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Abstract—We show that the value of the n-fold repeated GHZ
game is at most 2_9(”), improving upon the polynomial bound
established by Holmgren and Raz. Our result is established via a
reduction to approximate subgroup type questions from additive
combinatorics.

Index Terms—Parallel Repetition, GHZ game, Abelian Em-
beddings ,Analysis of Boolean functions, Additive Combinatorics

I. INTRODUCTION

The GHZ game is a 3-player game in which a
verifier samples a triplet (z,y,z) uniformly from
S = {(zy.2) |7,y,2€{0,1}, 26y & 2=0 (mod 2)},
then sends x to Alice, y to Bob and z to Charlie. The
verifier receives from each one of them a bit, a from
Alice, b from Bob and ¢ from Charlie, and accepts if
and only if a b & ¢ = o VyV z Itis easy to prove
that the value of the GHZ game, val(GHZ), defined as
the maximum acceptance probability of the verifier over
all strategies of the players, is 3/4. The n-fold repeated
GHZ game is the game in which the verifier samples
(i, i, 2;) independently from S for i« = 1,...,n, sends
= (x1,...,20), ¥ = (Y1,---,yn) and Z = (z1,...,2,) to
Alice, Bob and Charlie respectively, receives vector answers

[@) = (A@), - ful@), 97) = (92(7),-- -, 9n(¥))
and h(Z) = (hl( Z),...,hn(Z)) and accepts if and only if
fi(®) @ g:(y) @ ()—xi\/yi\/ziforallz':1,...,n.

What can one say about the value of the n-fold repeated
game, vaI(GHZ®”)? As for lower bounds, it is clearly that
case that val(GHZ®™) > (3/4)" and one expects that value
of the game to be exponentially decaying with n. Proving
such upper bounds though is significantly more challenging.
The GHZ game is a prime example of a 3-player game
for which parallel repetition is not well understood. For 2-
player games, parallel repetition theorems with an exponential
decay have been known for a long time [14], [9], [13], [2], [4],
and in fact the state of the art parallel repetition theorems for
2-player games are essentially optimal. As for multi-player
games, Verbitsky showed [18] that the value of the n-fold
repeated game approaches 0, however his argument uses the
density Hales-Jewett theorem and hence gives a weak rate of
decay (inverse Ackermann type bounds in n). More recently,
researchers have been trying to investigate multi-player games
more systematically and managed to prove an exponential
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decay for a certain class of games known as expanding
games [3]. This work also identified the GHZ game as a
bottleneck for current technique, saying that, in a sense, the
GHZ game exhibits the worst possible correlations between
questions for which existing information-theoretic techniques
are incapable of handling.

A sequence of recent works [10] (subsequently simplified
by [5]) managed to prove stronger parallel repetition theorems
for the GHZ game, and indeed as suggested by [3] this
development led to a parallel repetition theorem for a certain
class of 3-player games [6], [7], namely for the class of
games with binary questions. Quantitatively, they showed that
val(GHZ®™) < 1/n®*(), and subsequently that for any 3-
player game G with val(G) < 1 whose questions are binary,
one has that val(G®") < 1/n(1). The techniques utilized
by these works is a combination of information theoretic
techniques (as used in the case of 2-player games) and Fourier
analytic techniques.

A. Our Result

The main result of this paper is an improved upper bound
for the value of the n-fold repeated GHZ game, which is
exponential in n. More precisely:

Theorem I.1. There is € > 0 such that for all n,
val(GHZ®™) < 2=,

Such bounds cannot be achieved by the methods of [10], [5],
[6], [7], and we hope that the observations made herein would
be useful towards getting better parallel repetition theorems
for more general classes of 3-player games.

B. Proof Idea

Our proof of Theorem 1.1 follows by reducing it to approx-
imate sub-group type questions from additive combinatorics,
and our argument uses results of Gowers [8]. Similar ideas
have been also explored in the TCS community (for example,
by Samorodnitsky [16]).

Suppose f: {0,1}" — {0,1}", g: {0,1}" — {0,1}" and
h:{0,1}"™ — {0,1}" represent the strategies of Alice, Bob
and Charlie respectively, and denote their success probability
by 1. Thus, we have that

Pr [flx)@gly)@h(z)=aVvyVvzl=n 1)
(z,y,z)ES™
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where the operations are coordinate-wise. Using Cauchy-
Schwarz it follows that if we sample z,y,z and w,v,w
conditioned on z VyV z = u VvV w, then f(z) @ g(y) ®
h(z) = f(u)® g(v) ®h(w) with probability at least n?, hence
f@)a flu)®gly)®g(v)®h(z)®h(w) = 0. What functions
f,g,h can satisfy this? We draw an intuition from [1], that
suggested that such advantage can only be gained from linear
embeddings. In this respect, we are looking at the predicate
P:¥3 — {0,1} with alphabet ¥ = {0,1}? defined as
P((z,u), (y,v),(z,w)) = 1ifzaVyVz =uVoVuw,
r+y+2z=0and v+ v+ w=0. A linear embedding is an
Abelian group (A, +) and a collection of maps ¢: ¥ — A,
v:% — A and §: ¥ — A not all constant such that
o(z,u) + v(y,v) + 6(z,w) = 0. There are 2 trivial linear
embeddings into (Zs,+): the projection onto the first coor-
dinate as well as the projection onto the second coordinate.
Thus, one is tempted to guess that in the above scenario, the
functions f,g and h must use these linear embeddings and
thus be correlated with linear functions over Zs. Alas, it turns
out that there is yet, another embedding which is less obvious:
taking (A7+) = (Z4a+)’ ¢(JZ‘7U,) =rtu V(yvv) =y+v
and 0(z,w) = z +w. This motivates us to look at the original
problem and see if we can already see (Z4, +) structure there.

a) Approximate Homomorphisms.: For (z,y,z) € S, if
zVyVz =1, then exactly two of the variables are 1; if zVyV
z = 0, then all of =, y, z are 0. Thus, one can see that the check
we are making is equivalent to checking that 2f(x) + 2¢g(y) +
2h(z) =x+y+ 2z (mod 4). Indeed, on a given coordinate 1,
if (x; Vy; V z)is 1, then x; +y; + z; = 2 and the answers
need to satisfy that f(z); +g(y); +h(z); =1 (mod 2) which
implies 2f(x); + 29(y)i + 2h(z); = 2 (mod 4). Similarly, if
(r; Vy; Vz) =0 then z; + y; + z; = 0 and the constraint
says that we want f(z); + g(y); + h(2); =0 (mod 2) which
implies that 2f(x); +2¢(y); +2h(z); = 0 (mod 4). Thus, the
GHZ test can be thought of as a system of equations modulo 4,
as suggested by the above intuition. More precisely, defining
F:{0,1}" — Z} by F(z); = 2f(x); — z; and similarly
G,H:{0,1}" — Z} by G(y); = 29(y); — y; and H(z); =
2h(z); — z;, we have the following lemma:

Lemma 1.2. For each z,y,z € S", F(z)+G(y)+H(z) =0
(mod 4) if and only if f(x); & g(y)i © h(2)i = @i V yi V 2
forall i =1,...,n. Consequently,

[F(a) +Gly) + H(z) =0 (mod 4)] > n.

Pr

(z,y,z)eS™
Proof. Without loss of generality we focus on the first co-
ordinate. If (x1,y1,21) = (0,0,0), then by (1) we get that
f(x)1 @ g(y)1 ® h(z)1 = 0, hence either all of them are
0 or exactly two of them are 1, and in any case 2f(x); +
2g(y)1 + 2h(z)1 = 0 (mod 4). Otherwise, without loss of
generality (z1,y1,21) = (1,1,0), and then by (1) we get
f@)1 ® g(y)1 ® h(z); = 1, and there are two cases. If
f(z)1 = g(y)1 = h(2)1 = 1, then we get that F'(z)1+G(y)1+
H(z)1 =2—-14+2—-1+2+0=0 (mod 4). Else, exactly
one of them is 1, say f(z); =1 and g(y); = h(z); = 0, and
then F(2)14+G(y) +H(z)1 =2—14+0—14+0—-0=0. [

In words, Lemma 1.2 says that ., G, H form an approxi-
mate “cross homomorphism” from Z% to Zj}. Once we have
made this observation, the proof is concluded by a routine
application of powerful tools from additive combinatorics.

More specifically, we appeal to results of Gowers and show
for any F' that satisfies Lemma 1.2 (for some G and H) must
exhibit some weak linear behaviour. Specifically, we show that
for such I there is a shift s € Z} such that F'(z) € s+{0,2}"
for at least ' = Q(1'°?8) fraction of inputs. On the other hand,
on such points = we get that 2f (x) —x = F(x) = s+ L(x) for
some L(x) € {0,2}", and noting that this must hold modulo
2 we get that there can only be one such point, z = —s
(mod 2). Thus, n’ < 27", giving an exponential bound on 7).

II. PROOF OF THEOREM I.1

A. From Testing to Additive Quadruples

We need the following definition:

Definition IL.1. Ler (A, +), (B, +) be Abelian groups, and let
F: A" — B". We say (x,y,u,v) € A" x A" x A™ x A" is
an additive quadruple if x +y =u+v and F(z) + F(y) =
F(u) + F(v).

In our application, we will always have A = {0,1}. For
convenience we denote N = 2". Thus, it is clear that the
number of additive quadruples is always at most N3 (as this
is the number of solutions to z + y = u + v). The following
lemma asserts that if F,G,H: {0,1}" — B™ are functions
such that F(z) + G(y) + H(z) = 0 for at least  of the
triples x, vy, z satisfying « & y = z (such as the one given in
Lemma 1.2), then each one of the functions F, G and H has
a substaintial amount of additive quadruples.

Lemma IL2. Suppose that F,G,H: {0,1}" — B" satisfy
that

[F(z)+G(y) + H(z) =0] = n.

T
(z,y,2)€ES™

Then F has at least w* N3 additive quadruples.

Proof. By the premise and Cauchy-Schwarz

2
n :]g E [1G(y):7F(w)fH(w@y)]]

IN
< &

E [lc;(y):_F(z)_H(z@m]ﬂ

x

=E| B [log)—r@)-r@en l6t)=—F@e)-Hwey)]

LLs

< E [lp@)-re)=H@ey)-Hoy) -
z,x’ )y

we get that n? <

Squaring and

Making
Ea,uw [1F(2)— Ps@udu)=H(u)—H(w)) -

change of variables,

1338

Authorized licensed use limited to: New York University. Downloaded on September 07,2024 at 14:18:44 UTC from IEEE Xplore. Restrictions apply.



using Cauchy-Schwarz again we get that

<

4 2
U iEu [1F(2)= Fa@uu )= H (u)— H(u))

<

2
E [15 [Lr(o)- Fagusu)=H ()~ Hw)] ]
U,u

<

which by another change of variables equal

Ex .y u,v:a+y=utv [lF(I)+F(y)=F(u)+F(v)] , and the claim is
proved. O

]I%/ |:1Ei' [1F(z)—F(z@u@u’)=F(1")—F(1"€Bu®u’)]

is to

B. From Additive Quadruples to Linear Structure

We intend to use Lemma II.2 to conclude a structural result
for F', and towards this end we show that a function that has
many additive quadruples must exhibit some linear structure.
The content of this section is a straight-forward combination of
well-known results in additive combinatorics, and we include
it here for the sake of completeness. We need the notions of
Freiman homomorphism, sum-sets and a result of Gowers [8].
We begin with two definitions:

Definition I1.3. Let (A, +) and (B, +) be Abelian groups, let
n € N and let A C A". A function ¢: A — B" is called a
Freiman homorphism of order k if for all a1, ...,a; € A and
bi,...,b, € A such that a1+ ...+ ay = by + ...+ by it holds
that

Plar) + ...+ dlar) = ¢(br) + ... + ¢(br).

Definition I1.4. Ler (A,+) be an Abelian group, let n € N
and let A, B C A™. We define

A+B={a+blac Abec B}.

If A = B, we denote the sum-set A + B more succinctly as
2A, and more generally kA denotes the k-fold sum set of A.

We need a result of Gowers [8] asserting that a function F
with many additive quadruples can be restricted to a relatively
large set and yield a Freiman homomorphism. Gowers states
and proves the statement for Zp, and we adapt his proof
for our setting. For the proof we need two notable results
in additive combinatorics. The first of which is the Balog-
Szemerédi-Gowers theorem, and we use the version from [17]:

Theorem 1.5 (Balog-Szemerédi-Gowers). Let G
be an Abelian group, and suppose that I' C G
contains at least ¢|U|> additive quadruples, that is,
!{(x7y,z,w)ef4|x+y:z+w}| >  ¢[LP. Then

there exists T' C T of size at least QUE|T|) such that
I =T < O~ [1]).
The second result we need is Pliinnecke’s inequality [12],

[15] (see also [11]):

Theorem II.6 (Plinnecke’s inequality). Let G be an Abelian
group, and suppose that T' C G has | —T'| < C|T'|. Then
|mI —r[| < C™F7 L.
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Lemma IL7 (Corollary 7.6 in [8]). Let n € N, and suppose
that a function ¢: Z% — 77 has at least &|Z3|° additive
quadruples. Then there exists A C 7% such that ¢|4 is a
Freiman homomorphism of order 8 and |A| > Q&7 |Z3)).

Proof. Let I' = {(x,¢(x)) |« € Z5} be the graph of ¢, and
think of it as a set in the Abelian group Z5 x Zj. Then I'
contains at least & |Z2|*> = ¢ |T)* solutions to 71 + 72 = 73 +
~4, hence by Theorem IL.5 we may find IV C IT' such that
IT’| = Q(&T)) and TV —T7| < O(¢~#|T|). By Theorem I1.6
we get that |16 — 1617| < O(£7324|1Y]) < C - |T’| where
C = 0(57128).

Let Y = {yeZ}|(0,y) € 8" —8I'}; we claim that
|Y| < C and towards contradiction we assume the contrary.
First, note that we may choose |I”| distinct values of z
such that (x,w,) € 8I' — 8I" for some w,. Indeed, we
can fix any 15 elements (z;,w;) € I for i = 1,...,15,
and range over all |[V| pairs (r,w,) € TV to get |IV|
elements (z + 2’ — 2", w, + v’ — w”) € 8I' — 81" where
r=x1+.. a2 =x3+...+zisand w’ = wi+. .. Fwy
and w” = wg+. ..+ w15, which have distinct first coordinate.
Thus, looking at the |I'| elements (x,w,) € 8" — 8I" with
distinct first coordinate, we get that (z, w, +y) € 16" — 161"
for all z and y € ), hence |16I" — 16I"| > C'|I”|, in
contradiction. The set ) will be useful for us as for any
x € Z%, we may define )V, = {y|(z,y) € 41" — 41"} and
get that )V, — )V, C ).

Take t = log(C)+1, choose I, ..
and uniformly and consider

., Iy C [n] independently

W=QyeZy|> y=0Vi=1,...1t
JEL;

We note that the 0 vector is always in W, but any other y € Z}
is in W with probability at most 27¢. Indeed, if y’s entries are
all {0,2}-valued then y can be in W only if y/2 satisfies ¢
randomly chosen equations modulo 2, which happens with
probability 27¢. If there are entries of y that are either 1 or
3, then we get that y (mod 2) is a non-zero vector that must
satisfy ¢ randomly chosen equations modulo 2, which happens
with probability 27¢. Thus, E [|[Y N W\ {0}]] <27 || < 1,
so we may choose W such that Y N W = {0}.

For an a € Z} we define I, = {(z,y) € I" |y € a + W}.
We claim that there is a choice for a such that (1)
7] = 474 > Q(*7|Z%]), and (2) taking A
{x | Jy such that (z,y) € ', }, the function ¢| 4 is a Freiman
homomorphism of order 8. Together, this gives the statement
of the lemma.

Authorized licensed use limited to: New York University. Downloaded on September 07,2024 at 14:18:44 UTC from IEEE Xplore. Restrictions apply.



For the first item we have

E[TiI= Y Prlyea+w)

(z,y)eT”
= Z P;r [y—aecW|
(w,y)eT”
> ) 4
(z,y)er’
=47,

so there is an a such that |I| > 47¢|I"|, and we show that
the second item holds for all a.

Suppose towards contradiction that ¢|4 is not a Freiman
homomorphism of order 8. Thus we can find x1,...,z5 € A
and z),...,25 € A that have the same sum yet ¢(x1) +
vt Plxg) # o(x)) + ... + &(xg). Denoting x = x1 +

ety —ab— .z =2+t — s — . — xs,
y = &)+ ...+ dlxa) — p(ah) — ... — P(xf) and ¢y =
o)) +...+d(ahy) — Pp(xs) — ... — @(xs) so that y # ¢/, we

get that (z,y), (x,y') € 4T, —4T", C A" —4T", so y,y' € V,.
In particular, y — 3" € Y, — Y, C ). On the other hand, by
choice of A we get that ¢(z;), p(z,) € a + W for all i and
soy,y €4V -4V =W and so y —y' € W. It follows that
y—1y' € YNW, but by the choice of W this last intersection
only contains the O vector, and contradiction. O

Thus, combining Lemmas II.2 and II.7 we are able to
conclude that F' is a Freiman homomorphism of order 8
when restricted to a set A C Z5 whose size is at least
Q(n'9%8N). A Freiman homomorphism of order 8 is also a
Freiman homomorphism of order 4, and the following lemma
shows this tells that there is a shift of {0,2}" in which F'(x)
lies for many «’s:

Lemma I1.8. Ler A C Z% and suppose that ¢: A — Z} is
a Freiman homomorphism of order 4. Then there is s € Z}
such that for all x € A, ¢(x) € s+ {0,2}™.

Proof. Choose any a € A and let s = ¢(a). Then for any
x € A, applying the Freiman homomorphism condition on the
tuples (z,x,a,a) and (a, a,a,a) that have the same sum over
7Y, we get that 2¢(z) +2¢(a) = 4¢(a) = 0, so 2(p(x)—s) =
0. This implies that ¢(z) — s € {0,2}", and the proof is
concluded. O

Combining the last two lemmas we get the following
corollary.

Corollary I1.9. Suppose that F: Zy — Zj is a func-
tion for which there are G,H: Zy — 7} such that
Prigy.2yesn [F(x) + G(y) + H(z) = 0] = n. Then there is
s € 7y such that

Pr [F(z) € {0,2}" + 5] > Q(n'?%®).

x €Ly
Proof By Lemma IL2 we get that F' has at least n*N?3
additive quadruples, so by Lemma IL.7 there is A C ZI
of size at least Q(n'°?8N) such that F|4 is a Freiman
homomorphism. Applying Lemma II.8 we conclude that there
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is s € Z} such that F(z) € s+ {0,2}" for all z € A and the
proof is concluded. O

C. Concluding Theorem I.1

Let f,g,h: {0,1}" — {0,1}" be strategies that achieve
value at least 1 in GHZ®", and define F: Z§ —
74 by F(x) 2f(x) — x and similarly G(y)
29(y) — y and H(z) 2h(z) — z. By Lemma 1.2
we get that Pre, , yegn [F(z) +G(y) + H(z) =0] > n,
hence by Corollary II9 there is s € Z} such that
Proezn [F(x) € s +{0,2}"] = o/ for ' = Q(n'°**). For any
such z, we get that 2f(z) —z = F(z) = s + L(x) where
L(z) € {0,2}", and so © = —s + 2f(x) — L(x). Note that
this is equality modulo 4 hence it implies it also holds modulo
2. We also have that 2f(x) — L(z) € {0,2}" so this vanishes
modulo 2, hence we get that x = —s (mod 2). In other words,
there can be at most single = such that F'(z) € s+ {0,2}"
and 50 Pryezp [F(x) € s+ {0,2}"] < 27". Combining, we
get that 7/ < 27" and so 5 < 277/1028+0(1),

ACKNOWLEDGEMENT

Author Braverman was supported by NSF Alan T. Water-
man Award, Grant No. 1933331, a Packard Fellowship in
Science and Engineering, and the Simons Collaboration on
Algorithms and Geometry. Author Khot was supported by
NSF Award CCF-1422159, NSF Award CCF-2130816, and
the Simons Investigator Award. Author Minzer was supported
by a Sloan Research Fellowship, NSF CCF award 2227876
and NSF CAREER award 2239160.

REFERENCES

[1] Amey Bhangale, Subhash Khot, and Dor Minzer. On approximability
of satisfiable k-csps: 1. In STOC °’22: 54th Annual ACM SIGACT
Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022,
pages 976-988, 2022.

Mark Braverman and Ankit Garg. Small value parallel repetition for
general games. In Proceedings of the Forty-Seventh Annual ACM on
Symposium on Theory of Computing, STOC 2015, Portland, OR, USA,
June 14-17, 2015, pages 335-340. ACM, 2015.

Irit Dinur, Prahladh Harsha, Rakesh Venkat, and Henry Yuen. Multi-
player parallel repetition for expanding games. In 8th Innovations in
Theoretical Computer Science Conference, ITCS 2017, January 9-11,
2017, Berkeley, CA, USA, volume 67 of LIPIcs, pages 37:1-37:16, 2017.
Irit Dinur and David Steurer. Analytical approach to parallel repetition.
In Symposium on Theory of Computing, STOC 2014, New York, NY,
USA, May 31 - June 03, 2014, pages 624-633. ACM, 2014.

Uma Girish, Justin Holmgren, Kunal Mittal, Ran Raz, and Wei Zhan.
Parallel repetition for the GHZ game: A simpler proof. In Approxima-
tion, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2021, August 16-18, 2021, University
of Washington, Seattle, Washington, USA (Virtual Conference), volume
207 of LIPIcs, pages 62:1-62:19, 2021.

Uma Girish, Justin Holmgren, Kunal Mittal, Ran Raz, and Wei Zhan.
Parallel repetition for all 3-player games over binary alphabet. In STOC
'22: 54th Annual ACM SIGACT Symposium on Theory of Computing,
Rome, Italy, June 20 - 24, 2022, pages 998-1009. ACM, 2022.

Uma Girish, Kunal Mittal, Ran Raz, and Wei Zhan. Polynomial
bounds on parallel repetition for all 3-player games with binary inputs.
In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2022, September 19-
21, 2022, University of lllinois, Urbana-Champaign, USA (Virtual
Conference), volume 245 of LIPIcs, pages 6:1-6:17, 2022.

William T Gowers. A new proof of Szemerédi’s theorem. Geometric
& Functional Analysis GAFA, 11(3):465-588, 2001.

(3]

[5

(8

[t

Authorized licensed use limited to: New York University. Downloaded on September 07,2024 at 14:18:44 UTC from IEEE Xplore. Restrictions apply.



(9]
[10]
[11]
[12]
[13]

[14]

Thomas Holenstein. Parallel repetition: Simplification and the no-
signaling case. Theory Comput., 5(1):141-172, 20009.

Justin Holmgren and Ran Raz. A parallel repetition theorem for the
GHZ game. CoRR, abs/2008.05059, 2020.

Giorgis Petridis. New proofs of Pliinnecke-type estimates for product
sets in groups. Combinatorica, 32(6):721-733, 2012.

Helmut Pliinnecke. Eine zahlentheoretische anwendung der graphenthe-
orie. 1970.

Anup Rao. Parallel repetition in projection games and a concentration
bound. SIAM J. Comput., 40(6):1871-1891, 2011.

Ran Raz. A parallel repetition theorem. SIAM J. Comput., 27(3):763—

1341

[15]

[16]

[17]

[18]

803, 1998.

Imre Z Ruzsa. An application of graph theory to additive number theory.
Scientia, Ser. A, 3(97-109):9, 1989.

Alex Samorodnitsky. Low-degree tests at large distances. In Proceedings
of the thirty-ninth annual ACM symposium on Theory of computing,
pages 506-515, 2007.

Tomasz Schoen. New bounds in Balog-Szemerédi-Gowers theorem.
Combinatorica, 35(6):695-701, 2015.

Oleg Verbitsky. Towards the parallel repetition conjecture. Theoretical
Computer Science, 157(2):277-282, 1996.

Authorized licensed use limited to: New York University. Downloaded on September 07,2024 at 14:18:44 UTC from IEEE Xplore. Restrictions apply.



