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Abstract
In this work, we present a finite deformation, fully coupled thermomechanical crystal plasticity framework. The model
includes temperature dependence in the kinematic formulation, constitutive law and governing equilibrium equations. For
demonstration, we employ the model to study the evolution and formation of residual stresses, residual statistically stored dis-
location density and residual lattice rotation due solely to solid state thermal cycling. The calculations reveal the development
of microplasticity within the microstructure provided that the temperature change in the thermal cycle is sufficiently large.
They also show, for the first time, that the thermal cycling generates an internally evolving strain rate, where the contributions
of mechanical strain and plasticity depend on temperature change. The calculations suggest a strong connection between the
maximum temperature of a given cycle and the magnitude of the residual stresses generated after the cycle. A pronounced
influence of elastic anisotropy on the heterogeneity of the residual stress distribution is also demonstrated here. Finally, we
calculate lattice rotation obtained from thermal cycling ranging from ±0.4◦ and show the relation between changes in pre-
dominant slip systems with short range intragranular lattice rotation gradients. The model can benefit metal process design,
especially where large strains and/or large temperature changes are involved, such as bulk forming and additivemanufacturing.

Keywords Crystal plasticity · Thermomechanical modeling · Residual stress · Residual dislocation density · Residual lattice
rotation

1 Introduction

Multiphysics modeling has become a key component of inte-
grated computational materials engineering (ICME) [41, 90]
and increasingly important to obtain in-depth understand-
ing of a variety of relevant mechanisms and processes [20,
64]. Coupled thermomechanical models that account for the
strong interplay between mechanical and thermal solution
variables are a particular type of multiphysics framework.
Their applications to mesoscale computational modeling are
wide due to the pronounced impact of thermomechanical his-
tory on the constitutive response of polycrystalline materials
[71]. In this context, Crystal plasticity (CP)-based modeling
has matured into an established approach for describing the
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anisotropic deformation behavior of single crystalline and
polycrystalline materials [73].

In recent times, understanding the thermomechanical
behavior of materials has become crucial for elucidating the
influence of various fabrication and processing techniques
on mechanical properties. This interest spans across meth-
ods such as additive manufacturing (AM) [10, 29, 30] and
bulk metal forming [26, 37, 82]. Residual stresses, whether
arising from solid state thermal cycle (SSTC)—that is, heat-
ing and cooling steps with significant thermal variation due
to the deposition of multiple layers of material—or from
thermal gradients during cooling in hot bulk forming pro-
cesses, play a pivotal role in determining the functionality
and mechanical performance of the resulting parts [48]. In
this context, thermomechanical CP models stand out as a
compelling avenue for the quantification and assessment of
these thermally induced residual stresses.

Thermomechanical coupling in CP-based models can be
achieved in different ways. Owing to the considerable geo-
metric implications of thermal expansion, the kinematic
description is central to the coupling strategy [40]. Early
works, such as those by McHugh et al. [58] and Srikanth and
Zabaras [77] laid the foundation by incorporating thermal
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expansion into the deformation gradient to assess residual
strains and thermal deformations, respectively. Meissonnier
et al. [62] extended this approach utilizing an anisother-
mal deformation gradient to estimate stresses due to thermal
expansion mismatch between different phases. Clayton [14]
leveraged the kinematic thermal expansion in a compre-
hensive modeling framework to capture thermal expansion,
softening and heat conduction in polycrystals under dynamic
strain rates. Diani et al. [19] adopted an analogous kine-
matic formulation to obtain the stress-temperature response
of shapememory polymers under constrained thermal expan-
sion. Meier et al. [61] used the kinematic thermal expansion
framework to assess thermally induced stresses due to
temperature changes caused by current flow in aluminum
conductors. Ozturk et al. [68] employed kinematic expan-
sion to estimate the stresses due to anisothermal expansion
of Ti alloys. Li et al. [49] adopted a fully-coupled framework
to determine the response of bcc Ta at different strain rates
and initial temperatures. Pokharel et al. [70] exploited a sim-
ilar kinematic model to evaluate the residual stresses due to
thermal processing in dual-phase microstructures of AMed
304L stainless steel.

Thermomechanical coupling can also be introduced in
order to model specific mechanisms. Luscher et al. [55]
presented a thermomechanical framework featuring finite
deformation kinematic decomposition and incorporating the
temperature changes due to isentropic thermoelastic cou-
pling, shock load heating and inelastic heating. Lieou et
al. [51] outlined a thermodynamical treatment through state
variable inclusion of grain boundary density to model ther-
mal behavior with adiabatic shear banding and dynamic
recrystallization in 316L stainless steel. Connolly et al. [16]
employed a thermomechanical framework, featuring kine-
matic expansion, to capture the effects of texture, phase mor-
phology and temperature on the thermomechanical response
of QP1180 steel. Bennett et al. [6] presented a thermoelasto-
plastic self-consistent formulation, with additive small strain
decomposition to study thermal ratcheting of composites.
Lieou andBronkhorst [50] derived a relationship between the
Taylor–Quinney coefficient, describing the fraction of plas-
tic work converted into heat, and the effective temperature,
demonstrating its validity through finite-element analysis on
aluminum alloy 6016-T4.

While the kinematic expansion is central to the thermome-
chanical framework and mechanism targeted formulations
are particularly useful, fully-coupled models still need to
account for thermal dependence in the single crystal con-
stitutive model. Due to the thermally-activated glide, the
description of the evolution of dislocation structures is one
of the ways in which the temperature sensitivity can be intro-
duced into the constitutive response. In this context, Essmann
andMughrabi [23] described the mechanisms for dislocation
annihilation and pointed out the importance of temperature

for the annihilation of screw dislocations by cross-slip. Later,
Mecking and Kocks [60] modeled the evolution of the flow
stress as a function of the current dislocation density as
well as the rate of change of the dislocation density. The
latterwas described by a dislocation storage component, geo-
metric in nature, and a dislocation annihilation component,
strongly dependent on thermal activation. Such framework
established the foundation for the next generation of consti-
tutive models. Arsenlis and Parks [3] modeled the evolution
of dislocation density through internal functions describing
the average thermally activated dislocation mobility, aver-
age segment length and annihilation distance. Ma and Roters
[56] presented a formulation suitable for fcc Al at elevated
temperatures, distinguishing between dislocation cell blocks
and dense dislocation cell walls. Beyerlein and Tomé[8]
developed a constitutive formulation for hcp Zr includ-
ing specific hardening laws for different slip and twinning
modes, each with their respective temperature dependence.
Thefirst through thermally-activated recovery and the second
through the slip-twin interaction. Shanthraj and Zikry [75]
formulated a set of evolution equations explicitly account-
ing for the glissile and sessile dislocation populations and
described the annihilation rate through an Arrhenius-type
equation. More recently, Upadhyay [83] developed a small-
strain framework suitable for studying dislocation structure
evolution in heat-affected zones. Hunter and Preston [45]
developed dislocation density evolution equations includ-
ing explicit equations for both sessile and glissile densities
accounting for a variety of formation and annihilation mech-
anisms under a wide range of temperatures. Hu et al. [44]
integrated continuum dislocation dynamics and CP to simu-
late the formation and stability of dislocation structures under
thermal conditions seen inAM. Lima-Chaves and Upadhyay
[52] implemented a small-strain FE scheme to directly assess
the influence of dislocation glide on temperature evolution.

Temperature effects on dislocation glide are sensitive to
intragranular microstructure, particularly in cases where the
grains contain a network of fine precipitates, such as in
Ni-based superalloys. Several sophisticated single crystal
hardening laws have been implemented into the constitutive
response to account for dislocation interactions with the γ ′
and γ ′′ precipitates. As an example, Ghorbanpour et al. [33]
built a model for the Ni-based superalloy IN718 considering
solid solution effects, precipitate shearing, grain size, grain
shape, non-Schmid effects, backstress and dislocation den-
sity evolution under different loadingorientations and reverse
loading.Ghorbanpour et al. [31] later used thismodel to study
the response of this same material as a function of tempera-
ture. Agaram et al. [1] developed a CP model to incorporate
through a probabilistic representation, the effects of precip-
itates on IN718 under monotonic and cyclic loading. Chan
[11] incorporated of dislocation pileups and its breakdown
into cross slip into a phenomenological Ramberg-Osgood
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model to capture the response of Ni-based superalloys under
monotonic and cyclic loading.

In addition to thermal dependence in the kinematic
description and constitutive model, the coupling between the
mechanical and thermal field equations is a key component
of the thermomechanical framework. This coupling is pivotal
across a spectrum of processes, where thermal gradients—
whether from layer-by-layer deposition, welding, or bulk
metal forming—play a significant role in influencing the
material’s mechanical behavior. Denlinger et al. [18] used
a coupled framework to predict distortion in large-scale
Ti-6Al-4V AMed parts through thermoelastoplastic anal-
ysis and adaptive coarsening. Ren et al. [72] presented a
thermomechanical model to assess the effects of dynamic
temperature evolution and laser deposition strategies on
residual stress and distortion in SS316L. Singh et al. [76]
studied the effect of layer thickness on residual stress evo-
lution in laser power bed fusion (LPBF) of of IN718 with
FE thermomechanical simulations obtaining high residual
stresses due to thermal gradient. Weisz-Patrault et al. [87]
combined in-situ monitoring and decoupled thermomechan-
ical modeling to analyze manufacturing strains and residual
stresses in AMed thin-walled structures.

While the studies described present various methods for
achieving thermomechanical coupling, most focus on one
or two of the three key areas—kinematic description, con-
stitutive modeling, or governing equations—without fully
integrating the thermal aspects across all three. This approach
results in a partial coupling that may not fully encapsulate
the intricacies of thermomechanical behavior.

In this work, we present a large strain, fully coupled
thermomechanical CP framework. Thermal dependence is
incorporated in the kinematics, constitutive model, and
governing equations for adequate assessment of the ther-
momechanical response. As a model material, we elect to
apply the computational framework to Inconel 718 (IN718),
a nickel-based superalloy. Towards this goal, the IN718

constitutive response includes deformation via anisotropic
elasticity and crystallographic slip for an fcc crystal [12, 38,
39]. Our immediate interest here lies in understanding the
results on themicromechanical fields as a function of thermal
cycling only.Many of the important microscopic microstruc-
ture features and their effect on individual dislocations that
are not taken into account into the present hardening law can
be incorporated in a straightforward manner.

For demonstration, the framework is employed to study
the evolution and formation of residual stresses, statistically
stored dislocation (SSD) density, and lattice rotation origi-
nating from thermal cycling, starting from room temperature,
rising to a peak value, and returning to room tempera-
ture. This approach allows us to analyze the macroscopic
average response and subgrain spatial fields, including local-
ized residual stresses, heterogeneity of residual SSD density,

and intragranular lattice rotation gradients. The calculations
reveal a strong connection between thermal amplitude, char-
acterized by themaximum temperature achieved above room
temperature, and the magnitude of residual stresses. They
also highlight microplasticity, evidenced by residual stresses
and a positive dislocation storage rate, even for macroscopic
thermoelastic cycling. Moreover, the microstructure experi-
ences an evolving strain rate during thermal cycling, which
alone can induce the evolution of SSD density, particu-
larly at grain boundaries and triple junctions. Finally, we
calculate the intragranular lattice rotations obtained from
thermal cycles at different thermal amplitudes and associate
intragranular lattice rotation gradients with local changes in
predominant slip systems.

This paper is structured as follows. First, the kinematics
accounting for elastic, plastic, and thermal elastic expansion
is presented in Sect. 2. We then describe the single crystal
constitutive model in Sect. 3, after which the discretization
and numerical integration of the CP framework is delineated
in Sect. 4. The governing equations for the thermomechanical
BVP are summarized inSect. 5. Themethodology closeswith
Sect. 6 describing the computational setup, boundary condi-
tions and material parameters. Next, the results are presented
in Sect. 7, where the residual stresses, strain rate evolution,
stored dislocation density and lattice rotation during and after
thermal cycling are evaluated. We then discuss the impact of
the results in light of previous studies in Sect. 8. The paper
concludeswith Sect. 9, a summary of themainmodeling con-
tribution and findings.

2 Kinematics

We initially consider a one-to-one mapping ϕ of the body
B from reference to current configuration, defined over every
material point X by:

ϕ(X) : B0 → Bt. (1)

The corresponding deformation gradient is written as:

F = ∂ϕ

∂X
. (2)

The conventional multiplicative decomposition of F into
elastic andplastic components is extended to include anisother-
mal effects and takes the form [62, 77]:

F = FeFpFθ . (3)

The decomposition presented in Eq. (3) computes the
inelastic response after the application of thermal expan-
sion/contraction to the lattice. This effectively allows us to

123



Computational Mechanics

include thermal expansion effects on plastic deformation. It
contrasts with the formulation presented by McHugh et al.
[58] where F= FeFθ Fp, i.e., the plastic response is calcu-
lated before considering lattice expansion/contraction. The
thermal deformation gradient is defined as:

Fθ = exp {(θ − θ0)β} , (4)

where β denotes the diagonal thermal expansion tensor com-
prised of the coefficients of thermal expansion of the lattice
and θ0 the reference temperature, here taken as room tem-
perature. The evolution of the thermal deformation gradient
can be obtained from Eq. (4) and is given by:

Ḟθ = θ̇βFθ . (5)

Upon application of thermal loading, the plastic response
can be assessed, and the evolution of the plastic deformation
gradient is obtained by:

Ḟp = LpFp, Lp =
∑

α

γ̇ αSα
0 , (6)

where Lp is the plastic velocity gradient and γ̇ α the slip rate
on the slip system α. The Schmid tensor in Eq. (6) is defined
in the reference configuration by Sα

0 = mα
0 ⊗ nα

0 , where m
α
0

denotes the slip direction and nα
0 the slip plane normal.

3 Constitutive law

The single crystal constitutive response in the interme-
diate configuration is assessed by means of the Green-

Lagrange strain tensor and its stress work-conjugate, the
second Piola- Kirchhoff stress tensor, which are respec-
tively given by:

Ee = 1

2

(
FeTFe − I

)
, (7a)

S = C : Ee, (7b)

whereC is the temperature dependent elastic stiffness tensor,
which in crystal coordinates is defined as:

C
c
i jkl(θ) = Ci jkl + Mi jklθ, (8)

with Ci jkl denoting the elastic stiffness tensor at room tem-
perature and Mi jkl the rate of change of the elastic moduli
with respect to θ . The mapping of Cc

i jkl(θ) from crystal to

global basis is done by means of the rotation matrix R̃, pre-
cisely:

Ci jkl = R̃im R̃ jn R̃kp R̃lqC
c
mnpq . (9)

The Cauchy stress tensor is obtained by pushing-forward
the second Piola- Kirchhoff stress into the current config-
uration:

σ = 1

det Fe

(
FeSFeT

)
. (10)

The resolved shear stress (RSS) on a particular slip system
α is approximated by:

τα = det Fθ
(
FθTSFθ−T

)
: Sα

0 . (11)

The plastic slip rate on each slip system is then computed by
a rate-dependent power law [69]:

γ̇ α = γ̇0

∣∣∣∣
τα

gα

∣∣∣∣
n

sgn
(
τα

)
, (12)

where γ̇0 is the reference slip rate, n the power law exponent
and gα the slip resistance on slip systemα. The slip resistance
follows a Taylor-type formulation presented by Franciosi et
al. [27] and is given by:

gα = g0 + κbμ
√∑

β

aαβρβ, (13)

with g0 as the constant initial slip resistance, κ the dislocation
interaction coefficient, b themagnitude of theBurgers vector,
ρ the dislocation density on a particular system and aαβ the
dislocation interaction matrix accounting for both self and
latent hardening. The temperature dependent effective shear
modulus, μ, is obtained from the elastic parameters as [47]:

μ(θ) =
√
C44(θ)

C11(θ) − C12(θ)

2
. (14)

Thedislocationdensity evolution follows theKocks-Mecking
formulation [60] and is given by:

ρ̇α = 1

b

⎛

⎝ 1

K

√∑

β

aαβρβ − 2yα
c ρα

⎞

⎠ |γ̇ α|. (15)

The first term in Eq. (15) describes the rate of dislocation
generation/storage with K denoting the mean free path coef-
ficient. The second term describes the rate of dislocation
removal with yα

c representing the critical annihilation dis-
tance, which has its evolution modeled by:

yα
c = y0

( |γ̇ α|
γ̇0

)(kBθ/A)

, (16)

where y0 is the reference annihilation distance, kB the Boltz-
mann constant and A the recovery activation energy. From
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Eqs. (13) and (15), the evolution of the slip resistance is
obtained as:

ġα = ∂gα

∂ρ

∂ρ

∂t
=

∑

β

hαβ |γ̇ β |, (17)

with hαβ related directly to dislocation interaction factors
and dislocation density via:

hαβ = κμ

⎛

⎝
1
K

√∑
ζ a

βζ ρζ − 2yβ
c ρβ

2
√∑

ζ a
βζ ρζ

⎞

⎠ aαβ. (18)

The last component of the single crystal constitutive model
accounts for the inelastic heat generation and is given by:

Q̇ = η

n∑

α=1

ταγ̇ α, (19)

where η represents the Taylor–Quinney coefficient [79] esti-
mating the fraction of plastic work converted into heat.

4 Discretization and numerical integration

The discretization of the single crystal constitutive model
outlined in Sect. 3 follows the procedure for implicit integra-
tion within a finite element (FE) framework [4, 17, 46]. It is
further extended to include the thermal expansion kinematics
outlined inSect. 2 [62]. The notation tn = t and tn+1 = t+�t
is used to represent the beginning and the end of an arbitrary
time interval [tn, tn+1]. All quantities are evaluated at tn+1,
unless explicitly specified.

We initially obtain the incremental form of the thermal
deformation gradient evolution and its inverse by integrating
Eq. (5) over [tn, tn+1] and using first order approximations
for exp (±�θβ), precisely:

Fθ = exp (�θβ) Fθ (tn) ≈ (I + �θβ) Fθ (tn), (20a)

Fθ−1 = Fθ−1
(tn) exp (−�θβ) ≈ Fθ−1

(tn) (I − �θβ) ,

(20b)

where �θ = θ̇�t denotes the temperature increment. Simi-
larly, the incremental formof the plastic deformation gradient
and its inverse are obtained from Eq. (6) as:

Fp ≈
(
I −

∑

α

�γ αSα
0

)−1

Fp(tn), (21a)

Fp−1 ≈ Fp−1
(tn)

(
I −

∑

α

�γ αSα
0

)
, (21b)

with �γ α = γ̇ α�t denoting the slip increment. The elas-
tic deformation gradient can be expressed in terms of F ,

Fθ−1
(tn) and Fp−1(tn) as:

Fe = FFθ−1
Fp−1 = FFθ−1

(tn) (I − �θβ)

Fp−1
(tn)

(
I −

∑

α

�γ αSα
0

)
. (22)

The Green- Lagrange strain tensor is then given by:

Ee = 1

2

[
A − I −

∑

α

�γ α
(
Sα
0
TA + ASα

0

)]
, (23)

where A is written as:

A = Fp−T
(tn) (I − �θβ)

Fθ−T
(tn)FTFFθ−1

(tn) (I − �θβ) Fp−1
(tn), (24)

and we finally obtain the second Piola- Kirchhoff stress
from Eq. (7b), precisely:

S = C : Ee ≈ 1

2
C : (A − I)

−
∑

α

�γ α 1

2
C :

(
Sα
0
TA + ASα

0

)
, (25)

= Str −
∑

α

�γ αCα, (26)

where Str and Cα are respectively defined as:

Str = 1

2
C : (A − I) , (27a)

Cα = 1

2
C :

(
Sα
0
TA + ASα

0

)
. (27b)

The implicit integration of Eq. (26) coupled with the evo-
lution of the slip resistance follows the two-level iterative
procedure outlined by Kalidindi et al. [46] and Anand [2].

5 Governing equations

The fully-coupled thermomechanical framework assumes a
strong interplay between the mechanical and thermal solu-
tion variables [67]. This assumption entails the simultaneous
solution of the governing equations expressing the balance of
momentum and the balance of energy, which are summarized
here.

The balance of momentum due to a motion acting on a
bodyB, alongside its initial and boundary conditions, is com-
monly expressed by:

div σ = 0, (28a)
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Fig. 1 Highly-resolved IN718 oligocrystal RVE with 26 grains ran-
domly oriented used in the analysis. Cut Cx at mid-height is used for
reference in the following sections

u(X, 0) = u0 at B, (28b)

u(X, t) = u∗ at ∂Bu, (28c)

σ · n = t∗ at ∂Bσ , (28d)

Equation (28a) is expressed in a simplified form consider-
ing the absence of inertial and body forces. Equation (28b)
defines the initial condition to the mechanical problem by
describing the displacement field at t = 0. Equations (28c)
and (28d) represent the Dirichlet and Neumann boundary
conditions respectively.

The thermal field equation expresses the balance of energy
on a bodyB. It can be written, alongside its initial and bound-
ary conditions as:

ρ̄c̄θ̇ = div q + Q̇, (29a)

θ(X, 0) = θ0 at B, (29b)

θ(X, t) = θ∗ at ∂Bθ , (29c)

q · n = Q∗ at ∂Bq , (29d)

where ρ̄, c̄, q and Q̇ are respectively the density, specific
heat, heat flux and volumetric heat generation. Equation
(29b) defines the initial condition to the thermal problem
by describing the temperature field at t = 0. Equations (29c)
and (29d) represent the Dirichlet and Neumann boundary
conditions respectively.

The mathematical framework outlined here, in conjunc-
tion with the thermal dependence introduced into the kine-
matic model and single crystal constitutive law, defines a
fully coupled thermoelastoplastic boundary value problem
(BVP).

6 Computational model

We demonstrate the applicability of the thermomechani-
cal model presented in the previous sections by analyzing

the partially constrained expansion of an IN718 oligocrys-
tal under thermal load. IN718’s mechanical response has
been replicated successfully by a variety of CP based mod-
els, from polycrystalline plasticity models [31] to spatially
resolve full field models such as crystal plasticity finite ele-
ment (CPFE) [38, 39], and crystal plasticity fast Fourier
transform (CPFFT) [15], which assumed the predominant
deformation mechanism was grain-scale slip. Its mechanical
performance has also been studied both at roomandhigh tem-
peratures as well as in a wide range of strain-rates [25, 28,
31, 59]. IN718 can be AMed through different fabrication
techniques such as selective laser melting (SLM), directed
energy deposition (DED) as well as with hybrid approaches
[34] and was originally designed for high-temperature appli-
cations [42]. It is, therefore, a suitable model material for this
study owing to the considerable thermal gradients it experi-
ences during the fabrication process, its applications across
a broad spectrum of temperatures and in alignment with the
recent efforts towards its modeling and characterization [32,
89].

Figure1 illustrates the highly-resolved IN718 oligocrystal
adopted in the analysis. The representative volume element
(RVE) captures a microstructural volume of 100µm3 and
features 26 grains randomly oriented. A total of 125000 ele-
ments are distributed in a 50 × 50 × 50 voxelized mesh,
providing a resolution of 2µm3 per element. We employ
trilinear hexahedral elements of the C3D8T type from the
Abaqus/Standard solid element library. These are suitable
for fully coupled thermal-stress simulations in which both
temperature and displacements are nodal degrees of freedom
and the governing equations outlined in Sect. 5 are solved
simultaneously.

The thermal boundary conditions imposed on the model
are tailored to emulate elementary thermal cycles, which
are characterized by a desired thermal amplitude at a given
temperature rate. Heat flux in and out of the RVE is fully
controlled by the prescribed flux at the top yz surface, defin-
ing a uni-dimensional temperature gradient along the x-axis.
Heat flux is not considered in the remaining surfaces [86,
87]. The remaining surfaces are displacement-constrained
in their normal directions. These thermomechanical bound-
ary conditions, albeit simple, allow the assessment of the
micromechanical response in view of the imposed thermal
amplitudes and temperature rate.

The relevant constitutive parameters for IN718 are listed
inTable1.Values for the thermophysical parameters, namely,
isotropic thermal expansion coefficient, density, specific heat
and thermal conductivity were obtained from the literature
[65]. The variability of the thermophysical parameters with
respect to temperature is not considered here. Elastoplastic
material parameters are obtained from the works ofMartin et
al. [57] and Hestroffer et al. [38], where they have been char-
acterized using experimental data. The dependence of the
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Table 1 Constitutive parameters
used for IN718 [36, 38, 57, 65]

Property Value Unit Property Value Unit

θ0 298 K n 20 –

β 13 × 10−6 K−1 g0 400 MPa

ρ̄ 8190 kgm−3 κ 1 –

c̄ 435 J kg−1 K−1 b 0.257 nm

K̄ 11.4 Wm−1 K−1 aα=β 0.1 –

C11 259.6 GPa aα �=β 0.1 –

C12 179.0 GPa ρ0 1.5 × 106 mm−2

C44 109.6 GPa K 10 -

M11 −36.3 MPaK−1 y0 2.57 nm

M12 −16.4 MPaK−1 A 1.5 × 10−19 J

M44 −25.7 MPaK−1 η 0.9 –

Fig. 2 Average stress–strain response under monotonic mechanical
loading at room temperature, at 623K and at 923K for IN718. Experi-
mental data was obtained from Texier et al. [81]

elastic parameters on temperature was taken from Hansen et
al. [36], where they characterized them via fits to experimen-
tal data on another fcc metal, Cu.

7 Results

7.1 Thermomechanical response of IN718 in uniaxial
loading

We start by simulating the stress–strain response under
monotonic mechanical loading at room temperature and ele-
vated temperatures, comparing these results directly with
experimental curves for the same material. In these simu-
lations, the polycrystal is deformed along the x-axis at room
temperature, 623K, and 923K up to 5% strain, a strain limit
chosen because strains generated during thermal cycling
are usually below 5%. Figure2 shows the resulting stress–

strain curves averaged over the RVE. It can be observed
that the initial yield stresses, corresponding to the three dif-
ferent temperatures, fall within the approximate range of
1050 to 1250MPa. Notably, the calculated response shows
excellent agreement with the experimental results for IN718
reported by Texier et al. [81] and presented in Fig. 2. This
agreement demonstrates the capability of the constitutive
model to accurately capture the thermomechanical behavior
at constant temperature over a wide range of temperatures.
However, it does not guarantee that the same level of accu-
racy would be achieved during variable temperature loading.
We can only note that the mechanical response under ther-
mal cycling conditions remains less explored experimentally,
making monotonic loading at different temperatures the best
available metric for model validation to date. Next, we will
employ the model to understand the evolution of the thermo-
mechanical response solely due to thermal cycling, where
neither the temperature nor strain rate remains constant and
mechanical deformation is not applied.

7.2 Thermomechanical response in thermal cycling

7.2.1 Time evolution of stress and strain rate

As described in Sect. 6, the polycrystalline material is sub-
jected to a single thermal cycle starting from and returning
to room temperature. The thermal cycle is an ideal form
of SSTC and in these calculations, no additional boundary
conditions of mechanical deformation or stress are imposed.
Each thermal cycle is distinguished by its peak temperature
amplitude, while the imposed temperature rate is kept fixed
at θ̇ = 1 × 105 K s−1, a value that falls within the range
of typical temperature rates achieved in AM with different
manufacturing processes [84]. Four peak amplitudes are con-
sidered, leading to temperature differences of �θ = 200K,
�θ = 350K, �θ = 400K and �θ = 500K. These cycles
are hereafter referred to as TC200K, TC350K, TC400K and
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TC500K, respectively. Figure3 shows these four thermal
cycles, which includes the RVE-average temperature his-
tory. The maximum homologous temperature achieved in
TC200K,TC350K,TC400KandTC500Kcycle is 0.32, 0.42,
0.45 and 0.51, respectively. None of these thermal cycles
exceed temperatures where crystallographic slip is no longer
the main inelastic deformation mechanism.

Figure4 presents the stress–strain response averaged over
the RVE for the different thermal cycles. It is observed
that during TC200K the material remains fully thermoelas-
tic. The absolute maximum stresses achieved is 754MPa.
However, for the greater temperature change experienced
in the TC350K cycle, the maximum stress value generated
in the material reaches 1073MPa, close to the elastoplas-
tic transition. It follows then that the thermal cycles with
even higher temperature changes, TC400K and TC500K,
elicit macroscopic plastic deformation, the latter to an even
greater extent, and reach higher peak stresses of 1106MPa
and 1139MPa respectively. Concomitantly, as the peak tem-
perature increased, the maximum strains along the x-axis
achieved at the peak increased from 0.53%, 1.00%, 1.18%
and to 1.56%. The maximum strain shows a stronger depen-
dence on the thermal amplitude comparedwith themaximum
stress. Thismay be expected due to the fact that the geometric
effects of thermal expansion are captured by the kinematic
formulation and translated into a strong correlation between
thermal amplitude and maximum strain, while the effect of
thermal expansion on the stress evolution is attenuated due
to softening of the elastic moduli and lower hardening due
to increased SSD annihilation.

One interesting outcome in every case is that an internally
evolving strain rate is generated from the heating and cool-
ing steps imposed in each thermal cycle. The tensorial strain
rate field varies appreciably across the material. To compare
among the different cycles, however, an average strain rate is
computed from the maximum strains depicted in Fig. 4 and
the time of each cycle shown in Fig. 3. In the heating step
of each cycle, the calculated average strain rate along the x-
axis is 2.63 s−1, 2.86 s−1, 2.96 s−1, and 3.12s−1, respectively,
indicating a clear correlation between the average strain rate
and thermal amplitude. Figure5 further examines the evolu-
tion of the strain rate during the heating step. In every case,
the strain rate varies substantially over time and the evolv-
ing strain rate deviates significantly from its average value.
In TC500K, for example, ε̇ rises nearly 50% from its initial
value of 2.60 s−1 to 3.80 s−1 at the maximum temperature.
The strain rate evolves in the same way among all cycles,
with only the end point differing, dictated by the thermal
amplitude. Unlike in monotonic mechanical loading, where
the strain rate is explicitly controlled and conventionally con-
stant, the strain rate induced during a thermal cycle is neither
constant nor explicitly controlled; instead, it is variable and
dictated by the heating rate.

7.2.2 Residual stress

Of interest is the residual states of the material left after
a thermal cycle has completed. The average stress–strain
curve for the thermoelastic cycle, TC200K, would indicate
minimal to no bulk residual strains, whereas the curves for
the other cycles, TC350K, TC400K and TC500K, would
suggest some residual strain left in the material, with the
amount increasing with thermal amplitude. Our calculations
find that the average residual strains were still non-zero in
the TC200K case (0.01%) and moderate for the other cycles,
being 0.10%, 0.15% and 0.24%, for TC350K, TC400K and
TC500K cycles, respectively. The moderate amount of resid-
ual strain observed in all cycles is an indication that there is a
pronounced development of reversible thermoelastic strains.
Regarding residual stresses, we have seen that even in the low
TC200K cycle, themacroscopic thermoelastic response does
not rule out the possibility of residual strains and hence also
residual stresses. The average residual stress was also low,
being 14MPa (or 1.3% of the yield stress). The correspond-
ing residual stresses left after the higher amplitude cycles are,
however, significant. They all fall in the range of hundreds of
MPas and increase with the thermal amplitude as well as the
level of macroscopic plasticity achieved during the cycle.
Specifically, the average residual stress obtained for each
individual cycle from TC350K to TC500K was 292MPa,
440MPa and 720MPa, respectively. These average stresses
correspond to 26.6%, 40.0% and 65.5% of the yield stress of
this material.

Figure6 presents the residual von Mises stress maps
calculated at cut Cx (see Fig. 1) for each cycle. These cuts
are representative and consistent throughout the entire RVE.
The stress distribution in all cases is notably heterogeneous
in spite of the fact that the thermal expansion coefficients
are isotropic and the temperature at any given cross section
is constant. The main effect seen is that larger microscale
residual stresses result from cycles with greater thermal
amplitudes.Although themacroscopic stress–strain curve for
the lowest amplitude cycle, TC200K, remained in the elastic
regime, a heterogeneous distribution of residual stresses still
develops at the microscale. In the case of a greater ampli-
tude cycle of TC350K, the material experiences some plastic
deformation, albeit of limited extent.Yet, the residual stresses
are still significant, with stress hotspots nearing 700MPa. As
the thermal amplitude increases and the material manifests
bulk plasticity, the residual stresses not only increase accord-
ingly, but also follow a similar pattern in their residual stress
distributions as those in the lower amplitude cycles. This
pattern is characterized by stress hotspots at specific grains,
occasionally contrasting with the surrounding grains exhibit-
ing substantially lower residual stresses. Stress concentration
at grain boundaries and triple junctions of highly stressed
grains, are also observed; some of these are highlighted in
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Fig. 3 Average temperature
history for thermal cycles
starting from and returning to
room temperature featuring
different thermal amplitudes:
TC200K, TC350K, TC400K
and TC500K. Timescale
corresponds to the temperature
rate of 1 × 105K s−1

Fig. 4 Average stress–strain
response induced by the thermal
cycles TC200K, TC350K,
TC400K and TC500K (see
Fig. 3) evoking different regimes
of deformation
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Fig. 5 Evolution of the strain
rate during the heating step (left)
with average value for TC500K
indicated in the plot. Evolution
of the total SSD density gradient
during the heating step (right)

Fig. 6 Comparison between the
residual von Mises stress
distribution under different
thermal amplitudes. Highlighted
circles indicate stress hotspots at
regions of the microstructure
featuring grain boundaries
and/or triple junctions. Cut Cx
perpendicular to the x-axis at
mid-height (see Fig. 1)

Fig. 6. Altogether, these observations indicate that in addition
to the thermomechanical variables of thermal amplitude and
temperature rate, the features and constraints of the granular
microstructure play a significant role in the residual stress
distribution.

7.2.3 Residual SSD density

An initial SSD density was homogeneously assigned to
all slip systems (see Table1) and thus the total initial value is
ρtotal = 18µm−2. Figure7 presents the time evolution of the
total SSD density averaged over the RVE for each thermal
cycle. The results show that the thermal cycling alone with
amplitudes over 350K was sufficient to induce an increase

in the SSD density, resulting in residual stored dislocations
even for TC350K, which just reached the elasto-plastic tran-
sition point. The uptick in the total stored density identified
at the end of TC500K is worth noting. It shows that even
the cooling step might elicit macroscopic plastic deforma-
tion, provided that the thermal amplitude is sufficiently high,
underscoring the sensitivity of the SSD density to thermal
cycling conditions.

We also note that the developing and rising strain rate
seen in Fig. 5 becomes noticeable between 1 and 2ms, which
coincideswith the time ∂ρ/∂ε starts actively evolving.At this
point in time,macroscopic yield has not yet occurred inFig. 4.
In fact, it is observed even for the macroscopic thermoelas-
tic cycle, TC200K. The uptick in ∂ρ/∂ε is an indication
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Fig. 7 Average SSD evolution
for each thermal cycle shown in
Fig. 3. For thermal amplitudes of
350 K and above, thermal
cycling alone can induce an
increase in the SSD density.
Timescale corresponds to the
temperature rate of
1 × 105 K s−1

of microplasticity taking place at early stages of thermal
cycling. It further suggests that the partially constrained ther-
mal expansion is sufficient to induce microplasticity even
under macroscopic thermoelastic conditions.

Figure8 shows the residual SSD density maps calculated
at cut Cx (see Fig. 1) for each cycle. Following the trend
observed in Fig. 7, the thermal amplitude experienced during
the cycle is directly associated with the increase in the SSD
density. Consistent with the average SSD evolution, the ther-
moelastic cycle did not lead to distinguishable dislocation
storage. Conversely, TC500K, which reached bulk plasticity,
shows not only higher SSD density, but a rather heteroge-
neous distribution. In fact, the residual SSD density shows a
stronger dependence on themicrostructural constraints when
comparedwith the residual stress distribution.As highlighted
in the map, SSD density hotspots are associated microstruc-
tural features such as grain boundaries or triple junctions.
Such microstructurally driven localization of SSD density
occurs in all cross sections of the 3D volume.

7.2.4 Residual lattice rotation

Figure9 presents the residual lattice rotation maps calcu-
lated at cut Cx (see Fig. 1) remaining after each thermal
cycle. The in-plane rotations shown are mapped for com-
parison among the cycles but we note that these rotations
developed with full constraints from the 3D bulk. With the

thermal cycling alone, a meaningful degree of lattice rotation
develops in grains that were initially uniform in orientation.
The intragranular rotations span from −0.4◦ to 0.4◦, for
the higher thermal amplitudes cycles. Similarly to the pre-
vious micromechanical field variables, the lattice rotations
increase with the thermal amplitude. However, different pat-
terns of heterogeneity can be seen in its spatial distribution.
For instance, some grains, like grains 1, 2 and 4 (highlighted
in Fig. 9), develop large rotations but limited grain-spanning
intragranular rotation gradients. In these grains, significant
lattice rotation gradients developed instead in at least one of
their grain boundaries. Conversely, grains, such as grains 3,
5, 6 and 7, develop notable short-range intragranular rota-
tion gradients, indicating a change in the sign of the lattice
rotation angle within the grain.

Considering that slip activity is the main driving factor
for lattice rotation, a closer look at the activated slip sys-
tems is taken. Figure10 shows the contribution of the most
activated slip systems to the total slip for grains with mini-
mal intragranular lattice rotation gradients in TC500K. Some
grains, such as grains 1 and 4 shown, represent those with
low intragranular rotation gradients. In these grains, there
is a clearly predominant slip system activated, accounting
for the majority of the total slip. We found this to be the case
for grains that developed low intragranular rotation gradients
consistent throughout the microstructure and exemplified
here through these specific grains. For grain 1, the minimal
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Fig. 8 Comparison between the
residual SSD density
distribution under different
thermal amplitudes. Highlighted
circles indicate SSD density
hotspots at regions of the
microstructure featuring grain
boundaries and/or triple
junctions. Cut Cx perpendicular
to the x-axis at mid-height (see
Fig. 1)

gradient observed in its right-most region is associated with a
partial change from a predominant C5 slip to a shared C5/C1
slip. This is a mild change as C5 remains active, resulting
in an attenuated rotation gradient, without sign change. For
grain 4, B4 slip accounts for the majority of slip through-
out the grain. The mild change in lattice orientation seen in
Fig. 9, without sign change, coincides with the regions where
A3 and B4 slip interchange.

Conversely, Fig. 11 shows the contribution of the most
activated slip systems to the total slip for a few exemplar
grainswith significant intragranular lattice rotation gradients.
Multi-slip activation (three or more slip systems) is predicted
in grains that exhibit marked short-range intragranular gra-
dients. For grain 3, the B4 system remains active throughout
the entire grain and accommodates part of the total slip. How-
ever, the B5 andC1 slip systems are also activated in different
regions of the grain. Furthermore, the region where a change
in lattice rotation sign is observed in grain 3 in Fig. 9 coin-
cides with the region where B5 changes into C1 in Fig. 11.
A similar assessment can be made for grain 5, where C3 slip
is present throughout the grain, but B2 and C1 are also acti-
vated in different regions. In particular, the lower portion of
the grainwhere there is a transition betweenB2 andC1, is the
region where a significant short range gradient, with change
in lattice rotation sign, is observed.

7.2.5 Multicycle response

Weassess themechanical response undermultiple successive
thermal cycles. Figure12 shows the RVE-average tempera-
ture (left) when TC500K, TC400K, and TC350K are applied
sequentially. The average stress–strain behavior, shown in
Fig. 12 (center), can be compared to that observed when each
cycle is applied individually. Specifically, while the response
of the first cycle is identical to the individual TC500K,
the subsequent cycles differ significantly. When applied
separately, TC400K reaches macroscopic plastic flow, and
TC350K reaches the elasto-plastic transition, as presented
in Fig. 4. However, when these cycles follow TC500K,
they both remain in the thermoelastic regime. TC350K and
TC400K reach maximum compressive stresses of 1070MPa
and 1100MPa, respectively, when applied as stand-alone
cycles, but only about 650MPa and 800MPa in the mul-
ticycle regime. Additionally, the final residual stress remains
unchanged by the subsequent cycles and is fully defined by
the thermal cycle with the highest amplitude. Finally, the
difference between the SSD density obtained with TC500K
and the multicycle is shown in Fig. 12 (right). The maximum
percentile difference is 5%, indicating that the dislocation
activity elicited by the subsequent cycles is minimal and
restricted to regions with microstructural constraints in the
most stressed grains.
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Fig. 9 Comparison between the
residual lattice rotation under
different thermal amplitudes.
Grains 1, 2, and 4 show
significant rotation with limited
intragranular rotation gradients,
whereas grains 3, 5, 6, and 7 are
characterized by notable
short-range rotation gradients.
Cut Cx perpendicular to the
x-axis at mid-height (see Fig. 1)

Fig. 10 Contribution of the
three most active slip systems to
the total slip for grains with
minimal intragranular lattice
rotation gradient in TC500K.
Remaining slip systems were
not activated or the total
accumulated slip was minimal.
See Table2 for the designation
of the slip systems

Fig. 11 Contribution of the
three most active slip systems to
the total slip for grains with
substantial intragranular lattice
rotation gradient in TC500K.
Remaining slip systems were
not activated or the total
accumulated slip was minimal
See Table2 for the designation
of the slip systems
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Fig. 12 Average temperature
history for subsequent thermal
cycles starting from and
returning to room temperature
(left). Average stress–strain
response induced by the
multiple thermal cycles (center).
Comparison between the
resulting SSD density due to
TC500K alone and multiple
successive cycles (right)

8 Discussion

From a length scale perspective, residual stresses are usu-
ally classified as macroscale and microscale residual stresses
[13, 22, 88]. The microscale stress maps, i.e. stresses that
vary within the grain scale, were presented in Fig. 6, while
the average stress response is shown in Fig. 4. Except for
the thermoelastic cycle, our results indicate high residual
stresses, in the range of hundreds of MPas at the end of every
other thermal cycle. The residual stresses exhibit a strong
dependence on the thermal amplitude. In fact, these obser-
vations conform with the results presented by Lindroos et
al. [53], Grilli et al. [35] and Hu et al. [43] where residual
stresses at the order of hundreds of MPas were predicted
through CP simulations, the first on H13 tool steel and the
last two on 316L stainless steel. Additionally, component
level residual stresses on lower deposition layers were calcu-
lated by Singh et al. [76] on IN718 reaching up to 750MPa
while Nadammal et al. [66] measured residual stresses rang-
ing from 0 to 400MPa varying with the scanning strategy.
While we note that the modeling frameworks across these
studies, as well as in our own, differ significantly, the over-
arching trend is closely aligned.

It should be highlighted that the average stress–strain
response shown inFig. 4 is consistentwith the response delin-
eated by the temperature gradient mechanism (TGM) [5, 48,
63]. According to the TGMmodel, the thermal expansion of
heatedmaterial, surroundedbymaterial at lower temperature,
leads to compressive stresses during the heating step. During
the cooling step, the plastic strains developed in the heating
phase partially counteract the thermal shrinkage, resulting
in tensile stresses. This is precisely the behavior observed
in Fig. 4. Moreover, the higher the thermal amplitude, the
greater the plastic strains, which lead to higher tensile resid-
ual stresses at the end of the thermal cycle. The TGM

adequately explains the strong connection between thermal
amplitude and the magnitude of residual stresses. While our
results confirm that RVE-based CP simulations can provide
a pathway for calculating residual stresses and intragranular
misorientations that develop inAM, we acknowledge that the
current set up and boundary conditions are a simplification
of the complex process surrounding AM. First, the constitu-

tive model considers thermally activated slip without grain
boundary motion or deformation. Thus, the model applies to
several layers below the surface, where peak temperatures
during AM processes are low (below 0.5Tmelt ). Second, the
current application also considers for the most part a single
thermal cycle, whereas a series of thermal cycles varying in
peak temperature and rates are involved in AM processes.
Future research should focus on these aspects to enhance the
model’s applicability tomore realisticAM scenarios. Finally,
the present RVEs contain several grains nearly equiaxed in
shape. Solidified structures from AM processes can have
long columnar shapes. Many of these limitations can be
lifted when the aim is to apply the current approach to
AM processing. It would provide a potential alternative to
conventional approaches requiring large-volume represen-
tations in slab-shaped models, which generally depend on
significantly simplified constitutive models to manage com-
putational demands in large-scale simulations.

Figure6 shows the residual stress maps for different ther-
mal amplitudes. The strong heterogeneity of the inter and
intra-granular stress distribution aligns with the expected
distribution of microscale residual stresses [88], and is also
reflected in the spatial fluctuations experimentally observed
by Liu et al. [54] on laser rapid formed IN718 at a coarser
spatial resolution, where residual stresses ranged from 0 to
a maximum of 650MPa. The heterogeneity of the stress
distribution, despite the isotropic nature of the thermal expan-
sion deformation gradient is attributable, at a significant
extent, to the anisotropic elastic response of thematerial. The
effect of elastic anisotropy on the distribution of microscale
residual stresses is particularly significant given the limited
level of bulk plasticity induced by the thermal cycles. Fig-
ure13 shows how the residual von Mises stress distribution
becomes less heterogeneous as the Zener ratio is reduced
to 1. Specifically, the residual stress distribution of the ther-
moelastic cycle, TC200K, becomes homogeneous, while the
residual stress distribution of TC500K, that undergoes bulk
plastic flow, has its heterogeneity significantly reduced.

It is immediate from Fig. 5 that the strain rate is not con-
stant, but evolves with the thermal cycles. In fact, it strongly
resembles the evolution of the SSD density gradient. This can
be explained by the interplay between the thermal expansion,
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kinematically captured by Fθ , and the non-linear macro-
scopic plastic deformation, kinematically described by Fp,
resulting in a varying Ḟ . Furthermore, we observed that the
amplitude of the strain rate evolution is dependent on the
thermal amplitude. For our thermal cycle with the highest
amplitude, TC500K, ε̇ exhibits a growth of nearly 50% from
its initial value. Cycles with even higher thermal amplitudes,
which are certainly attainable during SSTC, would likely
lead to even higher amplitudes on the strain rate evolution.
Such new observation points to the complexity of the defor-
mation conditions imposed by SSTCs as the microstructure
experiences evolving strain rates. We also note that while
the temperature rise from inelastic heat generation, Q̇, is
only approximately 1.5 K in TC500K-a minute increase-its
contribution is retained in the model formulation for com-
pleteness. Its inclusion also ensures accuracy across a broader
range of scenarios, potentially involving higher strain rates
as a result of higher temperature rates. Materials with higher
melting points, for instance, might be subject to greater ther-
mal amplitudes and consequently more substantial plastic
deformation and inelastic heating.

Figures 7 and 8 explore the residual SSD density both in
an average sense throughout each cycle and at the residual
state. Our calculations show that thermal cycling can induce
meaningful dislocation density evolution, even in the absence
of substantialmacroscopic plastic deformation. These results
conform with findings from Bertsch et al. [7] and Wang et
al. [85], respectively, that reported on the influence of both
thermal cycling and residual stresses on the dislocation den-
sity evolution. Furthermore, the heterogeneity of the SSD

density maps observed in Fig. 8, exhibiting regions of high
and low SSD density, is well aligned with recent observa-
tions made by Hu et al. [44]. Therefore, we first emphasize
that SSD density evolution is possible from thermal cycling
alone. Furthermore, we note that the SSD density evolution
obtained through thermal cycling, albeit lower, can be in the
same order of magnitude of that obtained through mechani-
cal loading. Finally, we observe that dislocation annihilation
bears significant influence on the total SSD density due to
the higher temperatures.

Analysis of the calculations, showcased in Fig. 9, reveals
a notable development of residual lattice rotation due to
thermal cycling, which intensifies with increased thermal
amplitude. Due to the imposed loading conditions, it is
observed that there is no net rotation overall, as the average
rotation angle remains at 0◦. However, the lattice rotation
fields are highly heterogeneous, with local rotation angles
reaching up to ±0.4◦. This lattice rotation resulting from
thermal cycling, is likely to compound with rotation induced
by subsequent mechanical loading, thereby significantly
influencing mechanical behavior under service conditions.
Indeed, at the grain level, properties such as lattice orienta-
tion are crucial for predicting failure mechanisms, including

crack formation due to localized slip bands [9, 38, 78].While
this paper does not specifically address the evolution of GND
density, it is noteworthy that lattice rotation fields are often
accompanied by GND density development [21, 24, 80].
Consequently, our results suggest the emergence of an addi-
tional dislocation density population attributable to thermal
cycling.

Finally, Fig. 12 explored the differences observed between
the individual thermal cycles and the multicycle response,
which can be attributed to two primary factors. First, the ini-
tial thermal cycle (TC500K) has expanded the yield locus
of the material, resulting in an increased yield stress. This
higher yield stress is challenging to achieve with the lower
amplitude subsequent cycles (TC400K and TC350K), which
partially explains why their response remains in the ther-
moelastic regime when applied after TC500K. Second, the
subsequent cycles begin in an elastic tensile stress state, as
a consequence of the first cycle (TC500K), and must first
transition to the compressive regime. This transition requires
overcoming the pre-existing tensile stress, further limiting
the ability of these cycles to induce significant compressive
plastic deformation. Consequently, the compressive stresses
anddislocation activity in themulticycle regimearemarkedly
reduced compared to when the cycles are applied individu-
ally. These factors together could explain the reduced peak
stresses andminimal dislocation activity observed in themul-
ticycle experiments and highlight the notable importance of
the first thermal cycle with highest amplitude.

9 Conclusions

In this work, we presented a fully coupled thermomechanical
CP framework. The formulation features thermal sensitivity
through the kinematic description, the single crystal consti-
tutive law and the coupled governing equations. We applied
this framework to IN718 which shows an initial flow stress
of 1100MPa. The model was employed to study the evo-
lution and formation of residual stresses, SSD density and
lattice rotation originating from thermal cycling with differ-
ent thermal amplitudes, namely �θ = 200K, �θ = 350K,
�θ = 400K and �θ = 500K. The mechanical response
elicited under partially constrained thermal expansion was
evaluated.

The thermal amplitude was a key factor in defining the
level of plastic deformation evoked by a given cycle. In fact,
the deformation regime achieved in each cycle, thermoelastic
(TC200K), elastoplastic transition (TC350K) and bulk plas-
ticity (TC400K and TC500K) was defined by the imposed
thermal amplitude. The magnitude of the residual stresses, in
the order of hundreds of MPas, except for TC200K, was also
strongly dependent on the thermal amplitude. The average
residual stress in each cycle reached 1.3%, 26.6%, 40.0%
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Fig. 13 Comparison between
the residual von Mises stress
distribution under anisotropic
(left) and isotropic (right) elastic
response. Thermal amplitudes of
�θ = 200K and �θ = 500K.
Cut Cx perpendicular to the
x-axis at mid-height (see Fig. 1)

and 65.5% of the yield stress, respectively. Our calcula-
tions showed, for the first time, the evolving strain rate due
to thermal cycling. We further noticed microplasticity tak-
ing place at early stages of thermal cycling, evidenced by
the positive dislocation storage rate and residual stresses,
even in the macroscopic thermoelastic regime. The influence
of elastic anisotropy on the heterogeneity of the residual
stress distribution was demonstrated to be significant. We
also demonstrated that thermal cycling alone can be enough
to provoke SSD density evolution, particularly at regions
with microstructural constraints such as grain boundaries
and triple junctions. We calculated lattice rotation obtained
from thermal cycling ranging from ±0.4◦ and associated the
intragranular lattice rotation gradients with local changes in
predominant slip systems. Finally, the simulations show pre-
dominant influence of the cycle with the highest thermal
amplitude when the material experiences multiple succes-
sive cycles. The final state of residual stresses, SSD density
and lattice rotation are all evidently set by the highest tem-
perature cycle.

Appendix A

The single crystal constitutivemodel described in Sect. 3 was
implemented in a user-defined material subroutine (UMAT)
inAbaqus/Standard. The simulationswere carried out in fully
coupled thermal-stress analyseswith fully integrated hexahe-

dral elements featuring both displacement and temperature
degrees of freedom (C3D8T). In order to achieve conver-
gence, the Newton–Raphson scheme requires the definition
of four distinct Jacobians. These will be represented here by
W

σ ,E ,Wσ ,θ ,WQ̇,E andWQ̇,θ denoting tensors of rank 4, 2,
2 and 0 respectively. In the following subsections, the analyt-
ical calculation and algorithmic implementation of each one
will be outlined. The derivation of Wσ ,E advances the pro-
cedure initially set forth by Dai [17] and Balasubramanian
[4] to include the thermal-expansion kinematics presented in
Sect. 2. The analytical derivation ofWσ ,θ ,WQ̇,E andWQ̇,θ

within a classical single crystal constitutive framework is
presented here for the first time.

The notation tn = t and tn+1 = t + �t is used to repre-
sent the beginning and the end of an arbitrary time interval
[tn, tn+1]. All quantities are evaluated at tn+1, unless explic-
itly specified.

Mechanical Jacobian:W�,E

The mechanical Jacobian matrix used in the implicit back-
ward Euler integration scheme is defined as:

W
σ ,E = ∂σ

∂Et
, (30)
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where E denotes the relative symmetric strain tensor, which
can be approximated by:

Et = lnU t ≈ U t − I ⇒ ∂Et ≈ ∂U t , (31)

with U representing the relative right stretch tensor. The
mechanical Jacobian is then approximated by:

W
σ ,E ≈ ∂σ

∂U t
. (32)

From Equation (10), the Cauchy stress tensor takes the fol-
lowing form in index notation:

σi j = 1

det Fe

(
Fe
im SmnF

eT
nj

)
, (33)

therefore,

W
σ ,E
i jkl = 1

det Fe

[
Timkl SmnF

eT
nj

+Fe
imQmnkl F

eT
nj + Fe

im SmnT jnkl

−Fe
im SmnF

eT
nj Tpqkl F

e−1
qp

]
, (34)

where,

Ti jkl = ∂Fe
i j

∂Ukl
and Qi jkl = ∂Si j

∂Ukl
. (35)

9.0.6 Calculation of Tijkl

We begin with the definitions of the relative deformation
gradient as well as its polar decomposition, precisely:

Ft = FF−1(tn), (36a)

Ft = RtU t . (36b)

The elastic deformation gradient is then expressed by:

Fe = FFθ−1
Fp−1 = Ft F(tn)Fθ−1

Fp−1

= RtU t F
e(tn)Fp(tn)Fθ (tn)Fθ−1

Fp−1
. (37)

We recall Equations (20b) and (21b), respectively:

Fθ−1 ≈ Fθ−1
(tn) (I − �θβ) , (38a)

Fp−1 ≈ Fp−1
(tn)

(
I −

∑

α

�γ αSα
0

)
. (38b)

Substituting these in Equation (37) yields:

Fe = RtU t F
e(tn)K (tn)−RtU t F

e
t K (tn)

∑

α

�γ αSα
0 , (39)

where K (tn) = Fp(tn) (I − �θβ) Fp−1(tn). Finally, Ti jkl
is given by:

Ti jkl = Rik F
e
lp(tn)Kpj (tn)

−Rik F
e
lp(tn)Kpq(tn)

∑

α

�γ αSα
0,q j

−RimUmnF
e
np(tn)Kpq(tn)

∑

α

Jα
kl S

α
0,q j , (40)

with,

Jα
i j = ∂�γ α

∂Ui j
. (41)

9.0.7 Calculation ofQijkl

The Qi jkl tensor is calculated from Eq. (26) as:

Qi jlk = ∂Si j
∂Ukl

= Di jkl −
∑

α

Cα
i j J

α
kl −

∑

α

�γ αΓα
i jkl , (42)

where,

Di jkl = ∂Stri j
∂Ukl

, (43a)

Γα
i jkl = ∂Cα

i j

∂Ukl
, (43b)

from Eq. (27a), we have:

Stri j = 1

2
Ci jmn (Amn − δmn) ⇒ ∂Stri j

∂Ukl
= 1

2
Ci jmnEmnkl ,

(44)

hence,

Di jkl = 1

2
Ci jmnEmnkl , (45)

with,

Ei jkl = ∂Ai j

∂Ukl
, (46)

which is obtained from Eq. (24) as:

Ei jkl = Fp−T
im (tn)�mnF

pT
np (tn)F

eT
pq (tn)Uqk

Fe
lr (tn)F

p
rv(tn)�vu F

p−1
u j (tn)

+ Fp−T
im (tn)�mnF

pT
np (tn)F

eT
pk (tn)Ulw

Fe
wr (tn)F

p
rv(tn)�vu F

p−1
u j (tn),

(47)
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where,

�i j = δi j − �θβi j . (48)

Equation (43b) is calculated from Eq. (27b), precisely:

Γα
i jkl = ∂Cα

i j

∂Ukl
= 1

2
Ci jmn

(
SαT
0,mp

∂Apn

∂Ukl
+ ∂Amp

∂Ukl
Sα
0,pn

)
,

(49)

and therefore,

Γα
i jkl = 1

2
Ci jmn

(
SαT
0,mpEpnkl + Empkl S

α
0,pn

)
. (50)

We proceed to the calculation of Jα with the following sim-
plification:

Jα
i j = ∂�γ α

∂Ui j
≈ ∂�γ α

∂Smn

∂Smn

∂Ui j
= Mα

mnQmni j , (51)

where Mα is also calculated with the approximation:

Mα = ∂�γ α

∂S
= ∂�γ α

∂τα

∂τα

∂S
≈ ∂�γ α

∂τα
sym(Sα

0 ), (52)

therefore,

Mα
i j = ∂�γ α

∂τα
sym(Sα

0,i j ). (53)

The elementary derivative
∂�γ α

∂τα
depends on the flow

rule adopted. Here, considering the power-law outlined in
Eq. (12) and the simplest case where τα > 0, we have:

∂�γ α

∂τα
= n

�γ α

τα
, (54)

finally, substituting Eqs. (41) in (42) and solving for Qi jkl

yields:

Qi jkl =
[
δimδ jn +

∑

α

Cα
i j M

α
mn

]−1

[
Dmnkl −

∑

α

�γ αΓα
mnkl

]
. (55)

Algorithm for computingW�,E

Theanalytical calculationof themechanical Jacobian follows
the steps:

• 1. �i j = δi j − �θβi j

• 2. Ai j = Fp−T
im (t)�mnFθ −T

np (t)UpqUqs Fθ −1
sw (t)�wr

Fp−1
r j (t)

• 3. Cα
i j = 1

2Ci jmn

(
AmpSα

0,pn + SαT
0,mp Apn

)

• 4. Ei jkl = Fp−T
im (t)�mn(t)F

θ −T
nk (t)Uls Fθ −1

sw (t)�wr (t)

Fp−1
r j (t) + Fp−T

im (t)�mn(t)Fθ −T
np (t)Upk F

θ −1
lw (t)�wr (t)

Fp−1
r j (t)

• 5. Di jkl = 1
2Ci jmnEmnkl

• 6. Γα
i jkl = 1

2Ci jmn

(
Empkl Sα

0,pn + SαT
0,mpEpnkl

)

• 7. Mα
i j = ∂�γ α

∂τα sym(Sα
0,i j )

• 8. Qi jkl =
[
δimδ jn + ∑

Cα
i j M

α
mn

]−1
[
Dmnkl − ∑

�γ α

Γα
mnkl

]

• 9. Jα
i j = Mα

mnQmni j

• 10. Ki j = Fp
im(t)�mnF

p−1
nj (t)

• 11. Ti jkl = Rik Fe
lp(t)Kpj (t) − Rik Fe

lp(t)Kpq(t)∑
�γ αSα

0,q j − RimUmnFe
np(t)Kpq(t)

∑
Jα
kl S

α
0,q j

• 12. W
σ ,E
i jkl = 1

det Fe

[
Timkl SmnFeT

nj + Fe
imQmnkl FeT

nj

+Fe
im SmnT jnkl − Fe

im SmnFeT
nj Tpqkl Fe−1

qp

]

Thermomechanical Jacobian:W�,�

The first thermomechanical Jacobian used in the implicit
backward Euler integration scheme is defined as:

W
σ ,θ = ∂σ

∂θ
. (56)

Recalling Eq. (10) for the Cauchy stress tensor, we have:

W
σ ,θ
i j = 1

det Fe F
e
im

∂Smn

∂θ
FeT
nj . (57)

The definition of the second Piola- Kirchhoff stress tensor,
yields:

S = C : Ee ⇒ ∂Si j
∂θ

= ∂Ci jkl

∂θ
Ee
kl . (58)

The temperature dependence of the elasticity tensor in the
global basis can be assessed with Eqs. (8) and (9):

Ci jkl = R̃im R̃ jn R̃kp R̃lqC
c
mnpq = R̃im R̃ jn R̃kp R̃lqC

0
mnpq

+R̃im R̃ jn R̃kp R̃lqMmnpqθ, (59)

hence,

∂Ci jkl

∂θ
= R̃im R̃ jn R̃kp R̃lqMmnpq
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⇒ ∂Si j
∂θ

= R̃im R̃ jn R̃kp R̃lqMmnpq E
e
kl , (60)

and finally:

W
σ ,θ
i j = 1

det Fe F
e
im R̃mp R̃nq R̃ks R̃lrMpqsr E

e
kl F

eT
nj . (61)

Algorithm for computingW�,�

The analytical calculation of the first thermomechanical
Jacobian follows the steps:

• 1.
∂Smn

∂θ
= R̃mp R̃nq R̃ks R̃lrMpqsr Ee

kl

• 2. Wσ ,θ
i j = 1

det Fe F
e
im

∂Smn

∂θ
FeT
nj

9.1 Thermomechanical Jacobian:WQ̇,E

The second thermomechanical Jacobian used in the implicit
backward Euler integration scheme is defined as:

W
Q̇,E = ∂ Q̇

∂Et
. (62)

We initially start with the approximation outlined in Eq. (31),
precisely:

∂Et ≈ ∂U t ⇒ W
Q̇,E ≈ ∂ Q̇

∂U t
. (63)

From Eq. (19) we have:

Q̇ = η

n∑

α=1

ταγ̇ α, (64)

hence,

W
Q̇,E
i j = η

n∑

α=1

(
Hα
i j�γ α + τα Jα

i j

)
, (65)

where,

Hα
i j = ∂τα

∂Ui j
and Jα

i j = ∂�γ α

∂Ui j
. (66)

We recall that Jα
i j has been computed in Sect. 1 and proceed

with the calculation of Hα
i j only. Substituting Eqs. (11) in

(66) yields:

Hα
i j = ∂τα

∂Ui j
⇒ Hα

i j = det Fθ

(
Fθ T
km

∂Smn

∂Ui j
Fθ −T
nl Sα

0,kl

)
,

(67)

noting that Qi jkl = ∂Si j
∂Ukl

has been computed in Sect. 1, we

finally have:

Hα
i j = det Fθ

(
Fθ T
km Qmni j F

θ −T
nl Sα

0,kl

)
. (68)

9.1.1 Algorithm for computingWQ̇,E

The analytical calculation of the second thermomechanical
Jacobian, assuming items 1 through 9 in Sect. 9.0.7 have been
computed, follows the steps:

• 1. Hα
i j = det Fθ

(
Fθ T
km Qmni j F

θ −T
nl Sα

0,kl

)

• 2. WQ̇,E
i j = η

∑

α

(
Hα
i j�γ α + τα Jα

i j

)

9.2 Thermal Jacobian:WQ̇,�

The thermal Jacobian used in the implicit backward Euler
integration scheme is defined as:

W
Q̇,θ = ∂ Q̇

∂θ
. (69)

From Eq. (19) we have:

W
Q̇,θ = ∂ Q̇

∂θ
= η

∑

α

(
∂τα

∂θ
�γ α + τα ∂�γ α

∂θ

)
. (70)

Before proceeding with the calculation of the first derivative
in Eq. (70), we recall the following results:

∂Fθ

∂θ
= Fθβ,

∂ det Fθ

∂θ
= det Fθ Tr β, (71)

whereβ is the diagonal thermal expansion tensor.Weproceed
with the calculation of the first term, precisely:

∂τα

∂θ
= ∂

∂θ

[
det Fθ

(
FθTSFθ−T

)
: Sα

0

]
, (72)

= det Fθ Tr β
(
FθTSFθ−T

)
: Sα

0

+ det Fθ

(
FθβSFθ−T + FθT ∂S

∂θ
Fθ−T

−FθTSβFθ−T
)

: Sα
0 , (73)

≈ det Fθ

(
FθT ∂S

∂θ
Fθ−T

)
: Sα

0 . (74)

The approximation above is due to the smallmagnitude of the
thermal expansion coefficients composing β. Additionally,
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the expression for
∂S
∂θ

has been calculated in Eq. (60). In

index form we have:

∂τα

∂θ
= det Fθ

(
Fθ T
i j

∂S jk

∂θ
Fθ −T
kl Sα

0,il

)
, (75)

The second derivative in Eq. (70) is obtained straightfor-
wardly through the chain rule:

∂�γ α

∂θ
= ∂�γ α

∂τα

∂τα

∂θ
, (76)

where
∂�γ α

∂τα
has been calculated in Eq. (9.0.7).

9.2.1 Algorithm for computingWQ̇,�

The analytical calculation of the thermal Jacobian follows,
assuming item 1 in Sect. 9.0.7 has been computed, follows
the steps:

• 1.
∂τα

∂θ
= det Fθ

(
Fθ T
i j

∂S jk

∂θ
Fθ −T
kl Sα

0,il

)

• 2.
∂�γ α

∂θ
= ∂�γ α

∂τα

∂τα

∂θ

• 3. WQ̇,θ = ∂ Q̇

∂θ
= η

∑

α

(
∂τα

∂θ
�γ α + τα ∂�γ α

∂θ

)

10 Appendix B

See Table 2.

Table 2 {111}〈110〉 slip systems for fcc crystals following the notation
from Schmid and Boas [74]

Slip system Slip plane normal Slip direction

A2 (1̄11) [01̄1]
A3 (1̄11) [101]
A6 (1̄11) [110]
B2 (111) [01̄1]
B4 (111) [1̄01]
B5 (111) [1̄10]
C1 (1̄1̄1) [011]
C3 (1̄1̄1) [101]
C5 (1̄1̄1) [1̄10]
D1 (11̄1) [011]
D4 (11̄1) [1̄01]
D6 (11̄1) [110]
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