sampl. scheme Unif Deg InDeg PR1∕2 PR2∕3 PR3∕4 PR4∕5 FixL2 FixL3 FixL4

Prob 0.052 0.110 0.133 0.077 0.090 0.093 0.089 0.189 0.191 0.150
Degree-rank(%) 46.147 6.883 3.628 23.702 16.220 12.199 10.805 1.032 0.330 0.155
Page-rank(%) 46.215 7.323 3.912 23.759 16.199 12.195 10.781 0.825 0.212 0.080

Table 5   Sub-linear tree network 
(Syn. 2): estimated probability 
of sampling a minority node, 
and its average degree-rank and 
Page-rank in the network

Sampl. scheme Unif Deg InDeg PR2∕3 PR3∕4 PR4∕5 PR5∕6 FixL4 FixL5 FixL6

Prob 0.125 0.176 0.226 0.199 0.220 0.226 0.223 0.387 0.401 0.381
Degree-rank (%) 43.345 17.736 9.848 17.515 13.053 10.737 9.586 1.059 0.529 0.395
Page-rank(%) 43.037 18.954 10.417 17.284 12.783 10.553 9.358 0.617 0.384 0.143

Table 6   Linear non-tree network (Syn. 3): estimated probability of sampling a minority node, and its average degree-rank and Page-rank in the 
network

Sampl. scheme Unif Deg InDeg PR1∕2 PR2∕3 PR3∕4 FixL2 FixL3 FixL4

Prob 0.1212 0.164 0.207 0.142 0.146 0.139 0.234 0.211 0.158
Degree-rank (%) 69.045 17.184 9.443 46.636 35.758 29.978 3.211 1.283 0.609
Page-rank (%) 49.437 11.626 5.846 33.362 25.660 21.028 1.536 0.527 0.233
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4.3 � Non‑tree networks

Finally, we consider a linear non-tree network with m1 = 1 
and m2 = 2 and a = 0.02 (D = 1) . The number of nodes is 
25,000 which resulted in a network diameter of 16. The net-
work properties are shown in Table 3 (Syn. 3). As seen from 
the results (averaged over 104 runs) in Table 6, the prob-
ability of sampling a minority node with fixed length walk 
sampling decreases compared to the sub-linear case due to 
the non-tree network structure (however, it is still approxi-
mately the double compared to uniform sampling).

4.4 � Discussion

 In a setting where there is a small minority with higher 
propensity to connect within itself and majority nodes have 
equal preference to connect to any type of node, we argued 
that a sampling method that explores the network locally 
around a node selected at random followed by a fixed num-
ber of steps using the directions of edges has a higher prob-
ability to sample a minority node. It also finds more “popu-
lar” (higher degree and Page-rank) minority nodes. This is 
particularly more relevant for tree networks.

5 � Centrality‑based sampling and higher 
ranked attribute

The goal of this section is to investigate the role of the model 
parameters on the representation of the minority nodes when 
a fraction of nodes are sampled based on a centrality meas-
ure. The following schemes are considered:

A: sample (select) a fraction � of nodes of the network 
with the highest centrality measure;
B: sample without replacement a fraction � of nodes with 
probability proportional to the centrality measure.

The scheme A is a non-probabilistic sampling method where 
nodes are selected using a deterministic criterion. In this 
case, the nodes selected represent the top � fraction of nodes 
with the highest centrality measure in the whole network. 
We quantify the proportion of nodes for each attribute type 
in both sampling schemes. If an attribute type dominates the 
other attribute type (i.e. with a proportion greater than 0.5) 
in a given sampling scheme, we call it the higher ranked 
attribute for that scheme.

5.1 � Degree centrality

In this subsection, we consider the degree centrality of nodes 
in linear preferential attachment networks. We recall from 
Sect. 3.1 that �a represents the limit of the normalized sum 

of the degrees and 2∕�a denotes the power law exponent of 
the limiting degree distribution of nodes with attribute a 
(see Eqs. 2 and 3). We can relate these quantities to condi-
tions for the minorities to be higher ranked in the sampling 
schemes above for a small fraction � , say top 1–3% which 
is the most interesting case. If the degree distribution tail of 
type 1 attribute is heavier than that of type 2 (i.e. 𝜙1 > 𝜙2 ), 
then type 1 has a higher proportion of nodes in the sample 
under scheme A. On the other hand, if 𝜂1 > 𝜂2 , then a sam-
pled node is more likely to be of type 1 [see the discussion 
following Eq. (2)] and therefore minority nodes are ranked 
higher under scheme B.

We consider below the three network scenarios of 
Sect. 2.3 using different configurations of the propensity 
matrix � and give the conditions for minorities to rank 
higher in both sampling schemes as a function of the model 
parameters: node out-degrees (m1,m2) and node attribute 
probabilities (�1,�2) . The proofs of these results are given 
in Antunes et al. (2023a).

5.1.1 � Heterophily

We first consider a heterophilic network given by 
�11 = �22 = 1 and �12 = �21 = K , where K ≫ 1 . As K grows, 
�1 and �2 approach

Thus, if m1𝜋1 < m2𝜋2 , which always holds in the case 
m1 ≤ m2 , then 𝜙1 > 𝜙2 and the minorities rank higher under 
scheme A, as intuitively can be understood by noting that the 
majority nodes boost up the minority ranks under scheme A. 
But, if m1𝜋1 > m2𝜋2 , the minority nodes boost up the major-
ity ranks under scheme A by connecting to them with more 
edges per incoming node.

As K becomes larger,

and thus the discrepancy in relative ranking between the two 
groups decreases under scheme B.

Figure 4 (left) shows the proportion of minority nodes for 
0 < 𝛾 ≤ 1 in the two sampling schemes when m1 ≤ m2—the 
network parameters are given in the caption of the figure. 
The structural properties of the network with m1 = m2 = 2 
are given in Table 7 for the several considered scenarios. For 
small � , the minority nodes rank higher under scheme A (the 
result for the majority is the complementary proportion). In 
this setting 𝜙1 < 𝜙2 and the empirical degree distribution 
of the minority is heavier than that of the majority which 
results in higher node degrees for the minority—see Fig. 5 

(6)
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≈ 2
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2
≈ 2

(
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(left) with m1 = 2,m2 = 4 . Under scheme B, the empirical 
value �1 is slightly smaller than �2 which explains that the 
proportion of minority nodes in both settings is smaller than 
the majority for small � . For other top ranks (say 10% and 
20%) the minority is over-represented under both schemes 
in the sense that the proportion is higher than �1 , which is 
obviously approached when � = 1.

Figure 4 (middle) depicts the case where m1𝜋1 > m2𝜋2 . 
For small � , the majority nodes rank higher under scheme 

A. The degree distribution of the majority in Fig. 5 (mid-
dle) with m1 = 10,m2 = 2 is heavier ( 𝜙1 > 𝜙2 ) and thus the 
majority nodes have higher degrees. On the other hand, 
for small � , the proportion of minority nodes is close 
but above 0.5 under scheme B (the empirical value �1 is 
slightly higher that �2 ). For other values � = 0.1, 0.2, 0.3 , 
the minority nodes rank higher in both schemes. This is 
due to the fact the lower bound of the degree of minority 
nodes m1 is large and the heterophilic scenario.
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Fig. 4   Degree centrality: proportion of minority nodes under sampling schemes A and B of heterophilic networks with 30,000 nodes, � = 1 , 
�1 = 0.3 , �11 = �22 = 1 , �12 = �21 = 15

Table 7   Synthetic network scenarios: structural prop-
erties with � = 1 , �1 = 0.3 , m1 = m2 = 2 : heterophilic 
( �11 = �22 = 1 , �12 = �21 = 15 ); homogenous homphily 

( �11 = �22 = 15 , �12 = �21 = 1 ); asymmetric homophily ( �11 = 15 , 
�22 = �12 = �21 = 1 ). (See Table  1 for the description of remaining 
quantities.)

|V| |E| D1 D2 H12 H21
|E11|
|E|

|E22|
|E|

|E12|
|E|

|E21|
|E|

|V1|
|V|

|V2|
|V|

Het 304 59997 0.198 0.097 1.347 3.087 0.018 0.047 0.284 0.651 0.302 0.698
Homo 304 59997 2.880 1.389 0.195 0.092 0.259 0.681 0.041 0.019 0.300 0.700
Asy. homo 304 59997 3.046 0.796 0.112 1.469 0.279 0.387 0.024 0.310 0.303 0.697
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Fig. 5   Empirical degree distributions of networks with 30,000 nodes, � = 1 , �1 = 0.3 , �11 = �22 = 1 , �12 = �21 = 15 : (left) m1 = 2,m2 = 4 , 
(middle) m1 = 10,m2 = 2 , (right) m1 = 2,m2 = 1
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Figure 4 (right) represents the case where �1 and �2 are 
close. The degree distributions are given in Fig. 5 (right) 
with m1 = 2 , m2 = 1 , where �1 is slightly larger than �2 
and thus the minority rank higher under scheme A for 
small � (when m1 = 3 , m2 = 1 it is the opposite). There is 
almost no discrepancy in relative ranking between the two 
groups for small � under scheme B.

5.1.2 � Homogenous homophily and homogeneous mixing

When the network is homogeneous mixing, that is, �ij = 1 , 
for all i, j = 1, 2 , or when there is strong homophily 
𝜅11 = 𝜅22 = K ≫ 1 and �12 = �21 = 1 , we have

and

as K → ∞ . Thus, if m1𝜋1 > m2𝜋2 , the minority nodes 
rank higher via scheme B. Moreover, although the degree 
tail exponents are comparable, if m1∕m2 is large enough, 
the degrees of minority nodes get a high initial boost. 
The analysis of Banerjee and Bhamidi (2021), Galashin 
(2016), extended to the multi-attribute setting, suggests a 

�1 ≈ 1, �2 ≈ 1

�
1
≈ m1�1, �

2
≈ m2�2,

“persistence phenomenon”, namely, the maximal degree 
nodes from any attribute type emerge from, with high prob-
ability, the oldest nodes of that type added to the network. 
Consequently, minority nodes also seem to have a higher 
ranking under scheme A, when � is small. Thus, in the con-
text of social networks, increasing the “social interaction” 
(quantified by m1∕m2 ) for the minority nodes increases their 
popularity under both schemes in this setup.

Figure 6 (left) considers homogeneous homophily net-
works, where m1 is sufficiently larger than m2 such that the 
minority rank higher in both sampling schemes for small 
� . This also true for other top 10% and 30% when m1 is 
large since it determines the lower bound of the degree of 
the minority nodes as noted above. On the other hand, in 
Fig. 6 (middle) the ratio m1∕m2 = 1.5 is not sufficiently large 
for the minority nodes to rank higher under schemes A and 
m1𝜋1 < m2𝜋2 in scheme B. With the same outgoing edges 
( m1 = m2 = 2 ), the proportion of nodes from attribute 1 with 
both scheme remains approximately close to �1 . Figure 6 
(right) considers two homogeneous mixing networks where 
the same conditions for the minority nodes to rank higher 
hold.
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Fig. 6   Degree centrality: Proportion of minority nodes under sampling schemes A and B of homogeneous homophily and homogeneous mixing 
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Fig. 7   Degree centrality: 
Proportion of minority nodes 
under sampling schemes A and 
B of asymmetric homophily 
networks with 30,000 nodes, 
� = 1 , �1 = 0.3 , �11 = 15 , 
�12 = �12 = �21 = 1
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5.1.3 � Asymmetric homophily

Finally, we consider the strong asymmetric homophily 
regime, namely, 𝜅11 = K ≫ 1 , �22 = �12 = �21 = 1 . As 
K → ∞,

and

Thus, since 𝜙1 > 𝜙2 , the minorities rank higher under 
scheme A. In comparison, for scheme B, minorities rank 
higher if 2m1𝜋1 > m2𝜋2 . Again, in the context of social net-
works, this implies that, if the majority nodes do not show 
appreciable attribute bias when connecting to the network, 
the minorities can increase their popularity by enhancing 
their connectivity preference towards other minority nodes. 
The last two scenarios under scheme A were briefly consid-
ered heuristically in Espín-Noboa et al. (2022) using fluid 
limits.

In Fig. 7 (left) the condition 2m1𝜋1 > m2𝜋2 holds and 
the minority nodes dominates under scheme B for small � . 
With m1 = 5 , m2 = 2 , the minority node can rank higher for 
top 20% and 30%. Figure 7 (right) illustrates the case when 
2m1𝜋1 < m2𝜋2 , however, with m1 = m2 = 2 the minority can 
be over-represented for � ∈ (0, 1) . On the other hand, under 
scheme A minority always dominates in all the cases con-
sidered for small � and also for larger top-ranks if m1 > m2.

5.1.4 � Discussion

In the heterophily regime considered, if we select a small 
fraction � (say, � ≤ 0.03) of nodes of the network with the 
highest degree (scheme A), the proportion of minority nodes 
selected is higher (rank higher) if the number of outgoing 
edges of a minority node m1 is smaller than or equal to the 
number outgoing edges of a majority node m2 . On the other 

(8)�
1
≈

2m1�1 + 3m2�2

2m1�1 + 2m2�2
, �

2
≈

m2�2

m1�1 + m2�2

(9)

�
1
≈

2m1�1(m1�1 + m2�2)

2m1�1 + m2�2
, �

2
≈

m2�2(m1�1 + m2�2)

2m1�1 + m2�2
.

hand, if nodes are sampled proportional to their degrees 
(scheme B), the proportions of the minority and majority 
are similar. With homogenous homophily, the minority 
nodes rank higher under scheme A if the ratio m1∕m2 is suf-
ficiently larger. However, under scheme B this depends also 
on the proportion of the minority nodes in the network �1 
( m1𝜋1 > m2𝜋2) . In the case of asymmetric homophily the 
condition for the minority to have a larger proportion in the 
sample under scheme B is less restrictive (2m1𝜋1 > m2𝜋2) , 
while the minority always ranks higher under scheme A.

5.2 � Page‑rank centrality

In this subsection, we consider the Page-rank centrality 
measure in the schemes A and B, and explore the propor-
tion of minority nodes in the sample for the heterophily 
and homophily scenarios considered in Sect. 5.1. As for the 
degree centrality, if the normalized sum of the Page-ranks of 
the minorities (majorities, resp.) is higher than the majorities 
(minorities, resp.), the probability of sampling a minority 
(majority, resp.) node in each draw is higher and hence the 
minority (majority, resp.) rank higher in scheme B for small 
� . On the other hand, under scheme A, Page-rank distribu-
tion tails for the two attribute types are expected to have the 
same power-law exponents (see Sect. 3.2). However, one 
distribution tail can still dominate the other as, for example, 
in Fig. 3 or homogenous homophily/mixing in Section 5.1. 
As in the latter section, we expect this to depend on the val-
ues of m1 and m2 . The derivation of the conditions for the 
minority to rank higher in terms of the model parameters 
seems theoretically challenging, and we explore the issues 
numerically to gain insight.

5.2.1 � Heterophily

We consider a heterophilic linear network with �11 = �22 = 1 
and �12 = �21 = 15 and �1 = 0.3 as above for comparison 
and set the damping factor to c = 0.85 . Figure 8 (left) shows 
two settings with m1 ≤ m2 , where there is almost no discrep-
ancy in relative ranking between the minority and majority 

Fig. 8   Page-rank centrality: 
proportion of minority nodes 
under sampling schemes A and 
B of heterophilic networks with 
30,000 nodes, � = 1 , �1 = 0.3 , 
�11 = �22 = 1 , �12 = �21 = 15
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for small � (top 1–3%) under scheme A. This contrasts with 
the situation for the degree centrality measure in Fig. 4 (left). 
As the Page-rank of majority nodes is increased by high 
Page-rank minority nodes that connect to them, the separa-
tion between the proportions of minority and majority nodes 
in the sample chosen according to scheme A decreases.

The lower proportion of attribute 1 (minority) with 
m1 = 2,m2 = 4 compared to m1 = 2,m2 = 2 under scheme 
A (when � is not too large) can be explained as follows. 
When m1 < m2 , the Page-rank formula (4) shows that Page-
rank of minority nodes is diminished. To see this, observe 
that, due to heterophily, for a minority node most of its 
inbound neighbors belong to the majority. From the Page-
rank formula, the contribution to the Page-rank of a minority 
node by a majority node u is O( 1

deg+(u)
=

1

m2

) , which is small 
as m2 increases. This reduces the proportion of minority 
nodes selected by scheme A, as seen in Fig. 8 (left). In both 
settings, under scheme B, the normalized sum of the Page-
ranks is smaller for the minorities which explain that the 
majority rank higher for small �.

Figure  8 (right) depicts two cases with m1 > m2 where 
the minority can rank higher under scheme A for larger top-
ranks � (20% and 30%) by a reasoning similar to above. 
Now, the minority nodes have larger out-degrees, and their 
contribution to the ranks of the outbound majority neigh-
bors is largely diminished ( O(1∕m1) ) and the minority ranks 
higher. We also see that under scheme B, the proportion of 
minority increases.

5.2.2 � Homogeneous homophily

We set the propensity matrix to �11 = �22 = 15 and 
�21 = �12 = 1 , �1 = 0.3 and c = 0.85 . With m1 = m2 = 2 , the 
proportion of minority nodes in both schemes is close to its 
expected proportion �1 in the network under both schemes 
and this proportion is slightly higher with m1 = 5,m2 = 2 
for small � – see Fig. 9 (left). As seen from Fig. 9 (right), 
for the minority to rank higher, it is needed that the number 
of minority nodes they connect to is large under scheme 
A, which roughly amounts to m1 ≫ m2 in the homophilic 
regime. As found in Banerjee and Huang (2023) for only one 
attribute, the out-degree significantly influences the degree 
separation between the “hubs” (maximal degree nodes) and 
the remaining nodes. Increasing the out-degree of a given 
type will also lead to the maximal degree node coming from 
the same type with high probability. Additionally, for the 
dynamic networks considered here, “older” nodes tend to 
have higher in-degrees and are typically close to other high 
degree (and high Page-rank) nodes. Putting it all together 
and by noting that a high Page-rank value of a node results 
from the node having either a high in-degree or having an 
in-bound neighbor with a high Page-rank score, reinforces 
the conditions for the minority to rank higher for small � 
under scheme A with homophily.

Fig. 9   Page-rank centrality: 
proportion of minority nodes 
under sampling schemes A and 
B (Page Rank) of homogenous 
homophily networks with 
30,000 nodes, � = 1 , �1 = 0.3 , 
�11 = �22 = 15
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Fig. 10   Page-rank centrality: 
proportion of minority nodes 
under sampling schemes A and 
B of asymmetric homophily 
networks with 30,000 nodes, 
� = 1 , �1 = 0.3 , �11 = 15 , 
�22 = �12 = �21 = 1
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5.2.3 � Asymmetric homophily

In this scenario, the minority is homophilic with propensity 
matrix given by �11 = 15 , �22 = �12 = �21 = 1 , �1 = 0.3 and 
c = 0.85 . For the setting in Fig. 10 (left) where m1 ≥ m2 , the 
minority ranks higher under scheme A not only for small � . 
For scheme B, the minority needs to increase their popular-
ity through the number of outgoing edges to rank higher. 
On the other hand, if the majority nodes increase their out-
degree even if they do not show appreciable attribute bias 
when connecting to the network and the minority is homo-
philic, the majority can rank higher in both schemes (Fig. 10 
(right)).

5.2.4 � Discussion

The results show that with Page-rank centrality measure in 
the heterophily regime under scheme A with � small, the 
proportions of the minority and majority selected tend to 
be similar if their out-degrees m1 and m2 are equal, while 
under scheme B the majority ranks higher. Increasing m1 , 
the minority can rank higher for a large range of � under 
scheme A, which also increases the visibility of minority 
nodes for scheme B. In a homogeneous homophily network, 
for the minority to rank higher under scheme A, the out-
degree of minority has to be much larger than the out-degree 
of majority, which also increases the proportion of minority 
nodes sampled with scheme B. With asymmetric homophily, 
if m1 ≥ m2 , the minority ranks higher under scheme A for 
a large range of � and in scheme B when m1 is sufficiently 
greater than m2.

6 � Bias in ranking through degree centrality 
and subgraph sampling

In the context of the use of synthetic models for providing 
insight into real world systems, a different direction is the 
study of the performance of subgraph sampling methods in 
the representation and ranking of various attributes, espe-
cially in the tail of the distribution. More precisely, one has 
a partial observation of the nodes (or edges) in subgraph 
sampling and the goal is to infer the bias of the induced 
subgraph, especially tail properties like the connectivity 
structure of minority high-degree nodes from this partial 
measurement.

Fix a parameter p representing the density of items (nodes 
or edges) sampled from the network. The two main sampling 
schemes considered in this section are: 

1.	 Induced subgraph sampling: Here one samples a propor-
tion p of the nodes of the graph uniformly at random and 
observes the induced subgraph on the sampled nodes.

2.	 Incident subgraph sampling: Here one samples a propor-
tion p of the edges of the graph uniformly at random and 
observes the induced subgraph generated by these edges.

The first type of sampling is representative in the construc-
tion of contact networks in social network research, when a 
sample of individuals of different types is first selected and 
then individuals are interviewed regarding some measure 
of contact among themselves (e.g. friendship, likes or dis-
likes, etc.). The second design is, for example, implicit in the 
construction of streaming graphs (e.g. Twitter) with differ-
ent groups in a very large network, wherein edges (tweets) 
are sampled from the stream of edges, after which sender 
and the receiver nodes (users) are observed. Note that under 
incident subgraph sampling, the probability that a node is 
selected depends on its degree.

Write Gind
n

 (resp., Ginc
n

 ) for the induced (resp., incident) 
sampled graph from Gn . In either case, inferences about the 
underlying graph are then based on the subgraph. Now fix 
0 < 𝛾 ≤ 1 . The goal is to understand the composition of the 
top � percentile of nodes as measured according to their 
degree distribution, and comparing the information provided 
by the sampled graph in contrast to the underlying network. 
For any attributed network Gn , rank the nodes in order of 
their degrees as in scheme A (Sect. 5). For quantile level � , 
let prop(Gn;�) denote the proportion of type 1 (minority) 
nodes amongst the top � proportion of nodes in terms of 
degrees. Now if G������

n = Gind
n

 or Ginc
n

 is a graph obtained by 
sampling from Gn using the schemes above, define the bias 
for the sampling scheme for quantile level � as

(10)bias(������;�) = prop(G������

n
;�) − prop(Gn;�).
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6.1 � Tree networks

To state an analytical result for the sampling bias under 
induced subgraph sampling for a tree network, we need 
some notation. Recall the limiting degree distribution 
according to attribute types in Sect. 3.1 and denote by Da a 
random variable with the distribution pa(⋅) for a ∈ {1, 2} . 
For p ∈ [0, 1] , write ���(Da, p) for a binomial random 
variable with Da number of trials (conditionally on Da 
generated first) and success probability p. Recall that the 
(1 − �) percentile of the distribution of a random vari-
able Z is given by the unique z such that ℙ(Z < z) ≤ 1 − 𝛾 
and ℙ(Z ≤ z) ≥ 1 − � . Let k� denote the (1 − �) percen-
tile of the distribution �1ℙ(D1 ∈ ⋅) + �2ℙ(D

2 ∈ ⋅) . Write 
𝛾̃ = 𝜋1ℙ(D

1 ≥ k𝛾 ) + 𝜋2ℙ(D
2 ≥ k𝛾 ) , noting that 𝛾̃ might not 

equal � owing to discretization effects. Similarly let k� ,p 
denote the corresponding percentile but for the distribution

and let 𝛾̃p = 𝜇p([k𝛾 ,p,∞)) . Then, under appropriate assump-
tions, one obtains the following result for the induced sub-
graph sampling (the proof is given in Antunes et al. 2023a), 
as n → ∞,

The asymptotic bias given by (11) is plotted in Fig. 11 
for the three network configurations of Sect. 2.3. For het-
erophilic and asymmetric homophily networks, the bias is 
negative for initial top ranks � and approximately zero for 
homogeneous networks. The reasons for these results and 
the case when m1,m2 > 1 are investigated numerically in 
the next section.

�p(⋅) ∶= �1ℙ(���(D
1, p) ∈ ⋅) + �2ℙ(���(D

2, p) ∈ ⋅),

(11)

bias(𝚜𝚊𝚖𝚙𝚕𝚎;𝛾)
P

⟶𝜋1

(
ℙ(���(D1, p) ≥ k𝛾 ,p)

𝛾̃p
−

ℙ(D1 ≥ k𝛾 )

𝛾̃

)
.

6.2 � Non‑tree networks

In applications, a key issue of interest is over- or under-
representation of minorities with subgraph samplings. 
Having a network model, it is interesting to understand the 
dependence of representation on the driving parameters of 
the model. We explore these questions below for the various 
homophily and heterophily scenarios considered in Sect. 5.

6.2.1 � Heterophily

We consider the same propensity matrix as in Sect. 5 for 
this scenario ( �11 = �22 = 1 , �12 = �21 = 15 ) and the linear 
attachment model with � = 1 , n = 30000 , �1 = 0.3 , but vary-
ing m1 and m2 . For induced subgraph sampling, the densities 
p of sampled nodes are 0.1 and 0.2. To be consistent, we 
successively sample edges under incident subgraph sampling 
until the same densities of nodes are selected.

Figure 12 (left) depicts the bias for both subgraph sam-
pling schemes when the number of outgoing edges for 
minority and majority nodes is equal to 2. Recall under 
this setting the proportion of type 1 nodes amongst the 
top � fraction of nodes with the highest degree from Fig. 4 
(left) - scheme A. In this case, for small � , the minor ranks 
higher. Since nodes are sampled at random under induced 
subgraph sampling and p is small, sampling fails to capture 
the minority “hubs” (large degree nodes) and the proportion 
of type 1 nodes amongst the top � degree nodes is smaller 
in the subgraph and the bias is negative. As � approaches 1, 
it is expected that the bias is zero under induced subgraph 
sampling. The result is in line with the negative bias under 
induced subgraph sampling for tree networks (Fig. 11). In 
incident subgraph sampling while edges are in the sample 
with equal probability, the nodes are included with unequal 
probabilities that depend on the degree (minority node 
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Fig. 12   Bias of induced and incident subgraph sampling of heterophilic networks with 30,000 nodes, � = 1 , �1 = 0.3 , �11 = �22 = 1 , 
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“hubs” are more likely to be sampled). This explains that 
under the heterophilic scenario (with m1 = m2 = 2) the bias 
is positive.

Figure 12 (middle) shows the case m1 = 2 and m2 = 4 . In 
this setting there are more minority nodes with larger (in-)
degrees of connections from the majority nodes (cf. Fig. 5 
(left)) which increases the bias for both subgraph samplings 
(say 0.01 < 𝛾 < 0.15).

If the number of outgoing edges of minority increases to 
m1 = 10 and m2 = 2 , the majority nodes have larger (in-)
degrees in comparison to the case m1 ≈ m2 (cf. Fig. 5 (mid-
dle)) and rank higher (cf. Fig. 4 (middle)) for small � . Thus, 
incident subgraph sampling for small � now shows a nega-
tive bias in Fig. 12 (right) since it is more likely to sample 
edges from minority nodes to majority nodes. However, for 
induced subgraph sampling, the sampled minority nodes 
have now more connections toward sampled majority nodes 
and can be over represented in the subgraph (positive bias) 
for small �.

6.2.2 � Homogeneous homophily

In this scenario ( �11 = �22 = 15 , �21 = �12 = 1 ), the bias is 
close to zero for both sampling methods when m1 = m2 = 2 
– see Fig. 13 (left). We recall that the minority proportion is 
approximately �1 in the original network for all � (cf. Fig. 6 
(middle)). The bias result also agrees with the induced 

subgraph sampling for tree networks (Fig. 11). The strong 
homophily reduces the effect of one type on the degree dis-
tribution of the other. Thus, the majority and minority nodes 
are seen in roughly equal proportions in the top � percentiles 
under both sampling schemes as well as in Gn.

When the number of outgoing edges of minority nodes 
increases to m1 = 3 and m2 = 2 , the proportion of minor-
ity nodes in the original network are over-represented and 
decreases almost linearly as � increases (cf. Fig. 6, scheme 
A (middle)). However, it creates a negative bias for induced 
and incident subgraph sampling when � is not close to 1 
– see Fig. 13 (right). Other settings such as m1 = 5,m2 = 2 
and m1 = 10,m2 = 2 where the minority rank higher (cf. 
Fig. 6 (left)) have also shown a negative bias and we omit 
the plots.

The practical recommendation is that minority should 
have the same out-degree as the majority to maintain their 
representation in the subgraphs.

6.2.3 � Asymmetric homophily

Finally, consider the scenario where the minority is homo-
philic ( �11 = 15, �21 = 1 ) and the majority has equal propen-
sity to connect to any node in the network ( �12 = �22 = 1 ). 
The bias is negative and positive under induced and incident 
subgraph samplings, respectively, for m1 = m2 = 2 (Fig. 14 

Fig. 13   Bias of induced and 
incident subgraph sampling 
of homogeneous homophily 
networks with 30,000 nodes, 
� = 1 , �1 = 0.3 , �11 = �22 = 15 , 
�12 = �21 = 1 : (left) 
m2 = m2 = 2 ; (right) m1 = 3 , 
m2 = 2
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Fig. 14   Bias of induced and incident subgraph sampling of asymmetric homophily networks with 30,000 nodes, � = 1 , �1 = 0.3 , �11 = 15 , 
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(left)). In this setting, the minority ranks higher only for 
small � (cf. Fig. 7, scheme A (right)). This indicates that, in 
this regime, although the maximal degree nodes appear to 
be from the minorities, these are relatively few in number. 
Thus, these have very small chance of being sampled via 
induced subgraph sampling, which explains the negative 
bias. However, in incident subgraph sampling, the asym-
metric homophily increases the probability of these being 
sampled (as there are many edges between minority nodes) 
and, thereby, creates a positive bias. The composition of the 
sample obtained via induced subgraph sampling are sensi-
tive to small perturbations. Indeed, slightly changing m1∕m2 
from 1 leads to changes in bias (Fig. 14 middle and right).

6.2.4 � Discussion

The results show that in the heterophily regime, if m1 ≤ m2 , 
the bias of induced (incident) subgraph sampling in the top 
percentile of high degree nodes is negative (positive). With 
homogeneous homophily the bias is close to zero for both 
subgraph samplings when m1 = m2 . Finally, for asymmetric 

homophily the signs of the bias for induced and incident 
subgraph samplings are the same as in heterophily regime, 
if m1 are m2 are close.

7 � Real‑world networks

In this section, we provide evidence of the characteristics of 
the considered model and the insights of ranking of minori-
ties using sampling in real networks. We analyze four pub-
licly available datasets of real attributed networks from 
different domains and different homophily levels. Table 8 
shows the network statistics of interest. Hate is a retweet net-
work where nodes denote users, and edges represent retweets 
among them. Users in the dataset are classified as either 
“hateful” (minority) or “normal” (majority) depending on 
the sentiment of their tweets. The network is directed with 
asymmetric homophily where minority nodes have a higher 
propensity to connect to other minority nodes. APS is a sci-
entific (directed) network from the American Physical Soci-
ety where nodes represent articles from two subfields and 

Table 8   Real-world networks: 
characteristics (see Table 1 for 
the used notation)

|V| |E| D1 D2 H12 H21
|E11|
|E|

|E22|
|E|

|E12|
|E|

|E21|
|E|

|V1|
|V|

|V2|
|V|

Hate 4971 10170 26.621 0.519 1.204 1.565 0.318 0.412 0.117 0.153 0.109 0.891
APS 1853 3638 2.088 1.667 0.116 0.122 0.294 0.650 0.027 0.029 0.376 0.624
Wikipedia 2132 3143 1.695 1.081 0.693 0.737 0.040 0.774 0.090 0.096 0.153 0.847
Escort 16730 39044 0 0 2.090 2.090 0 0 39044 39044 0.396 0.604

Table 9   Network sampling for rare minority: Hate network (estimated probability of sampling a minority node, and its average degree-rank and 
Page-rank in the network)

Sampl. scheme Unif Deg InDeg PR1∕2 PR2∕3 PR3∕4 FixL2 FixL3 FixL4

Prob 0.179 0.199 0.205 0.194 0.204 0.205 0.214 0.224 0.222
Degree-rank (%) 25.349 12.662 18.073 23.837 22.465 20.737 18.377 17.883 18.326
Page-rank (%) 31.150 26.0812 15.363 27.259 23.328 20.579 13.911 13.272 14.227
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Fig. 15   Degree centrality: Proportion of minority nodes under sampling schemes A and B for Hate (left) and APS (middle) networks. Empirical 
degree distributions of APS network (right)
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edges represent citations with a high homogeneous homoph-
ily. The Wikipedia dataset is a hyperlink (directed) network 
where nodes represent U.S. politicians with attributes as 
either male (majority) or female (minority) with a moderate 
homogeneous homophily. The Escorts dataset represents a 
(undirected) network of sexual contacts from Brazil. Nodes 
are of two types: client (majority) or escort (minority) exhib-
iting extreme heterophily.

7.1 � Network sampling for rare minority

We inspect the Hate network which shares similar homoph-
ily characteristics with the synthetic networks considered in 
Sect. 4 (cf. Table 3) to assess the probability of sampling a 
minority node. We consider the largest connected compo-
nent of the network (with diameter 24) for a fair comparison 
with the results provided in Table 4. For the several sampling 
schemes proposed, the results (averaged over 104 runs) in 
Table 9 are in line with the ones obtained with the model, 
where fixed length walk sampling shows the higher probabil-
ity of sampling a minority node in addition to a higher rank 
compared to uniform sampling. The smaller differences are 
due to the characteristics of the network, where the propor-
tions of edges from “hateful” to “normal” users is higher 

than in the synthetic network. This can also be seen from 
the homophily measures H12.

7.2 � Centrality‑based sampling and higher ranked 
attribute

We consider the Hate and APS networks with power-law 
degree distributions to assess the ranking of the minorities 
under schemes A and B based on the degree (Sect. 5.1). For 
the Hate network, the exponents of the fitted degree distribu-
tions are 1.138 (minority) and 1.597 (majority). Figure 15 
(left) shows that under scheme A, the minorities rank higher 
(since the degree distribution is more heavy-tailed) for small 
� . Under scheme B, the minority do not rank higher due to 
the smaller normalized sum of the degrees (0.633 (minority) 
and 1.331 (majority)) but can maintain its rank in the sam-
ple. For the APS network, the minority ranks lower in both 
schemes – Fig. 15 (middle). The degree distributions are 
plotted in Fig. 15 (right) where the majority has a heavier-
tailed distribution and thus ranks higher under scheme A. 
The normalized sum of the degrees is also larger for the 
majority in scheme B.
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Fig. 16   Page-rank centrality: Proportion of minority nodes under sampling schemes A and B for Hate (left) and APS (Wikipedia) networks. 
Empirical Page-rank distributions of Wikipedia network (right)
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We also consider the Page-rank centrality measure in 
the sampling schemes A and B (Sect. 5.2), and explore the 
relative ranking of the minority for the Hate and Wikipedia 
networks. The results are in line with those for the synthetic 
networks (asymmetric and homogeneous homophily), where 
the proportion of minority for a small fraction � of nodes is 
higher under scheme A in the asymmetric case and equals 
the group size proportion with scheme B. Figure 16 shows 
the normalized Page-rank distributions for the Wikipedia 
network which have similar tail exponents for the two attrib-
utes (2.970 (minority) and 2.876 (majority)).

7.3 � Bias of subgraph sampling for ranking 
through degree centrality

The over- or under-representation of minorities via induced 
and incident subgraph is given in Fig. 17. The signs of the 
bias for the Escort (heterophily), APS (homogeneous homo-
phily) and Hate (asymmetric homophily) networks agree 
with the network model (Sect. 6.2).

7.4 � Discussion

The findings for the three related problems investigated 
using an attributed network model are highly relevant for 
the considered real-world networks with different levels of 
homophily and heterophily.

8 � Conclusions and future work

We investigated three related problems concerning sampling 
minorities in attributed networks. Using a dynamic attrib-
uted network model with homophily/heterophily, we pro-
vided analytical and numerical results in the representation, 
ranking and bias of minorities based on the degree and/or 
Page-rank centrality measures for several sampling schemes. 
We explained through the model parameters the under- and 
over-representation of minority nodes in the sample which 
can differ significantly from the original network. We also 
discussed how minorities can preserve their “position” in the 
sample. The findings and insights from the sampling analysis 
were assessed with real-world networks.

8.1 � Limitations and future work

This paper has only considered a specific setting of nodal 
attribute models (directed networks, two attributes) and 
there are research questions that still need to be explored. A 
partial list includes: 

1.	 More detailed understanding of the sublinear regime, 
both analytically and through numerics. The model 
without attributes exhibits fascinating degree distribu-
tional asymptotics, and for questions such as seed detec-
tion and network archaeology, also exhibits phase transi-
tion at � = 1∕2 (Banerjee and Bhamidi 2021).

2.	 In the setting of the linear � = 1 regime, while the tail 
exponent of the Page-rank between minorities and 
majorities is the same, much more research needs to 
be conducted to understand how this is reflected in the 
context of extremal behavior; in the sublinear regime, 
analytic understanding of the Page-rank distribution 
in the large network limit is completely open. Further 
research also needs to be undertaken in the setting where 
the out-degree distribution depends in a complex man-
ner on the attribute, including settings of heavy tailed 
out-degree distribution. Similarly this paper has only 
considered the setting where one has a discrete finite 
attribute space. The continuous attribute type space will 
need significantly new techniques.

3.	 As future work, we plan to compare and contrast the 
performance of various centrality measures, including 
degree and Page-rank centrality, for ranking and attrib-
ute reconstruction tasks in the semi-supervised setting, 
where one has partial information on the attributes and 
wants to reconstruct (infer) it for the rest of the network 
considering other samplings methods (e.g. Ribeiro and 
Towsley 2010).
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