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Abstract

We investigate three related problems concerning sampling minorities in attributed networks. This is guided by a general
attributed network model which can incorporate several levels of homophily and heterophily, and whose degree and Page-
rank distributions have known properties. The first problem investigates sampling schemes that favor the representation of
the minority over majority nodes and give preference to “more popular” minority nodes (i.e. higher degree/Page-rank) for a
given homophily scenario. We show that (in-)degree and Page-rank sampling schemes increase the probability of sampling
a minority node. The second problem concerns the relative ranking of minorities compared to majorities in degree and
Page-rank based sampling schemes for several homophily and heterophily scenarios. We provide analytical conditions for
the minority nodes to rank higher as a function of the model parameters for the degree based samplings and investigate the
problem numerically for Page-rank based sampling schemes. The third problem considers subgraph sampling schemes and
the bias of the proportion of minority nodes in top ranked degree nodes in several homophily and heterophily scenarios.
Finally, the results and findings obtained from the sampling analysis are assessed on real-world networks.

Keywords Random networks - Attributes - Homophily - Heterophily - Sampling - Minorities - Ranking

1 Introduction

Attributed networks are graphs in which nodes (or edges)
have attributes (features). In real-world networks, the attrib-
utes across connections will co-vary and are not independ-
ent. One standard phenomenon in many such real world
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systems is homophily (Shrum et al. 1988; McPherson et al.
2001; Mislove et al. 2010), i.e., node pairs with similar
attributes being more likely connected than node pairs with
discordant attributes. For instance, many social networks
show this property, which is the tendency of individuals to
associate with others who are similar to them, e.g., with
respect to the gender, ethnicity, political ideologies. A con-
trasting co-variation phenomenon is heterophily, where
nodes with similar attributes (or the same type) “repel” each
other. Additionally, the distribution of user attributes over
the network is usually uneven, with coexisting groups of dif-
ferent sizes, e.g., one ethnic group (majority) may dominate
other (minority). The networks are further used for ranking
individuals according to their centrality scores (measured via
functionals such as degree or Page-rank scores) which fur-
ther exacerbate inequalities in representation of minorities
in the network through algorithms such as recommendation
systems that use the underlying network structure (Espin-
Noboa et al. 2022), or effect the flow of information and
the perceptions of minorities within the network (Lee et al.
2019). Another major direction for understanding the role of
attributes is the maximization of influence problem. Since
the pioneering work (Granovetter 1978), followed by the
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path-breaking (Kempe et al. 2003) in the setting of computer
science and combinatorial optimization, the main goal has
been to understand, in the context of viral marketing, which
set of individuals in the network to seed, with information or
a product, so as to maximize its spread. While Kempe et al.
(2003) has lead to a thriving research direction, in the last
two years there has been significant realization as well as
understanding that ignoring attributes of individuals within
the network, and in particular the impact of homophilly in
the connectivity as well as strength of ties between indi-
viduals, can significantly hamper the efficacy of proposed
algorithms as well as conclusions (Aral and Walker 2012;
Aral and Dhillon 2018) both in the context of empirical sys-
tems (Calio and Tagarelli 2021) and even in the context of
the standard benchmarking pipelines used to check the per-
formance of algorithms (Sziklai and Lengyel 2022, 2024).
Further Calid and Tagarelli (2021) tackles the significant
challenges around the attribute diversity of the seed set for
influence maximization via approximation schemes for sub-
modular functions. Optimizing such functions in practice
leads to running diffusion schemes via sampling from the
underlying node set according to specified distributions and
then running influence cascades from these nodes.

Attributed network models play a major role in
understanding the impact of the network evolution with
homophily/heterophily and preferential attachment in
the representation of the minority group. Here, homoph-
ily (Shrum et al. 1988; McPherson et al. 2001; Mislove
et al. 2010) corresponds to the fundamental finding in
many social network settings of node pairs with similar
attributes being likelier connected than node pairs with
discordant attributes. A precise quantitative version of
this measure is given in Sect. 2.1. Preferential attachment
(Barabasi and Albert 1999) refers to the notion that when
new nodes enter a networked system, they tend to con-
nect to pre-existing nodes with probability proportional
to some monotonically increasing function of the degree
of the existing nodes, thus reinforcing the popularity of
current nodes. Once again, a precise definition is given
in Sect. 2.1. In this context, the use of models were initi-
ated in Karimi et al. (2018), where the authors used fluid
limit analysis to study the limiting degree distributions for
two attributes (minority and majority). Through numeri-
cal simulations, they showed the effect of homophily
and heterophily in reducing or amplifying the ranking of
minority nodes in the network according to their degree.
Inequality for Page-rank scores centrality measure and the
representation of minority amongst high ranking nodes
were studied in Espin-Noboa et al. (2022) using a similar
model in the case of a directed network where nodes can
became active to connect to other nodes. In both works,
the impact of sampling in the ranking of minority nodes
was not considered.

@ Springer

Given that large networks can only be partially observed,
sampling has been an activate area of research across differ-
ent subjects (see e.g. Antunes et al. 2021a, b and the refer-
ences therein). Initial research on sampling has shown that
conclusions from samples depend on network properties (e.g.
scale free), the characteristic of the measure of interest (e.g.
degree), and the sampling method and rate used (Leskovec
and Faloutsos 2006). A related question is whether sampling
preserves the representation/ranking of minority nodes, or
perhaps increases their visibility in the sample, when com-
pared with the whole network. Sampling in networks with
homophily/heterophily has received little attention in the lit-
erature. The bias of classical sampling methods in preserving
the ranking of nodes and visibility of minorities under a simi-
lar model as in Karimi et al. (2018) was investigated in Wag-
ner et al. (2017). However, the analysis was based only on
empirical results. In a different direction (Espin-Noboa et al.
2021), synthetic models are used to understand the accuracy
of prediction of attribute labels given partial information of
the labels of a subset of seeded nodes; the goal is to under-
stand the impact of homophily/heterophily and preferential
attachment driven growth characteristics of the underlying
network on the accuracy of classifiers and inference algo-
rithms. In Antunes et al. (2023b), random walk sampling
algorithms are considered to infer several functionals of
attribute networks such as homophily/heterophily measures,
attribute and degree distributions per attribute.

The aim of this paper is to provide analytical and numeri-
cal results for three related problems concerning represen-
tation, ranking and bias of minorities based on the degree
and Page-rank centrality measures in sampling attributed
networks (extending the knowledge in the literature Karimi
et al. 2018; Espin-Noboa et al. 2022; Wagner et al. 2017).

To this end, we consider a dynamic random directed net-
work model generalizing (Karimi et al. 2018) where each
arriving node connects to a fixed number of nodes (out-
going edges) depending on its attribute. The probability that
each edge connects to a node of the network is proportional
to its degrees (raised to the power of a parameter & > 0) and
a function that measures the propensity of the attributes of
the nodes to interact. This allows to represent the two main
mechanisms of the formation found in social networks: pref-
erential attachment (@ > 0) and homophily/heterophily. We
give analytical results for the degree and Page-rank distribu-
tions per attribute in the setting where popularity depends in
a linear fashion on the current number of connections of a
node (the regime a = 1) as the size of the network increases.
In general, the models considered in this paper, with self-
reinforcement, where nodes with high degree have a higher
propensity to obtain future connections, are non-trivial to
analyze analytically; in the specific regime a = 1, it turns out
(Antunes et al. 2023a; Jordan 2013) that network functionals
can be derived for the degree and Page-rank distributions.
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The general sublinear case, where popularity of nodes is a
sublinear function of the current degree (a € (0, 1)) in the
context of attributed network models, is open till date, and
is studied numerically in this paper. The results imply that
while degree distribution tail exponents depend on the attrib-
ute type, Page-rank score distributions have the same tail
exponent across attributes; thus in the context of extremal
behavior or most “popular nodes”, measuring the central-
ity of nodes using their degree is much more affected by
attribute information, than a more global Page-rank central-
ity; for example in the hompophilic regime, while minority
attributes are automatically disadvantaged by degree central-
ity, this is not the case with Page-rank centrality. Moreover,
the mean behavior of the limiting Page-rank score distribu-
tions can be explicitly described and shown to depend on
the attribute type. We use the model in the case of minority
and majority nodes to investigate:

(a) Sampling a Rare Minority: An area of significant
research interest in the context of network sampling
comprises settings where there is a particular rare minor-
ity which has higher propensity to connect within itself
as opposed to majority nodes; for substantial recent
applications and impact of such questions, see (Mouw
and Verdery 2012; Merli et al. 2016; Stolte et al. 2022).
In such setting, devising schemes where one gets a non-
trivial representation of minorities is challenging if the
sample size is much smaller than the network size. Sam-
pling schemes such as uniform sampling often struggle
to find a non-trivial proportion of minority nodes for
further downstream sociological explorations; see for
example (Stolte et al. 2022; Merli et al. 2016) for ques-
tions related to mental health questions and demographic
or social profiles, related to rare minorities within large
populations. Additionally, uniform sampling does not
give preference to “more popular” minority nodes, i.e.,
higher degree/Page-rank nodes. Therefore, it is desirable
to explore the network locally around the initial (uni-
formly sampled) random node and try to travel towards
the “centre”, thereby traversing edges along their natural
direction. However, to avoid high sampling costs, the
explored set of nodes should not be too large. This leads
us to analyze several sampling schemes based on (in-)
degree and Page-rank centrality measures. We quantify
explicitly the probability of sampling a minority node
in a linear network (a = 1) in the case that each arrival
node connects to only one node of the network (i.e. tree
network) and investigate the problem numerically for
other network configurations (non-linear and non-tree
networks). The results show that sampling schemes
based on Page-rank centrality increase the probability
of sampling a minority node and its “popularity” (higher
degree and Page-rank).

(b) Centrality-Based Sampling and Higher Ranking of
Minorities: We consider sampling schemes based on
the degree and Page-rank centrality and investigate
conditions for the minority nodes to rank higher (i.e.
the proportion of the minority nodes in the sample is
higher than for the majority nodes). For the degree cen-
trality we provide explicit conditions for higher rank
when a small fraction of nodes is sampled as a function
of the model parameters (node attribute probabilities
and out-degrees) in a linear network and several net-
work scenarios: heterophily, homogeneous homoph-
ily (homogenous mixing) and asymmetric homophily.
For the Page-rank centrality the results are investigated
numerically and provide insights for the minority nodes
to rank higher in the same scenarios.

(c) Bias of Subgraph Samplings in Ranking Through
Degree Centrality: We consider a different sampling
schemes from (b) where nodes (resp., edges) are sam-
pled and the induced (resp., incident) subgraph is
observed. The goal is to measure the bias of sampled
subgraph in the proportion of the minority nodes in the
top percentile of high degree nodes. For the tree linear
network we provide an analytical result to compute the
bias for induced subgraph sampling. The sign of the
bias which represents under or over representation of
minorities in the subgraph samplings is then investi-
gated numerically for the homophily and heterophily
scenarios as a function of the model parameters.

The details of the derivation of the analytical results
for the special network configurations using stochastic
approximations are defered to the technical report (Antunes
et al. 2023a). Finally, the analytical and numerical results
are assessed on real-world networks with several levels of
homophily and heterophily showing a good agreement with
the findings of the sampling analyses in the considered net-
work model.

This paper is a significant extension of the conference
paper (Antunes et al. 2024) including: (1) a new Sect. 3 with
the limiting distributions of the degree and Page-rank meas-
ures per attribute and their properties which are numeri-
cally illustrated for finite size networks; (2) the results of
the degree centrality based sampling and higher ranking of
minorities in Sect. 5.1 have been extended to several network
configurations which are now visualized through plots; (3)
anew Sect. 5.2 is included with Page-rank centrality based
sampling and higher ranking of minorities; (4) a new Sect. 6
is added that investigates the bias of subgraph samplings in
ranking through degree centrality measures; (5) a separate
section with real-world networks (Sect. 7) including addi-
tional datasets provides evidence of the similarities to the
considered model and the network sampling analyse; (6)
finally, parts of the remaining sections have been improved
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including an algorithm to generate the attributed dynamical
model in Sect. 2.1.

2 Preliminaries

In this section, we introduce the network model, homophily
and heterophily measures, and the network scenarios con-
sidered in our experiments.

Algorithm 1 Dynamic Attributed Network Model

Pu — v|G,_;, a()) « K, 4 [deg()]%, (1)

where deg(v) is the degree of node v at time n — 1 (if |G| = 1,
then we set deg(v) = 1). The attachment probabilities capture
the combined effect of attribute types and node popularity
in network evolution. A description of the algorithm to con-
struct the dynamic network is given in Algorithm 1.

Input: connected network Gy with node labels 1,...,ng and attributes a(1),...

,(l(no)

Initialization: k(= (Ka,b)abea); (Ma)aca; a; n (number of arrival nodes)

for i =1tondo

a(ng + 1) < select an attribute in A with weights (74)aca

for j =1to Ma(no+i) do

v[j] + select a node from G;_; with probabilities proportional to

Ka(v),a(no+i)[deg(v)]%, v € Gi

end for
G; < add node ng + 1 to G;_1
for j =1 to mg(ny+4) do
G, + add edge (no + 4, v[j]) to Gi—1
end for
end for
Output: G,, and (a(ng +))1<i<n

2.1 Dynamic attributed network model

We describe a network model where nodes have attributes
which modulate the evolution dynamics of the network. This
will have impact on the network structure and thus on the rank-
ing of the nodes based on the network centrality measures. Let
A ={1,2,...,L} be a finite set of the attribute labels. We
describe the dynamics of a sequence of growing networks from
an initial state. At time 0, a base connected directed network
G, with n nodes is given, where every node v € G, has an
attribute a(v) in A. At each discrete time n = 1,2, ..., a node
enters the network. The probability that an arriving node has
attribute a is 7, independent of the current network. An enter-
ing node of attribute type a connects to the network through
m, > 1outgoing edges. The propensity with which a node with
attribute b attaches to a node with attribute a is given by &, ;..
Let k(= (k) 4ea) be the propensity matrix. Additionally, let
a > 0 be the preferential attachment parameter associated with
the strength of popularity of a node. A node u that arrives at
time n, connects any of its m,,, edges independently to a node
v € G,_; according to

a(u

@ Springer

The model includes several classes of network dynam-
ics. For instance, if k,, = 1for all a, b € A, then there is no
dependence of the attributes on the evolution of the network.
In this case, if @ = 1, we have the classical Barabasi-Albert
model (Barabasi and Albert 1999) (linear with @« = 1) and
with 0 < a < 1the sublinear preferential attachment model.
When a = 0 the incoming nodes attach to pre-existing nodes
based purely on their attribute and are agnostic to the degree
information—uniform attachment model.

2.2 Dyadicity and heterophilicity measures

The proposed model incorporates several features found in
real world social networks such as homophily and heteroph-
ily. There are several ways to measure these characteristics
of networks. Here, we use dyadicity and heterophilicity pro-
posed in Park and Barabési (2007) for signed networks and
that conveniently apply to directed networks. For a directed
network, let V and E denote, respectively, the set of nodes
and edges of the network. Let also V, represent the set of
nodes with attribute a and E ;, the set of directed edges from
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nodes with attribute a to nodes with attribute b. Dyadicity
for an attribute is defined as

Dp),

where p = |E|/(|V|(]V] — 1)) is the edge density. Heterophi-
licity H ,, is given by

D, = |E |/(VaI(IV,] = a €A,

Hyy = [Ey/(IVal Vi Ip),

Dyadicity and heterophilicity measure, respectively, the
connectedness between nodes with the same and different
attributes when compared to a random configuration of the
network (i.e., when all edges are randomly distributed). If
D, > land H,, < 1, then nodes with attribute « attract each

a,beA,a#b.

Fig.1 Networks generated with the dynamic attributed network
model (500 nodes, z; = 0.2): (left) « = 1, homophily k|, = k,, = 2,
Kjp =Ky =1; (middle) @ =1 heterophily k|, =k, =1,
Ko = Ky, = 2; (right) @ = 0, homophily x;;, = ky, =2, k1, =k, = 1.
The red circles represent attribute 1 (minority) nodes and green

other and connections from nodes with attribute a to nodes
with attribute b are repelled (homophily). On the other,
D, < 1and H,, > 1represent heterophily. These quantities
can be asymmetric among node attributes. Illustrations of
the network structures generated with Algorithm 1 for linear
and uniform attachment model for two attributes with homo-
phily and heterophily are shown in Fig. 1. Throughout the
paper, nodes with attribute 1 will be referred as minority and
attribute 2 as majority. The synthetic datasets are generated
and experiments are conducted in this paper with R package
igraph (Csardi and Nepusz 2006). A summary of the main
notation is given in Table 1.

° o
o 1N LRI °
. o o 2
o

ol o ¢ 000 Ny,

CEEY & @0
& o 800 o/ 8% g
Y o0

o
o

attribute 2 (majority) nodes with sizes proportional to the degrees.
The dyadicity and heterophilicity measures are: (left) D, = 1.652,
D,=1.109, H,,=0.838, H, =0.56; (middle) D, = 0.846,
D,=0699, H,,=1038 H, =2.190; (right) D, =1.613,
D, =1.109, H,, = 0.847, H,, = 0.564 (color figure online)

Table 1 Summary of the main

. Notation Description
notation
G, Graph at time n generated with the dynamic attributed network model
A Set of attribute labels
7, Probability of an arriving node having attribute a
my, Number of edges a node with attribute a entering the network connects to
pre-existing nodes
Kab Propensity of node with attribute b to connect to node with attribute a
a Preferential attachment parameter
deg(v) Degree of node v
Vv Set of nodes of the network
E Set of edges of the network
V., Set of nodes of the network with attribute a
E, Set of directed edges from nodes with attribute a to nodes with attribute b
D, Dyadicity of nodes with attribute a
H, Heterophilicity from nodes with attribute a to nodes with attribute b
p.(k) (limit) Probability that a node with attribute a has degree k
R.(v) Page-rank score of node v € G, with damping factor ¢ and I_Qc(v) :=nR.(v)
IBI Number of elements of set B

@ Springer
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2.3 Network homophily and heterophily scenarios

In our experiments, we consider mainly three network sce-
narios using different configurations of the propensity matrix
k. The heterophily scenario assumes k;; = k,, = 1 and
K|, = kp; = K, where K is large. The homogenous homoph-
ily scenario takes k|, = k,; = land k|, = k,, = K for large
K. The last configuration is the asymmetric homophily sce-
nario, namely, k;; = K > land k,, = k|, = kp; = 1. We let
the proportion of minorities 7, be small and investigate tree
networks (m; = m, = 1) and non-tree networks (m; > 1or
m, > 1).

3 Distributions of centrality measures

In this section, we discuss analytical and numerical proper-
ties of the asymptotic distributions of the degree and Page-
rank per attribute of the network model. These two centrality
measures are used to sample and rank nodes in the following
sections. The details (proofs) of the theoretical results can
be found in Antunes et al. (2023a).

3.1 Degree distribution

For a linear network G, (« = 1), as n tends to infinity, the
limiting probability mass function (p.m.f.) of the degree of
nodes with attribute a is given by

) F(ma + %)F(k)

pa(k) = ¢T N s k Z ma,
o r(k +1+ —)F(ma)
¢“
where " denotes the gamma function and
1e+00- 1e+00 .
Min (lim A
. m_a] lim .
: Ma) ome) fox
...' x'..
1e-03 ".:-‘ 1e-03 L
- o :
£ ARy o g
a a
1e-06 1e-06
1 10 100 1000 1 10

degree

degree

m,7

¢a=2_ﬂ.

a

@

The quantity ¢, carries no special meaning and enters
into the tail exponent in (3) below. The quantity #, can be
interpreted as the normalized sum of the degrees of nodes
with attribute a as n tends to infinity and can be computed
explicitly [, a € A, are the minimizers of a function given
in Antunes et al. (2023a), Equation (4.1)]. For each a € A,
we have

p (k) ~ k=1%2/%) a5 k tends to infinity . 3)

The result implies that the limiting degree distribution
follows a power-law with exponent 2/¢ _ dependent on the
attribute. This agrees with the empirical evidence also found
in real-world social networks (see Sect. 7).

In contrast, in the case of the uniform attachment model
(« = 0) and m, = 1 (for simplicity, although the result can
be extended to m, > 2), the limiting degree distribution of
attribute a is geometric with parameter 1 /(1 + ¢,) and has
exponential tail.

Figure 2 shows the empirical degree distribution of G,
and the limiting distribution for several attributed networks,
with parameters specified in the figure caption. We consider
linear and uniform attachment networks with homophily and
attributes 1 (minority) and 2 (majority). In all the cases, the
bulk of the distribution per attribute type is approximated
well by the limiting distribution. (We note that horizontal
points for large degree values in the empirical distributions
are due to the effect of the finite size of the network.) For the
linear network (@ = 1) with m; = m, = 1 (Fig. 2, left), the
maximum likelihood estimates of the empirical tail expo-
nents are 2.347 and 1.734 which are close, respectively,
to 2/¢, = 2.566 and 2/¢, ~ 1.917 [given by (2)], where
the majority attribute has a heavier tail. For m, = 2 and
m,; = 1 (Fig. 2, middle), the exponents of the fitted power-
law distributions are 2.143 and 1.772 and 2/¢, ~ 2.211and

1e+00-

Min (lim! Min (lim,
* Maj (lim [} * Maj (lim
* Min (emp, 3 * Min (emp,
Maj (emp; [ Maj (emp;
.
.l
3% 1e-03
T s
h - D
o iQuymone oo £ S
= g .
.
.
.
1e-06 2
100 1000 1 3 10 30

degree

Fig.2 Empirical and limiting degree distributions of homophily networks with 50,000 nodes, 7; = 0.2, k|| = ky, =2, k|, = kp; = 1 (left)
a=1m =my=1(middle)a =1,m; =2, m, =1; righ) a =0, m; =m, =1
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2/, ~ 1.920. Finally, for the uniform attachment network
(Fig. 2, right), the empirical and the limiting exponential
tails of the distributions also show a good agreement.

3.2 Page-rank distribution

We recall first the definition of the Page-rank scores with
damping factor ¢ (Page et al. 1999). For attributed network
model G, the Page-rank scores of nodes v € G, with damp-
ing factor c is the stationary distribution {R.(v) : v € G, } of
arandom walk with jumps. At each step, with probability c,
the walk follows an outgoing edge chosen uniformly at ran-
dom among the possible available choices from the current
node location in the network, while with probability 1 — c,
it jumps to a uniformly selected node of the network. The
Page-rank scores of the nodes are given as the solution to
the linear system of equations:

1-¢
R.(v) = V] +c Z

ueV-(v)

R(w) eG
deg*(u)’ Y " @

where V™ (v) is the set of nodes with edges pointed to v and
deg®(u) is the out-degree of node u. At nodes with zero
out-degree, the random walk stays in place with probability
¢ and jumps to a uniformly chosen node with probability
1 —c. A high Page-rank value of a node results from the
node either having a high in-degree or having an in-bound
neighbor with a high Page-rank score.

Several asymptotic properties for the Page-rank scores of
the linear dynamic attributed network model can be derived
(Antunes et al. 2023a). It will be easier to describe the
results in terms of the graph normalized Page-rank scores
{1_3(,(\/) :vegqG,} :={nR.(v) : veG,} (Garavaglia et al.
2020). As n tends to infinity, the limiting distribution func-
tion of the (normalized) Page-rank scores per attribute has a
power law tail with the same exponent 2 /4, across all attrib-
utes, where 4. can be explicitly computed [see Antunes et al.
2023a, Equation (4.5)]. This implies that for linear networks

1e+00: 1e+00
Min
* Maj

1e-02 1e-02

f.
.d.f.

c.cd
c.cd

1e-04: 1e-04

1 10 100 1000 1 10
Page-rank

Page-rank

generated with this model, the fail exponent of the limiting
Page-rank scores distribution does not depend on the attrib-
ute type, in contrast with the result on the asymptotic degree
distribution in Sect. 3.1.

Additionally, if all rows of the matrix x are identical, then
it can be shown that in this case 4, = 1 + c forany ¢ € (0, 1)
and ¢, = 1for all a € A. This implies that the limiting Page-
rank tail exponent is 2/(1 + ¢) and the tail exponent of the
limiting degree distribution is 2. In particular, these expo-
nents are independent of the out-degree m, of nodes. How-
ever, as in the case of only one attribute studied in Banerjee
and Huang (2023), the out-degree significantly influences
the degree separation between the “hubs” (maximal degree
nodes) and the remaining nodes. Although the degree tail
exponents are the same across attributes in this case, increas-
ing the out-degree of a given type will lead to the maximal
degree node coming from the same type with high prob-
ability. On the other hand, when m, = m > 1 for alla € S,
the tail exponents for the limiting Page-rank distribution,
as well as the limiting degree distribution, match in the tree
(m, = 1) and non-tree (m, > 1) cases.

In spite of the degree exponent of the limiting the Page-
rank distribution being insensitive to the attribute type,
the bulk of the distribution depends on the attribute. This
implies for instance, that the average Page-rank of nodes per
attribute differs and can also be explicitly computed from
the model as n tends to infinity [see Antunes et al. 2023a,
Equation (4.6)].

In the case of uniform attachment model (@ = 0) with
m, =1, a € S (which can also be extended to non-tree set-
ting), the power-law tail result for Page-rank also holds but
now with exponent 1/c, while the degree distributions have
exponential tails dependent on the attribute. This might
appear surprising and seems to be new in the literature of
network models. Intuitively, this can be understood by noting
that as stated above, a high Page-rank value of a node results
from having a high in-degree or an in-bound neighbor with
a high Page-rank score. For the dynamic network discussed

1e+00

Min Min
« Maj * Maj
.
1e-02
3
Q
S
1e-04
3
- -
-— —
.
100 1000 1 10 100 1000

Page-rank

Fig.3 Empirical complementary c.d.f. of the Page-rank distributions of homophily networks with 50,000 nodes, 7, = 0.2, k|; =k, = 2,
Kjp =Ky =li(efya=1,m =m, =1;(middle)a = 1,m; =2,m, = 1; righ) a =0, m; =m, =1
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here, “older” nodes tend to have higher in-degrees and are
typically close to other high degree (and high Page-rank)
nodes. This reinforcement results in the Page-rank having
heavier tails than degree.

Figure 3 depicts the empirical complementary cumulative
distribution function (c.c.d.f.) of the Page-rank distributions
for linear and uniform attachment networks with homoph-
ily using the same parameters as in Fig. 2 with damping
factor ¢ = 0.85. For &« = 1 and m; = m, = 1, the maximum
likelihood estimates of the empirical tail exponents are
1.195 (minority) and 1.058 (majority) which are close to
2/A. = 1.079. However, the average (normalized) Page-
rank for minority and majority are 0.517 and 1.120, resp.
Withm; =2, m; = 1, the exponents of the fitted power-law
distributions are 1.114 (minority) and 1.110 (majority) and
2/A, = 1.047. For uniform attachment network, we have
1.190 (minority) and 1.138 (majority) and 1/c ~ 1.176.

4 Network sampling representation for rare
minority

In this section, we consider the network model in a setting
where there is a particular rare minority (attribute 1) which
has higher propensity to connect within itself as opposed
to majority nodes. In the context of network sampling, we
devise schemes that increase the probability of sampling a
minority node and therefore its representation in the sample.

4.1 Sampling methods

In the above setting, uniform and (total) degree-based sam-
pling schemes are not efficient in sampling rare minorities
if the sample size is much smaller than the network size
and will be considered as baseline methods for comparison.
Sampling methods that explore the network locally around
the initial (uniformly sampled) random node by traversing
edges along their natural direction have a higher efficacy for
sampling rare minorities. We will propose such sampling
schemes which are based on in-degree and Page-rank cen-
trality measures.

Uniform sampling (Unif): sample a node uniformly at
random from G,,

Sampling proportional to degree (Deg): pick a node at
random from the network and then sample a neighbor of this
node uniformly at random.

Sampling proportional to in-degree (InDeg): select a
node at random and then sample a node from one of its
outgoing edges chosen at random. If the root node is picked
(in a tree-network) then the root is sampled.

Sampling proportional to Page-rank with damping fac-
tor ¢ (PR,): pick a node uniformly at random from the net-
work and then generate each time independently a geometric
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random variable X with parameter (1 — c¢) with support start-
ing at zero. Starting from the picked node, walk X steps at
random using the directions of edges. The terminal node is
sampled. If the root node is reached before X steps in a tree
network, pick this node as the sampled node. Sampling a
node with probability proportional to the Page-rank scores
{R,.(n) : v E€G,} as defined in Sect. 3.2 is equivalent to
the local algorithm PR, in the context of the (tree) network
model (Chebolu and Melsted 2008).

Fixed length walk sampling (FixL,,): Set M > 0. Consider
the same implementation of the Page-rank scheme but now
the number of walk steps taken is fixed and equal to M.
Since M = 0 and M = 1 corresponds, respectively, to uni-
form sampling and sampling proportional to in-degree, we
will consider M > 2.

4.2 Tree networks

We consider an asymmetric homophily scenario, where type
1 (minority) nodes are relatively rare compared to type 2
(majority) nodes and newly entering majority nodes have
equal propensity to connect to minority or majority nodes.
Minorities have relatively much higher propensity to con-
nect to other minority nodes, as compared to majority nodes,
namely,
0

=T

a,0 < 1.
&)
We analyze a linear (a = 1) tree network of large size
where a and 6 are dependent, that is, § = D\/E, where D is a
positive constant. Let v be a node sampled from the network
G, and a(v) its attribute, under the above sampling schemes.
Table 2 summarizes our findings for the asymptotic prob-
ability of sampling a minority node under the above sam-
pling schemes (the results are proved in the technical report
Antunes et al. 2023a). We investigate how the relative per-
formances of these schemes hold in a non-asymptotic regime
for (sub-)linear tree and non-tree networks.
We generate a linear tree network with |V| = 107 nodes,
a = 0.003 (D = 1) where the probability that a node enter-
ing the network has attribute 1 (minority) is very small,

Kip =Kkp =kip =LKy =a,

Table 2 Linear tree network: asymptotic sampling probabilities of a
minority node as n — oo, a = 0%

Sampling P(a(v) = 11G,)

Unif D+/a+ 0(a)

Deg 2D+Ja — (4D* + %)a + 0(a*?)
InDeg 3D+/a + O(a)

PR, (c — 1) and FixL,, (@D -1 +/2D*~1/27+4D?)

2, 1
@D*+3+y/QD>=1/27+4D7)

+ O(a)
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Table 3 Synthetic networks: Wi El D, D, Hi, Hy, 1E 1l 1 1Exl Vil A
structural properties (see IE| E| E| E| v v
Table 1 for the used notation) Syn.1 10° 99999 18.74 0961 0.029 1.837 0.050 0.864 0.002 0.085 0.052 0.948

Syn.2 10° 99999 7.155 0988 0.133 1.052 0.108 0760 0.015 0.117 0.123 0.877

Syn.3 25000 46907 3.722 1.078 0.042 0488 0.057 0.828 0.009 0.106 0.124 0.876
Table4 Li t twork ; . ] ;
(Syn. 1): elsri?r?lratfeilepr;zgi%rility Sampl. scheme  Unif Deg  InDeg PR, PR,; PRy, PRys FixL, FixLy FixL,
of sampling a minority node, Prob 0052  0.110 0.33 0077 0090 0.093 0.089 0.189 0.191 0.150
and its average degree-rankand 0 o) 46147 6.883 3628 23702 16220 12.199 10805 1.032 0330 0.155
Page-rank in the network

Page-rank(%) 46215 7.323 3912 23759 16.199 12.195 10781 0.825 0212 0.080
Table 5 Sub-linear tree network . . R ;
(Syn. 2): estimated probability Sampl. scheme  Unif Deg InDeg  PR,;; PRy, PRys PRs, FixL, FixLs FixLg
of sampling a minority node, Prob 0.125 0.176 0226 0199 0220 0226 0223 0387 0401 0.381
and its average degree-rankand - o o) 43345 17736 9.848  17.515 13053 10737 9586 1.059 0.529 0.395
Page-rank in the network

Pagerank(%)  43.037 18.954 10417 17.284 12783 10553 9358 0.617 0.384 0.143

Table 6 Linear non-tree network (Syn. 3): estimated probability of sampling a minority node, and its average degree-rank and Page-rank in the

network

Sampl. scheme Unif Deg InDeg PRy, PR, 3 PRy, FixL, FixL, FixL,
Prob 0.1212 0.164 0.207 0.142 0.146 0.139 0.234 0.211 0.158
Degree-rank (%) 69.045 17.184 9.443 46.636 35.758 29.978 3.211 1.283 0.609
Page-rank (%) 49.437 11.626 5.846 33.362 25.660 21.028 1.536 0.527 0.233

7; = 0.052. The homophily and structural characteristics of
the network are given in Table 3 (Syn. 1). Note that D, is
large while D, is close to 1, and H,(< 1) is smaller than
H,, corresponding to an asymmetric homophily. We esti-
mate the probability of sampling a minority node (in each
trial) for the sampling schemes defined above. We repeat
the procedure to sample a node for each scheme 10* times
and compute the proportion of minority nodes which were
sampled. Additionally, we also compute the average of the
degree-rank and Page-rank of the minority nodes sampled
with respect to the whole network. The ranks are expressed
as percent, where higher rank corresponds to smaller top
percent. For example, a 5% result means that the minority
nodes sampled are on average in top 5% of nodes with the
highest degree (Page-rank) in the whole network. The results
are given in Table 4. The probability of sampling a minor-
ity node under uniform sampling is close to the asymptotic
value \/_ ~ 0.055 and does not give preference to “more
popular” nodes (with higher degree or Page-rank). Sampling
proportional to degree approximately doubles the chance to
pick a minority node approaching 2\/5 - %a ~ 0.096 and
leads to a higher rank. The results improve with sampling
proportional to in-degree which agrees with the asymptotic

analysis. For sampling proportional to Page-rank (PR,) with
¢ =k/(k+1), k €N, the mean number of walk steps is k.
The number of steps being random does not improve the
results. If the value of c¢ is close to 0, PR, is akin to uni-
form sampling. On the other hand, when c is large, the walk
can hit the root. This can be explained by the diameter of
the network which is 18 (in the tree case, it is O(log | V])).
These drawbacks explain partly the good performance of
fixed length walk sampling which also has the higher rank
of the minority sampled nodes. This sampling scheme gives
preference to nodes with a higher Page-rank as well.

We next consider the sub-linear tree network with
a=0.25 and @ =0.02 (D = 1) which gives 7, = 0.124.
The characteristics of the generated network are given in
Table 3 (Syn. 2). We estimate the probability of sampling
a minority and its importance for each sampling scheme
using 10* runs—see Table 5. The qualitative comparison of
the performance of the sampling schemes is the same as in
the linear case. However, the number of steps for sampling
proportional to Page-rank and fixed length walk sampling is
larger. The diameter of the generated network is 25.
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4.3 Non-tree networks

Finally, we consider a linear non-tree network with m; = 1
and m, =2 and a = 0.02 (D = 1). The number of nodes is
25,000 which resulted in a network diameter of 16. The net-
work properties are shown in Table 3 (Syn. 3). As seen from
the results (averaged over 10* runs) in Table 6, the prob-
ability of sampling a minority node with fixed length walk
sampling decreases compared to the sub-linear case due to
the non-tree network structure (however, it is still approxi-
mately the double compared to uniform sampling).

4.4 Discussion

In a setting where there is a small minority with higher
propensity to connect within itself and majority nodes have
equal preference to connect to any type of node, we argued
that a sampling method that explores the network locally
around a node selected at random followed by a fixed num-
ber of steps using the directions of edges has a higher prob-
ability to sample a minority node. It also finds more “popu-
lar” (higher degree and Page-rank) minority nodes. This is
particularly more relevant for tree networks.

5 Centrality-based sampling and higher
ranked attribute

The goal of this section is to investigate the role of the model
parameters on the representation of the minority nodes when
a fraction of nodes are sampled based on a centrality meas-
ure. The following schemes are considered:

A: sample (select) a fraction y of nodes of the network
with the highest centrality measure;

B: sample without replacement a fraction y of nodes with
probability proportional to the centrality measure.

The scheme A is a non-probabilistic sampling method where
nodes are selected using a deterministic criterion. In this
case, the nodes selected represent the top y fraction of nodes
with the highest centrality measure in the whole network.
We quantify the proportion of nodes for each attribute type
in both sampling schemes. If an attribute type dominates the
other attribute type (i.e. with a proportion greater than 0.5)
in a given sampling scheme, we call it the higher ranked
attribute for that scheme.

5.1 Degree centrality
In this subsection, we consider the degree centrality of nodes

in linear preferential attachment networks. We recall from
Sect. 3.1 that #, represents the limit of the normalized sum
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of the degrees and 2/¢, denotes the power law exponent of
the limiting degree distribution of nodes with attribute a
(see Egs. 2 and 3). We can relate these quantities to condi-
tions for the minorities to be higher ranked in the sampling
schemes above for a small fraction y, say top 1-3% which
is the most interesting case. If the degree distribution tail of
type 1 attribute is heavier than that of type 2 (i.e. ¢, > ¢,),
then type 1 has a higher proportion of nodes in the sample
under scheme A. On the other hand, if ; > #,, then a sam-
pled node is more likely to be of type 1 [see the discussion
following Eq. (2)] and therefore minority nodes are ranked
higher under scheme B.

We consider below the three network scenarios of
Sect. 2.3 using different configurations of the propensity
matrix « and give the conditions for minorities to rank
higher in both sampling schemes as a function of the model
parameters: node out-degrees (m,,m,) and node attribute
probabilities (z;, 7,). The proofs of these results are given
in Antunes et al. (2023a).

5.1.1 Heterophily

We first consider a heterophilic network given by
K11 = Ky, = land k|, = k,; = K, where K > 1. As K grows,

¢, and ¢, approach
m my 7,
~2(1— ——— ), ~2(1 - ——————— ).
P < mym +m27r2) & < m 7, +m27r2>
(6)

Thus, if m; 7, < m,r,, which always holds in the case
m; < m,, then ¢, > ¢, and the minorities rank higher under
scheme A, as intuitively can be understood by noting that the
majority nodes boost up the minority ranks under scheme A.
But, if m, ; > m,n,, the minority nodes boost up the major-
ity ranks under scheme A by connecting to them with more
edges per incoming node.

As K becomes larger,

mymy + mym,
mRN» (7)

and thus the discrepancy in relative ranking between the two
groups decreases under scheme B.

Figure 4 (left) shows the proportion of minority nodes for
0 <y < lin the two sampling schemes when m; < m,—the
network parameters are given in the caption of the figure.
The structural properties of the network with m; = m, =2
are given in Table 7 for the several considered scenarios. For
small y, the minority nodes rank higher under scheme A (the
result for the majority is the complementary proportion). In
this setting ¢, < ¢, and the empirical degree distribution
of the minority is heavier than that of the majority which
results in higher node degrees for the minority—see Fig. 5
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Fig.4 Degree centrality: proportion of minority nodes under sampling schemes A and B of heterophilic networks with 30,000 nodes, a = 1,

=03,k =kp =LKk, =Ky =15

Table 7 Synthetic network scenarios: structural prop- (k1) = kyp =15, k|, =k, = 1); asymmetric homophily (x;, = 15,
erties with a=1, =03, m =m,=2: heterophilic Ky = Kjy = ky; = 1). (See Table 1 for the description of remaining
(k) =kyp =1, Ko = Ky = 15); homogenous homphily quantities.)
VR D, D, Hy, H,, IEy] E] IEp| £ Wl Wl
IE| IE| IE| IE| 4} 4
Het 304 59997 0.198 0.097 1.347 3.087 0.018 0.047 0.284 0.651 0.302 0.698
Homo 30* 59997 2.880 1.389 0.195 0.092 0.259 0.681 0.041 0.019 0.300 0.700
Asy. homo 30 59997 3.046 0.796 0.112 1.469 0.279 0.387 0.024 0.310 0.303 0.697
1.0000 1400 1e+00
. min : d min min
. * maj . * maj ] * maj
0.0100 .'. 1e-02 b 1e-02 .o.
- o - [ - )
€ - € “ E *
s 3 ) 3 i k-
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Fig.5 Empirical degree distributions of networks with 30,000 nodes, @ =1, 7; = 0.3, k||, =k, = 1, K}, = ky; = 15: (left) m; =2,m, =4,

(middle) m; = 10,m, =2, (righty m; =2,m, =1

(left) with m; = 2, m, = 4. Under scheme B, the empirical
value 7, is slightly smaller than #, which explains that the
proportion of minority nodes in both settings is smaller than
the majority for small y. For other top ranks (say 10% and
20%) the minority is over-represented under both schemes
in the sense that the proportion is higher than x|, which is
obviously approached wheny = 1.

Figure 4 (middle) depicts the case where m, 7z, > m,x,.
For small y, the majority nodes rank higher under scheme

A. The degree distribution of the majority in Fig. 5 (mid-
dle) with m; = 10, m, = 2 is heavier (¢), > ¢,) and thus the
majority nodes have higher degrees. On the other hand,
for small y, the proportion of minority nodes is close
but above 0.5 under scheme B (the empirical value #, is
slightly higher that #,). For other values y = 0.1,0.2,0.3,
the minority nodes rank higher in both schemes. This is
due to the fact the lower bound of the degree of minority
nodes m, is large and the heterophilic scenario.
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Figure 4 (right) represents the case where ¢, and ¢, are
close. The degree distributions are given in Fig. 5 (right)
with m; =2, m, =1, where ¢, is slightly larger than ¢,
and thus the minority rank higher under scheme A for
small y (when m| = 3, m, = 1t is the opposite). There is
almost no discrepancy in relative ranking between the two
groups for small y under scheme B.

5.1.2 Homogenous homophily and homogeneous mixing

When the network is homogeneous mixing, that is, K = 1,
for all i,j=1,2, or when there is strong homophily
K1, = kyp = K> landx;, = k,; = 1, we have

¢, =1, ¢, = 1
and

n, & mm, N, R mym,,

as K - oo. Thus, if m;z; > m,n,, the minority nodes
rank higher via scheme B. Moreover, although the degree
tail exponents are comparable, if m,/m, is large enough,
the degrees of minority nodes get a high initial boost.
The analysis of Banerjee and Bhamidi (2021), Galashin
(2016), extended to the multi-attribute setting, suggests a

1.00 1.00-
m;=5,m,=2(A)

= my=5m;=2(B)
- m;=10,m,=2 (A)
m; =10, m; =2 (B)
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o
@
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o
I}
a
o
I}
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0.00 0.00
0.00 0.25 0.50 0.75 1.00 0.00 0.25

“persistence phenomenon”, namely, the maximal degree
nodes from any attribute type emerge from, with high prob-
ability, the oldest nodes of that type added to the network.
Consequently, minority nodes also seem to have a higher
ranking under scheme A, when y is small. Thus, in the con-
text of social networks, increasing the “social interaction”
(quantified by m, /m,) for the minority nodes increases their
popularity under both schemes in this setup.

Figure 6 (left) considers homogeneous homophily net-
works, where m; is sufficiently larger than m, such that the
minority rank higher in both sampling schemes for small
y. This also true for other top 10% and 30% when m, is
large since it determines the lower bound of the degree of
the minority nodes as noted above. On the other hand, in
Fig. 6 (middle) the ratio m, /m, = 1.5is not sufficiently large
for the minority nodes to rank higher under schemes A and
m,; 7, < mym, in scheme B. With the same outgoing edges
(m, = m, = 2), the proportion of nodes from attribute 1 with
both scheme remains approximately close to z;. Figure 6
(right) considers two homogeneous mixing networks where
the same conditions for the minority nodes to rank higher
hold.
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m;=3,my=2(A) my=4,m,=2(A)
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Fig.6 Degree centrality: Proportion of minority nodes under sampling schemes A and B of homogeneous homophily and homogeneous mixing
networks with 30,000 nodes, a = 1, 7y = 0.3,k = ky, = 15, k|, = kp; = 1 (left and middle) and k|, = K, = k|, = ky; = 1 (right)

Fig.7 Degree centrality:
Proportion of minority nodes
under sampling schemes A and
B of asymmetric homophily
networks with 30,000 nodes,
a=17 =03k, =15,

Kip = Kpp = Ky =1
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5.1.3 Asymmetric homophily

Finally, we consider the strong asymmetric homophily
regime, namely, k;; = K> 1, k), =k, =kp; = 1. As
K — oo,

b, ®)

~ ’ h N _—
2mymy + 2mym, mymy + mym,

and

_ 2mymy (my 7ty + mymy) _ mymy(my 7y +mymy)

n~= n, =
1 2m1ﬂ'1 +m2ﬂ'2 ’ 2

2my 7w + mym,
©))

Thus, since ¢; > ¢,, the minorities rank higher under
scheme A. In comparison, for scheme B, minorities rank
higher if 2m 7z, > m,m,. Again, in the context of social net-
works, this implies that, if the majority nodes do not show
appreciable attribute bias when connecting to the network,
the minorities can increase their popularity by enhancing
their connectivity preference towards other minority nodes.
The last two scenarios under scheme A were briefly consid-
ered heuristically in Espin-Noboa et al. (2022) using fluid
limits.

In Fig. 7 (left) the condition 2m,m; > m,n, holds and
the minority nodes dominates under scheme B for small y.
Withm; =5, m, = 2, the minority node can rank higher for
top 20% and 30%. Figure 7 (right) illustrates the case when
2m,m, < mym,, however, with m; = m, = 2 the minority can
be over-represented for y € (0, 1). On the other hand, under
scheme A minority always dominates in all the cases con-
sidered for small y and also for larger top-ranks if m; > m,.

5.1.4 Discussion

In the heterophily regime considered, if we select a small
fraction y (say, y < 0.03) of nodes of the network with the
highest degree (scheme A), the proportion of minority nodes
selected is higher (rank higher) if the number of outgoing
edges of a minority node m, is smaller than or equal to the
number outgoing edges of a majority node m,. On the other

Fig.8 Page-rank centrality:
proportion of minority nodes
under sampling schemes A and
B of heterophilic networks with
30,000 nodes, a = 1, 7; = 0.3,
K =Kp =Lk, =K =15

hand, if nodes are sampled proportional to their degrees
(scheme B), the proportions of the minority and majority
are similar. With homogenous homophily, the minority
nodes rank higher under scheme A if the ratio m, /m, is suf-
ficiently larger. However, under scheme B this depends also
on the proportion of the minority nodes in the network z,
(m 7, > mym,). In the case of asymmetric homophily the
condition for the minority to have a larger proportion in the
sample under scheme B is less restrictive (2m, 7, > m,x,),
while the minority always ranks higher under scheme A.

5.2 Page-rank centrality

In this subsection, we consider the Page-rank centrality
measure in the schemes A and B, and explore the propor-
tion of minority nodes in the sample for the heterophily
and homophily scenarios considered in Sect. 5.1. As for the
degree centrality, if the normalized sum of the Page-ranks of
the minorities (majorities, resp.) is higher than the majorities
(minorities, resp.), the probability of sampling a minority
(majority, resp.) node in each draw is higher and hence the
minority (majority, resp.) rank higher in scheme B for small
y. On the other hand, under scheme A, Page-rank distribu-
tion tails for the two attribute types are expected to have the
same power-law exponents (see Sect. 3.2). However, one
distribution tail can still dominate the other as, for example,
in Fig. 3 or homogenous homophily/mixing in Section 5.1.
As in the latter section, we expect this to depend on the val-
ues of m; and m,. The derivation of the conditions for the
minority to rank higher in terms of the model parameters
seems theoretically challenging, and we explore the issues
numerically to gain insight.

5.2.1 Heterophily

We consider a heterophilic linear network with k|, = ky, =1
and k|, = k,; = 15 and 7; = 0.3 as above for comparison
and set the damping factor to ¢ = 0.85. Figure 8 (left) shows
two settings with m; < m,, where there is almost no discrep-
ancy in relative ranking between the minority and majority
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for small y (top 1-3%) under scheme A. This contrasts with
the situation for the degree centrality measure in Fig. 4 (left).
As the Page-rank of majority nodes is increased by high
Page-rank minority nodes that connect to them, the separa-
tion between the proportions of minority and majority nodes
in the sample chosen according to scheme A decreases.
The lower proportion of attribute 1 (minority) with
m; = 2,m, =4 compared to m; = 2, m, = 2 under scheme
A (when y is not too large) can be explained as follows.
When m, < m,, the Page-rank formula (4) shows that Page-
rank of minority nodes is diminished. To see this, observe
that, due to heterophily, for a minority node most of its
inbound neighbors belong to the majority. From the Page-
rank formula, the contribution to tkie Page-rank of a minority

node by a majority node u is O( s mL), which is small

as m, increases. This reduces the proportion of minority
nodes selected by scheme A, as seen in Fig. 8 (left). In both
settings, under scheme B, the normalized sum of the Page-
ranks is smaller for the minorities which explain that the
majority rank higher for small y.

Figure 8 (right) depicts two cases with m; > m, where
the minority can rank higher under scheme A for larger top-
ranks y (20% and 30%) by a reasoning similar to above.
Now, the minority nodes have larger out-degrees, and their
contribution to the ranks of the outbound majority neigh-
bors is largely diminished (O(1/m,)) and the minority ranks
higher. We also see that under scheme B, the proportion of
minority increases.

Fig.9 Page-rank centrality:
proportion of minority nodes
under sampling schemes A and
B (Page Rank) of homogenous
homophily networks with
30,000 nodes, a = 1, 7; = 0.3,
Ky =Ky =15

Fig. 10 Page-rank centrality:
proportion of minority nodes
under sampling schemes A and
B of asymmetric homophily
networks with 30,000 nodes,
a=17 =03k, =15,

Ky =Kpg =Ky =1
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5.2.2 Homogeneous homophily
We set the propensity matrix to k;; =k, = 15 and

Ky =Ko = 1,my = 0.3and ¢ = 0.85. Withm; = m, = 2, the
proportion of minority nodes in both schemes is close to its
expected proportion 7, in the network under both schemes
and this proportion is slightly higher with m; =5,m, =2
for small y — see Fig. 9 (left). As seen from Fig. 9 (right),
for the minority to rank higher, it is needed that the number
of minority nodes they connect to is large under scheme
A, which roughly amounts to m; > m, in the homophilic
regime. As found in Banerjee and Huang (2023) for only one
attribute, the out-degree significantly influences the degree
separation between the “hubs” (maximal degree nodes) and
the remaining nodes. Increasing the out-degree of a given
type will also lead to the maximal degree node coming from
the same type with high probability. Additionally, for the
dynamic networks considered here, “older” nodes tend to
have higher in-degrees and are typically close to other high
degree (and high Page-rank) nodes. Putting it all together
and by noting that a high Page-rank value of a node results
from the node having either a high in-degree or having an
in-bound neighbor with a high Page-rank score, reinforces
the conditions for the minority to rank higher for small y
under scheme A with homophily.
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5.2.3 Asymmetric homophily

In this scenario, the minority is homophilic with propensity
matrix given by k1, = 15,k,, =k, =k = 1, r; =0.3and
¢ = 0.85. For the setting in Fig. 10 (left) where m; > m,, the
minority ranks higher under scheme A not only for small y.
For scheme B, the minority needs to increase their popular-
ity through the number of outgoing edges to rank higher.
On the other hand, if the majority nodes increase their out-
degree even if they do not show appreciable attribute bias
when connecting to the network and the minority is homo-
philic, the majority can rank higher in both schemes (Fig. 10

(right)).
5.2.4 Discussion

The results show that with Page-rank centrality measure in
the heterophily regime under scheme A with y small, the
proportions of the minority and majority selected tend to
be similar if their out-degrees m, and m, are equal, while
under scheme B the majority ranks higher. Increasing m;,
the minority can rank higher for a large range of y under
scheme A, which also increases the visibility of minority
nodes for scheme B. In a homogeneous homophily network,
for the minority to rank higher under scheme A, the out-
degree of minority has to be much larger than the out-degree
of majority, which also increases the proportion of minority
nodes sampled with scheme B. With asymmetric homophily,
if m; > m,, the minority ranks higher under scheme A for
a large range of y and in scheme B when m, is sufficiently
greater than m,.

6 Bias in ranking through degree centrality
and subgraph sampling

In the context of the use of synthetic models for providing
insight into real world systems, a different direction is the
study of the performance of subgraph sampling methods in
the representation and ranking of various attributes, espe-
cially in the tail of the distribution. More precisely, one has
a partial observation of the nodes (or edges) in subgraph
sampling and the goal is to infer the bias of the induced
subgraph, especially tail properties like the connectivity
structure of minority high-degree nodes from this partial
measurement.

Fix a parameter p representing the density of items (nodes
or edges) sampled from the network. The two main sampling
schemes considered in this section are:

1. Induced subgraph sampling: Here one samples a propor-
tion p of the nodes of the graph uniformly at random and
observes the induced subgraph on the sampled nodes.

2. Incident subgraph sampling: Here one samples a propor-
tion p of the edges of the graph uniformly at random and
observes the induced subgraph generated by these edges.

The first type of sampling is representative in the construc-
tion of contact networks in social network research, when a
sample of individuals of different types is first selected and
then individuals are interviewed regarding some measure
of contact among themselves (e.g. friendship, likes or dis-
likes, etc.). The second design is, for example, implicit in the
construction of streaming graphs (e.g. Twitter) with differ-
ent groups in a very large network, wherein edges (tweets)
are sampled from the stream of edges, after which sender
and the receiver nodes (users) are observed. Note that under
incident subgraph sampling, the probability that a node is
selected depends on its degree.

Write G (resp., G¢) for the induced (resp., incident)
sampled graph from G,,. In either case, inferences about the
underlying graph are then based on the subgraph. Now fix
0 < y < 1. The goal is to understand the composition of the
top y percentile of nodes as measured according to their
degree distribution, and comparing the information provided
by the sampled graph in contrast to the underlying network.
For any attributed network G,, rank the nodes in order of
their degrees as in scheme A (Sect. 5). For quantile level y,
let prop(G,;;y) denote the proportion of type 1 (minority)
nodes amongst the top y proportion of nodes in terms of
degrees. Now if G;"™'° = G or G is a graph obtained by
sampling from G, using the schemes above, define the bias
for the sampling scheme for quantile level y as

bias(samplesy) = prop(G*™*°.y) — prop(G,y). (10)

0.50 Heter.
= Homo.
Asym. homo.

0.25

0.000 ~————m

bias

-0.25

-0.50
0.00 0.25 0.50 0.75 1.00

Fig. 11 Bias of induced subgraph sampling of linear tree networks for
z; = 0.3, p=0.2 with heterophily (k;;, =k, =1, k|, =k, = 15),
homophily (x|, = k,, = 15, K}, = k,; = 1) and asymmetric homoph-
ily (k) = 15,kp =15,k =k = 1)
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6.1 Tree networks

To state an analytical result for the sampling bias under
induced subgraph sampling for a tree network, we need
some notation. Recall the limiting degree distribution
according to attribute types in Sect. 3.1 and denote by D“ a
random variable with the distribution p,(-) for a € {1,2}.
For p € [0, 1], write Bin(D?, p) for a binomial random
variable with D number of trials (conditionally on D¢
generated first) and success probability p. Recall that the
(1 — y) percentile of the distribution of a random vari-
able Z is given by the unique z such that P(Z < z) <1 -y
and P(Z <z) 2 1 —y. Let k, denote the (1 —y) percen-
tile of the distribution z,P(D! € -) + n,P(D* € -). Write
y = mPD' > k) + m,P(D* > k,), noting that 7 might not
equal y owing to discretization effects. Similarly let k, ,
denote the corresponding percentile but for the distribution

#,() := mPBin(D', p) € -) + m,P(Bin(D*,p) € -),

and lety, = p,([k, ,, 0)). Then, under appropriate assump-
tions, one obtains the following result for the induced sub-
graph sampling (the proof is given in Antunes et al. 2023a),

asn — oo,

1)
The asymptotic bias given by (11) is plotted in Fig. 11
for the three network configurations of Sect. 2.3. For het-
erophilic and asymmetric homophily networks, the bias is
negative for initial top ranks y and approximately zero for
homogeneous networks. The reasons for these results and
the case when m;, m, > 1 are investigated numerically in
the next section.

PBin(D',p) > k P(D' > k)

¥

W

P
bias(sample;y)—r,; —
"p

0.50 0.50

6.2 Non-tree networks

In applications, a key issue of interest is over- or under-
representation of minorities with subgraph samplings.
Having a network model, it is interesting to understand the
dependence of representation on the driving parameters of
the model. We explore these questions below for the various
homophily and heterophily scenarios considered in Sect. 5.

6.2.1 Heterophily

We consider the same propensity matrix as in Sect. 5 for
this scenario (k;, = k,, = 1, kK, = kp; = 15) and the linear
attachment model with @ = 1, n = 30000, z; = 0.3, but vary-
ing m, and m,. For induced subgraph sampling, the densities
p of sampled nodes are 0.1 and 0.2. To be consistent, we
successively sample edges under incident subgraph sampling
until the same densities of nodes are selected.

Figure 12 (left) depicts the bias for both subgraph sam-
pling schemes when the number of outgoing edges for
minority and majority nodes is equal to 2. Recall under
this setting the proportion of type 1 nodes amongst the
top y fraction of nodes with the highest degree from Fig. 4
(left) - scheme A. In this case, for small y, the minor ranks
higher. Since nodes are sampled at random under induced
subgraph sampling and p is small, sampling fails to capture
the minority “hubs” (large degree nodes) and the proportion
of type 1 nodes amongst the top y degree nodes is smaller
in the subgraph and the bias is negative. As y approaches 1,
it is expected that the bias is zero under induced subgraph
sampling. The result is in line with the negative bias under
induced subgraph sampling for tree networks (Fig. 11). In
incident subgraph sampling while edges are in the sample
with equal probability, the nodes are included with unequal
probabilities that depend on the degree (minority node

0.50

Ind. p=0.1 Ind. p=0.1 Ind. p=0.1
= Inc. = Inc. = Inc.
- Ind. p=0.2 - Ind. p=0.2 - Ind. p=0.2
Inc. Inc. Inc.
0.25 0.25 0.25 -
Poe———————

bias
bias

bias

0.00

-0.25

Fig. 12 Bias of induced and incident subgraph sampling of heterophilic networks with 30,000 nodes, a =1, 7; =0.3, k|, =k, =1,

K1y = Ky = 15: (left) m; = m, = 2; (middle) m, = 2, m, = 4; (right) m,
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Fig. 13 Bias of induced and

incident subgraph sampling [ =8 b=

of homogeneous homophily 02 z e 02 z e

networks with 30,000 nodes,

a=1,7 =03k, =Ky =15,

K1y = ky; = 1: (left) g N Boo

m, =m, = 2; (right) m; =3, I T 71 71 '?//Q&/—\/
m, =2

“hubs” are more likely to be sampled). This explains that
under the heterophilic scenario (with m; = m, = 2) the bias
is positive.

Figure 12 (middle) shows the case m; =2 and m, = 4.1In
this setting there are more minority nodes with larger (in-)
degrees of connections from the majority nodes (cf. Fig. 5
(left)) which increases the bias for both subgraph samplings
(say 0.01 <y < 0.15).

If the number of outgoing edges of minority increases to
m; = 10 and m, = 2, the majority nodes have larger (in-)
degrees in comparison to the case m; = m, (cf. Fig. 5 (mid-
dle)) and rank higher (cf. Fig. 4 (middle)) for small y. Thus,
incident subgraph sampling for small y now shows a nega-
tive bias in Fig. 12 (right) since it is more likely to sample
edges from minority nodes to majority nodes. However, for
induced subgraph sampling, the sampled minority nodes
have now more connections toward sampled majority nodes
and can be over represented in the subgraph (positive bias)
for small y.

6.2.2 Homogeneous homophily

In this scenario (k;; = k,, = 15, kp; = Kk, = 1), the bias is
close to zero for both sampling methods when m; = m, = 2
—see Fig. 13 (left). We recall that the minority proportion is
approximately 7, in the original network for all y (cf. Fig. 6
(middle)). The bias result also agrees with the induced

Fig.
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subgraph sampling for tree networks (Fig. 11). The strong
homophily reduces the effect of one type on the degree dis-
tribution of the other. Thus, the majority and minority nodes
are seen in roughly equal proportions in the top y percentiles
under both sampling schemes as well as in G,,.

When the number of outgoing edges of minority nodes
increases to m; = 3 and m, = 2, the proportion of minor-
ity nodes in the original network are over-represented and
decreases almost linearly as y increases (cf. Fig. 6, scheme
A (middle)). However, it creates a negative bias for induced
and incident subgraph sampling when y is not close to 1
—see Fig. 13 (right). Other settings such as m; =5,m, =2
and m; = 10,m, = 2 where the minority rank higher (cf.
Fig. 6 (left)) have also shown a negative bias and we omit
the plots.

The practical recommendation is that minority should
have the same out-degree as the majority to maintain their
representation in the subgraphs.

6.2.3 Asymmetric homophily

Finally, consider the scenario where the minority is homo-
philic (k;; = 15, k,; = 1) and the majority has equal propen-
sity to connect to any node in the network (x;, = k, = 1).
The bias is negative and positive under induced and incident
subgraph samplings, respectively, for m; = m, = 2 (Fig. 14

Ind. p=0.1
= Inc.
= Ind. p=0.2
Inc.

0.75 1.00

0.50
Ind. p=0.1
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= Ind. p=0.2
Inc.
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14 Bias of induced and incident subgraph sampling of asymmetric homophily networks with 30,000 nodes, « = 1, 7; = 0.3, x;; = 15,

Klp = K1y = Ky, = 1: (left) my = m, = 2; (middle) m; = 3, m, = 2; (right)y m; =2 andm, =3
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(left)). In this setting, the minority ranks higher only for
small y (cf. Fig. 7, scheme A (right)). This indicates that, in
this regime, although the maximal degree nodes appear to
be from the minorities, these are relatively few in number.
Thus, these have very small chance of being sampled via
induced subgraph sampling, which explains the negative
bias. However, in incident subgraph sampling, the asym-
metric homophily increases the probability of these being
sampled (as there are many edges between minority nodes)
and, thereby, creates a positive bias. The composition of the
sample obtained via induced subgraph sampling are sensi-
tive to small perturbations. Indeed, slightly changing m, /m,
from 1 leads to changes in bias (Fig. 14 middle and right).

6.2.4 Discussion

The results show that in the heterophily regime, if m; < m,,
the bias of induced (incident) subgraph sampling in the top
percentile of high degree nodes is negative (positive). With
homogeneous homophily the bias is close to zero for both
subgraph samplings when m; = m,. Finally, for asymmetric

homophily the signs of the bias for induced and incident
subgraph samplings are the same as in heterophily regime,
if m, are m, are close.

7 Real-world networks

In this section, we provide evidence of the characteristics of
the considered model and the insights of ranking of minori-
ties using sampling in real networks. We analyze four pub-
licly available datasets of real attributed networks from
different domains and different homophily levels. Table 8
shows the network statistics of interest. Hate is a retweet net-
work where nodes denote users, and edges represent retweets
among them. Users in the dataset are classified as either
“hateful” (minority) or “normal” (majority) depending on
the sentiment of their tweets. The network is directed with
asymmetric homophily where minority nodes have a higher
propensity to connect to other minority nodes. APS is a sci-
entific (directed) network from the American Physical Soci-
ety where nodes represent articles from two subfields and

Table 8 Regl—world networks: w El D, D, H,, Hy, Eal  1Eal  |Eal 1Exl Vil A

characteristics (see Table 1 for |E| |E| |E| |E| V| V|

the used notation) Hate 4971 10170 26621 0.519 1204 1565 0318 0412 0.117 0.153 0.109 0.891
APS 1853 3638 2.088 1.667 0.116 0.122 0.294 0.650 0.027 0.029 0.376 0.624
Wikipedia 2132 3143 1.695 1.081 0.693 0.737 0.040 0.774 0.090 0.096 0.153 0.847

Escort 16730 39044 0

0 2.090 2.090 0 0 39044 39044 0.396 0.604

Table 9 Network sampling for rare minority: Hate network (estimated probability of sampling a minority node, and its average degree-rank and

Page-rank in the network)

Sampl. scheme Unif Deg InDeg PR, PRy 3 PRy, FixL, FixL, FixL,
Prob 0.179 0.199 0.205 0.194 0.204 0.205 0.214 0.224 0.222
Degree-rank (%) 25.349 12.662 18.073 23.837 22.465 20.737 18.377 17.883 18.326
Page-rank (%) 31.150 26.0812 15.363 27.259 23.328 20.579 13.911 13.272 14.227
1.00 1.00 16400
scheme A scheme A min
maj
_os _o7s 1e-01 aRiye
:§ 050 ::E 0.50 Ew 6-02 .-'“..
o=
“025 “025 1e-03 ==
0.00 0.00 16-04
000 025 050 075 1.00 000 025 050 075 1.00 i 10 100
Y v degree

Fig. 15 Degree centrality: Proportion of minority nodes under sampling schemes A and B for Hate (left) and APS (middle) networks. Empirical

degree distributions of APS network (right)
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edges represent citations with a high homogeneous homoph-
ily. The Wikipedia dataset is a hyperlink (directed) network
where nodes represent U.S. politicians with attributes as
either male (majority) or female (minority) with a moderate
homogeneous homophily. The Escorts dataset represents a
(undirected) network of sexual contacts from Brazil. Nodes
are of two types: client (majority) or escort (minority) exhib-
iting extreme heterophily.

7.1 Network sampling for rare minority

We inspect the Hate network which shares similar homoph-
ily characteristics with the synthetic networks considered in
Sect. 4 (cf. Table 3) to assess the probability of sampling a
minority node. We consider the largest connected compo-
nent of the network (with diameter 24) for a fair comparison
with the results provided in Table 4. For the several sampling
schemes proposed, the results (averaged over 10* runs) in
Table 9 are in line with the ones obtained with the model,
where fixed length walk sampling shows the higher probabil-
ity of sampling a minority node in addition to a higher rank
compared to uniform sampling. The smaller differences are
due to the characteristics of the network, where the propor-
tions of edges from “hateful” to “normal” users is higher

than in the synthetic network. This can also be seen from
the homophily measures H,,.

7.2 Centrality-based sampling and higher ranked
attribute

We consider the Hate and APS networks with power-law
degree distributions to assess the ranking of the minorities
under schemes A and B based on the degree (Sect. 5.1). For
the Hate network, the exponents of the fitted degree distribu-
tions are 1.138 (minority) and 1.597 (majority). Figure 15
(left) shows that under scheme A, the minorities rank higher
(since the degree distribution is more heavy-tailed) for small
y. Under scheme B, the minority do not rank higher due to
the smaller normalized sum of the degrees (0.633 (minority)
and 1.331 (majority)) but can maintain its rank in the sam-
ple. For the APS network, the minority ranks lower in both
schemes — Fig. 15 (middle). The degree distributions are
plotted in Fig. 15 (right) where the majority has a heavier-
tailed distribution and thus ranks higher under scheme A.
The normalized sum of the degrees is also larger for the
majority in scheme B.

1.00

propor. of attribute 1

scheme A
+ scheme B

1.00

0.75

0.50

propor. of attribute 1

scheme A
+ scheme B

1e+00

1e-01
£ 1e-02
=3

1e-03

1e-04

10
Page-rank

Min
* Maj

100

Fig. 16 Page-rank centrality: Proportion of minority nodes under sampling schemes A and B for Hate (left) and APS (Wikipedia) networks.

Empirical Page-rank distributions of Wikipedia network (right)
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Fig. 17 Bias of induced and incident subgraph sampling of (left) Escort; (middle)APS; (right) Hate
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We also consider the Page-rank centrality measure in
the sampling schemes A and B (Sect. 5.2), and explore the
relative ranking of the minority for the Hate and Wikipedia
networks. The results are in line with those for the synthetic
networks (asymmetric and homogeneous homophily), where
the proportion of minority for a small fraction y of nodes is
higher under scheme A in the asymmetric case and equals
the group size proportion with scheme B. Figure 16 shows
the normalized Page-rank distributions for the Wikipedia
network which have similar tail exponents for the two attrib-
utes (2.970 (minority) and 2.876 (majority)).

7.3 Bias of subgraph sampling for ranking
through degree centrality

The over- or under-representation of minorities via induced
and incident subgraph is given in Fig. 17. The signs of the
bias for the Escort (heterophily), APS (homogeneous homo-
phily) and Hate (asymmetric homophily) networks agree
with the network model (Sect. 6.2).

7.4 Discussion

The findings for the three related problems investigated
using an attributed network model are highly relevant for
the considered real-world networks with different levels of
homophily and heterophily.

8 Conclusions and future work

We investigated three related problems concerning sampling
minorities in attributed networks. Using a dynamic attrib-
uted network model with homophily/heterophily, we pro-
vided analytical and numerical results in the representation,
ranking and bias of minorities based on the degree and/or
Page-rank centrality measures for several sampling schemes.
We explained through the model parameters the under- and
over-representation of minority nodes in the sample which
can differ significantly from the original network. We also
discussed how minorities can preserve their “position” in the
sample. The findings and insights from the sampling analysis
were assessed with real-world networks.

8.1 Limitations and future work

This paper has only considered a specific setting of nodal
attribute models (directed networks, two attributes) and
there are research questions that still need to be explored. A
partial list includes:

@ Springer

1. More detailed understanding of the sublinear regime,
both analytically and through numerics. The model
without attributes exhibits fascinating degree distribu-
tional asymptotics, and for questions such as seed detec-
tion and network archaeology, also exhibits phase transi-
tion at a = 1/2 (Banerjee and Bhamidi 2021).

2. In the setting of the linear a = 1 regime, while the tail
exponent of the Page-rank between minorities and
majorities is the same, much more research needs to
be conducted to understand how this is reflected in the
context of extremal behavior; in the sublinear regime,
analytic understanding of the Page-rank distribution
in the large network limit is completely open. Further
research also needs to be undertaken in the setting where
the out-degree distribution depends in a complex man-
ner on the attribute, including settings of heavy tailed
out-degree distribution. Similarly this paper has only
considered the setting where one has a discrete finite
attribute space. The continuous attribute type space will
need significantly new techniques.

3. As future work, we plan to compare and contrast the
performance of various centrality measures, including
degree and Page-rank centrality, for ranking and attrib-
ute reconstruction tasks in the semi-supervised setting,
where one has partial information on the attributes and
wants to reconstruct (infer) it for the rest of the network
considering other samplings methods (e.g. Ribeiro and
Towsley 2010).
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