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Abstract—With UAVs on the rise, accurate detection and
identification are crucial. Traditional unmanned aerial vehicle
(UAV) identification systems involve opaque decision-making,
restricting their usability. This research introduces an RF-based
Deep Learning (DL) framework for drone recognition and iden-
tification. We use cutting-edge eXplainable Artificial Intelligence
(XAI) tools, SHapley Additive Explanations (SHAP), and Local
Interpretable Model-agnostic Explanations(LIME). Our deep
learning model uses these methods for accurate, transparent, and
interpretable airspace security. With 84.59% accuracy, our deep-
learning algorithms detect drone signals from RF noise. Most
crucially, SHAP and LIME improve UAV detection. Detailed
explanations show the model’s identification decision-making
process. This transparency and interpretability set our system
apart. The accurate, transparent, and user-trustworthy model
improves airspace security.

Index Terms—Drone Detection, RF Signals, Deep Learning,
SHAP, LIME, Explainable Al, Airspace Security

I. INTRODUCTION

Several studies have been conducted on small UAV detec-
tion and classification systems, each with pros and cons. In
their work on UAV classification, Kim et al. demonstrated the
usage of a Convolutional Neural Network (CNN) with Doppler
images [1], and Choi and Oh are carrying this research forward
in 2019 by taking micro-Doppler signatures and spectrogram
images into account [2]. Using a deep belief network, the
spectral correlation functions of three drones were classified
in [3]. Despite their strong detection and categorization skills,
these models sometimes lack transparency in their decision-
making methods, raising accountability concerns.

This paper introduces deep learning with interpretability for
drone identification. We use eXplainable Artificial Intelligence
(XAI) and deep learning to create a precision and transparent
aircraft security system. This study highlights our method-
ology’s unique contributions and places it in the context of
airspace security advances.

II. SYSTEM ARCHITECTURE
A. Interpretrable Al-Driven Framework Description

Figure 1 shows the Al-driven UAV categorization system ar-
chitecture. It uses explainable ML methods like PCA, drones,

LIME [4], and SHAP [5] to boost DL model credibility. Start
by transforming RF data from time to frequency domain using
DFT. The frequency components and power spectra are the
inputs for DNN training. PCA decreases dimensionality and
redundancy to simplify datasets. The revised dataset trains the
DNN model to classify drones into four groups.

Data Pre-processing Model Training Interpretation

Pre-processed data e
- trained on a Deep = Trustworthy
Neural Network Prediction __—
PCA | |
- \m Test Data "‘m‘
8 '3

= ¥
(=] Frequency XAl Output

(= domain data o
) XAl (SHAPLIME)
DFT
) ¥
f< Z
- N : :
i = Prediction
Time domain data 4> -
from 3 drones i

Fig. 1. Illustration of the proposed Interpretable Al Framework for Advanced
Classification of UAVs.

We use SHAP, and LIME XAI approaches for transparency,
clear decision-making, and user trust in model classifications.

B. Analysis of the Data set

We used the ubiquitous DroneRF dataset [6], which contains
RF signals from three drones. CSV segmentation and storage
of the DroneRF dataset eliminates memory overflow and main-
tains program compatibility. The hardest part was converting
time-domain data to frequency-domain data for analysis. This
conversion used DFT. Our deep learning model used power
spectra frequency components.

C. Model Architecture

A multi-class classifier designed with DNNs detects and
identifies intrusive drones. The proposed model can detect
drones and differentiate among the RF spectra of distinct
drones. A DNN comprises an input layer, different hidden
layers, and an output layer.
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In this study, a DNN is trained and evaluated using the
developed RF database to detect the presence of a drone and
determine its class.

III. EXPERIMENTAL ANALYSIS

Figure 2 displays the confusion matrix for the DNN’s drone
classification performance in the test dataset. The matrix dis-
plays the model’s accurate drone class prediction. The model
accurately predicted No Drone cases 4085, Bebop Drones
8241, AR Drones 6000, and Phantom Drones 877 times.
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Fig. 2. Confusion Matrix for Drone Classification

SHAP local explanations explain a single instance’s feature
values that affect positive and negative decisions. Figure 3
shows a local explanation with a 0.66 probability of No Drone
output, along with features and their values: Feature 7, 435,
414, 613, 47, 576, and 0.
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Fig. 3. SHAP force plot used for local explanations

Features that push the prognosis higher are displayed in
red, while those that push the prediction lower are displayed
in blue. Note that this explanation varies depending on the
input instance.

A. Interpreting Predictions with LIME

LIME produces regional explanations. Figure 4 shows how
to classify results as No Drone, Bebop, AR’, or Phantom,

along with probability and original instance values. We pre-
sented two examples. The classifier only shows Bebop and
NOT Bebop because it is most important. Colors signify
character classes. Blue attributes are Not Bebop, while orange
attributes are Bebop.
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Fig. 4. Explaining individual prediction of deep learning classifier using
LIME.

We can see distinct characteristics justify different classifi-
cations. In instance 2624, Features 2 and 3 contribute to the
prediction that there is no drone, whereas in instance 19701,
features 1 and 37 contribute to the prediction that there is an
AR Drone.

CONCLUSION

By combining Deep Learning (DL) and Radio Frequency
(RF) technologies, this study improves UAV identification
and airspace security. Unlike conventional methodologies, our
model’s revolutionary usage of SHapley Additive Explanations
(SHAP) and Local Interpretable Model-agnostic Explanations
(LIME) fulfills the need for transparency in Al decision-
making. The model excels in performance and provides clear
and reliable explanations for its conclusions, recognizing drone
signals with 84.59% accuracy. This makes airborne security
systems more reliable and sets a precedent for Al-driven
security technology.
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