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a b s t r a c t

Generalized/extended finite element methods (GFEM/XFEM) for an interface problem are
generally enriched by a distance function to the interface to handle discontinuities across
the interface. Evaluations of the distance function and its gradients are needed for as-
sembling stiffness matrices, which requires certain computational geometry algorithms.
The computational complexity grows if the number of integration points is increased.
Besides, the mathematical analysis on the effect of numerical integration has not been
established in the field of GFEM/XFEM yet. This study designs an improved enriched
function for a stable GFEM (SGFEM, a stable version of GFEM) based on the distance
function, which only requires evaluating the distance function at nodes of elements that
interact the interface (the gradients of distance function are not needed). The optimal
convergence order (in the energy norm) of the SGFEM with such an improved enriched
function is proven. In turn, we propose a perturbed variational formula, which can be
integrated exactly by simple Gaussian rules designed in this paper. We prove that the
SGFEM based on the improved enriched function and the perturbed variational formula
(exactly integrated by the numerical integration) achieves the optimal convergence order
for the interface problem. Namely, we develop a numerical integration rule for the
SGFEM such that the optimal convergence order of SGFEM is maintained for the interface
problem. The theoretical achievements are verified by numerical experiments.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Interface problems exist in numerous engineering applications and multi-physical phenomena, such as fluid–structure
interaction, bimaterials, multiphase flows, flows in porous media, three dimensional fiber composites [1–3]. Solutions
of interface problems are generally non-smooth, which may involve jumps, kinks, singularities, and oscillations [4].
Conventional finite element methods (FEM) have to require a mesh to fit the interface (mesh matching or mesh
refinement) to avoid loss of accuracy [5–7]. However, creating a mesh fitting the interface can be extremely difficult,
especially in three-dimensional time-dependent problems. In the recent years, unfitted FEMs for the interface problem
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have made significant progress. A FEM is called unfitted if it uses a mesh that is simple, fixed, and independent of the
interface.

Typical unfitted FEMs for the interface problem include immersed FEM, penalty FEM, generalized or extended
FEM (GFEM/XFEM). The immersed FEM modifies the standard FEM shape functions based on interface conditions and
material coefficients [8]. This makes the construction of shape functions complex when underlying equations involve
complex constitutive relationships (between strain and stress), such as vector-valued equations (elasticity systems) [9,10],
anisotropic materials, and nonlinear equations. The penalty methods, e.g., cut FEM, interface penalized FEM, discontinuous
Galerkin method (DGM) [11–17], use discontinuous shape functions even for the interface problem where the solution is
continuous. Such a discontinuity causes a nonconforming feature in the variational problem, which is generally handled
by penalty terms and parameters. The determination of the penalty parameters, however, is technical and cannot be
treated using a unified approach. We mention that the shape functions of immersed FEM are also discontinuous in two-
and three-dimensional problems, and the penalty technique is needed [18] consequently. This study is mainly focused on
the GFEM/XFEM. The shape functions of GFEM/XFEM are constructed only based on interface geometries, and thus they
are independent of the constitutive relationship and material coefficients. In addition, it is easy for the GFEM/XFEM to
construct the continuous shape functions so that the conforming variational formulations can be employed without any
penalty terms and parameters.

The idea of GFEM/XFEM is to augment the standard FEM (unfitted mesh) with special functions that mimic local
features of exact solutions to solve complicated non-smooth problems [4,19–21]. These local special functions, called
enrichments are ‘‘pasted’’ using a partition of unity (PU) method [22–25]. The GFEM/XFEM has been extensively applied
to the interface problem, see [12,15,26–36] for instance. The enrichments of GFEM/XFEM for the interface problem are the
absolute of level set function or the distance function (to the interface curve � ), D. Directly enriching D in the GFEM/XFEM
causes a so-called blending element errors, as reported in [30]. To resolve it, a corrected XFEM was proposed in [30]
by introducing an enrichment RD, where R is a cutoff function. The corrected XFEM enriches more freedoms of degree,
and its conditioning gets bad as the interface approaches boundaries of elements. Recently, a stable GFEM (SGFEM) was
introduced in [19,37,38] to improve the conditioning of GFEM/XFEM. The SGFEM enriches

D � IhD (1.1)

instead of D, where IhD is the standard FE interpolant of D. The SGFEM for interface problems is proven to have the
optimal convergence in [19,28], and the conditioning is of the same order as that of the FEM and does not deteriorate
as the interfaces approach the boundaries of elements. The applications of SGFEM ideas to the interface problems, crack
problem, and high order approximations are referred to [19,26,28,31,36,38–41].

This paper is aimed to improve the enrichment D and associated numerical integrations in GFEM/XFEM and SGFEM for
the interface problem. On the one hand, evaluations of D and its gradient are needed when assembling stiffness matrices.
These evaluations require algorithms of computational geometry and could be difficult as the interface is geometrically
complex. On the other hand, the numerical integration associated with D has not been resolved efficiently for the
GFEM/XFEM and SGFEM. A standard integration rule in the GFEM/XFEM is to decompose the elements into subelements
based on the interface [4,42]. The finer subelements were used to enhance accuracy in [31,43]. Another approach is to
map the Gauss integration points in a higher-order reference element into the subelements [30,44]. Numerical integration
rules using zero-level sets of level set functions were developed to address the implicit interface in [45–47]. A strategy
circumventing volume integrations on elements was proposed in a smooth XFEM [48]. To the best of our knowledge,
the studies on the numerical integration of GFEM/XFEM for the interface problem are only concentrated on algorithm
designing, and a rigorous theoretical analysis on the integration error has not been provided in the literature. In this
study, we propose a modified version of D, |I� ,hED|, to replace D in (1.1), and the new enrichment for the SGFEM is the
following:

|I� ,hED| � Ih|I� ,hED|, (1.2)

where ED is a smooth function defined based on D in (4.1), and I� ,h is an interpolation operator, which equals to Ih on
the elements not cut by � and is the (piecewise) linear interpolation on the elements intersecting � . In I� ,hED, only
the evaluation of D at the nodes close to � is needed, and the evaluation of gradients of D is not needed. This reduces
the computational expense greatly. We prove that the zero-level set of I� ,hED, denoted by �h, can approximate � with
a high accuracy. Since I� ,hED is the (piecewise) linear functions, �h is also (piecewise) linear on the elements cut by � .
Based on �h we develop a perturbed variational problem, and then the numerical integration rule is designed to integrate
such a variational form exactly. We prove that the SGFEM solution computed from the proposed variational problem
and numerical integration can still achieve the optimal energy convergence order O(h). This is verified by numerical
experiments. The scaled condition number of proposed SGFEM is also shown to have the same order as that of FEM.

The paper is organized as follows. The model problem is described in Section 2. The conventional GFEM/XFEM and
SGFEM are reviewed in Section 3. The SGFEM with the improved enrichment is proposed in Section 4, and the optimal
approximation error is proven based on a perturbed variational problem. In Section 5, we design a numerical integration
rule and prove that the approximation error of proposed SGFEM with the numerical integration is also optimal. The
numerical experiments and concluding remarks are presented in Sections 6 and 7, respectively.
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Fig. 1. The domains with a closed curved interface.

2. Model problem

For a domain � in R2, an integer m, and 1  q  1, we denote usual Sobolev spaces as Wm,q(�) with norm k·kWm,q(�)
and semi-norm |·|Wm,q(�). The space Wm,q(�) will be represented by Hm(�) for q = 2 and Lq(�) when m = 0, respectively.

We consider a bounded and simply connected domain ⌦ ⇢ R2 with a piecewise smooth boundary @⌦ . Let � be an
interface that divides ⌦ into two domains ⌦0 and ⌦1 such that ⌦ = ⌦0 [ ⌦1, ⌦0 \ ⌦1 = ;, and � = ⌦0 \ ⌦1. In
this study, we consider that the interface � is closed and smooth, as shown in Fig. 1. For simplicity, we assume � is C2

continuous.
A point in the Cartesian coordinate system of R2 is denoted as P = (x, y). Let a be a positive, piecewise-constant

function given by

a(P) =
⇢

a0, P 2 ⌦0,
a1, P 2 ⌦1,

(2.1)

where a0 and a1 are positive constants, 0 < ⇣0  ar  ⇣1 < 1, r = 0, 1, and ⇣0, ⇣1 2 R. Clearly, a is discontinuous along
the interface � .

We are interested in the solution u of the interface problem:

�r · (aru) = f , in ⌦, (2.2)
u = 0, on @⌦,

subject to jump conditions on the interface �

[u]� = 0, on � , (2.3)
a

@u
@En�

�

�

= 0, on � , (2.4)

where En� denotes the unit vector normal to the interface � directed towards to ⌦0. The notation [v]� := v1 � v0 defines
the jump of a quantity v along the interface � , where vr := v|⌦r , r = 0, 1.

The variational formulation of interface problem (2.2) is as follows:

Find u 2 E(⌦) such that B(u, v) = F (v), 8v 2 E(⌦), (2.5)

where

B(u, v) =
Z

⌦

aru · rv dP, F (v) =
Z

⌦

f v dP,

and E(⌦) is an energy space given by

E(⌦) := {v 2 H1
0 (⌦) : kvk2

E(⌦) := B(v, v) < 1 and [v]� = 0 on � }.
Let Sh ⇢ E(⌦) is a finite dimensional subspace. Based on Sh, the variational problem (2.5) is discretized as

Find u 2 Sh such that B(uh, vh) = F (vh), 8vh 2 Sh. (2.6)
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Using the standard Cea’s lemma and the boundedness of a we have

ku � uhkE(⌦)  min
vh2Sh

ku � vhkE(⌦)  ⇣1 min
vh2Sh

ku � vhkH1(⌦). (2.7)

This implies that an accurate approximation solution will be derived if a subspace Sh with good approximation property
is designed.

The data f is given such that the solution u 2 M2, where M2 is defined by

M2 := {u : u|⌦r 2 H2(⌦r ), r = 0, 1 and k@↵ukL1(� ) < 1, |↵|  1} (2.8)

with a norm

kukM2 = ku0kH2(⌦0) + ku1kH2(⌦1) +
X

|↵|1

k@↵ukL1(� ), 8u 2 M2.

Remark 2.1. We present the model problem (2.2) using a homogeneous essential boundary condition for ease of
exposition. The non-homogeneous essential boundary condition can be imposed directly by the FE part of the proposed
SGFEM because we consider the closed interface (� does not intersect the boundary @⌦), and the nodes on @⌦ are
not enriched by the extra functions. We consider the homogeneous interface condition (2.3) and (2.4), which gives a
continuous solution u with discontinuous gradients. The various FEM or GFEM have been developed to address such an
interface problem in the literature, such as [4,6,9,11,18,26,31,33,35,49], and references therein. The interface problem with
the non-homogeneous interface condition can be transformed to the homogeneous case using approaches in [50,51] so
that the idea in this paper can be applied. ⇤

3. Conventional GFEM and SGFEM for interface problems

We begin with a quasi-uniform finite element mesh Th = {es}s2Eh of the domain ⌦ with mesh size 0 < h < 1, where
Eh is the index set, and the finite elements es can be triangles or quadrilaterals. We note that the mesh Th does not need
to match the interface � . Let {Pi}i2Ih be the set of finite element nodes associated with the mesh Th, where Ih is the index
set of the nodes. For every i 2 Ih, we consider the standard linear (bilinear for quadrilateral element) finite element hat
function �i. The closure of support of �i is denoted by !i. Since the mesh is quasi-uniform, we have

k�ikL1(⌦) = k�ikL1(!i)  1, kr�ikL1(⌦) = kr�ikL1(!i)  Ch�1, (3.1)

where the positive constant C is independent of h and i. It is well known that {�i}i2Ih form a partition of unity (PU) [22–24]
subordinate to {!i}i2Ih .

The standard FEM subspace to approximate the solution of (2.2) is given by

Sh := SFEM = span{�i : i 2 Ih}. (3.2)

For any continuous function v, we denote the FE interpolant of v by Ihv:

Ihv :=
X

i2Ih
v(Pi)�i. (3.3)

It is well known that the FEM (3.2) with the unfitted mesh cannot approximate the solution of the interface problem
efficiently [6,31].

The generalized or extended FEM (GFEM/XFEM) [4,20] is a typical technique to approximate the non-smooth problem
using the unfitted mesh. In a conventional GFEM/XFEM for the interface problems, the approximation subspace is

Sh = SFEM � SENR and SENR = span{�iD : i 2 I�h,enr}, (3.4)

where

D(P) = dist(P, � )

is a distance function (can be replaced with the absolute of a level set function) [4,27,31], and

I�h,enr = {i 2 Ih : Pi 2 es where e̊s \ � 6= ;}
is an index set, and the nodes in I�h,enr are called the enriched nodes. It is easy to know that

Card(I�h,enr ) := cardinality of I�h,enr = O(h�1). (3.5)

It was known early (e.g., [31]) that the GFEM/XFEM (3.4) only produce a sub-optimal convergence order O(
p
h) in energy

norm due to effect of so-called blending elements [4,30]. The optimal convergence O(h) can be attained by the corrected
XFEM [4,30]. However, the corrected XFEM enriched more nodes, and its conditioning may ‘‘blow up’’ as the interface �
is close to the boundaries of elements [34].
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Recently, a stable GFEM (SGFEM) was introduced in [19,26,28,31,37–39] to improve the conditioning of GFEM/XFEM.
The approximation subspace of the SGFEM for the interface problems is given by

Sh = SFEM � SENR and SENR = span{�i(D � IhD) : i 2 I�h,enr}, (3.6)

where Ih is the FE interpolation operator defined in (3.3). It was shown [26] that the SGFEM (3.6) for the interface problem
(a) reaches the optimal convergence order O(h) in energy norm, (b) has a scaled condition number (SCN, defined in (6.1))
of stiffness matrices O(h�2) that is of same order as the FEM, and (c) is robust in that the convergence and SCN do not
depend on the relative positions of the mesh and interfaces.

The convergence of SGFEM for the interface problem
The optimal convergence order of SGFEM (3.6) has been proven in [34,39]. Here, we present some key results in [34,39],

based on which we will prove the optimal convergence of improved SGFEM in this paper. Recall that

ur := u
��
⌦r

, r = 0, 1.

We continuously extend u0 and u1 to the entire domain ⌦ to obtain functions ũ0 and ũ1 in H2(⌦)\W 1,1(⌦) such that

ũr = ur on ⌦r and kũrkH2(⌦)  CkurkH2(⌦r ), kũrkW1,1(⌦)  CkurkW1,1(⌦r ), r = 0, 1, (3.7)

where C is a positive constant independent of h (see [52]).

Lemma 3.1. For each enriched node Pi, i 2 I�h,enr , there is a linear polynomial ⇠i and a constant ci = 1
2

h
@ ũ0
@En�

(Qi) � @ ũ1
@En�

(Qi)
i
,

Qi 2 !i \ � such that

ku � ⇠i � ciDk2
Hm(!i)  Ch4�2m(kũ0k2

H2(!i)
+ kũ1k2

H2(!i)
) + Ch6�2m

⇣X

|↵|1

k@↵uk2
L1(� )

⌘
, m = 0, 1, (3.8)

and

ku � ⇠i � ciDk2
L1(!i)  Ch2(kũ0k2

H2(!i)
+ kũ1k2

H2(!i)
) + Ch4

⇣X

|↵|1

k@↵uk2
L1(� )

⌘
. (3.9)

The proof of Lemma 3.1 is referred to [53].

Theorem 3.2. Suppose that u 2 M2 is the solution of the interface problem (2.2)–(2.4), and uh
SG is the SGFEM solution of

variational problem (2.6) based on the finite-dimensional subspace Sh (3.6), then there exists C > 0 independent of h such that

ku � uh
SGkE(⌦)  ChkukM2 . (3.10)

Proof. Using the results (3.8) and (3.9) in the proof of Theorem 4.4 in [34] and repeating the arguments in the proof of
Theorem 4.4 in [34], we have that there is vSG 2 Sh (3.6) and a constant C that is independent of h such that

ku � vSGk  ChkukM2 . (3.11)

(3.10) is obtained according to (3.11) and (2.7). ⇤

4. An improved SGFEM and its theoretical analysis

In this section we design an improve enrichment for the SGFEM to reduce the computational complexity of evaluating
D and its gradients. For this end, we define

ED(P) =
⇢

D(P), P 2 ⌦0,
�D(P), P 2 ⌦1.

(4.1)

Since we assume that the interface is smooth (C2 continuous), ED is smooth in that ED 2 W 2,1(⌦). We next define an
interpolant of ED. Let

E�
h = {s 2 Eh : e̊s \ � 6= ;}, (4.2)

i.e., E�
h is the index set of elements intersecting � . If the initial mesh Th is quadrilateral, we divide each es, s 2 E�

h into
two triangles through its diagonal, and all such triangles are indexed by E�

h,T , see Fig. 2 one-three. If Th is triangular, we
also denote the index set of all triangular elements that intersect � by E�

h,T , see Fig. 2 four-five. In this situation, it is
clear that E�

h,T = E�
h , see Fig. 2 four-five. Therefore, the elements in E�

h,T are triangular for both the quadrilateral and
triangular meshes, and a triangle in E�

h,T is denoted by e�
s,T . We will explain later why the triangles in E�

h,T are used for the
quadrilateral mesh. An interpolant of ED based on E�

h,T , denoted by I� ,hED, is defined as follows:
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Fig. 2. The elements cut by � . One-three: quadrilateral elements; four-five: triangular elements. A quadrilateral element is divided into two triangles
through its diagonal. All triangles in these figures are denoted by e�

s,T , s 2 E�
h,T .

• for the triangular mesh, I� ,hED = IhED, i.e., the standard FE interpolant used to define the SGFEM (3.6);
• for the quadrilateral mesh, for any s /2 E�

h , I� ,hED|es = IhED|es , which is the standard bilinear interpolant based the
quadrilateral elements; for s 2 E�

h,T , I� ,hED|e�s,T is the standard linear interpolant based on the triangle e�
s,T .

Therefore, I� ,hED is a mixed interpolant for the quadrilateral mesh. For both the triangular and quadrilateral meshes we
have

I� ,hED|es = IhED|es , 8 s /2 E�
h . (4.3)

The following interpolation error holds according to the standard interpolation theory for both the triangular and
quadrilateral meshes:

kED � I� ,hEDkWm,1(⌦)  Ch2�m|ED|W2,1(⌦)  Ch2�m,m = 1, 2. (4.4)

The approximation subspace of an improved SGFEM for the interface problems is given by

Sh = SFEM � SENR and SENR = span{�i

⇣
|I� ,hED| � Ih

⇣
|I� ,hED|

⌘⌘
: i 2 I�h,enr}. (4.5)

It is noted by comparing (4.5) and (3.6) that only the distance function D is replaced by |I� ,hED| in (3.6). First, in (4.5)
|I� ,hED| � Ih

⇣
|I� ,hED|

⌘
= 0 on the elements es that do not intersect � (s /2 E�

h ) according to (4.3). Second, in (4.5) only
the values of D at the nodes in I�h,enr are needed, and the derivatives of D are not needed for integrating global stiffness
matrices. Therefore, the evaluations of D and its gradients in (3.6) are reduced greatly.

We next analyze the optimal approximation error of improved SGFEM (4.5).

Lemma 4.1. For each enriched node Pi, i 2 I�h,enr , there is a linear polynomial ⇠i and a constant ci = 1
2

h
@ ũ0
@En�

(Qi) � @ ũ1
@En�

(Qi)
i
,

Qi 2 !i \ � (the same as that in Lemma 3.1) such that

ku � ⇠i � ci|I� ,hED|k2
Hm(!i)  Ch4�2m(kũ0k2

H2(!i)
+ kũ1k2

H2(!i)
) + Ch6�2m

⇣X

|↵|1

k@↵uk2
L1(� )

⌘
, m = 0, 1, (4.6)

and

ku � ⇠i � ci|I� ,hED|k2
L1(!i)  Ch2(kũ0k2

H2(!i)
+ kũ1k2

H2(!i)
) + Ch4

⇣X

|↵|1

k@↵uk2
L1(� )

⌘
. (4.7)

Proof. Noting that for m = 0, 1,

||D � |I� ,hED|||Wm,1(!i) = |||ED| � |I� ,hED|||Wm,1(!i)

 |||ED � I� ,hED|||Wm,1(!i) = ||ED � I� ,hED||Wm,1(!i)  Ch2�m|ED|W2,1(⌦).

Therefore, using the estimate above and (3.8) yields that for m = 0, 1,

ku � ⇠i � ci|I� ,hED|k2
Hm(!i)  2ku � ⇠i � ciDk2

Hm(!i) + 2c2i kD � |I� ,hED|k2
Hm(!i)

 Ch4�2m(kũ0k2
H2(!i)

+ kũ1k2
H2(!i)

) + Ch6�2m
⇣X

|↵|1

k@↵uk2
L1(� )

⌘
.

The estimate (4.7) is obtained based on (3.9) in the similar way. ⇤

Theorem 4.2. Suppose that u 2 M2 is the solution of the interface problem (2.2)–(2.4), and u� ,h
SG is the solution of variational

problem (2.6) based on the improved SGFEM finite-dimensional subspace Sh (4.5), then there exists C > 0 independent of h

6
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Fig. 3. The quadrilateral elements and a curved interface. Left: �h is the zero-level set of I� ,h ED. �h is a polygonal line and is a straight line in a
triangle in Ĕ�

h,T . The corners of �h may not be on � , as shown by point ‘‘Z’’. ⌦ is divided into ⌦l,h, l = 0, 1 by �h . Right: another polygonal line to
approximate � , which is derived by connecting cross points of � with boundaries of an element in a straight line, and all corners of this polygonal
line are located on � .

such that

ku � u� ,h
SG kE(⌦)  ChkukM2 . (4.8)

Proof. Using the results (4.6) and (4.7) in the proof of Theorem 4.4 in [34] and repeating the arguments in the proof of
Theorem 4.4 in [34], we have that there is vSG 2 Sh (4.5) and a constant C that is independent of h such that

ku � vSGk  ChkukM2 . (4.9)

(4.8) is obtained according to (4.9) and (2.7). ⇤

Remark 4.1. Theorem 4.2 illustrates that the improved SGFEM (4.5) also yields the optimal order of convergence O(h) for
smooth interface problems. The proof is valid for both triangular and quadrilateral elements, where the mesh is fixed and
unfitted, i.e., independent of the interface. We mention that the analysis in Theorem 4.2 is only based on the approximation
property of Sh (4.5), which does not involve any interface coefficients. Thus, the SGFEM (4.5) addresses both the isotropic
and anisotropic interface problem in a unified approach, and can also be applied to elasticity interface problems directly.

⇤

5. Numerical integration and optimal approximation error

As reviewed in the Introduction part, various integration strategies for the GFEM/XFEM are developed in the literature,
see [4,30,31,42,44–46,46,46–48] for instance. However, there is no mathematical analysis about effect of the numerical
integration on the approximation order of GFEM/XFEM. In this section we design a numerical integration strategy for the
improved SGFEM (4.5) and prove that the optimal approximation order O(h) (in the energy norm) can be achieved based
on such an integration rule.

We first present a piecewise linear approximation �h to � , which is represented by the zero-level set of I� ,hED, i.e.,
�h = {P 2 ⌦ : I� ,hED = 0},

see Fig. 3 Left for example. It is noted that for both the triangular and quadrilateral meshes, there are some triangles e�
s,T in

E�
h,T do not contribute to the part of �h (see Fig. 2 Left two and Left three (the top right-hand triangle) for a quadrilateral

mesh and Fig. 2 five for a triangular element). The set of indices s in E�
h,T with e�

s,T \ �h 6= ; are denoted by Ĕ�
h,T . It is

easy to know that for each s 2 Ĕ�
h,T , the part of �h in e�

s,T is a straight line because I� ,hED is a linear polynomial in e�
s,T , see

Fig. 4. The part (a straight line) of �h in each e�
s,T is denoted by � �

s,T (see Fig. 4), and we see that

�h =
[

s2Ĕ�
h,T

� �
s,T .

According to (4.4), we have that for any P 2 �h,

dist(P, � ) = D(P) = |ED(P) � I� ,hED(P)|  Ch2. (5.1)
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Fig. 4. A triangle e�
s,T , s 2 Ĕ�

h,T , is divided into two polygons e� ,0
s,T and e� ,1

s,T by � �
s,T , where e� ,1

s,T is a triangle, and e� ,0
s,T is a quadrilateral.

Namely, �h approximates � with an order O(h2). We mention that the piecewise approximations �h is different from the
conventional approaches in the literature, where the cross points of � with boundaries of an element are connected in
a straight line to approximate � [4,31,42], see Fig. 3 Right for example. The numerical integration in this paper is based
on �h.

The sub-domain enclosed by �h is denoted by ⌦0,h, and ⌦1,h = ⌦ \ ⌦0,h (see Fig. 3 Left), i.e., ⌦0,h and ⌦1,h have an
interface �h. Denote

Lh = (⌦0,h \ ⌦1) [ (⌦1,h \ ⌦0), (5.2)

which represents the union of mismatching part of ⌦0,h, ⌦0 and mismatching part of ⌦1,h, ⌦1. Using (5.1) produces

|Lh|  Ch2. (5.3)

Every e�
s,T , s 2 Ĕ�

h,T is cut into two parts by �h, and the part in ⌦ l,h, l = 0, 1 is denoted by e� ,l
s,T . It is obvious that

e�
s,T = e� ,0

s,T [ e� ,1
s,T , see Fig. 4.

We note that a(P) is not continuous in each ⌦l,h, l = 0, 1. This will create the integration error. To this end, we define

ah(P) =
⇢

a0, P 2 ⌦0,h,
a1, P 2 ⌦1,h,

. (5.4)

It is clear that ah is a perturbation of a. We next define an approximation to f , fh, as follows:

fh(P) =

8
><

>:

f (Qs), P 2 es, s 2 Eh \ E�
h ,Qs is the center of es,

f (Ts), P 2 e�
s,T , s 2 E�

h,T \ Ĕ�
h,T , Ts is the center of e�

s,T ,

f (Pl
i ), P 2 e� ,l

s,T , l = 0, 1, s 2 Ĕ�
h,T , Pl

i is a node of e�
s,T in e� ,l

s,T ,

(5.5)

see Fig. 5. It is clear that fh is a piecewise constant function. We assume that f 2 C1(⌦l), l = 0, 1. Based on the definition
of fh we can obtain error estimates of fh in what follows:

kf � fhkL1(⌦\Lh)  Ch|f |W1,1(⌦0[⌦1) (5.6)

and

kf � fhkL1(Lh)  2kf kL1(⌦). (5.7)

A perturbed variational formulation of (2.2) is developed as follows:

Find ũ⇤ 2 E(⌦) such that B⇤
h(ũ

⇤, v) = F⇤
h (v), 8v 2 E(⌦), (5.8)

where

B⇤
h(u, v) :=

Z

⌦

ahru · rv dP, F⇤
h (v) :=

Z

⌦

fhv dP .

The bilinear form B⇤
h(·, ·) is a perturbation of B(·, ·), and it is easy to show that for any v, w 2 H1(⌦),

⇣0

⇣1
B⇤
h(v, v)  B(v, v)  ⇣1

⇣0
B⇤
h(v, v) (5.9)

8



W. Gong, H. Li and Q. Zhang Journal of Computational and Applied Mathematics 438 (2024) 115540

Fig. 5. The piecewise constant approximation to f on an element. Left one: a quadrilateral element not cut by � ; left two: a triangular element
not cut by � . Left three and four: triangles in E�

h,T \ Ĕ�
h,T and Ĕ�

h,T , respectively.

and

|B⇤
h(v, w)| 

p
B⇤
h(v, v)

p
B⇤
h(w, w)  ⇣1

⇣0

p
B(v, v)

p
B(w, w) = ⇣1

⇣0
kvkE(⌦)kwkE(⌦). (5.10)

Therefore, B⇤
h(·, ·) is bounded and coercive in E(⌦), and the variational problem (5.8) is uniquely solved.

Lemma 5.1. Let u and ũ⇤ be the solutions of the problems (2.5) and (5.8) respectively. Assume that f 2 C1(⌦l), l = 0, 1.
Then there exists C > 0, independent of h, such that

ku � ũ⇤kE(⌦)  Ch(|u|W1,1(⌦) + kf kW1,1(⌦0[⌦1)). (5.11)

Proof. From (2.5) and (5.8) we have that for all v 2 E(⌦),
Z

⌦

(a � ah)ru · rvdP = B(u, v) � B⇤
h(u, v) = B(u, v) � B⇤

h(ũ
⇤, v) � B⇤

h(u � ũ⇤, v)

= F (v) � F⇤
h (v) � B⇤

h(u � ũ⇤, v).

Substituting v = u � ũ⇤ in the equality above, and using Schwarz inequality and Poincarè inequality, we get
⇣0

⇣1
ku � ũ⇤k2

E(⌦)  B⇤
h(u � ũ⇤, u � ũ⇤)

=
Z

⌦

(ah � a)ru · r(u � ũ⇤)dP +
Z

⌦

(f � fh)(u � ũ⇤)dP

 k(ah � a)rukL2(⌦)|u � ũ⇤|H1(⌦) + Ckf � fhkL2(⌦)|u � ũ⇤|H1(⌦)

 1
⇣0

k(ah � a)rukL2(⌦)ku � ũ⇤kE(⌦) + C
1
⇣0

kf � fhkL2(⌦)ku � ũ⇤kE(⌦),

where C is a coefficient in the Poincaré inequality, which is independent of h. Therefore,

ku � ũ⇤kE(⌦)  ⇣1

⇣ 2
0

�
k(ah � a)rukL2(⌦) + Ckf � fhkL2(⌦)

�
.

Finally we get (5.11) using the inequality above, (5.3), (5.6), (5.7), and following estimates:

k(ah � a)ruk2
L2(⌦) =

Z

Lh
(a � ah)2|ru|2dP  C |Lh|(a1 � a2)2|u|W1,1(⌦)  Ch2(a1 � a0)2|u|2W1,1(⌦)

and

kf � fhk2
L2(⌦) =

Z

⌦\Lh
(f � fh)2dP +

Z

Lh
(f � fh)2dP  Ch2|f |2W1,1(⌦0[⌦1)

|⌦ \ Lh| + 2kf k2
L1(⌦)|Lh|

 Ch2|f |2W1,1(⌦0[⌦1)
+ 2kf k2

L1(⌦)Ch
2  Ch2kf k2

W1,1(⌦0[⌦1)
. ⇤

Solving the perturbed variational problem (5.8) based on the improved SGFEM subspace (4.5) gives the following
discretized variational problem:

Find u⇤
SG 2 E(⌦) such that B⇤

h(u
⇤
SG, vh) = F⇤

h (vh), 8 vh 2 Sh (4.5). (5.12)

9
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Theorem 5.2. Let u be the solutions of problem (2.5), and u⇤
SG be the solution of (5.12) based on the improved SGFEM (4.5).

Assume that f 2 C1(⌦l), l = 0, 1. Then there exists C > 0, independent of h, such that

ku � u⇤
SGkE(⌦)  Ch(|u|W1,1(⌦) + kf kW1,1(⌦0[⌦1)) + ChkukM2 . (5.13)

Proof. According to (5.8) and (5.12) we have that for any vh 2 Sh (4.5),

B⇤
h(ũ

⇤ � u⇤
SG, vh) = 0.

Employing (5.9) and (5.10) we have

kũ⇤ � u⇤
SGk2

E(⌦)  ⇣1

⇣0
B⇤
h(ũ

⇤ � u⇤
SG, ũ

⇤ � u⇤
SG)

= ⇣1

⇣0
B⇤
h(ũ

⇤ � u⇤
SG, ũ

⇤ � vh)  (
⇣1

⇣0
)2B(ũ⇤ � u⇤

SG, ũ
⇤ � vh)

 (
⇣1

⇣0
)2kũ⇤ � u⇤

SGkE(⌦)kũ⇤ � vhkE(⌦)

Therefore,

kũ⇤ � u⇤
SGkE(⌦)  (

⇣1

⇣0
)2kũ⇤ � vhkE(⌦)  (

⇣1

⇣0
)2

�
ku � ũ⇤kE(⌦) + ku � vhkE(⌦)

�
, 8 vh 2 Sh. (5.14)

Then, taking vh = u� ,h
SG (in (4.8)) in (5.14) and using (5.14), (4.8), and (5.11), we have

ku � u⇤
SGkE(⌦)  ku � ũ⇤kE(⌦) + kũ⇤ � u⇤

SGkE(⌦)


�
1 + (

⇣1

⇣0
)2

�
ku � ũ⇤kE(⌦) + (

⇣1

⇣0
)2ku � u� ,h

SG kE(⌦)

 Ch(|u|W1,1(⌦) + kf kW1,1(⌦0[⌦1)) + ChkukM2 ,

which is the desired result (5.13). ⇤

Now we can describe the numerical integration rule based on the perturbed variational problem (5.12) and the
improved SGFEM (4.5). Let ⇠i, i 2 Ih [ I�h,enr be the basis of improve SGFEM subspace Sh (4.5), and then the entries of
associated stiffness matrix and RHS are written as B⇤

h(⇠j, ⇠i) and F⇤
h (⇠i), i, j 2 Ih [ I�h,enr . The idea of numerical integration

is to set the integration rules to exactly integrate these integration terms.

• For the triangular mesh, the integrands in B⇤
h(⇠j, ⇠i) are constants on the elements es, s 2 Eh\E�

h and e�
s,T , s 2 E�

h,T \Ĕ�
h,T ,

see Fig. 5 Left two and Left three. In these elements, the integrands in F⇤
h (⇠i) are linear polynomials. Hence, we use

the one-point Gauss rule (for the triangle) on these elements, which can exactly integrate these integrands. On
e� ,l
s,T , s 2 Ĕ�

h,T , l = 0, 1, the integrands in B⇤
h(⇠j, ⇠i) and F⇤

h (⇠i) are the polynomials of degree two, and if e� ,l
s,T is a

triangle, the three-point Gauss rule is used; if e� ,l
s,T is a quadrilateral, and e� ,l

s,T is divided into two triangles, on each of
which the three-point Gauss rule is used, see Fig. 5 Left four. Therefore, the integrations are exact on e� ,l

s,T according
to such an integration rule for both B⇤

h(⇠j, ⇠i) and F⇤
h (⇠i).

• For the quadrilateral mesh, the integrands in B⇤
h(⇠j, ⇠i) are bi-quadratic polynomials on the elements es, s 2 Eh \ E�

h
(Fig. 5 Left one). In these elements (quadrilateral), the integrands in F⇤

h (⇠i) are bi-linear polynomials. Hence, the
two⇥two-Gauss rule and one-point Gauss rule on these elements are employed to exactly integrate the integrands
associated with B⇤

h and F⇤
h , respectively. On the triangles e�

s,T , s 2 E�
h,T \ Ĕ�

h,T and e� ,l
s,T , s 2 Ĕ�

h,T , l = 0, 1, the integrands
B⇤
h(⇠j, ⇠i) and F⇤

h (⇠i) are the bi-fourth and bi-quadratic polynomials, respectively, see Fig. 5 Left three and Left four.
Therefore, it is easy to set the Gauss rule on e�

s,T and e� ,l
s,T (e� ,l

s,T is divided into two triangles if it is a quadrilateral) to
have the exact integrations in B⇤

h(⇠j, ⇠i) and F⇤
h (⇠i) on these elements.

According to the integration rule above, the integrations for B⇤
h and F⇤

h in (5.12) are exact, and thus the energy errors of
SGFEM (5.12) under the proposed numerical integration rules are proven to be optimal (O(h)) in Theorem 5.2.

6. Numerical results

We consider the model problem (2.2) in a domain ⌦ = (0, 1)2, which is discretized by the uniform n ⇥ n square FE
mesh with the mesh parameter h = 1/n. The FE shape functions we use are the bilinear functions associated with the
square mesh. The model problem (2.2) with curved interfaces � are tested. We test two cases of coefficients: (i) a0 = 10
and a1 = 1, and (ii) a0 = 1 and a1 = 100. The manufactured exact solution u of (2.2) satisfying interface conditions (2.3)

10



W. Gong, H. Li and Q. Zhang Journal of Computational and Applied Mathematics 438 (2024) 115540

Fig. 6. A circular interface, and the mesh does not fit to the interface.

and (2.4) will be employed in the tests. The loading function f of (2.2) is calculated by using Eq. (2.2) and the manufactured
solution u.

We will test the following methods for the numerical experiments below.

• FEM: standard bilinear FEM (3.2) based on the square mesh, where the mesh lines do not align with the interface
curve,

• GFEM: GFEM (3.4) with enrichment D and enriched node set I�h,enr ,
• SGFEM: SGFEM (3.6) with the distance function D and enriched node set I�h,enr ,
• SGFEMimp: the improved SGFEM (4.5) with the enrichment |I� ,hED| and enriched node set I�h,enr .

We compute and compare the relative error in the energy norm (EE), i.e.,

EE = ku � uhkE(⌦)

kukE(⌦)

for the approximation solution uh obtained from these methods, and the scaled condition number (SCN) of associated
stiffness matrices A. The SCN of A is defined by

K := (DAD), (6.1)

where (·) is a condition number of a symmetric matrix, and D be a diagonal matrix with

Dii = A�1/2
ii .

We now present our numerical results in the following sub-sections.

6.1. An interface problem with a circular interface

We first consider an interface problem with a circular interface � ; the equation of � is (x � x0)2 + (y � y0)2 = r20 ,
where x0 = 1p

5
, y0 = 1p

3
, r0 = 1p

10
. In this case, we consider the manufactured solution of (2.2) as follows:

u =

8
<

:

2a1
(a1�a0)r40

r2 cos(2✓ ), r < r0 (⌦0),
a1+a0

(a1�a0)r40
r2 cos(2✓ ) + r�2 cos(2✓ ), r � r0 (⌦1),

where (r, ✓ ) is the polar coordinate at the center (x0, y0). It can be verified that u satisfies the interface condition (2.3) and
(2.4), and is smooth on ⌦r , r = 0, 1. The mesh on the domain [0, 1]⇥[0, 1] is refined with h�1 = n = 2j+1, j = 3, 4, . . . , 8;
see Fig. 6 for a display with n = 16. The EEs and SCNs with respect to h of the various methods mentioned above are
presented in Fig. 7 for the different interface coefficients (10:1 and 1:100).

Fig. 7 clearly shows that the convergence order of the FEM, GFEM, SGFEM, and the improved SGFEM are O(h0.5), O(h0.5),
O(h), and O(h), respectively, and their SCNs all increase with the order O(h�2), which is the typical order of the SCN of
FEM.

11
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Fig. 7. The EEs and SCNs with respect to h of FEM, GFEM, SGFEM, the improved SGFEM for a circular interface problem with different interface
coefficients. Left: EE. Right: SCN.

Fig. 8. Two ellipsoid interfaces, and the mesh does not fit to the interface.

6.2. Ellipsoid interfaces with different ratios of major and minor axes

We next test another curved interface problem containing ellipsoid interfaces � with different ratios of major and
minor axes as follows:

(x � x0)2

↵2 + (y � y0)2

�2 = 1,

where x0 = 1p
5
, y0 = 1p

3
. In this case the curvature of � is not a constant. We test the cases (a) ↵2 = 1

8 , �
2 = 1

80 and
(b) ↵2 = 1

8 , �
2 = 1

800 to verify applicability of the improved SGFEM for varying curvatures, see Fig. 8. The manufactured
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Fig. 9. The energy errors (Left) and the scaled condition numbers (Right) with respect to h of the improved SGFEM for ellipsoid interfaces with
different ratios of major and minor axes and the interface coefficients.

solution of (2.2) we consider is the following:

u =

8
<

:
a1( (x�x0)2

↵2 + (y�y0)2

�2 � 1)e2x+y, (x�x0)2

↵2 + (y�y0)2

�2 < 1 (⌦0),

a0( (x�x0)2

↵2 + (y�y0)2

�2 � 1)e2x+y, (x�x0)2

↵2 + (y�y0)2

�2 � 1 (⌦1),

It is easy to check that u satisfies the interface condition (2.3), and is smooth on ⌦r , r = 0, 1. The mesh on the domain
[0, 1] ⇥ [0, 1] is refined with h�1 = n = 2j+1, j = 3, 4, . . . , 8, see Fig. 8 for a display with n = 16. The EEs and SCNs with
respect to h of the improved SGFEM are presented in Fig. 9 for the different ratios of major and minor axes ((a) and (b))
and different coefficients (10:1 and 1:100).

It is clearly shown in Fig. 9 that in all the tested cases, the improved SGFEM converges with the optimal order O(h), and
its SCNs increase with the order O(h�2), which is the same as that of FEM. The numerical experiments in this subsection
demonstrate that the proposed SGFEM (4.5) also applies to the curved interface problems with varying curvatures.

7. Conclusions and comments

The SGFEM is a stable version of GFEM/XFEM, which (i) uses simple and unfitted meshes, (ii) reaches the optimal
convergence order, and (iii) is stable and robust in the sense that conditioning is of the same order as that of FEM and
does not get bad as interfaces approach boundaries of elements. This paper proposed an improved enrichment and a novel
numerical integration rule for the SGFEM of interface problem. First, the complexity in evaluating the distance function
and its gradients is reduced greatly. Especially, the values of gradients of the distance function are not needed. Second,
it was proven that the SGFEM with the improved enrichment and the proposed integration rule can achieve the optimal
convergence order for the interface problem. An extension of achievements in this paper to the situation of high order
SGFEM is an interesting direction.

Data availability

Data will be made available on request.
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