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Abstract—We show that the value of the n-fold repeated GHZ
game is at most 2−Ω(n), improving upon the polynomial bound
established by Holmgren and Raz. Our result is established via a
reduction to approximate subgroup type questions from additive
combinatorics.

Index Terms—Parallel Repetition, GHZ game, Abelian Em-
beddings ,Analysis of Boolean functions, Additive Combinatorics

I. INTRODUCTION

The GHZ game is a 3-player game in which a

verifier samples a triplet (x, y, z) uniformly from

S = { (x, y, z) |x, y, z ∈ {0, 1}, x⊕ y ⊕ z = 0 (mod 2)},

then sends x to Alice, y to Bob and z to Charlie. The

verifier receives from each one of them a bit, a from

Alice, b from Bob and c from Charlie, and accepts if

and only if a ⊕ b ⊕ c = x ∨ y ∨ z. It is easy to prove

that the value of the GHZ game, val(GHZ), defined as

the maximum acceptance probability of the verifier over

all strategies of the players, is 3/4. The n-fold repeated

GHZ game is the game in which the verifier samples

(xi, yi, zi) independently from S for i = 1, . . . , n, sends

�x = (x1, . . . , xn), �y = (y1, . . . , yn) and �z = (z1, . . . , zn) to

Alice, Bob and Charlie respectively, receives vector answers

f(�x) = (f1(�x), . . . , fn(�x)), g(�y) = (g1(�y), . . . , gn(�y))
and h(�z) = (h1(�z), . . . , hn(�z)) and accepts if and only if

fi(�x) ⊕ gi(�y) ⊕ hi(�z) = xi ∨ yi ∨ zi for all i = 1, . . . , n.

What can one say about the value of the n-fold repeated

game, val(GHZ⊗n)? As for lower bounds, it is clearly that

case that val(GHZ⊗n) � (3/4)n and one expects that value

of the game to be exponentially decaying with n. Proving

such upper bounds though is significantly more challenging.

The GHZ game is a prime example of a 3-player game

for which parallel repetition is not well understood. For 2-

player games, parallel repetition theorems with an exponential

decay have been known for a long time [14], [9], [13], [2], [4],

and in fact the state of the art parallel repetition theorems for

2-player games are essentially optimal. As for multi-player

games, Verbitsky showed [18] that the value of the n-fold

repeated game approaches 0, however his argument uses the

density Hales-Jewett theorem and hence gives a weak rate of

decay (inverse Ackermann type bounds in n). More recently,

researchers have been trying to investigate multi-player games

more systematically and managed to prove an exponential

decay for a certain class of games known as expanding

games [3]. This work also identified the GHZ game as a

bottleneck for current technique, saying that, in a sense, the

GHZ game exhibits the worst possible correlations between

questions for which existing information-theoretic techniques

are incapable of handling.

A sequence of recent works [10] (subsequently simplified

by [5]) managed to prove stronger parallel repetition theorems

for the GHZ game, and indeed as suggested by [3] this

development led to a parallel repetition theorem for a certain

class of 3-player games [6], [7], namely for the class of

games with binary questions. Quantitatively, they showed that

val(GHZ⊗n) � 1/nΩ(1), and subsequently that for any 3-

player game G with val(G) < 1 whose questions are binary,

one has that val(G⊗n) � 1/nΩ(1). The techniques utilized

by these works is a combination of information theoretic

techniques (as used in the case of 2-player games) and Fourier

analytic techniques.

A. Our Result

The main result of this paper is an improved upper bound

for the value of the n-fold repeated GHZ game, which is

exponential in n. More precisely:

Theorem I.1. There is ε > 0 such that for all n,
val(GHZ⊗n) � 2−ε·n.

Such bounds cannot be achieved by the methods of [10], [5],

[6], [7], and we hope that the observations made herein would

be useful towards getting better parallel repetition theorems

for more general classes of 3-player games.

B. Proof Idea

Our proof of Theorem I.1 follows by reducing it to approx-

imate sub-group type questions from additive combinatorics,

and our argument uses results of Gowers [8]. Similar ideas

have been also explored in the TCS community (for example,

by Samorodnitsky [16]).

Suppose f : {0, 1}n → {0, 1}n, g : {0, 1}n → {0, 1}n and

h : {0, 1}n → {0, 1}n represent the strategies of Alice, Bob

and Charlie respectively, and denote their success probability

by η. Thus, we have that

Pr
(x,y,z)∈Sn

[f(x)⊕ g(y)⊕ h(z) = x ∨ y ∨ z] � η, (1)
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where the operations are coordinate-wise. Using Cauchy-

Schwarz it follows that if we sample x, y, z and u, v, w
conditioned on x ∨ y ∨ z = u ∨ v ∨ w, then f(x) ⊕ g(y) ⊕
h(z) = f(u)⊕g(v)⊕h(w) with probability at least η2, hence

f(x)⊕f(u)⊕g(y)⊕g(v)⊕h(z)⊕h(w) = 0. What functions

f, g, h can satisfy this? We draw an intuition from [1], that

suggested that such advantage can only be gained from linear
embeddings. In this respect, we are looking at the predicate

P : Σ3 → {0, 1} with alphabet Σ = {0, 1}2 defined as

P ((x, u), (y, v), (z, w)) = 1 if x ∨ y ∨ z = u ∨ v ∨ w,

x+ y + z = 0 and u+ v + w = 0. A linear embedding is an

Abelian group (A,+) and a collection of maps φ : Σ → A,

γ : Σ → A and δ : Σ → A not all constant such that

φ(x, u) + γ(y, v) + δ(z, w) = 0. There are 2 trivial linear

embeddings into (Z2,+): the projection onto the first coor-

dinate as well as the projection onto the second coordinate.

Thus, one is tempted to guess that in the above scenario, the

functions f, g and h must use these linear embeddings and

thus be correlated with linear functions over Z2. Alas, it turns

out that there is yet, another embedding which is less obvious:

taking (A,+) = (Z4,+), φ(x, u) = x + u, γ(y, v) = y + v
and δ(z, w) = z+w. This motivates us to look at the original

problem and see if we can already see (Z4,+) structure there.

a) Approximate Homomorphisms.: For (x, y, z) ∈ S, if

x∨y∨z = 1, then exactly two of the variables are 1; if x∨y∨
z = 0, then all of x, y, z are 0. Thus, one can see that the check

we are making is equivalent to checking that 2f(x)+2g(y)+
2h(z) = x+ y+ z (mod 4). Indeed, on a given coordinate i,
if (xi ∨ yi ∨ zi) is 1, then xi + yi + zi = 2 and the answers

need to satisfy that f(x)i+g(y)i+h(z)i = 1 (mod 2) which

implies 2f(x)i + 2g(y)i + 2h(z)i = 2 (mod 4). Similarly, if

(xi ∨ yi ∨ zi) = 0 then xi + yi + zi = 0 and the constraint

says that we want f(x)i + g(y)i + h(z)i = 0 (mod 2) which

implies that 2f(x)i+2g(y)i+2h(z)i = 0 (mod 4). Thus, the

GHZ test can be thought of as a system of equations modulo 4,

as suggested by the above intuition. More precisely, defining

F : {0, 1}n → Z
n
4 by F (x)i = 2f(x)i − xi and similarly

G,H : {0, 1}n → Z
n
4 by G(y)i = 2g(y)i − yi and H(z)i =

2h(z)i − zi, we have the following lemma:

Lemma I.2. For each x, y, z ∈ Sn, F (x)+G(y)+H(z) = 0
(mod 4) if and only if f(x)i ⊕ g(y)i ⊕ h(z)i = xi ∨ yi ∨ zi
for all i = 1, . . . , n. Consequently,

Pr
(x,y,z)∈Sn

[F (x) +G(y) +H(z) = 0 (mod 4)] � η.

Proof. Without loss of generality we focus on the first co-

ordinate. If (x1, y1, z1) = (0, 0, 0), then by (1) we get that

f(x)1 ⊕ g(y)1 ⊕ h(z)1 = 0, hence either all of them are

0 or exactly two of them are 1, and in any case 2f(x)1 +
2g(y)1 + 2h(z)1 = 0 (mod 4). Otherwise, without loss of

generality (x1, y1, z1) = (1, 1, 0), and then by (1) we get

f(x)1 ⊕ g(y)1 ⊕ h(z)1 = 1, and there are two cases. If

f(x)1 = g(y)1 = h(z)1 = 1, then we get that F (x)1+G(y)1+
H(z)1 = 2 − 1 + 2 − 1 + 2 + 0 = 0 (mod 4). Else, exactly

one of them is 1, say f(x)1 = 1 and g(y)1 = h(z)1 = 0, and

then F (x)1+G(y)1+H(z)1 = 2−1+0−1+0−0 = 0.

In words, Lemma I.2 says that F,G,H form an approxi-

mate “cross homomorphism” from Z
n
2 to Z

n
4 . Once we have

made this observation, the proof is concluded by a routine

application of powerful tools from additive combinatorics.

More specifically, we appeal to results of Gowers and show

for any F that satisfies Lemma I.2 (for some G and H) must

exhibit some weak linear behaviour. Specifically, we show that

for such F there is a shift s ∈ Z
n
4 such that F (x) ∈ s+{0, 2}n

for at least η′ = Ω(η1028) fraction of inputs. On the other hand,

on such points x we get that 2f(x)−x = F (x) = s+L(x) for

some L(x) ∈ {0, 2}n, and noting that this must hold modulo

2 we get that there can only be one such point, x = −s
(mod 2). Thus, η′ � 2−n, giving an exponential bound on η.

II. PROOF OF THEOREM I.1

A. From Testing to Additive Quadruples

We need the following definition:

Definition II.1. Let (A,+), (B,+) be Abelian groups, and let
F : An → Bn. We say (x, y, u, v) ∈ An × An × An × An is
an additive quadruple if x + y = u + v and F (x) + F (y) =
F (u) + F (v).

In our application, we will always have A = {0, 1}. For

convenience we denote N = 2n. Thus, it is clear that the

number of additive quadruples is always at most N3 (as this

is the number of solutions to x + y = u + v). The following

lemma asserts that if F,G,H : {0, 1}n → Bn are functions

such that F (x) + G(y) + H(z) = 0 for at least η of the

triples x, y, z satisfying x ⊕ y = z (such as the one given in

Lemma I.2), then each one of the functions F,G and H has

a substaintial amount of additive quadruples.

Lemma II.2. Suppose that F,G,H : {0, 1}n → Bn satisfy
that

Pr
(x,y,z)∈Sn

[F (x) +G(y) +H(z) = 0] � η.

Then F has at least η4N3 additive quadruples.

Proof. By the premise and Cauchy-Schwarz

η2 = E
y

[
E
x

[
1G(y)=−F (x)−H(x⊕y)

]]2

� E
y

[
E
x

[
1G(y)=−F (x)−H(x⊕y)

]2]

= E
y

[
E

x,x′

[
1G(y)=−F (x)−H(x⊕y)1G(y)=−F (x′)−H(x′⊕y)

]]

� E
x,x′,y

[
1F (x)−F (x′)=H(x′⊕y)−H(x⊕y)

]
.

Making change of variables, we get that η2 �
Ex,u,u′

[
1F (x)−F (x⊕u⊕u′)=H(u′)−H(u)

]
. Squaring and
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using Cauchy-Schwarz again we get that

η4 � E
x,u,u′

[
1F (x)−F (x⊕u⊕u′)=H(u′)−H(u)

]2

� E
u,u′

[
E
x

[
1F (x)−F (x⊕u⊕u′)=H(u′)−H(u)

]2]

� E
u,u′

[
E

x,x′

[
1F (x)−F (x⊕u⊕u′)=F (x′)−F (x′⊕u⊕u′)

]]
,

which by another change of variables is equal to

Ex,y,u,v:x+y=u+v

[
1F (x)+F (y)=F (u)+F (v)

]
, and the claim is

proved.

B. From Additive Quadruples to Linear Structure

We intend to use Lemma II.2 to conclude a structural result

for F , and towards this end we show that a function that has

many additive quadruples must exhibit some linear structure.

The content of this section is a straight-forward combination of

well-known results in additive combinatorics, and we include

it here for the sake of completeness. We need the notions of

Freiman homomorphism, sum-sets and a result of Gowers [8].

We begin with two definitions:

Definition II.3. Let (A,+) and (B,+) be Abelian groups, let
n ∈ N and let A ⊆ An. A function φ : A → Bn is called a
Freiman homorphism of order k if for all a1, . . . , ak ∈ A and
b1, . . . , bk ∈ A such that a1+ . . .+ak = b1+ . . .+bk it holds
that

φ(a1) + . . .+ φ(ak) = φ(b1) + . . .+ φ(bk).

Definition II.4. Let (A,+) be an Abelian group, let n ∈ N

and let A,B ⊆ An. We define

A+ B = {a+ b | a ∈ A, b ∈ B} .
If A = B, we denote the sum-set A + B more succinctly as
2A, and more generally kA denotes the k-fold sum set of A.

We need a result of Gowers [8] asserting that a function F
with many additive quadruples can be restricted to a relatively

large set and yield a Freiman homomorphism. Gowers states

and proves the statement for ZN , and we adapt his proof

for our setting. For the proof we need two notable results

in additive combinatorics. The first of which is the Balog-

Szemerédi-Gowers theorem, and we use the version from [17]:

Theorem II.5 (Balog-Szemerédi-Gowers). Let G
be an Abelian group, and suppose that Γ ⊆ G
contains at least ξ |Γ|3 additive quadruples, that is,∣∣{ (x, y, z, w) ∈ Γ4

∣∣x+ y = z + w
}∣∣ � ξ |Γ|3. Then

there exists Γ′ ⊆ Γ of size at least Ω(ξ |Γ|) such that
|Γ′ − Γ′| � O(ξ−4 |Γ′|).

The second result we need is Plünnecke’s inequality [12],

[15] (see also [11]):

Theorem II.6 (Plünnecke’s inequality). Let G be an Abelian
group, and suppose that Γ ⊆ G has |Γ− Γ| � C |Γ|. Then
|mΓ− rΓ| � Cm+r |Γ|.

Lemma II.7 (Corollary 7.6 in [8]). Let n ∈ N, and suppose
that a function φ : Zn

2 → Z
n
4 has at least ξ |Zn

2 |3 additive
quadruples. Then there exists A ⊆ Z

n
2 such that φ|A is a

Freiman homomorphism of order 8 and |A| � Ω(ξ257 |Zn
2 |).

Proof. Let Γ = { (x, φ(x)) |x ∈ Z
n
2} be the graph of φ, and

think of it as a set in the Abelian group Z
n
2 × Z

n
4 . Then Γ

contains at least ξ |Zn
2 |3 = ξ |Γ|3 solutions to γ1 + γ2 = γ3 +

γ4, hence by Theorem II.5 we may find Γ′ ⊆ Γ such that

|Γ′| � Ω(ξ |Γ|) and |Γ′ − Γ′| � O(ξ−4 |Γ′|). By Theorem II.6

we get that |16Γ′ − 16Γ′| � O(ξ−32·4 |Γ′|) � C · |Γ′| where

C = O(ξ−128).

Let Y = {y ∈ Z
n
4 | (0, y) ∈ 8Γ′ − 8Γ′}; we claim that

|Y| � C and towards contradiction we assume the contrary.

First, note that we may choose |Γ′| distinct values of x
such that (x,wx) ∈ 8Γ′ − 8Γ′ for some wx. Indeed, we

can fix any 15 elements (xi, wi) ∈ Γ′ for i = 1, . . . , 15,

and range over all |Γ′| pairs (x,wx) ∈ Γ′ to get |Γ′|
elements (x + x′ − x′′, wx + w′ − w′′) ∈ 8Γ′ − 8Γ′ where

x′ = x1+. . .+x7, x′′ = x8+. . .+x15 and w′ = w1+. . .+w7

and w′′ = w8+ . . .+w15, which have distinct first coordinate.

Thus, looking at the |Γ′| elements (x,wx) ∈ 8Γ′ − 8Γ′ with

distinct first coordinate, we get that (x,wx+y) ∈ 16Γ′−16Γ′

for all x and y ∈ Y , hence |16Γ′ − 16Γ′| > C |Γ′|, in

contradiction. The set Y will be useful for us as for any

x ∈ Z
n
2 , we may define Yx = {y | (x, y) ∈ 4Γ′ − 4Γ′} and

get that Yx − Yx ⊆ Y .

Take t = log(C)+1, choose I1, . . . , It ⊆ [n] independently

and uniformly and consider

W =

⎧⎨
⎩y ∈ Z

n
4 |

∑
j∈Ii

yj = 0 ∀i = 1, . . . , t

⎫⎬
⎭ .

We note that the 0 vector is always in W , but any other y ∈ Z
n
4

is in W with probability at most 2−t. Indeed, if y’s entries are

all {0, 2}-valued then y can be in W only if y/2 satisfies t
randomly chosen equations modulo 2, which happens with

probability 2−t. If there are entries of y that are either 1 or

3, then we get that y (mod 2) is a non-zero vector that must

satisfy t randomly chosen equations modulo 2, which happens

with probability 2−t. Thus, E [|Y ∩W \ {0}|] � 2−t |Y| < 1,

so we may choose W such that Y ∩W = {0}.

For an a ∈ Z
n
4 we define Γ′

a = { (x, y) ∈ Γ′ | y ∈ a+W}.

We claim that there is a choice for a such that (1)

|Γ′
a| � 4−t |Γ′| � Ω(ξ257 |Zn

2 |), and (2) taking A =
{x | ∃y such that (x, y) ∈ Γ′

a}, the function φ|A is a Freiman

homomorphism of order 8. Together, this gives the statement

of the lemma.
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For the first item we have

E
a
[|Γ′

a|] =
∑

(x,y)∈Γ′
Pr
a
[y ∈ a+W]

=
∑

(x,y)∈Γ′
Pr
a
[y − a ∈ W]

�
∑

(x,y)∈Γ′
4−t

= 4−t |Γ′| ,
so there is an a such that |Γ′

a| � 4−t |Γ′|, and we show that

the second item holds for all a.

Suppose towards contradiction that φ|A is not a Freiman

homomorphism of order 8. Thus we can find x1, . . . , x8 ∈ A
and x′

1, . . . , x
′
8 ∈ A that have the same sum yet φ(x1) +

. . . + φ(x8) 
= φ(x′
1) + . . . + φ(x′

8). Denoting x = x1 +
. . . + x4 − x′

5 − . . . − x′
8 = x′

1 + . . . + x′
4 − x5 − . . . − x8,

y = φ(x1) + . . . + φ(x4) − φ(x′
5) − . . . − φ(x′

8) and y′ =
φ(x′

1)+ . . .+φ(x′
4)−φ(x5)− . . .−φ(x8) so that y 
= y′, we

get that (x, y), (x, y′) ∈ 4Γ′
a−4Γ′

a ⊆ 4Γ′−4Γ′, so y, y′ ∈ Yx.

In particular, y − y′ ∈ Yx − Yx ⊆ Y . On the other hand, by

choice of A we get that φ(xi), φ(x
′
i) ∈ a + W for all i and

so y, y′ ∈ 4W − 4W = W and so y− y′ ∈ W . It follows that

y− y′ ∈ Y ∩W , but by the choice of W this last intersection

only contains the 0 vector, and contradiction.

Thus, combining Lemmas II.2 and II.7 we are able to

conclude that F is a Freiman homomorphism of order 8
when restricted to a set A ⊆ Z

n
2 whose size is at least

Ω(η1028N). A Freiman homomorphism of order 8 is also a

Freiman homomorphism of order 4, and the following lemma

shows this tells that there is a shift of {0, 2}n in which F (x)
lies for many x’s:

Lemma II.8. Let A ⊆ Z
n
2 and suppose that φ : A → Z

n
4 is

a Freiman homomorphism of order 4. Then there is s ∈ Z
n
4

such that for all x ∈ A, φ(x) ∈ s+ {0, 2}n.

Proof. Choose any a ∈ A and let s = φ(a). Then for any

x ∈ A, applying the Freiman homomorphism condition on the

tuples (x, x, a, a) and (a, a, a, a) that have the same sum over

Z
n
2 , we get that 2φ(x)+2φ(a) = 4φ(a) = 0, so 2(φ(x)−s) =

0. This implies that φ(x) − s ∈ {0, 2}n, and the proof is

concluded.

Combining the last two lemmas we get the following

corollary.

Corollary II.9. Suppose that F : Zn
2 → Z

n
4 is a func-

tion for which there are G,H : Zn
2 → Z

n
4 such that

Pr(x,y,z)∈Sn [F (x) +G(y) +H(z) = 0] � η. Then there is
s ∈ Z

n
4 such that

Pr
x∈Z

n
2

[F (x) ∈ {0, 2}n + s] � Ω(η1028).

Proof. By Lemma II.2 we get that F has at least η4N3

additive quadruples, so by Lemma II.7 there is A ⊆ Z
n
2

of size at least Ω(η1028N) such that F |A is a Freiman

homomorphism. Applying Lemma II.8 we conclude that there

is s ∈ Z
n
4 such that F (x) ∈ s+ {0, 2}n for all x ∈ A and the

proof is concluded.

C. Concluding Theorem I.1

Let f, g, h : {0, 1}n → {0, 1}n be strategies that achieve

value at least η in GHZ⊗n, and define F : Z
n
2 →

Z
n
4 by F (x) = 2f(x) − x and similarly G(y) =

2g(y) − y and H(z) = 2h(z) − z. By Lemma I.2

we get that Pr(x,y,z)∈Sn [F (x) +G(y) +H(z) = 0] � η,

hence by Corollary II.9 there is s ∈ Z
n
4 such that

Prx∈Z
n
2
[F (x) ∈ s+ {0, 2}n] � η′ for η′ = Ω(η1028). For any

such x, we get that 2f(x) − x = F (x) = s + L(x) where

L(x) ∈ {0, 2}n, and so x = −s + 2f(x) − L(x). Note that

this is equality modulo 4 hence it implies it also holds modulo

2. We also have that 2f(x)−L(x) ∈ {0, 2}n so this vanishes

modulo 2, hence we get that x = −s (mod 2). In other words,

there can be at most single x such that F (x) ∈ s + {0, 2}n
and so Prx∈Z

n
2
[F (x) ∈ s+ {0, 2}n] � 2−n. Combining, we

get that η′ � 2−n and so η � 2−n/1028+O(1).
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