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ABSTRACT
We prove a stability result for general 3-wise correlations over

distributions satisfying mild connectivity properties. More con-

cretely, we show that if Σ, Γ and Φ are alphabets of constant size,

and 𝜇 is a distribution over Σ × Γ × Φ satisfying: (1) the probabil-

ity of each atom is at least Ω(1), (2) 𝜇 is pairwise connected, and
(3) 𝜇 has no Abelian embeddings into (Z, +), then the following

holds. Any triplets of 1-bounded functions 𝑓 : Σ𝑛 → C, 𝑔 : Γ𝑛 → C,
ℎ : Φ𝑛 → C satisfying����� E

(𝑥,𝑦,𝑧 )∼𝜇⊗𝑛
[𝑓 (𝑥)𝑔(𝑦)ℎ(𝑧)]

����� ⩾ 𝜀

must arise from an Abelian group associated with the distribution

𝜇. More specifically, we show that there is an Abelian group (𝐻, +)
of constant size such that for any such 𝑓 , 𝑔 and ℎ, the function 𝑓

(and similarly 𝑔 and ℎ) is correlated with a function of the form

˜𝑓 (𝑥) = 𝜒 (𝜎 (𝑥1), . . . , 𝜎 (𝑥𝑛))𝐿(𝑥), where 𝜎 : Σ → 𝐻 is some map,

𝜒 ∈ 𝐻̂⊗𝑛
is a character, and 𝐿 : Σ𝑛 → C is a low-degree function

with bounded 2-norm.

En route we prove a few additional results that may be of inde-

pendent interest, such as an improved direct product theorem, as

well as a result we refer to as a “restriction inverse theorem” about

the structure of functions that, under random restrictions, with

noticeable probability have significant correlation with a product

function.

In companion papers, we show applications of our results to

the fields of Probabilistically Checkable Proofs, as well as various

areas in discrete mathematics such as extremal combinatorics and

additive combinatorics.

CCS CONCEPTS
• Theory of computation→ Problems, reductions and com-
pleteness.
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1 INTRODUCTION
1.1 Studying 3-wise Correlations with Respect

to a Distribution
Let Σ, Γ and Φ be alphabets of constant size, suppose 𝜇 is a distri-

bution over Σ × Γ × Φ, and let 𝑓 : Σ𝑛 → C, 𝑔 : Γ𝑛 → C, ℎ : Φ𝑛 → C
be 1-bounded functions. What sort of triplets of functions 𝑓 , 𝑔 and

ℎ have a significant 3-wise correlation with respect to 𝜇? In other

words, what can be said about the functions 𝑓 , 𝑔 and ℎ in the case

that ����� E
(𝑥,𝑦,𝑧 )∼𝜇⊗𝑛

[𝑓 (𝑥)𝑔(𝑦)ℎ(𝑧)]
����� ⩾ 𝜀, (1)

where 𝜀 > 0 is thought of as a small constant? In [23], it is shown

that if 𝜇 is connected, then this can only be the case if each one

of 𝑓 , 𝑔 and ℎ is correlated with a low-degree function. Here, we

say that a distribution 𝜇 over Σ1 × Σ2 × Σ3 is connected if for

any partition of {1, 2, 3} into two sets 𝐼 ∪ 𝐽 , the bi-partite graph

between supp(𝜇𝐼 ) and supp(𝜇 𝐽 ) whose edges are all (𝑎, 𝑏) if (𝑎, 𝑏) ∈
supp(𝜇), is connected (𝜇𝐼 is the marginal distribution of 𝜇 on the

coordinates of 𝐼 ). In [2, 4], a strengthening of this result is proved,

and it is shown that it suffices that the distribution 𝜇 does not admit

any Abelian embeddings.

Definition 1.1. An Abelian embedding of a distribution 𝜇 over
Σ× Γ ×Φ consists of an Abelian group (𝐻, +) and 3 maps 𝜎 : Σ → 𝐻 ,
𝛾 : Γ → 𝐻 and 𝜙 : Φ → 𝐻 such that 𝜎 (𝑥) + 𝛾 (𝑦) + 𝜙 (𝑧) = 0 for all
(𝑥,𝑦, 𝑧) ∈ supp(𝜇). We say that the embedding (𝜎,𝛾, 𝜙) is non-trivial
if at least one of the maps is not constant.

Definition 1.2. We say a distribution 𝜇 admits an Abelian em-
bedding if it has a non-trivial Abelian embedding.

In this language, the main result of [2, 4] asserts that if 𝜇 does

not admit an Abelian embedding and the probability of each atom

in 𝜇 is at least 𝛼 thought of as a constant, then each one of 𝑓 , 𝑔 and

ℎ must be correlated with a low-degree function. As it can easily be

seen, this result is strictly stronger than the corresponding result

in [23] since any distribution 𝜇 which is connected does not admit

an Abelian embedding. Moreover, as explained in [2, 4] this result

is an if and only if, in the sense that in the presence of Abelian
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embedding one could design 1-bounded functions 𝑓 , 𝑔 and ℎ for

which (1) holds while at least one of the functions 𝑓 , 𝑔 and ℎ only

has 𝑜 (1)-correlation with any low-degree function.

The main goal of this paper is to extend this understanding

beyond the realm of distributions which do not have Abelian em-

beddings and prove structural results on functions 𝑓 , 𝑔 and ℎ satis-

fying (1) in this more general setting. At a high level, one would

like to say that such functions 𝑓 , 𝑔 and ℎ could only arise as a

result of using Abelian embeddings, using low-degree functions, or

both. To prove such result however, we must focus our attention on

distributions 𝜇 satisfying a very mild form of connectivity, which

we refer to as pairwise connectedness.

Definition 1.3. Let Σ1, Σ2, Σ3 be finite alphabets, and let 𝑃 ⊆
Σ1 × Σ2 × Σ3. For a pair of distinct coordinates 𝑖, 𝑗 ∈ {1, 2, 3}, we
say 𝑃 is {𝑖, 𝑗} connected if the bipartite graph 𝐺 = (Σ𝑖 ∪ Σ 𝑗 , 𝐸𝑖, 𝑗 ),
where 𝐸𝑖, 𝑗 is the set of label pairs that appear in some element of 𝑃 ,
is connected.

We say 𝑃 is pairwise connected if it is pairwise connected for any
two distinct 𝑖, 𝑗 ∈ {1, 2, 3}.

We say a distribution 𝜇 is pairwise connected if supp(𝜇) is pairwise
connected.

At a high level, the notion of pairwise connectedness stems from

the fact that if supp(𝜇) is not pairwise connected, then there are

examples of functions satisfying (1) without any useful structure

for our purposes. Indeed, if supp(𝜇) is not pairwise connected –

without loss of generality it is not {1, 2}-connected, then we may

find a non-trivial partition Σ = Σ′∪Σ′′ and Γ = Γ′∪Γ′′ so that in the
support of 𝜇 there can only be pairs from Σ′×Γ′ and Σ′′×Γ′′ on the
first two coordinates. In this case, we may pick any pair of functions

𝑠, 𝑠′ : {1, 2}𝑛 → C such that 𝑠 (𝑎)𝑠′ (𝑎) = 1 for all 𝑎 ∈ {1, 2}𝑛 (for

example, one can take 𝑠 whose absolute value is always 1, and 𝑠′

to be its conjugate) and construct 𝑓 , 𝑔, ℎ as follows. For 𝑓 , we set

𝑓 (𝑥) = 𝑠 (𝑥 ′) where for each 𝑖 , 𝑥 ′
𝑖
= 1 if 𝑥𝑖 ∈ Σ′ and otherwise

𝑥 ′
𝑖
= 2. For 𝑔, we similarly set 𝑔(𝑦) = 𝑠′ (𝑦′) where for each 𝑖 , 𝑦′

𝑖
= 1

if 𝑦𝑖 ∈ Γ′ and otherwise 𝑦′
𝑖
= 2. For ℎ, we take ℎ ≡ 1. Thus, for any

(𝑥,𝑦, 𝑧) ∈ supp(𝜇) we have that

𝑓 (𝑥)𝑔(𝑦)ℎ(𝑧) = 𝑠 (𝑥 ′)𝑠′ (𝑦′) = 1,

as we have that 𝑥 ′ = 𝑦′ by construction.

Henceforth, we will focus our attention on distributions 𝜇 which

are pairwise connected.With this in mind, as explained earlier there

are two ways of constructing functions 𝑓 , 𝑔 and ℎ satisfying (1):

(1) If supp(𝜇) admits a linear embedding, say for simplicity a

cyclic group (𝐻, +) = (Z𝑝 , +) and maps 𝜎 : Σ → 𝐻 , 𝛾 : Γ →
𝐻 and 𝜙 : Φ → 𝐻 not all constant such that 𝜎 (𝑥) + 𝛾 (𝑦) +
𝜙 (𝑧) = 0, then one can take

𝑓 (𝑥1, . . . , 𝑥𝑛) = 𝑒
2𝜋𝑖
|𝐻 | (𝜎 (𝑥1 )+...+𝜎 (𝑥𝑛 ) ) ,

𝑔(𝑦1, . . . , 𝑦𝑛) = 𝑒
2𝜋𝑖
|𝐻 | (𝛾 (𝑦1 )+...+𝛾 (𝑦𝑛 ) ) ,

ℎ(𝑧1, . . . , 𝑧𝑛) = 𝑒
2𝜋𝑖
|𝐻 | (𝜙 (𝑧1 )+...+𝜙 (𝑧𝑛 ) ) ,

and note that 𝑓 (𝑥)𝑔(𝑦)ℎ(𝑧) = 1 pointwise, hence (1) holds.

More generally, for a general Abelian group (𝐻, +) one can

pick non-trivial characters 𝜒1, . . . , 𝜒𝑛 ∈ 𝐻̂ , define

𝑓 (𝑥1, . . . , 𝑥𝑛) =
𝑛∏
𝑗=1

𝜒 𝑗 (𝜎 (𝑥 𝑗 )),

𝑔(𝑦1, . . . , 𝑦𝑛) =
𝑛∏
𝑗=1

𝜒 𝑗 (𝛾 (𝑦 𝑗 )),

ℎ(𝑧1, . . . , 𝑧𝑛) =
𝑛∏
𝑗=1

𝜒 𝑗 (𝜙 (𝑧 𝑗 )),

and note again that 𝑓 (𝑥)𝑔(𝑦)ℎ(𝑧) = 1 pointwise hence (1)

holds.

(2) In general, it may also be the case that for a distribution 𝜇,

low-degree functions also satisfy (1). Indeed, in that case one

may try to find univariate 1-bounded functions 𝑢 : Σ → C,
𝑣 : Γ → C and𝑤 : Φ → C for which����� E

(𝑥,𝑦,𝑧 )∼𝜇
[𝑢 (𝑥)𝑣 (𝑦)𝑤 (𝑧)]

����� ⩾ Ω(1),

and then tensorize them to get

𝑓 (𝑥1, . . . , 𝑥𝑛) =
𝑑∏
𝑗=1

𝑢 (𝑥 𝑗 ), 𝑔(𝑦1, . . . , 𝑦𝑛) =
𝑑∏
𝑗=1

𝑣 (𝑦 𝑗 ),

ℎ(𝑧1, . . . , 𝑧𝑛) =
𝑑∏
𝑗=1

𝑤 (𝑧 𝑗 ),

which get value of 2
−𝑂 (𝑑 )

in (1).

1.2 Main Results
With the above discussion in mind, one is tempted to conjecture

that if 𝜇 is pairwise connected, then the only possible examples of

triplets of functions 𝑓 , 𝑔 and ℎ satisfying (1) must come from the

above template.

1.2.1 The Stability Result. The main result of this paper is a sta-

bility result that formalizes this intuition, saying that under some

mild assumptions on the distribution 𝜇, if 𝑓 , 𝑔 and ℎ are 1-bounded

functions achieving significant 3-wise correlation as in (1), then

𝑓 (and similarly 𝑔 and ℎ) must be correlated with a product of an

embedding type function as in the first recipe, with a low-degree

function as in the second recipe. The mild assumptions on 𝜇 corre-

spond to it being pairwise connected (which is necessary, otherwise

the statement is simply false), and for technical reasons we also

need an additional assumption, namely that 𝜇 cannot be embedded

in the Abelian group (Z, +). We remark though that this additional

assumption is, as far as we know, not necessary, but removing it

seems to require more ideas. With this in mind, a precise formula-

tion of our main result is:

Theorem 1.4. For all𝑚 ∈ N, 𝛼 > 0 and 𝜀 > 0, there are𝑑 ∈ N and
𝛿 > 0 such that the following holds. Suppose that 𝜇 is a distribution
over Σ × Γ × Φ such that

(1) The probability of each atom in 𝜇 is at least 𝛼 .
(2) The size of each one of Σ, Γ,Φ is at most𝑚.
(3) The distribution 𝜇 is pairwise connected.
(4) 𝜇 does not admit an Abelian embedding into (Z, +).
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Then, if 𝑓 : Σ𝑛 → C, 𝑔 : Γ𝑛 → C and ℎ : Φ𝑛 → C are 1-bounded
functions such that����� E

(𝑥,𝑦,𝑧 )∼𝜇⊗𝑛
[𝑓 (𝑥)𝑔(𝑦)ℎ(𝑧)]

����� ⩾ 𝜀,

then there are 1-bounded functions𝑢1, . . . , 𝑢𝑛 : Σ → C and a function
𝐿 : Σ𝑛 → C of degree at most 𝑑 and 2-norm at most 1 such that����� E

𝑥∼𝜇⊗𝑛𝑥

[
𝑓 (𝑥) · 𝐿(𝑥)

𝑛∏
𝑖=1

𝑢𝑖 (𝑥𝑖 )
] ����� ⩾ 𝛿.

Furthermore, there is 𝑟 ∈ N depending only on𝑚 and an Abelian
embedding (𝜎,𝛾, 𝜙) of 𝜇 into an Abelian group (𝐻, +) of size at most
𝑟 such that for all 𝑖 , 𝑢𝑖 (𝑥𝑖 ) = 𝜒𝑖 (𝜎 (𝑥𝑖 )) where 𝜒𝑖 ∈ 𝐻 is a character
of 𝐻 .

Quantitatively, we have that

𝑑 = poly𝛼,𝑚 (1/𝜀), 𝛿 = 2
−poly𝛼,𝑚 (1/𝜀 ) .

The proof of Theorem 1.4 is quite long, and in Section 1.4 we

give an overview of the steps we take in the proof. Some of the

steps require ingredients that may be of independent interest, and

which we explain next.

1.2.2 The Restriction Inverse Theorem. The proof of Theorem 1.4

uses a result which we refer to as the Restriction Inverse Theorem

and present next.

Restrictions and Random Restrictions. Restrictions and random
restrictions are vital to our argument to go through, and the Restric-

tion Inverse Theorem can be thought of as a statement about them

of independent interest. Given a function 𝑓 : (Σ𝑛, 𝜇⊗𝑛) → C, a set

of coordinates 𝐼 ⊆ [𝑛] and 𝑥 ∈ Σ𝐼 , the restricted function 𝑓
𝐼→𝑥̃

is a

function from Σ𝐼 to C defined as

𝑓
𝐼→𝑥̃

(𝑥 ′) = 𝑓 (𝑥𝐼 = 𝑥 ′, 𝑥
𝐼
= 𝑥),

where (𝑥𝐼 = 𝑥 ′, 𝑥
𝐼
= 𝑥) is the point in Σ𝑛 whose 𝐼 -coordinates are

set according to 𝑥 ′, and whose 𝐼 -coordinates are set according to 𝑥 .

Random restrictions are restrictions in which either 𝐼 , 𝑥 or both

are chosen randomly. A typical setting we use is one where we

have a parameter 𝜌 > 0, and we pick 𝐼 ⊆𝜌 [𝑛], by which we mean

that we include each 𝑖 ∈ [𝑛] in 𝐼 with probability 𝜌 ; we then choose

𝑥 ∼ 𝜇𝐼 . For the purposes of this paper it is necessary to consider

other (less standard) settings of random restrictions, but we will

limit ourselves to this more typical setting for the purposes of this

introduction.

Product functions. A function 𝑓 : Σ𝑛 → C is called a product

function if there are 1-bounded functions 𝑓1, . . . , 𝑓𝑛 : Σ → C such

that

𝑓 (𝑥1 . . . , 𝑥𝑛) =
𝑛∏
𝑖=1

𝑓𝑖 (𝑥𝑖 ).

It is clear that if 𝑓 is a product function, then any restriction of it is

still a product function. Thus, with probability 1, taking a random

restriction of 𝑓 yields a function which has perfect correlation with

a product function. The Restriction Inverse Theorem is a statement

about a deduction in the reverse direction: suppose 𝑓 is a function

that after random restriction it has a significant correlation with a

product function. Is it necessarily the case that 𝑓 itself is correlated

with a product function?

As is usually the case with inverse-type questions, there are

multiple regimes of parameters one may consider, and for us the

most relevant regime is the so-called 1% regime. In this case, we

have a parameter 𝜌 > 0 (which is small but bounded away from 0)

and a function 𝑓 : Σ𝑛 → C such that

Pr

𝐼⊆𝜌 [𝑛]
𝑥̃∼𝜇𝐼

[
∃ product function 𝑝 : Σ𝐼 → C,

���⟨𝑓
𝐼→𝑥̃

, 𝑝⟩
��� ⩾ 𝜀

]
⩾ 𝜀, (2)

and we wish to deduce a structural result about 𝑓 . As discussed,

such situations may arise when 𝑓 is a product function – or more

generally when it is correlated with a product function. However, if

𝑓 is a low-degree function (or even if it is just correlated with a low-

degree function), a random restriction of 𝑓 will be correlated with

a constant function with noticeable probability, and hence with a

product function. The Restriction Inverse Theorem essentially says

that these are the only two ways that (2) can come about:

Theorem 1.5 (The Restriction Inverse Theorem, Informal).

For all 𝜀, 𝜌, 𝛼 > 0 and𝑚 ∈ N there are 𝑑 ∈ N and 𝛿 > 0 such that the
following holds. Suppose Σ is a finite alphabet of size at most𝑚, 𝜇 is a
distribution over Σ in which the probability of each atom is at least 𝛼 ,
and 𝑓 : (Σ𝑛, 𝜇⊗𝑛) → C is a 1-bounded function satisfying (2). Then
there is a product function 𝑝 : Σ𝑛 → C and a function 𝐿 : Σ𝑛 → C of
degree at most 𝑑 and ∥𝐿∥2 ⩽ 1 such that

|⟨𝑓 , 𝑝𝐿⟩| ⩾ 𝛿.

We refer the reader to the full version of the paper for a more

formal and general version of the Restriction Inverse Theorem. We

remark that among other things, we also give explicit dependency

of 𝑑 and 𝛿 on 𝜀 and 𝜌 . These quantitative aspects are important if

one wishes to get decent quantitative bounds in Theorem 1.4, and

we think they are also interesting in their own right.

1.2.3 The Direct Product Theorem. The proof of Theorem 1.5 (and

thus, in turn, of Theorem 1.4) hinges on a direct product testing

result, which may also be of independent interest. The problem

of direct product testing has its roots in the field of probabilistic

checkable proofs and in particular in hardness amplification. In this

setting, one wishes to encode a function 𝑓 : [𝑛] → [𝑅] (where 𝑛 is

thought of as very large) by local pieces that, on the one hand allows

for local access to values of 𝑓 . On the other hand, the encoding

should be testable, in the sense that there is a test that only looks

at a handful of locations of the encoding and determines whether

it is an encoding of an actual function 𝑓 : [𝑛] → [𝑅], or whether it
is far from the encoding of any such function.

Our application calls for a particular direct product tester that

has been extensively studied in the literature [5, 8, 9, 11, 13, 21, 22].

In this tester, the function 𝑓 is encoded via its table of restrictions to

sub-cubes of certain dimension. Namely, given a parameter 𝑘 ∈ N
(which for us will be equal to 𝜌𝑛, where 𝜌 should be thought of

as a very small constant), the direct product encoding of 𝑓 is the

mapping 𝐹 :
([𝑛]
𝑘

)
→ [𝑅]𝑘 defined by

𝐹 [𝐴] = 𝑓 |𝐴
for all 𝐴 ⊆ [𝑛] of size 𝑘 .
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The test we associate with this encoding is determined by two

parameters, 𝛼, 𝛽 ∈ (0, 1) that also should be thought of as small

constants. Given a supposed table of restrictions 𝐺 :

([𝑛]
𝑘

)
→ [𝑅]𝑘 ,

the test, which we call DP(𝜌, 𝛼, 𝛽), proceeds in the following way:

(1) Sample 𝐶 ⊆ [𝑛] of size 𝛼𝑘 and sample 𝐴, 𝐵 ∈
([𝑛]
𝑘

)
indepen-

dently containing 𝐶 .

(2) Sample 𝑇 ⊆ [𝑛] of size 𝛽𝑛.
(3) Query 𝐺 [𝐴], 𝐺 [𝐵] and check that 𝐺 [𝐴] |𝐶∩𝑇 = 𝐺 [𝐵] |𝐶∩𝑇 .

In other words, the tester selected two sets 𝐴, 𝐵 that intersect on a

sizable number of elements (at least 𝛼𝑘), then a random subset of

their shared elements and checks that the local assignments 𝐺 [𝐴]
and 𝐺 [𝐵] agree on this random subset of shared elements.

Note that this test is complete, in the sense that if𝐺 is a legitimate

direct product encoding, then it passes the test with probability 1.

Thus, as is usually the case, the interesting aspect of this test is the

soundness, which is equivalent to the following question. Suppose

that the tester accepts a table 𝐺 :

([𝑛]
𝑘

)
→ [𝑅]𝑘 with probability

at least 𝑠; is it necessarily the case that 𝐺 is somewhat close to a

legitimate direct product testing codewords?

In the so-called 99% regime, where the probability 𝑠 = 1 − 𝜀 is

thought of close to 1, this problem is completely understood, and

in [8, 13] it is shown that in this case there is a function 𝑓 : [𝑛] →
[𝑅] such that for at least 1−𝑂 (𝜀) fraction of 𝐴 ∈

([𝑛]
𝑘

)
it holds that

𝐺 [𝐴] = 𝑓 |𝐴 .
For us, the most so-called 1% regime is more relevant, wherein

the probability 𝑠 = 𝜀 is thought of as close to 0. In this case, one can

no longer expect a strong conclusion as in the 99% regime. Instead,

naturally one would expect that in this case, there would have to be

a function 𝑓 : [𝑛] → [𝑅] such that for at least 𝛿 = 𝛿 (𝜌, 𝛼, 𝛽, 𝜀) > 0

fraction of 𝐴 ∈
([𝑛]
𝑘

)
it holds that 𝐺 [𝐴] = 𝑓 |𝐴 , but this is also

too much to expect. Indeed, to see that take any 𝑔 : [𝑛] → [𝑅],
and for each 𝐴 take 𝐺 [𝐴] uniformly from [𝑅]𝑘 with probability

1 − 𝜀, and otherwise take it to be a string in [𝑅]𝑘 of Hamming

distance 𝑟 = Θ(log(1/𝜀)) from 𝑔|𝐴 . Using Chernoff’s bound, one

can prove that with high probability there is no function 𝑓 : [𝑛] →
[𝑅] satisfying the natural conclusion one expects, yet the tester

passes with probability at least 𝜀2 (1−𝛽)2𝑟 = poly(𝜀). The reason for
that is that looking at two locations 𝐴, 𝐵 queried by the tester, with

probability 𝜀2 both of them get assigned strings close to 𝑔|𝐴 and

𝑔 |𝐵 respectively, in which case with probability at least (1 − 𝛽)2𝑟
the subset𝑇 excludes all coordinates on which either𝐺 [𝐴] and 𝑔|𝐴 ,
or 𝐺 [𝐵] and 𝑔 |𝐵 , disagree on.

Due to a rather versatile set of examples, results in the 1% regime

are oftenmore challenging to prove. Indeed, earlier results by [9, 13]

managed to show that in this case there is a function 𝑓 : [𝑛] → [𝑅]
such that for at least 𝛿 = 𝛿 (𝜌, 𝛼, 𝛽, 𝜀, 𝜂) > 0 fraction of 𝐴 ∈

([𝑛]
𝑘

)
it holds that Δ(𝐺 [𝐴], 𝑓 |𝐴) ⩽ 𝜂𝑘 . Here and throughout, Δ(𝑥,𝑦)
represents the Hamming distance between strings 𝑥 and 𝑦. The

main drawback of this result is that the distance between 𝐺 [𝐴]
and 𝑓 |𝐴 is linear in 𝑘 , which is not good enough for our purposes.

Indeed, for our application we need a result that gets a Hamming

distance which is a constant 𝑟 = 𝑟 (𝜌, 𝛼, 𝛽, 𝜀) ∈ N as opposed to a

constant fraction.

In [5], such result was proved for a more specialized version

of this test in the case of 𝛽 = 1 and 𝑅 = 2. Therein, both of the

parameters 𝛼 and 𝜌 are thought of as constant, and it is proved

that there are 𝑟 = 𝑟 (𝜀, 𝛼, 𝜌) ∈ N and 𝛿 = 𝛿 (𝜀, 𝛼, 𝜌) > 0 such that if

𝐺 passes the test DP(𝜌, 𝛼, 𝛽 = 1) with probability at least 𝜀, then

there is a function 𝑓 : [𝑛] → {0, 1} such that for at least 𝛿 fraction

of𝐴 ∈
([𝑛]
𝑘

)
it holds that Δ(𝐺 [𝐴], 𝑓 |𝐴) ⩽ 𝑟 . Besides being a natural

question of interest, the motivation of this result therein was to

establish an earlier, less general version of the Restriction Inverse

Theorem, Theorem 1.5 herein.

In this paper, we are once again in a situation that our proof of a

restriction inverse theorem requires a direct product testing result,

and the relevant test for us is the test DP(𝜌, 𝛼, 𝛽) above. Moreover,

as herein we are concerned with getting good quantitative bounds,

we no longer think of the parameters 𝜌, 𝛼, 𝛽 as constants and thus

try to get reasonable dependencies of 𝑟 and 𝛿 on these parameters.

For the purposes of this introductory section however, we do not

mention these quantitative aspects and defer the interested reader

to the full version of the paper. Thus, without a concern for these

quantitative aspects our result reads:

Theorem 1.6 (The Direct Product Testing Theorem, Infor-

mal). For all 𝜀, 𝜌, 𝛼, 𝛽 > 0 there are 𝑟 ∈ N and 𝛿 > 0 such that the
following holds for all 𝑅 ∈ N. For 𝑘 = 𝜌𝑛, if 𝐺 :

([𝑛]
𝑘

)
→ [𝑅]𝑘 is a

function that passes the test DP(𝜌, 𝛼, 𝛽) with probability at least 𝜀,
then there is a function 𝑓 : [𝑛] → [𝑅] such that

Pr

𝐴∈( [𝑛]
𝑘 )

[Δ(𝑓 |𝐴,𝐺 [𝐴]) ⩽ 𝑟 ] ⩾ 𝛿.

1.3 Applications and Motivations
In this section, we discuss some applications and motivating fields

and type of problems Theorem 1.4 (and possible extensions of it)

are likely to be related to. For some of them, we already have initial

leads (and pursue them in subsequent papers as the current paper

is already long enough as is), while for others the connection is

more speculative.

1.3.1 Hardness of Approximation. Recall Mossel’s result [23], as-

serting that in the case that 𝜇 is a connected distribution only the

low-degree part of functions contributes to (1). For low-degree

functions, one has the invariance principle of [24], and thus the

combination of these two results can be seen as transforming ex-

pectations as in (1) to expectations over Gaussian space. This result

has a few notable striking consequences in the field of hardness

of approximation. Most notably, Raghavendra [26] uses precisely

such ideas to show the relationship between dictatorship tests and

Gaussian rounding scheme to semi-definite relaxations.

In this light, the result proved in this paper shows that only

functions that are “characters times low-degree functions” can con-

tribute to (1), and this suggests that an invariance principle that

extends the invariance principle of [24] should exist. Indeed, in a

future work [1] we are exploring this direction and will prove a

more general such invariance principle, and discuss its relation to

rounding schemes that combine semi-definite programming relax-

ations as well as linear programming relaxations. We believe such

invariance principles will be crucial in the journey of understanding

the approximability of satisfiable constraint satisfaction problems.

1.3.2 Higher Arity Predicates. The original motivation behind the

question considered in this paper is the non-Abelian embedding
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hypothesis of [2], which is the following statement. Suppose 𝑘 ⩾ 3

is an integer, Σ1, . . . , Σ𝑘 finite alphabets and 𝜇 is a distribution over

Σ1 × . . .× Σ𝑘 in which the probability of each atom is at least 𝛼 > 0.

We say 𝜇 admits an Abelian embedding if there is an Abelian group

(𝐻, +) andmaps 𝜎𝑖 : Σ𝑖 → 𝐻 for 𝑖 = 1, . . . , 𝑘 such that

𝑘∑
𝑖=1

𝜎𝑖 (𝑥𝑖 ) = 0

for all (𝑥1, . . . , 𝑥𝑘 ) ∈ supp(𝜇). We say 𝜇 admits a non-trivial Abelian

embedding if at least one of the maps 𝜎𝑖 is non-constant.

Hypothesis 1.7. In the above setting, if 𝜇 admits no non-trivial
Abelian embeddings, then for all 𝜀 > 0 there is 𝛿 > 0 such that if
𝑓𝑖 : Σ

𝑛
𝑖
→ C are 1-bounded functions with Stab

1/2 (𝑓𝑖 ; 𝜇⊗𝑛𝑖 ) ⩽ 𝛿 for
at least one of the 𝑖’s, then����� E

(𝑥1,...,𝑥𝑘 )∼𝜇⊗𝑛

[
𝑘∏
𝑖=1

𝑓𝑖 (𝑥𝑖 )
] ����� ⩽ 𝛿.

In [2] a special case of this hypothesis is proved for a class of 𝑘 =

3-ary distributions, and in [4] this hypothesis is proved in general

for all 𝑘 = 3-ary distributions. In these terms, the current paper does

not signify any further progress towards establishingHypothesis 1.7

beyond the case of 3-ary predicates, however we believe that the

stability version proved herein will be crucial towards making

further progress in this direction.

1.3.3 Gowers’ Norms. Theorem 1.4 can be seen as an analog of

the𝑈2-inverse theorem for Gowers uniformity norms [17] for gen-

eral distributions. In the context of Gowers uniformity norms, the

𝑈2-inverse theorem is a simple Fourier analytic computation only

involving Fourier coefficients. Interestingly, at a point in our argu-

ment we too have to carry out such a computation (this is, however,

a small part of the proof). It is tempting to speculate, and we have

initial leads for this fact, that there should be higher order analogs

of Gowers inverse theorems in the much more general setting of

Theorem 1.4.

If true, such statements could be very useful to make progress

on multiple problems in extremal combinatorics, and in particular

in Szemerédi-type theorems [29]. This is so because it appears

they are strong enough to facilitate density increment arguments.

Indeed, as we explain next, in a companion paper we have used

Theorem 1.4 to give effective bounds for the problem of finding

restricted 3-arithmetic progressions in dense sets in F𝑛𝑝 , for a prime

𝑝 .

1.3.4 Extremal Combinatorics. A set 𝐴 ⊆ F𝑛𝑝 is called somewhat

restricted 3-AP free if it does not contain an arithmetic progression

𝑥, 𝑥 +𝑎, 𝑥 +2𝑎 where 𝑥 ∈ F𝑛𝑝 and 𝑎 ∈ {0, 1, 2}𝑛 \ {®0}. In a companion

paper [3], we use Theorem 1.4 to give effective bounds on the

density of restricted 3-AP sets:

Theorem 1.8. There are absolute constants𝐶 > 0 and 1 ⩽ 𝑘 ⩽ 10

such that if 𝐴 ⊆ F𝑛𝑝 is a restricted 3-AP set, then

𝜇 (𝐴) = |𝐴|
𝑝𝑛

⩽
𝐶

log
(𝑘 ) 𝑛

,

where log(𝑘 ) 𝑛 is the 𝑘-fold iterated logarithm function.

Previously, the best known bound was 𝑂 (1/log∗ 𝑛), achieved by

appealing to a quantitative version of the density Hales-Jewett the-

orem [25]. Theorem 1.8 makes progress on a question of Green [18]

and on a question of Haszla, Holenstein and Mossel [23].

1.3.5 Multi-Player Parallel Repetition Theorems. Parallel repetition
is a basic building block in the area of interactive protocols and in

particular in applications in the field of hardness of approximation.

In the setting of 𝑘-player games, we have a basic game Ψ involving

a verifier and 𝑘 players. The game consists of a set of questions 𝑋

that are supposed to get labels from a finite alphabet Σ, a predicate

𝑃 : 𝑋𝑘 × Σ𝑘 → {0, 1} that gives 𝑘-challenges and answers to them

dictates whether these answers are deemed satisfactory or not, and

a distribution 𝜇 over 𝑘-tuples of challenges. In the basic game Ψ, the
verifier samples a challenge (𝑥1, . . . , 𝑥𝑘 ) ∼ 𝜇, sends the question 𝑥𝑖
to the 𝑖th player, receives an answer 𝑎𝑖 ∈ Σ from player 𝑖 , and then

accepts if and only if 𝑃 (𝑥1, . . . , 𝑥𝑘 , 𝑎1, . . . , 𝑎𝑘 ) = 1. The value of the

game, val(Ψ), is defined to be the maximum probability the verifier

accepts under the best strategy for the players.

The 𝑡-fold repeated game, Ψ⊗𝑡
, is a game in which the verifier

samples 𝑡 sets of challenges, say (𝑥1, 𝑗 , . . . , 𝑥𝑘,𝑗 ) ∼ 𝜇 for 𝑗 = 1, . . . , 𝑡

independently, sends (𝑥𝑖,1, . . . , 𝑥𝑖,𝑡 ) to player 𝑖 , receives from them

answers (𝑎𝑖,1, . . . , 𝑎𝑖,𝑡 ) and accepts if and only if

𝑃 (𝑥1, 𝑗 , . . . , 𝑥𝑘,𝑗 , 𝑎1, 𝑗 , . . . , 𝑎𝑘,𝑗 ) = 1 ∀𝑗 = 1, . . . , 𝑡 .

In words, the game is repeated for 𝑡-times, but in parallel, and the

verifier confirms that each one of the executions of the basic game

was accepting. It is clear that val(Ψ⊗𝑡 ) ⩾ val(Ψ)𝑡 , and the main

question of interest in parallel repetition theorems is regarding the

rate of decay of val(Ψ⊗𝑡 ) as a function of 𝑡 ; in particular is this

decay exponential?

For 2-player games, i.e. for the case that 𝑘 = 2, this problem is

by now well understood, and it is known that the value of Ψ⊗𝑡

is indeed exponentially decaying in 𝑡 (however not in the most

obvious manner); see [6, 12, 19, 27, 28]. The techniques that go

into these proofs are either information theoretical, or analytical.

In a sense, the analytical proofs are based on the well-known fact

that the eigenvalues of a matrix tensorize when one tensorizes the

matrix, as it turns out that, in a sense, the value of a game can be

vaguely viewed as eigenvalues of a matrix.

For 𝑘 ⩾ 3, the situation is much more complicated, and the

only known bound for general games is due to Verbitsky [30] and

gives rather weak bounds (as, once again, it relies on the density

Hales-Jewett theorem).

Recently, the work of [10] identified a class of games referred

to as “connected games” for which the information theoretic tech-

niques from the setting of 2-player games still work, which sparked

renewed interest in multi-player parallel repetition theorems. We

remark that the notion of “connectedness” therein is very much

similar to the notion of connectedness of distribution in our set-

ting (which is much stronger than pairwise connectedness). This

motivated a recent line of works [14–16, 20] that studied parallel

repetition of 3-player games over binary questions. This line of

work started with studying a game known as the GHZ game (which

is well known in the physics literature and is a bottleneck to the

techniques of [10]), proving polynomial decay for it, and using this
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as a stepping stone to prove polynomial decay parallel repetition

theorems for more general classes of games.

We believe that the notion of Abelian embeddability should have

a fundamental connection to the problem of parallel repetition

in multiplayer games. In a sense, this question too is about “ten-

sorization” of some value, but in this time one has to deal with

𝑘-dimensional tensors as opposed to matrices. Some evidence to

that has been given in [7], wherein the authors give a very simple

proof for the fact that the value of the GHZ game is exponentially

vanishing with 𝑡 (as opposed to just polynomial) which is inspired

by Abelian embeddability. In a sense, the proof proceeds by identi-

fying that the GHZ game actually entails within it a (Z4, +)-type
additive structure. Then, using this fact along with powerful the-

orems from additive combinatorics, the authors give a structural

result on the set of strategies for the players that perform well,

which are then analyzed directly.

While being speculative, we believe that such connection should

indeed exist, and in it the quantitative aspects of Theorem 1.4 should

be highly relevant. At the current state, the quantitative bounds we

get are not very good, but we believe that with more effort these

could be improved to results that would be able to show 2
−𝑡Ω (1)

rate of decay in parallel repetition.

1.4 High Level Overview of the Proof of
Theorem 1.4

In this section we give a high level overview of the proof of Theo-

rem 1.4. As such, we often omit details, make simplifying assump-

tions and appeal to intuition in order to concentrate on the main

ideas. The details appear in the full version of the paper.

At its core, our argument relies on the following intuition: if

𝜇 does not admit any Abelian embedding, then Theorem 1.4 is

just equivalent to the main result of [2, 4]. Thus, one idea is to

try to identify all Abelian embeddings of 𝜇, define partial basis for

𝐿2 (Σ𝑛 ; 𝜇⊗𝑛𝑥 ), 𝐿2 (Γ𝑛 ; 𝜇⊗𝑛𝑦 ) and 𝐿2 (Φ𝑛 ; 𝜇⊗𝑛𝑧 ) based on these Abelian

embeddings and then show that for 𝑓 , 𝑔 and ℎ to satisfy (1), it must

be the case that they correlated with a function from the span

of this partial basis. The intuition is completing the partial bases

into complete bases, once we “peel off” these embeddings based

functions the rest of the functions in the bases are “oblivious” to

the fact that 𝜇 admits Abelian embeddings. So, once we “peel off”

these embedding functions, the situation is analogous to the case

that 𝜇 does not have any Abelian embeddings, in which case the

result of [2, 4] kick in.

Much of the effort in our proof goes into formalizing this rough

idea, and once one is able to do that the rest of the proof is more

streamline (but still requires a significant effort). Below, we give

step by step description of the way we formalize this intuition.

1.4.1 Step 1: Master Embedding. The first issue is a distribution 𝜇

may have multiple linear embeddings, and they may interact in a

non-trivial way. Indeed, given an Abelian embedding (𝜎,𝛾, 𝜙) of
𝜇 into 𝐻 , one can define a partial basis by composing characters

of 𝐻 with the embedding functions. But how do we know that

different embeddings give us different basis elements? How do we

combine these partial bases into something that makes sense and

is convenient to work with?

Our first step is to identify that one may define a single embed-

ding, which we refer to as the master embedding, that encapsulates

within it all of the Abelian embeddings of 𝜇. Indeed, we show that

if 𝜇 does not have any (Z, +) embedding, then there is a size𝑀 such

that any Abelian embedding of 𝜇 “comes from” an Abelian embed-

ding of 𝜇 into an Abelian group of size at most𝑀 . Hence, to include

all Abelian embeddings it suffices to only look into embeddings

of 𝜇 into Abelian groups of size at most 𝑀 , and as there are only

finitely many such embeddings we can just tensorize them. That

is, letting 𝜎𝑖 : Σ → 𝐻𝑖 be all possible 𝜎’s in linear embeddings of

𝜇, where (𝐻𝑖 , +) are Abelian groups, the master embedding of 𝑥 is

𝜎master : Σ →
𝑅∏
𝑖=1

𝐻𝑖 defined by

𝜎master (𝑥) = (𝜎1 (𝑥), . . . , 𝜎𝑅 (𝑥)),
and similarly one may define 𝛾master and 𝜙master. With the master

embeddings in hand we now have a sensible way of defining a

partial basis for functions in 𝑥 ,𝑦 and 𝑧 by considering compositions

of characters from 𝐻 with the master embeddings.

At the present state, this partial basis is not very convenient. For

example, it may well be the case that there are distinct 𝜒, 𝜒 ′ ∈ 𝐻

such that 𝜒 ◦ 𝜎master = 𝜒 ′ ◦ 𝜎master. Indeed, this would be the case

if the image of 𝜎master was a strict subgroup of 𝐻 . More generally,

linear dependencieswithin {𝜒◦𝜎master}𝜒∈𝐻̂ already start appearing

as soon as the image of 𝜎master is not the entire group 𝐻 , and this

presents issues which we wish to avoid.

1.4.2 Step 2: Saturating the Master Embeddings. Our goal is there-
fore to arrange for the master embeddings 𝜎master, 𝛾master and

𝜙master to be saturated, meaning that the image of each one of them

is the entire group 𝐻 . To do so, we must change the distribution 𝜇

into a distribution 𝜇′ such that (a) on 𝜇′ the master embeddings are

saturated, (b) there is a good enough relationship between 3-wise

correlations over 𝜇 and 3-wise correlations over 𝜇′, and (c) we can

deduce the conclusion of Theorem 1.4 on 𝜇 from the conclusion of

Theorem 1.4 on 𝜇′.
This transformation is achieved via the path trick, introduced

in [2], which is ultimately just an application of the Cauchy-Schwarz

inequality. The path trick is used in our arguments extensively, and

often time the structure we need is quite subtle thereby requiring a

very careful application of the path-trick. Nevertheless, below we

explain at a high level the intuition behind the path trick and what

it achieves.

Given a distribution 𝜇, the path trick distribution (of length 2𝑡 +1)
with respect to 𝑥 can be described as the following distribution 𝜇′:

(1) Sample (𝑥1, 𝑦1, 𝑧1) ∼ 𝜇.

(2) Make a step from 𝑦: sample (𝑥 ′
1
, 𝑦′

1
, 𝑧′

1
) ∼ 𝜇 conditioned on

𝑦′
1
= 𝑦1.

(3) Make a step from 𝑧: sample (𝑥2, 𝑦2, 𝑧2) conditioned on 𝑧2 =

𝑧′
1
.

(4) Repeat make a step from 𝑦/ make a step from 𝑧 for 𝑡 times.

Thus, the sequences (𝑦1, 𝑦′
1
, 𝑦2, 𝑦

′
2
, . . . , 𝑦𝑡 , 𝑦

′
𝑡 , 𝑦𝑡+1) of 𝑦’s and the

sequence (𝑧1, 𝑧′
1
, 𝑧2, 𝑧

′
2
, . . . , 𝑧𝑡 , 𝑧

′
𝑡 , 𝑧𝑡+1) of 𝑧’s are generated (where

𝑧𝑖+1 = 𝑧′
𝑖
and 𝑦′

𝑖
= 𝑦𝑖 ), as well as ®𝑥 = (𝑥1, 𝑥 ′

1
, . . . , 𝑥𝑡 , 𝑥

′
𝑡 , 𝑥𝑡+1) of 𝑥 ’s.

The output of the distribution 𝜈 is ( ®𝑥,𝑦𝑡+1, 𝑧1), and it is thought of

as a 3-ary distribution over Σ′ × Γ × Φ where Σ′ ⊆ Σ2𝑡+1 is the set
of feasible tuples of 𝑥 in the procedure.
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We refer to this procedure as the path trick since one may

consider the bi-partite graph 𝐺 = (Γ ∪ Φ, 𝐸) whose edges are

(𝑦, 𝑧) ∈ Γ × Φ that are in the support of 𝜇 |Γ×Φ. Thus, thinking
of the 𝑥 ’es as labeling the edges of 𝐺 , namely labeling an edge

(𝑦, 𝑧) by 𝑥 if (𝑥,𝑦, 𝑧) ∈ supp(𝜇), one gets that the above procedure
generates a random path of length 2𝑡 + 1 in the graph and record

the labels of the edges that it traversed on.

Moving from the distribution 𝜇 to 𝜇′ has several benefits that
have been used in our earlier papers:

(1) Improving connectivity: if 𝜇 is {2, 3}-connected, then for

large enough 𝑡 the support of 𝜇′ on the last two coordinates is
full. Indeed, taking the random path view of the path trick, it

is clear that as the graph𝐺 is connected, for sufficiently large

𝑡 the same graph corresponding to 𝜇′ would be a complete

bipartite clique.

(2) Preserving properties of 𝜇: he distribution 𝜇′ preserves
much of the properties of the distribution 𝜇. In particular, if

𝜇 is pairwise connected then so is 𝜇′, and if 𝜇 does not admit

any Abelian embeddings, then so does 𝜇′.
(3) The 3-wise correlations relations: 3-wise correlations of

functions over 𝜇 can be upper bounded by 3-wise correlations

of functions related to the original functions over 𝜇′. Indeed,
assume for simplicity that the functions are real valued. If

𝑓 , 𝑔 and ℎ achieve large 3-wise correlation in 𝜇, then for

(𝑥,𝑦, 𝑧) ∼ 𝜇⊗𝑛 one has that the values ℎ(𝑧) and 𝑓 (𝑥)𝑔(𝑦)
are correlated, so looking at the above path we get that

ℎ(𝑧𝑖+1) ≈ 𝑓 (𝑥𝑖+1)𝑔(𝑦𝑖+1) and 𝑔(𝑦𝑖+1) ≈ 𝑓 (𝑥 ′
𝑖+1)ℎ(𝑧

′
𝑖+1) and

combining these we get that

ℎ(𝑧𝑡+1) ≈ 𝑓 (𝑥 ′𝑡+1)ℎ(𝑧
′
𝑡+1)

≈ 𝑓 (𝑥 ′𝑡+1) 𝑓 (𝑥𝑡 )𝑔(𝑦𝑡 )
≈ . . .

≈ 𝑓 (𝑥 ′𝑡+1) 𝑓 (𝑥𝑡 ) · · · 𝑓 (𝑥2) 𝑓 (𝑥
′
1
)𝑔(𝑦1).

Thus, we expect𝑔, ℎ and 𝐹 ( ®𝑥) = 𝑓 (𝑥 ′
𝑡+1) 𝑓 (𝑥𝑡 ) · · · 𝑓 (𝑥2) 𝑓 (𝑥

′
1
)

to achieve a significant correlation in 𝜇′. Indeed, this can be

proved via an appropriate application of the Cauchy-Schwarz

inequality.

For the purposes of this paper we need additional properties of

the path trick transformations, which we explain next.

(1) Abelian ebmeddings of 𝜇 lift to Abelian embeddings
of 𝜇′: not only does the path trick preserve lack of Abelian

embeddings, but in fact if 𝜇 does admit Abelian embeddings,

then 𝜇′ does not introduce any new ones. To be more precise,

suppose that 𝜎 : Σ → 𝐻 , 𝛾 : Γ → 𝐻 and 𝜙 : Φ → 𝐻 are

Abelian embeddings of 𝜇. Then, these embeddings give rise

to an Abelian embedding 𝜎𝑡 : Σ
′ → 𝐻 with 𝛾 and 𝜙 of 𝜈 , as

follows:

𝜎𝑡 ( ®𝑥) =
𝑡∑︁
𝑖=1

𝜎 (𝑥𝑖 ) − 𝜎 (𝑥 ′𝑖 ) + 𝜎 (𝑥𝑡+1) . (3)

With the notation above, we have that 𝜎 (𝑥𝑖 ) +𝛾 (𝑦𝑖 ) +𝜙 (𝑧𝑖 ) =
0, 𝜎 (𝑥 ′

𝑖
) + 𝛾 (𝑦′

𝑖
) + 𝜙 (𝑧′

𝑖
) = 0, and doing a proper addition/

substraction one gets that

𝜎𝑡 ( ®𝑥) + 𝛾 (𝑦𝑡+1) + 𝜙 (𝑧1) = 0,

hence (𝜎𝑡 , 𝛾, 𝜙) form an Abelian embedding of 𝜇′ into 𝐻 .

(2) The only Abelian embeddings of 𝜇′ are lifts of Abelian
embeddings of 𝜇: all Abelian embeddings of 𝜇′ are precisely
of this form. Namely, for any Abelian embedding (𝜎′, 𝛾, 𝜙)
of 𝜇′ into an Abelian group (𝐻, +) there is an Abelian em-

bedding (𝜎,𝛾, 𝜙) of 𝜇 into (𝐻, +) where 𝜎 satisfies a relation

as in (3) where 𝜎′ plays the role of 𝜎𝑡 .This result has a few
important consequences, and in particular it says that the

path trick preserves master embeddings. Namely, if we start

with a master embedding of 𝜇, apply the path trick and the

above transformation corresponding to it on the embeddings,

then we will get the master embedding of 𝜇′.
(3) Saturating the embeddings: it can be easily observed that

if (𝜎master, 𝛾master, 𝜙master) is a master embedding of 𝜇 (or

for this purpose, any embedding of 𝜇), then after the path

trick we get the embedding (𝜎master,𝑡 , 𝛾master, 𝜙master) that
clearly satisfies that Image(𝜎master,𝑡 ) ⊆ Image(𝜎master); this
follows by looking at trivial paths that traverse the same

edge back and fourth and use the same label of 𝑥 all of the

time. Moreover, it is clear that if Image(𝜎master) was a sub-
group of 𝐻 then we would have that Image(𝜎master,𝑡 ) =

Image(𝜎master). It is reasonable to expect that unless the set

Image(𝜎master) is indeed a subgroup, then for large enough

𝑡 we would have that Image(𝜎master,𝑡 ) ⊊ Image(𝜎master), in
which case we enlarged the image of 𝜎master via the path

trick.

Indeed, something along these lines is true. Namely, we show

that by combination of path tricks along different directions

(not only 𝑥 ) one can indeed always enlarge the image of an

embedding so long as it is not a subgroup.
1

In conclusion, using the path trick multiple times we can pass to

a new distribution 𝜈 on which the embeddings are all saturated,

3-wise correlations over 𝜇 are upper bounded by 3-wise correlations

over 𝜈 , and 𝜈 has improved connectivity – say that its support on

the last two coordinates is full. It can be easily shown that in that

case, the images of all of the components must be the same sub-

group, and without loss of generality we assume it is the group 𝐻

itself.

Note that in particular, the above properties mean that if

(𝜎master, 𝛾master, 𝜙master)
is a saturated master embedding of 𝜈 , then the distribution of

(𝜎master (𝑥), 𝛾master (𝑦), 𝜙master (𝑧)) where (𝑥,𝑦, 𝑧) ∼ 𝜈 has a full

support on {
(𝑎, 𝑏, 𝑐) ∈ 𝐻3

��𝑎 + 𝑏 + 𝑐 = 0

}
,

which intuitively says that by moving from 𝜇 to 𝜈 we have “exposed”

all of the Abelian structure in the distribution 𝜇.

1.4.3 Step 3: Setting up a Basis Consisting of Embedding and Non-
embedding Functions. Fix distributions 𝜇 over Σ × Γ × Φ and 𝜈 over

Σ′ × Γ′ × Φ′
as we have done so far, and suppose that (a power of)

the 3-wise correlation of 𝑓 , 𝑔 and ℎ over 𝜇 is upper bounded by the

3-wise correlation of 𝐹,𝐺 and 𝐻 over 𝜈 .

Now that we have saturated the master embeddings in 𝜈 we

can set up a partial for functions in 𝑥 ∈ Σ′ as basis as before

𝜒 (𝑥) = 𝜒 (𝜎master (𝑥)) for all 𝜒 ∈ 𝐻̂ as before and get that now these

1
In our formal proof this has to be done rather carefully as we wish to preserve the

property that the alphabet of 𝑥 is always a power of the original alphabet Σ.
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functions are indeed linearly independent We can then complete

it to a basis of 𝐿2 (Σ′;𝜈𝑥 ) by adding to it the functions 𝜓1, . . . ,𝜓𝑠
that are orthogonal to all functions in Span(𝐵1), so that writing

𝐵1 =
{
𝜒 | 𝜒 ∈ 𝐻̂

}
and 𝐵2 = {𝜓1, . . . ,𝜓𝑠 } we have a basis 𝐵1 ∪ 𝐵2

for 𝐿2 (Σ′;𝜈𝑥 ). Tensorizing, we get that

{
𝑣 ®𝑏

}
®𝑏∈ (𝐵1∪𝐵2 )⊗𝑛

where

𝑣 ®𝑏 : Σ
′𝑛 → C is defined by 𝑣 ®𝑏 (𝑥) =

𝑛∏
𝑖=1

𝑣𝑏𝑖 (𝑥𝑖 ), is a basis for

𝐿2 (Σ′𝑛 ;𝜈⊗𝑛𝑥 ). Thus, we can write

𝐹 (𝑥1, . . . , 𝑥𝑛) =
∑︁

𝛼∈ (𝐵1∪𝐵2 )𝑛
𝐹 (𝛼)𝑣𝛼 (𝑥) .

We can define analogous bases for 𝐿2 (Γ′;𝜈𝑦) and 𝐿2 (Φ′
;𝜈𝑧). Now,

each one of the functions 𝐹 , 𝐺 and 𝐻 has an “embedding part”,

which is the parts of the monomials that use functions from 𝐵1,

and “non-embedding parts”, which are monomials using functions

from 𝐵2. Intuitively, it should be the case that the more mass the

functions have on the non-embedding parts, the smaller the 3-

wise correlations would be; this is because that for uni-variate

functions 𝑢 : Σ′ → C, 𝑣 : Γ′ → C and 𝑤 : Φ′ → C of 2-norm

1, to achieve perfect 3-wise correlation it must be the case that

𝑢 (𝑥) = 𝑣 (𝑦)𝑤 (𝑧) in the support of 𝜈 , in which case 𝑢, 𝑣 and 𝑤

behave like an embedding function. We remark that there is a

serious leap in this last step, which causes complications in later

points of the argument. Later on, we refer to this gap as the Horn-

SAT obstruction, and we will explain how it arises and how to

overcome it later on.

In light of the above, it makes sense to define two notions of

degrees for our partial basis. The first of which is the embedding

degree of a monomial 𝑣 ®𝑏 , embeddeg(𝑣 ®𝑏 ), which is the number of

components 𝑣𝑏𝑖 that come from the partial embedding basis 𝐵1. The

second of which is the non-embedding degree of a monomial 𝑣 ®𝑏 ,
nedeg(𝑣 ®𝑏 ), which is the number of components of 𝑣𝑏𝑖 that come

from 𝐵2.

1.4.4 Step 4: Analyzing the Contribution of High Non-embedded
Degree Components. The above discussion suggests that the parts

of 𝐹 , 𝐺 and 𝐻 of high non-embedding degree should contribute

very little to their 3-wise correlation according to 𝜈 . Formally show-

ing this, however, is quite tricky and this is where a considerable

amount of effort in this paper is devoted to. Our argument here

builds on an argument from [4].

To give some intuition for the argument we make several sim-

plifying assumptions (some of which can be ensured, while other

are not necessary). Assume that the marginal distribution of 𝜈 over

𝑦, 𝑧 is uniform, and that the distribution of

(𝜎master (𝑥), 𝛾master (𝑦), 𝜙master (𝑧))
where (𝑥,𝑦, 𝑧) ∼ 𝜈 is uniform over{

(𝑎, 𝑏, 𝑐) ∈ 𝐻3
��𝑎 + 𝑏 + 𝑐 = 0

}
.

Further assume that the functions 𝐹 , 𝐺 and 𝐻 are embedding ho-

mogenous and non-embedding homogenous functions, by which

we mean that the embedding degree of each monomial of 𝐹 is the

same, and also the non-embedding degree of each monomial in 𝐹

is the same; the same goes for 𝐺 and 𝐻 . Our argument here will be

inductive on the number of coordinates 𝑛, and we show that the

3-wise correlation of functions 𝐹 , 𝐺 and 𝐻 as above can be upper

bounded by either the 3-wise correlation of𝑛−1 variate functions of
the same non-embedding degree, or by (1− Ω(1)) times the 3-wise

correlation of 𝑛 − 1 variate functions with non-embedding degree

smaller by 1. Thus, iterating we would ultimately get a bound of

(1 − Ω(1))nedeg(𝐹 ) on the 3-wise correlations, which is small if the

non-embedding degree of 𝐹 is high.

In fact, we have two separate inductive arguments depending

on if 𝑛 is much larger than the non-embedding degree of 𝐹 , or if

it is comparable to it; we refer to this last case as the “near linear

non-embedding degree case”, and we now elaborate on each one of

these cases.

The case that 𝑛 is much larger than the non-embedding degree
of 𝐹 . In this case there is a variable, say the 𝑛th variable, such

that in almost all of the mass of 𝐹 lies on monomials in which the

component of 𝑥𝑛 is an embedding function. Using the homogeneity

of 𝐹 we can use find a decomposition of 𝐹 as∑︁
𝑡 ∈𝑇

𝜓𝑡 𝐹𝑡 (𝑥1, . . . , 𝑥𝑛−1)𝐹 ′𝑡 (𝑥𝑛)

where each 𝐹 ′𝑡 is either from 𝐵1 or from 𝐵2, and {𝐹𝑡 },
{
𝐹 ′𝑡
}
form

orthonormal sets and

∑
𝑡 ∈𝑇

|𝜓𝑡 |2 = 1. Similarly, we can find analogous

decompositions form 𝐺 and 𝐻 as∑︁
𝑟 ∈𝑅

𝜅𝑟𝐺𝑟 (𝑦1, . . . , 𝑦𝑛−1)𝐺 ′
𝑟 (𝑦𝑛),

∑︁
𝑠∈𝑆

𝜌𝑠𝐻𝑠 (𝑧1, . . . , 𝑧𝑛−1)𝐻 ′
𝑠 (𝑧𝑛).

Moreover, if 𝐹 ′𝑡 is a function from 𝐵1 then 𝐹𝑡 has the same non-

embedding degree as 𝐹 , and if 𝐹 ′𝑡 is from 𝐵2 then 𝐹𝑡 has one smaller

non-embedding degree. The same goes for 𝐺 and 𝐻 , so to simplify

presentation we consider the specialized case where

𝐹 (𝑥) = 𝜓1𝐹1 (𝑥1, . . . , 𝑥𝑛−1)𝐹 ′1 (𝑥𝑛) +𝜓2𝐹2 (𝑥1, . . . , 𝑥𝑛−1)𝐹
′
2
(𝑥𝑛),

𝐺 (𝑦) = 𝜅1𝐺1 (𝑦1, . . . , 𝑦𝑛−1)𝐺 ′
1
(𝑦𝑛) + 𝜅2𝐺2 (𝑦1, . . . , 𝑦𝑛−1)𝐺 ′

2
(𝑦𝑛),

𝐻 (𝑦) = 𝜌1𝐻1 (𝑧1, . . . , 𝑧𝑛−1)𝐺 ′
1
(𝑧𝑛) + 𝜌2𝐻2 (𝑧1, . . . , 𝑧𝑛−1)𝐻 ′

2
(𝑧𝑛),

where 𝐹 ′
1
,𝐺 ′

1
and 𝐻 ′

1
are embedding functions and 𝐹 ′

2
,𝐺 ′

2
and 𝐻 ′

2

are non-embedding functions. Thus, the coefficient 𝜓2 is related

to the mass 𝑥𝑛 has on non-embedding functions and by choice is

therefore small, and similarly we can expect it to be the case that 𝜅2
and 𝜌2 are also small (which is true, but requires some preparatory

work). Thus, the 3-wise correlation of 𝐹 , 𝐺 and 𝐻 according to 𝜈

can be written as

E
𝜈𝑛

[𝐹𝐺𝐻 ] = 𝜓1𝜅1𝜌1 E
𝜈⊗𝑛−1

[𝐹1𝐺1𝐻1]E
𝜈

[
𝐹 ′
1
𝐺 ′
1
𝐻 ′
1

]
+𝜓1𝜅1𝜌2 E

𝜈⊗𝑛−1
[𝐹1𝐺1𝐻2]E

𝜈

[
𝐹 ′
1
𝐺 ′
1
𝐻 ′
2

]
+𝜓1𝜅2𝜌1 E

𝜈⊗𝑛−1
[𝐹1𝐺2𝐻1]E

𝜈

[
𝐹 ′
1
𝐺 ′
2
𝐻 ′
1

]
+𝜓1𝜅2𝜌2 E

𝜈⊗𝑛−1
[𝐹1𝐺2𝐻2]E

𝜈

[
𝐹 ′
1
𝐺 ′
2
𝐻 ′
2

]
+𝜓2𝜅1𝜌1 E

𝜈⊗𝑛−1
[𝐹2𝐺1𝐻1]E

𝜈

[
𝐹 ′
2
𝐺 ′
1
𝐻 ′
1

]
+𝜓2𝜅1𝜌2 E

𝜈⊗𝑛−1
[𝐹2𝐺1𝐻2]E

𝜈

[
𝐹 ′
2
𝐺 ′
1
𝐻 ′
2

]
+𝜓2𝜅2𝜌1 E

𝜈⊗𝑛−1
[𝐹2𝐺2𝐻1]E

𝜈

[
𝐹 ′
2
𝐺 ′
2
𝐻 ′
1

]
+𝜓2𝜅2𝜌2 E

𝜈⊗𝑛−1
[𝐹2𝐺2𝐻2]E

𝜈

[
𝐹 ′
2
𝐺 ′
2
𝐻 ′
2

]
. (4)
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It turns out that terms the only term involving 𝐹 ′
1
that does not

vanish is E𝜈
[
𝐹 ′
1
𝐺 ′
1
𝐻 ′
1

]
. Indeed, as 𝐹 ′

1
is a function from 𝐵1 we may

write it as a product of a function on𝑦 with a function on 𝑧, and thus

expectations such as E𝜈
[
𝐹 ′
1
𝐺 ′
1
𝐻 ′
2

]
can be written as expectation

of product of a function of 𝑦 and a function of 𝑧. Using indepen-

dence, this product can be further written as the product of two

expectations where at least one of these expectations is 0.

Thus, if the terms involving 𝐹2 were not existent, then we would

get the upper bound����E
𝜈𝑛

[𝐹𝐺𝐻 ]
���� ⩽ |𝜓1𝜅1𝜌1 |

���� E
𝜈⊗𝑛−1

[𝐹1𝐺1𝐻1]
���� ����E𝜈 [

𝐹 ′
1
𝐺 ′
1
𝐻 ′
1

] ����
⩽

���� E
𝜈⊗𝑛−1

[𝐹1𝐺1𝐻1]
���� ,

and we have decreased the number of variables 𝑛 by 1 (while

keeping the non-embedding degree. In a sense, as𝜓2 is small this

term indeed should constitute the majority of the contribution to

E𝜈⊗𝑛 [𝐹𝐺𝐻 ], but we cannot just ignore the contribution from the

other terms.

A naive attempt at bounding the other term (and using the

Cauchy-Scharz in a favorable way) can show that |E𝜈⊗𝑛 [𝐹𝐺𝐻 ] | is
at most the maximum of

��E𝜈⊗𝑛−1 [𝐹𝑖𝐺 𝑗𝐻𝑘

] ��
over 𝑖, 𝑗 and 𝑘 , however

this bound is not good enough for us; indeed, if this maximum is

achieved at anywhere other than 𝑖 = 𝑗 = 𝑘 = 1 then the non-

embedding degrees decrease, and in that case we must gain a factor

of (1 − Ω(1)) for our argument to go through.

The key to improve upon this naive attempt lies in what we refer

to as the “additive base case”. The additive base case is a statement

about univariate functions that helps us to control the contribution

form terms involving 𝐹 ′
2
in a favorable way. Stated simply, the

additive base case we use is the statement that if 𝐹 ′ is a univariate
non-embedding function, and𝐺 ′

, 𝐻 ′
are any univariate functions,

then ����E𝜈 [
𝐹 ′ (𝐺 ′ + 𝐻 ′)

] ���� ⩽ (1 − Ω(1))∥𝐹 ′∥2∥𝐺 ′ + 𝐻 ′∥.

The intuition for this inequality is that otherwise, the value of 𝐹 ′

would be very close to the value of𝐺 ′ +𝐻 ′
, but this is only possible

for embedding functions.

The point of the additive base case is that except forE𝜈
[
𝐹 ′
2
𝐺 ′
2
𝐻 ′
2

]
,

the contribution of the terms not involving 𝐹 ′
1
in (4) may be re-

casted as an expectation of the form dealt with in the additive

base case. Indeed, if 𝐹 ′
1
,𝐺 ′

1
and 𝐻 ′

1
were the simplest of embedding

functions – namely constant functions – then this is rather clear,

as these terms can be written as

E
𝜈

[
𝐹 ′
2
(𝑎𝐺2 + 𝑏𝐻2)

]
for some coefficients 𝑎 and 𝑏. In the case 𝐹 ′

1
, 𝐺 ′

1
and 𝐻 ′

1
are not

the constant functions more effort is needed, and in particular one

needs to guarantee that they “come” from the same character of 𝐻 .

Namely, that there is 𝜒 ∈ 𝐻̂ such that 𝐹 ′
1
, 𝐺 ′

1
and 𝐻 ′

1
are multiples

of 𝜒 ◦ 𝜎master, 𝜒 ◦ 𝛾master and 𝜒 ◦ 𝜙master respectively. As we are

able to guarantee this fact, the contribution of these terms can still

be associated with the additive base case, as essentially 𝐺 ′
1
= 𝐹 ′

1
𝐻 ′
1

and 𝐻 ′
1
= 𝐹 ′

1
𝐺 ′
1
. Hence, that contribution can be re-written as

E
𝜈

[
𝐹 ′
1
𝐹 ′
2
(𝑎𝐺2 + 𝑏𝐻2)

]

for some coefficients 𝑎 and 𝑏, and this is still an expectation of the

form handled by the additive base case.

Making an effective enough use of the additive base case, one can

use 4 to either reduce 𝑛 by 1 and keep the non-embedding degrees

the same, or else reduce both 𝑛 and the non-embedding degrees by

1 and then gain a factor of 1 − Ω(1).

The near linear non-embedding degree case. We now consider the

case that the non-embedding degree of 𝐹 , 𝐺 and 𝐻 is comparable

to 𝑛, the above argument no-longer works, and the reason is that

the last term in (4) is no longer negligible, and at the same time

we do not know how to give an effective upper bound on it using

only the additive base case. Thus we must have a new base case

that handles this last term, and intuitively one would expect the

following base case to hold. Suppose that 𝐹 : Σ′ → C is a function

from 𝐵2, and 𝐺̃ : Γ′ → C, 𝐻̃ : Φ′ → C are any functions of 2-norm

1. Then ����� E
(𝑥,𝑦,𝑧 )∼𝜈

[
𝐹 (𝑥)𝐺̃ (𝑦)𝐻̃ (𝑧)

] ����� ⩽ 1 − Ω(1) .

The reason we expect this to be true is that otherwise, by com-

pactness we would be able to find 3 such functions satisfying

𝐹 (𝑥) = 𝐺̃ (𝑦)𝐻̃ (𝑧) on the support of 𝜈 . Thus, the logs of these

functions form an Abelian embedding so log(𝐹 ) must be an embed-

ding function, in which case 𝐹 is also an embedding function in

contradiction.

As stated, this argument is not quite correct, since it may be

the case that the function 𝐹 ′ gets the value 0 sometimes, in which

case we cannot take logs and get away with it. This obstruction has

already appeared in [4] wherein it was referred to as the “Horn-

SAT obstruction”, and here too we have to face it. In fact, as in

our scenario we need to maintain many more properties of the

distribution 𝜈 (compared to what was necessary in [4]), more care

is needed to handle the Horn-SAT obstruction. Ultimately, the Horn-

SAT obstruction is dealt with by stating a more complicated base

case statement which we can guarantee to hold for the distribution

𝜈 while being useful enough to make our argument go through. For

the simplicity of presentation however, we ignore this obstruction

for now and explain the argument in the case the ideal base case

holds.

Equipped with the ideal base case, we can give effective enough

bounds on the last term in (4). In particular, if all of the contribution

came from it, we would have been able to conclude that���� E
𝜈⊗𝑛

[𝐹𝐺𝐻 ]
���� ⩽ (1 − Ω(1))

���� E
𝜈⊗𝑛−1

[𝐹2𝐺2𝐻2]
���� ,

and iterating would finish the proof. One again however, there are

other terms in (4) that need to be accounted for (the other terms

involving 𝐹2). To do so, ideally we would have liked (as in the

additive base case) to re-arrange these terms so as to view their

total contribution as an instantiation of the ideal base case, but this

is not possible. Using a similar (but more complicated) argument

we can still show that it is in fact the case that���� E
𝜈⊗𝑛

[𝐹𝐺𝐻 ]
���� ⩽ (1 − Ω(1))

���� E
𝜈⊗𝑛−1

[
𝐹2𝐺2𝐻2

] ���� ,
where 𝐹2,𝐺2 and 𝐻2 are functions of non-embedding degree at

most 1 less of 𝐹2, 𝐺2 and 𝐻2.
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Overcoming the Horn-SAT Obstruction. A large part of our ar-

gument is devoted to gaining additional properties of 𝜈 , as well

as other crucial reductions (for example, to allow us to assume

homogeneity of 𝐹,𝐺 and 𝐻 as above). One of the key properties

achieved in this section is the so-called relaxed base case, which

is a replacement for the ideal base case above that we are able to

ensure.

A triplet of functions 𝑢 : Σ′ → C, 𝑣 : Γ′ → C and𝑤 : Φ′ → C is

called a Horn-SAT embedding if 𝑢 (𝑥) = 𝑣 (𝑦)𝑤 (𝑧) in the support of

𝜈 . If 𝑢 never vanishes, a Horn-SAT embedding can be transformed

into an Abelian embedding, and thus (simply put) the Horn-SAT

obstruction is really about the possible 0-patterns non-embedding

functions may have. By careful manipulations (once again utilizing

the path trick) we are able to find a set Σmodest ⊆ Σ′ of size at

least 2 such no Horn-SAT embedding can vanish on. Thus, we get

that if 𝑢 doesn’t vanish on Σmodest then it can never be a part of a

Horn-SAT embedding. Therefore, it is natural to expect that if 𝑢

has variance at least 𝜏 on Σmodest, then����E𝜈 [𝑢𝑣𝑤]
���� ⩽ 1 − 𝜃 (𝜏)

where 𝜃 (𝜏) > 0 is some function of 𝜏 . This turns out to be true and

useful, but there are many subtleties. For once, we need additional

properties from Σmodest to make this relaxed base case useful, and

most important we need the symbols in Σmodest to be mapped to

the same group element in 𝐻 by the master embedding. Secondly

(and this has already appeared in [4]) we need a decent dependency

between 𝜏 and 𝜃 (𝜏).

1.4.5 Step 5: Reducing to Functions over 𝐻 . We now return our

functions 𝐹 , 𝐺 and 𝐻 , armed with the knowledge that the contri-

bution of high non-embedding degree parts if small. Thus, taking

their parts of small non-embedding degree 𝐹 ′, 𝐺 ′
and 𝐻 ′

, we are

able to conclude that |E𝜈⊗𝑛 [𝐹𝐺𝐻 ] − E𝜈⊗𝑛 [𝐹 ′𝐺 ′𝐻 ′] | ⩽ 𝜀
100

, and

so the 3-wise correlation of 𝐹 ′, 𝐺 ′
and 𝐻 ′

according to 𝜈 is still

significant.

We remark that as in our actual argument we will need the

functions 𝐹 ′, 𝐺 ′
and 𝐻 ′

to be bounded, so harsh truncations as we

described do not fit the bill. Thus, we use a softer notion of trun-

cations given by the non-embedding noise operator. For 𝜌 ∈ [0, 1]
consider the Markov chain T

non-embed,𝜌 on Σ′ that on 𝑥 , with prob-

ability 𝜌 takes 𝑥 ′ = 𝑥 , and otherwise samples 𝑥 ′ ∼ 𝜈 |𝑥 conditioned

on 𝜎master (𝑥 ′) = 𝜎master (𝑥). When 𝜌 is not specified, that is, when

we write T
non-embed

, we mean that 𝜌 is taken to be 0. Given such

Markov chain one may consider the corresponding averaging oper-

ator on 𝐿2 (Σ′, 𝜈𝑥 ) given as

T
non-embed,𝜌 𝑓 (𝑥) = E

𝑥 ′∼Tnon-embed,𝜌𝑥

[
𝑓 (𝑥 ′)

]
,

and tensorize it to get an averaging operator

T
⊗𝑛
non-embed,𝜌

: 𝐿2 (Σ′𝑛, 𝜈⊗𝑛𝑥 ) → 𝐿2 (Σ′𝑛, 𝜈⊗𝑛𝑥 ) .

Simiarly, we can get averaging operators on the space𝐿2 (Γ′𝑛, 𝜈⊗𝑛𝑦 )
as well as on the space 𝐿2 (Φ′𝑛, 𝜈⊗𝑛𝑧 ), which by abuse of notation

we also denote by T
non-embed,𝜌 . These averaging operators can be

shown to essentially kill monomials of high non-embedding degree,

hence serve as a replacement for harsh truncation arguments as

above.

With these operators in hand, we can replace the harsh trun-

cations above by 𝐹 ′ = T
⊗𝑛
non-embed,𝜌

𝐹 , 𝐺 ′ = T
⊗𝑛
non-embed,𝜌

𝐺 and

𝐻 ′ = T
⊗𝑛
non-embed,𝜌

𝐻 (for suitably chosen 𝜌) and effectively be in

the same situation as before, wherein we have functions 𝐹 ′,𝐺 ′
and

𝐻 ′
that have almost all of their mass on monomials with small

non-embedding degrees, and also that���� E
𝜈⊗𝑛

[𝐹𝐺𝐻 ] − E
𝜈⊗𝑛

[
𝐹 ′𝐺 ′𝐻 ′] ���� ⩽ 𝜀

100

.

We wish to transform the functions 𝐹 ′, 𝐺 ′
and 𝐻 ′

into related

bounded functions with non-embedding degree 0 for which the 3-

wise correlation over 𝜈 is still significant. For that, we use a combina-

tion of random restrictions (so as the mass of 𝐹 ′,𝐺 ′
, and𝐻 ′

of small

but not 0 non-embedding degree would almost all collapse to level

0), followed by averaging (to get rid of all monomials of positive non-

embedding degree). Thus, we get functions 𝐹 ′′′ = T
non-embed

(𝐹 ′′),
𝐺 ′′′ = T

non-embed
(𝐺 ′′) and 𝐻 ′′′ = T

non-embed
(𝐻 ′′) where 𝐹 ′′, 𝐺 ′′

and 𝐻 ′′
are random restrictions of 𝐹 ′,𝐺 ′

and 𝐻 ′
, so that with no-

ticeable probability we have that

E
(𝑥,𝑦,𝑧 )∼𝜈⊗𝑛′′′

[
𝐹 ′′′ (𝑥)𝐺 ′′′ (𝑦)𝐻 ′′′ (𝑧)

]
⩾

𝜀

2

where 𝑛′′′ is the number of coordinates left alive after the random

restriction. Now the functions 𝐹 ′′′, 𝐺 ′′′
and 𝐻 ′′′

can be viewed as

functions defined over 𝐻𝑛′′′
, so the above expectation should be

amendable to standard tools from discrete Fourier analysis.

1.4.6 Step 6: Applying the Linearity Testing Argument. Indeed, we
re-cast the functions 𝐹 ′′′, 𝐺 ′′′

and 𝐻 ′′′
above as 𝐹 ♯ : 𝐻𝑛′′′ → C,

𝐺♯
: 𝐻𝑛′′′ → C and 𝐻 ♯

: 𝐻𝑛′′′ → C defined in the natural way (for

example, 𝐹 ♯ (𝑎) = 𝐹 (𝑥) for 𝑥 such that 𝜎master (𝑥𝑖 ) = 𝑎𝑖 for each

coordinate, where we know that the specific choice of 𝑥 doesn’t

matter). Thus, from the distribution 𝜈 we get a corresponding dis-

tribution 𝜈♯ over
{
(𝑎, 𝑏, 𝑐) ∈ 𝐻3

��𝑎 + 𝑏 + 𝑐 = 0

}
whose support is

full, and ����� E
(𝑎,𝑏,𝑐 )∼(𝜈♯ )⊗𝑛′′′

[
𝐹 ♯ (𝑎)𝐺♯ (𝑏)𝐻 ♯ (𝑐)

] ����� ⩾ 𝜀

2

.

We now use random restrictions again, but for a different reason.

Namely, we use random restrictions to shift from the distribution

𝜈♯ to the uniform over

{
(𝑎, 𝑏, 𝑐) ∈ 𝐻3

��𝑎 + 𝑏 + 𝑐 = 0

}
, and get from

𝐹 ♯ ,𝐺♯
and 𝐻 ♯

restrictions 𝐹 ♯
′
,𝐺♯′

and 𝐻 ♯′
so that with noticeable

probability����� E
𝑎,𝑏∈𝐻𝑛′′′′

[
𝐹 ♯

′
(𝑎)𝐺♯′ (𝑏)𝐻 ♯′ (−𝑎 − 𝑏)

] ����� ⩾ 𝜀

4

,

where 𝑛′′′′ is the number of coordinates left alive. In this case,

a straightforward, classical Fourier analytic computation can be

applied to relate the left hand side to the Fourier coefficients of 𝐹 ♯
′
,

𝐺♯′
and 𝐻 ♯′

so that we get������ ∑︁
𝜒∈𝐻̂ ⊗𝑛′′′′

𝐹 ♯
′ (𝜒)𝐺♯′ (𝜒)𝐻 ♯′ (𝜒)

������ ⩾ 𝜀

4

,
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from which one can quickly conclude that there is 𝜒 such that����𝐹 ♯′ (𝜒)���� ⩾ 𝜀
4
. In words, after a sequence of random restrictions, av-

eraging and further random restriction, the function 𝐹 is correlated

with a function of the form 𝜒 ◦ 𝜎master. This is the type of result

we are after, except that we wish to have such result for 𝐹 and not

for 𝐹 after this sequence of operations.

1.4.7 Step 7: Going back to 𝐹 via the Restriction Inverse Theorem. We

have thus concluded that after random restriction, 𝐹 ♯ is correlated

with a function of the form 𝜒 ◦ 𝜎master where 𝜒 ∈ 𝐻̂𝑛′′′′
, and we

wish to unravel the steps we took to get from 𝐹 to 𝐹 ♯ and conclude

a structural result about 𝐹 .

Noting that 𝜒 ◦ 𝜎master is a product function, this is precisely

a situation in which the restriction inverse theorem kicks in, and

using amodified version of Theorem 1.5 we are able to conclude that

𝐹 ♯ is correlated with a function of the form 𝐿 ◦ 𝜎master · 𝜒 ◦ 𝜎master
where 𝜒 ∈ 𝐻̂𝑛′′′

and 𝐿 is a low-degree function of 2-norm at most

1. Thus, the same conclusion holds for 𝐹 ′′′ (as it is essentially the

same function as 𝐹 ♯ .

Recalling that 𝐹 ′′′ = T
non-embed,0𝐹

′′
, we get that��⟨T

non-embed,0𝐹
′′, 𝐿 ◦ 𝜎master · 𝜒 ◦ 𝜎master⟩

�� ⩾ 𝜀

4

,

but on the other hand we also have that��⟨T
non-embed,0𝐹

′′, 𝐿 ◦ 𝜎master · 𝜒 ◦ 𝜎master⟩
��

=

���⟨𝐹 ′′,T∗
non-embed,0

(𝐿 ◦ 𝜎master · 𝜒 ◦ 𝜎master)⟩
���

=
��⟨𝐹 ′′,T

non-embed,0 (𝐿 ◦ 𝜎master · 𝜒 ◦ 𝜎master)⟩
��

=
��⟨𝐹 ′′, 𝐿 ◦ 𝜎master · 𝜒 ◦ 𝜎master⟩

�� ,
where we used the fact that T

non-embed,0 is self-adjoint. Hence, we

conclude that 𝐹 ′′ is correlated with 𝐿 ◦ 𝜎master · 𝜒 ◦ 𝜎master.

We now wish to unravel the last step of random restriction (that

goes from 𝐹 to 𝐹 ′′), and for that we once again want to appeal

to the restriction inverse theorem. However, the correlations we

are talking about now are not quite about correlations with prod-

uct functions. Amusingly, to circumvent this issue we apply more

random restrictions. Intuitively, after a suitably chosen random

restriction, the function 𝐿 becomes close to constant, hence one

expects the fact that 𝐹 ′′ is correlated with 𝐿 ◦ 𝜎master · 𝜒 ◦ 𝜎master
to convert to the fact that a random restriction of 𝐹 ′′ is correlated
with a restriction of 𝜒 ◦ 𝜎master (which is a product function), and

we show that this is indeed the case. Thus, we conclude that a

random restriction of 𝐹 ′′ is correlated with a function of the form

𝜒 ◦ 𝜎master. Noting that a random restriction of 𝐹 ′′ is (overall) a
random restriction of 𝐹 (with different parameters), we are thus

able to conclude from the restriction inverse theorem that 𝐹 itself

is correlated with a function of the form 𝐿 · 𝜒 ◦ 𝜎master.

1.4.8 Step 8: Going back to 𝑓 via Properties of the Master Embedding.
The last step in the proof of Theorem 1.4 is to use the structural

result obtained for the function 𝐹 to deduce a similar structural

result for 𝑓 . For that, we recall that (ignoring complex conjugates)

the value of 𝐹 (𝑥1, . . . , 𝑥𝑠 ) is 𝑓 (𝑥1) · · · 𝑓 (𝑥𝑠 ), and, ignoring the low-

degree part 𝐿 for now, we know that 𝐹 is correlated with 𝜒 ◦𝜎master
for some 𝜒 ∈ 𝐻̂𝑛

. Recalling the relation 3, one quickly gets from it

that

𝜒 ◦ 𝜎master (𝑥1, . . . , 𝑥𝑠 ) =
𝑠∏
𝑖=1

𝜒 ◦ 𝜎master (𝑥𝑖 ),

where, by abuse of notation, 𝜎master on the right hand side is the

master embedding of 𝜇 (which is the original distribution, prior to

any application of the path trick). Hence, the correlation between

𝐹 and 𝜒 ◦ 𝜎master translates to the fact that����� E
(𝑥1,...,𝑥𝑠 )∼𝜈⊗𝑛𝑥

[
𝑠∏
𝑖=1

𝑓 (𝑥𝑖 )𝜒 ◦ 𝜎master (𝑥𝑖 )
] ����� ⩾ 𝜀′ = 𝜀′ (𝜀) > 0

As discussed earlier, in [23] it is shown that if 𝜈𝑥 is a connected

distribution, a correlation such as in the above can be noticeable

only if 𝑓 · 𝜒 ◦𝜎master is correlated with a low-degree function. Thus,

the proof would be concluded if we are able to ensure connectivity

of 𝜈𝑥 , which we are indeed able to. This requires some care in some

of our earlier steps, and most notably in the way we apply the path

trick. In fact, we are able to guarantee that the support of 𝜈𝑥 is full,

that is, Σ𝑠 .
Bringing the low-degree part 𝐿 back, essentially the same ar-

gument works except that we need to apply a suitable random

restriction beforehand to get rid of the low-degree part. Thus, the

previous argument gives that with noticeable probability, a ran-

dom restriction of 𝑓 · 𝜒 ◦ 𝜎master is correlated with a low-degree

function. Hence, after more random restrictions, we conclude that

with noticeable probability a random restriction of 𝑓 · 𝜒 ◦𝜎master is

correlated with a constant function. Re-phrasing, this means that

with noticeable probability a random restriction of 𝑓 is correlated

with a function of the form 𝜒 ◦ 𝜎master, and a final invocation of

the restriction inverse theorem finishes the proof.
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