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ABSTRACT

We prove a stability result for general 3-wise correlations over
distributions satisfying mild connectivity properties. More con-
cretely, we show that if ¥, I and ® are alphabets of constant size,
and p is a distribution over ¥ X I' X ® satisfying: (1) the probabil-
ity of each atom is at least Q(1), (2) p is pairwise connected, and
(3) ¢ has no Abelian embeddings into (Z, +), then the following
holds. Any triplets of 1-bounded functions f: 3" — C,g: I'"* — C,
h: @" — C satisfying

[f()g(x)h(2)]| > ¢
(x,32)~p®"

must arise from an Abelian group associated with the distribution
1. More specifically, we show that there is an Abelian group (H, +)
of constant size such that for any such f, g and h, the function f
(and similarly g and h) is correlated with a function of the form
f(x) = y(o(x1),...,0(xp))L(x), where o: ¥ — H is some mayp,
x € H®" is a character, and L: 3" — C is a low-degree function
with bounded 2-norm.

En route we prove a few additional results that may be of inde-
pendent interest, such as an improved direct product theorem, as
well as a result we refer to as a “restriction inverse theorem” about
the structure of functions that, under random restrictions, with
noticeable probability have significant correlation with a product
function.

In companion papers, we show applications of our results to
the fields of Probabilistically Checkable Proofs, as well as various
areas in discrete mathematics such as extremal combinatorics and
additive combinatorics.
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1 INTRODUCTION

1.1 Studying 3-wise Correlations with Respect
to a Distribution

Let 3, T and ® be alphabets of constant size, suppose p is a distri-
bution over ¥ XI' x @, andlet f: 3" - C,g: " > C, h: " —» C
be 1-bounded functions. What sort of triplets of functions f, g and
h have a significant 3-wise correlation with respect to p? In other
words, what can be said about the functions f, g and h in the case
that

[f(x)9(yh(2)]| > & 1)

(x.y,2)~p®"

where ¢ > 0 is thought of as a small constant? In [23], it is shown
that if y is connected, then this can only be the case if each one
of f, g and h is correlated with a low-degree function. Here, we
say that a distribution y over X1 X ¥ X X3 is connected if for
any partition of {1, 2,3} into two sets I U J, the bi-partite graph
between supp(ur) and supp () whose edges are all (a, b) if (a, b) €
supp(p), is connected (yg is the marginal distribution of y on the
coordinates of I). In [2, 4], a strengthening of this result is proved,
and it is shown that it suffices that the distribution y does not admit
any Abelian embeddings.

DEFINITION 1.1. An Abelian embedding of a distribution i over
3 X T X ® consists of an Abelian group (H,+) and3 mapso: ¥ — H,
y: T — Hand¢: ® — H such that o(x) +y(y) + ¢(z) = 0 for all
(x,y,z) € supp(p). We say that the embedding (o, y, §) is non-trivial
if at least one of the maps is not constant.

DEFINITION 1.2. We say a distribution i admits an Abelian em-
bedding if it has a non-trivial Abelian embedding.

In this language, the main result of [2, 4] asserts that if y does
not admit an Abelian embedding and the probability of each atom
in p is at least a thought of as a constant, then each one of f, g and
h must be correlated with a low-degree function. As it can easily be
seen, this result is strictly stronger than the corresponding result
in [23] since any distribution y which is connected does not admit
an Abelian embedding. Moreover, as explained in [2, 4] this result
is an if and only if, in the sense that in the presence of Abelian
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embedding one could design 1-bounded functions f, g and h for
which (1) holds while at least one of the functions f, g and h only
has o(1)-correlation with any low-degree function.

The main goal of this paper is to extend this understanding
beyond the realm of distributions which do not have Abelian em-
beddings and prove structural results on functions f, g and h satis-
fying (1) in this more general setting. At a high level, one would
like to say that such functions f, g and h could only arise as a
result of using Abelian embeddings, using low-degree functions, or
both. To prove such result however, we must focus our attention on
distributions p satisfying a very mild form of connectivity, which
we refer to as pairwise connectedness.

DEFINITION 1.3. Let %1, %, %3 be finite alphabets, and let P C
31 X X X X3. For a pair of distinct coordinates i, j € {1,2,3}, we
say P is {i, j} connected if the bipartite graph G = (%; U X}, Ej j),
where E; j is the set of label pairs that appear in some element of P,
is connected.

We say P is pairwise connected if it is pairwise connected for any
two distinct i, j € {1, 2,3}.

We say a distribution 1 is pairwise connected if supp(p) is pairwise
connected.

At a high level, the notion of pairwise connectedness stems from
the fact that if supp(p) is not pairwise connected, then there are
examples of functions satisfying (1) without any useful structure
for our purposes. Indeed, if supp(u) is not pairwise connected —
without loss of generality it is not {1, 2}-connected, then we may
find a non-trivial partition 3 = ¥’U3” and T’ = I’ UT"”’ so that in the
support of yi there can only be pairs from 3’ XI'" and 3/ XI'” on the
first two coordinates. In this case, we may pick any pair of functions
5,8 {1,2}" — C such that s(a)s’(a) = 1 for all a € {1,2}" (for
example, one can take s whose absolute value is always 1, and s’
to be its conjugate) and construct f, g, h as follows. For f, we set
f(x) = s(x”) where for each i, x] = 1if x; € 3’ and otherwise
x] = 2. For g, we similarly set g(y) = s’(y") where for each i, y; = 1
if y; € T’ and otherwise y; = 2. For h, we take h = 1. Thus, for any
(x,y,2) € supp(p) we have that

fx)g(yh(z) = s(x")s"(y') = 1,

as we have that x” = y’ by construction.

Henceforth, we will focus our attention on distributions ¢ which
are pairwise connected. With this in mind, as explained earlier there
are two ways of constructing functions f, g and h satisfying (1):

(1) If supp(y) admits a linear embedding, say for simplicity a
cyclic group (H,+) = (Zp,+) and maps 0: £ — H,y: T —
H and ¢: ® — H not all constant such that o(x) + y(y) +
¢(z) = 0, then one can take

Fxty. .., xn) = e i (TR F 40 (Xn))
9(Y1,...,yn) = e%f()’(y1)+...+y(yn))’
h(z1,...,2zn) = e%(¢(21)+.‘.+¢(zn))

and note that f(x)g(y)h(z) = 1 pointwise, hence (1) holds.
More generally, for a general Abelian group (H,+) one can
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pick non-trivial characters yi, ..., yn € H, define

Flenexm) = [ [ a0,
j=1

J

9y -un) = | |1 (r(yi),
j=1

h(zi,ozm) = [ | xi(8(z),
Jj=1

and note again that f(x)g(y)h(z) = 1 pointwise hence (1)
holds.

(2) In general, it may also be the case that for a distribution g,
low-degree functions also satisfy (1). Indeed, in that case one
may try to find univariate 1-bounded functions u: ¥ — C,
v: T — Cand w: ® — C for which

E  [u(x)e(yw(z)] = Q)
(xy,2)~p
and then tensorize them to get

d d

flx1,.eoixp) = Hu(xj), 9(Y1,...,yn) = Hv(yj),
Jj=1 j=1
d
h(z1,...,2zn) = l_[w(zj),
j=1

which get value of 2-00d) jpn (1).

1.2 Main Results

With the above discussion in mind, one is tempted to conjecture
that if y1 is pairwise connected, then the only possible examples of
triplets of functions f, g and h satisfying (1) must come from the
above template.

1.2.1  The Stability Result. The main result of this paper is a sta-
bility result that formalizes this intuition, saying that under some
mild assumptions on the distribution g, if f, g and h are 1-bounded
functions achieving significant 3-wise correlation as in (1), then
f (and similarly g and h) must be correlated with a product of an
embedding type function as in the first recipe, with a low-degree
function as in the second recipe. The mild assumptions on y corre-
spond to it being pairwise connected (which is necessary, otherwise
the statement is simply false), and for technical reasons we also
need an additional assumption, namely that ; cannot be embedded
in the Abelian group (Z, +). We remark though that this additional
assumption is, as far as we know, not necessary, but removing it
seems to require more ideas. With this in mind, a precise formula-
tion of our main result is:

THEOREM 1.4. Forallm € N,a > 0 ande > 0, thereared € N and
& > 0 such that the following holds. Suppose that y is a distribution
over X X I' X @ such that

(1) The probability of each atom in i is at least a.

(2) The size of each one of 2,T, ® is at most m.

(3) The distribution p is pairwise connected.

(4) p does not admit an Abelian embedding into (Z,+).
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Then, if f: 3" — C, g: I™ — C and h: " — C are 1-bounded
functions such that

E
(x,y,2)~p®n

[f(x)g9(y)h(2)]

Z &,

then there are 1-bounded functionsuy, . .., up: £ — C and a function
L: 3" — C of degree at most d and 2-norm at most 1 such that

F@) L) | Juitx)

i=1

E

n
X~ Hx

> 4.

Furthermore, there isr € N depending only on m and an Abelian
embedding (o,y,$) of it into an Abelian group (H, +) of size at most
r such that for all i, u;(x;) = yi(o(x;)) where y; € H is a character
of H.

Quantitatively, we have that

d = poly, ,(1/e), §=27PWam(1/e),

The proof of Theorem 1.4 is quite long, and in Section 1.4 we
give an overview of the steps we take in the proof. Some of the
steps require ingredients that may be of independent interest, and
which we explain next.

1.2.2  The Restriction Inverse Theorem. The proof of Theorem 1.4
uses a result which we refer to as the Restriction Inverse Theorem
and present next.

Restrictions and Random Restrictions. Restrictions and random
restrictions are vital to our argument to go through, and the Restric-
tion Inverse Theorem can be thought of as a statement about them
of independent interest. Given a function f: (2", u®") — C, a set
of coordinates I C [n] and % € 37, the restricted function f%%ic isa
function from 3! to C defined as

fioz (&) = flaq =x",xp = %),
where (x7 = x’, x7 = X) is the point in =" whose I-coordinates are
set according to x’, and whose I-coordinates are set according to X.

Random restrictions are restrictions in which either I, X or both
are chosen randomly. A typical setting we use is one where we
have a parameter p > 0, and we pick I C,, [n], by which we mean
that we include each i € [n] in I with probability p; we then choose
% ~ u!. For the purposes of this paper it is necessary to consider
other (less standard) settings of random restrictions, but we will

limit ourselves to this more typical setting for the purposes of this
introduction.

Product functions. A function f: " — C is called a product
function if there are 1-bounded functions fi,..., f;: £ — C such
that

Flra ) = | | fito-
i=1

It is clear that if f is a product function, then any restriction of it is
still a product function. Thus, with probability 1, taking a random
restriction of f yields a function which has perfect correlation with
a product function. The Restriction Inverse Theorem is a statement
about a deduction in the reverse direction: suppose f is a function
that after random restriction it has a significant correlation with a
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product function. Is it necessarily the case that f itself is correlated
with a product function?

As is usually the case with inverse-type questions, there are
multiple regimes of parameters one may consider, and for us the
most relevant regime is the so-called 1% regime. In this case, we
have a parameter p > 0 (which is small but bounded away from 0)
and a function f: 3" — C such that

Pr
IC,[n]
T

[3 product function p: > ¢ ‘<ff—>5c’p>‘ > e] >e (2)

F~pu
and we wish to deduce a structural result about f. As discussed,
such situations may arise when f is a product function - or more
generally when it is correlated with a product function. However, if
f is alow-degree function (or even if it is just correlated with a low-
degree function), a random restriction of f will be correlated with
a constant function with noticeable probability, and hence with a
product function. The Restriction Inverse Theorem essentially says
that these are the only two ways that (2) can come about:

THEOREM 1.5 (THE RESTRICTION INVERSE THEOREM, INFORMAL).
Foralle, p,a > 0 andm € N there ared € N and § > 0 such that the
following holds. Suppose X, is a finite alphabet of size at most m, i is a
distribution over X in which the probability of each atom is at least a,
and f: (3", y®") — C is a 1-bounded function satisfying (2). Then
there is a product function p: 3" — C and a function L: 3" — C of
degree at most d and ||L||2 < 1 such that

Kf.pL)l = 6.

We refer the reader to the full version of the paper for a more
formal and general version of the Restriction Inverse Theorem. We
remark that among other things, we also give explicit dependency
of d and § on ¢ and p. These quantitative aspects are important if
one wishes to get decent quantitative bounds in Theorem 1.4, and
we think they are also interesting in their own right.

1.2.3  The Direct Product Theorem. The proof of Theorem 1.5 (and
thus, in turn, of Theorem 1.4) hinges on a direct product testing
result, which may also be of independent interest. The problem
of direct product testing has its roots in the field of probabilistic
checkable proofs and in particular in hardness amplification. In this
setting, one wishes to encode a function f: [n] — [R] (where n is
thought of as very large) by local pieces that, on the one hand allows
for local access to values of f. On the other hand, the encoding
should be testable, in the sense that there is a test that only looks
at a handful of locations of the encoding and determines whether
it is an encoding of an actual function f: [n] — [R], or whether it
is far from the encoding of any such function.

Our application calls for a particular direct product tester that
has been extensively studied in the literature [5, 8, 9, 11, 13, 21, 22].
In this tester, the function f is encoded via its table of restrictions to
sub-cubes of certain dimension. Namely, given a parameter k € N
(which for us will be equal to pn, where p should be thought of
as a very small constant), the direct product encoding of f is the

mapping F: ([Z]) — [R]¥ defined by
F[A] = fla
for all A C [n] of size k.
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The test we associate with this encoding is determined by two
parameters, o, f € (0,1) that also should be thought of as small

constants. Given a supposed table of restrictions G: ([Z]) — [R],
the test, which we call DP(p, &, ), proceeds in the following way:

[n]

(1) Sample C C [n] of size ak and sample A, B € ( k

dently containing C.
(2) Sample T C [n] of size fn.
(3) Query G[A], G[B] and check that G[A]|cnT = G[Bl|cnrt-

) indepen-

In other words, the tester selected two sets A, B that intersect on a
sizable number of elements (at least k), then a random subset of
their shared elements and checks that the local assignments G[A]
and G[B] agree on this random subset of shared elements.

Note that this test is complete, in the sense that if G is a legitimate
direct product encoding, then it passes the test with probability 1.
Thus, as is usually the case, the interesting aspect of this test is the
soundness, which is equivalent to the following question. Suppose

that the tester accepts a table G: ([Z]) — [R]* with probability
at least s; is it necessarily the case that G is somewhat close to a
legitimate direct product testing codewords?

In the so-called 99% regime, where the probability s = 1 — ¢ is
thought of close to 1, this problem is completely understood, and
in [8, 13] it is shown that in this case there is a function f: [n] —
[R] such that for at least 1 — O(¢) fraction of A € ([Z]) it holds that
Gl[A] = fla.

For us, the most so-called 1% regime is more relevant, wherein
the probability s = ¢ is thought of as close to 0. In this case, one can
no longer expect a strong conclusion as in the 99% regime. Instead,
naturally one would expect that in this case, there would have to be
a function f: [n] — [R] such that for at least § = §(p, @, B, ) > 0

fraction of A € ([Z]) it holds that G[A] = f]a, but this is also
too much to expect. Indeed, to see that take any g: [n] — [R],
and for each A take G[A] uniformly from [R]* with probability
1 — ¢, and otherwise take it to be a string in [R]¥ of Hamming
distance r = O(log(1/¢)) from g|4. Using Chernoff’s bound, one
can prove that with high probability there is no function f: [n] —
[R] satistying the natural conclusion one expects, yet the tester
passes with probability at least £2(1—f)%" = poly(e). The reason for
that is that looking at two locations A, B queried by the tester, with
probability £2 both of them get assigned strings close to g|4 and
g|B respectively, in which case with probability at least (1 — §)%"
the subset T excludes all coordinates on which either G[A] and g| 4,
or G[B] and g|p, disagree on.

Due to a rather versatile set of examples, results in the 1% regime
are often more challenging to prove. Indeed, earlier results by [9, 13]
managed to show that in this case there is a function f: [n] — [R]
such that for at least § = §(p, a, B, &,7) > 0 fraction of A € ([Z])
it holds that A(G[A], fla) < nk. Here and throughout, A(x,y)
represents the Hamming distance between strings x and y. The
main drawback of this result is that the distance between G[A]
and f| 4 is linear in k, which is not good enough for our purposes.
Indeed, for our application we need a result that gets a Hamming
distance which is a constant r = r(p, a, f,¢) € N as opposed to a
constant fraction.

In [5], such result was proved for a more specialized version
of this test in the case of f = 1 and R = 2. Therein, both of the
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parameters a and p are thought of as constant, and it is proved
that there are r = r(e, &, p) € Nand § = §(¢, @, p) > 0 such that if
G passes the test DP(p, @, f = 1) with probability at least ¢, then
there is a function f: [n] — {0, 1} such that for at least § fraction
of Ae ([Z]) it holds that A(G[A], f]a) < r.Besides being a natural
question of interest, the motivation of this result therein was to
establish an earlier, less general version of the Restriction Inverse
Theorem, Theorem 1.5 herein.

In this paper, we are once again in a situation that our proof of a
restriction inverse theorem requires a direct product testing result,
and the relevant test for us is the test DP(p, a, f) above. Moreover,
as herein we are concerned with getting good quantitative bounds,
we no longer think of the parameters p, @, f as constants and thus
try to get reasonable dependencies of r and § on these parameters.
For the purposes of this introductory section however, we do not
mention these quantitative aspects and defer the interested reader
to the full version of the paper. Thus, without a concern for these
quantitative aspects our result reads:

THEOREM 1.6 (THE DIRECT PRODUCT TESTING THEOREM, INFOR-
MAL). Foralle, p,a, > 0 there arer € N and § > 0 such that the
following holds for all R € N. Fork = pn, if G: ([Z]) — [RFisa
function that passes the test DP(p, a, f) with probability at least ¢,
then there is a function f: [n] — [R] such that

Pr [A(fla.GlAD) <r] > 6.
ae()

1.3 Applications and Motivations

In this section, we discuss some applications and motivating fields
and type of problems Theorem 1.4 (and possible extensions of it)
are likely to be related to. For some of them, we already have initial
leads (and pursue them in subsequent papers as the current paper
is already long enough as is), while for others the connection is
more speculative.

1.3.1 Hardness of Approximation. Recall Mossel’s result [23], as-
serting that in the case that p is a connected distribution only the
low-degree part of functions contributes to (1). For low-degree
functions, one has the invariance principle of [24], and thus the
combination of these two results can be seen as transforming ex-
pectations as in (1) to expectations over Gaussian space. This result
has a few notable striking consequences in the field of hardness
of approximation. Most notably, Raghavendra [26] uses precisely
such ideas to show the relationship between dictatorship tests and
Gaussian rounding scheme to semi-definite relaxations.

In this light, the result proved in this paper shows that only
functions that are “characters times low-degree functions” can con-
tribute to (1), and this suggests that an invariance principle that
extends the invariance principle of [24] should exist. Indeed, in a
future work [1] we are exploring this direction and will prove a
more general such invariance principle, and discuss its relation to
rounding schemes that combine semi-definite programming relax-
ations as well as linear programming relaxations. We believe such
invariance principles will be crucial in the journey of understanding
the approximability of satisfiable constraint satisfaction problems.

1.3.2  Higher Arity Predicates. The original motivation behind the
question considered in this paper is the non-Abelian embedding
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hypothesis of [2], which is the following statement. Suppose k > 3
is an integer, X1, . . ., X finite alphabets and p is a distribution over
31 X...X Xk in which the probability of each atom is at least & > 0.
We say p admits an Abelian embedding if there is an Abelian group

(H,+)andmaps 0;: X; — Hfori=1,...,ksuchthat Z oi(x;) =0

forall (x1,...,x%) € supp(u). We say p admits a non- tr1v1a1 Abelian
embedding 1f at least one of the maps o; is non-constant.

HypoTHEsIs 1.7. In the above setting, if i admits no non-trivial
Abelian embeddings, then for all ¢ > 0 there isd > 0 such that if
fi: 2 — C are 1-bounded functions with Stab, /, (ﬁ, ™) < 6 for
at least one of the i’s, then

]_[ﬁ(xl

In [2] a special case of this hypothesis is proved for a class of k =
3-ary distributions, and in [4] this hypothesis is proved in general
for all k = 3-ary distributions. In these terms, the current paper does
not signify any further progress towards establishing Hypothesis 1.7
beyond the case of 3-ary predicates, however we believe that the
stability version proved herein will be crucial towards making
further progress in this direction.

\

(150 xk)~ll®"

1.3.3  Gowers’ Norms. Theorem 1.4 can be seen as an analog of
the Usz-inverse theorem for Gowers uniformity norms [17] for gen-
eral distributions. In the context of Gowers uniformity norms, the
Us-inverse theorem is a simple Fourier analytic computation only
involving Fourier coefficients. Interestingly, at a point in our argu-
ment we too have to carry out such a computation (this is, however,
a small part of the proof). It is tempting to speculate, and we have
initial leads for this fact, that there should be higher order analogs
of Gowers inverse theorems in the much more general setting of
Theorem 1.4.

If true, such statements could be very useful to make progress
on multiple problems in extremal combinatorics, and in particular
in Szemerédi-type theorems [29]. This is so because it appears
they are strong enough to facilitate density increment arguments.
Indeed, as we explain next, in a companion paper we have used
Theorem 1.4 to give effective bounds for the problem of finding
restricted 3-arithmetic progressions in dense sets in F%, for a prime

p-

1.3.4 Extremal Combinatorics. A set A C F; is called somewhat
restricted 3-AP free if it does not contain an arithmetic progression
X, x+a, x+2a where x € FZ anda € {0,1,2}"\ {6} In a companion
paper [3], we use Theorem 1.4 to give effective bounds on the
density of restricted 3-AP sets:

THEOREM 1.8. There are absolute constants C > 0 and 1 <
such that if A C IFZ is a restricted 3-AP set, then

k<10

c
= log® 0’

(A = U

where log(k) n is the k-fold iterated logarithm function.
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Previously, the best known bound was O(1/log” n), achieved by
appealing to a quantitative version of the density Hales-Jewett the-
orem [25]. Theorem 1.8 makes progress on a question of Green [18]
and on a question of Haszla, Holenstein and Mossel [23].

1.3.5 Multi-Player Parallel Repetition Theorems. Parallel repetition
is a basic building block in the area of interactive protocols and in
particular in applications in the field of hardness of approximation.
In the setting of k-player games, we have a basic game ¥ involving
a verifier and k players. The game consists of a set of questions X
that are supposed to get labels from a finite alphabet X, a predicate
P: X* x5k — {0,1} that gives k-challenges and answers to them
dictates whether these answers are deemed satisfactory or not, and
a distribution p over k-tuples of challenges. In the basic game ¥, the
verifier samples a challenge (x1,...,xg) ~ p, sends the question x;
to the ith player, receives an answer a; € X from player i, and then
accepts if and only if P(xy, ..., Xy, a1, ..., ar) = 1. The value of the
game, val(\¥), is defined to be the maximum probability the verifier
accepts under the best strategy for the players.

The t-fold repeated game, ¥®?, is a game in which the verifier
samples ¢ sets of challenges, say (x1,j,...,xx ;) ~ pforj=1,...,¢
independently, sends (x;1, ..., ;) to player i, receives from them
answers (a;1, ..., air) and accepts if and only if

P(xl,j,. cos X js Q1,5 - - .,ak’j) =1Vj=1,...,t
In words, the game is repeated for ¢-times, but in parallel, and the
verifier confirms that each one of the executions of the basic game
was accepting. It is clear that val(¥®*) > val(¥)’, and the main
question of interest in parallel repetition theorems is regarding the
rate of decay of val(¥®?) as a function of ¢; in particular is this
decay exponential?

For 2-player games, i.e. for the case that k = 2, this problem is
by now well understood, and it is known that the value of ¥®*
is indeed exponentially decaying in ¢t (however not in the most
obvious manner); see [6, 12, 19, 27, 28]. The techniques that go
into these proofs are either information theoretical, or analytical.
In a sense, the analytical proofs are based on the well-known fact
that the eigenvalues of a matrix tensorize when one tensorizes the
matrix, as it turns out that, in a sense, the value of a game can be
vaguely viewed as eigenvalues of a matrix.

For k > 3, the situation is much more complicated, and the
only known bound for general games is due to Verbitsky [30] and
gives rather weak bounds (as, once again, it relies on the density
Hales-Jewett theorem).

Recently, the work of [10] identified a class of games referred
to as “connected games” for which the information theoretic tech-
niques from the setting of 2-player games still work, which sparked
renewed interest in multi-player parallel repetition theorems. We
remark that the notion of “connectedness” therein is very much
similar to the notion of connectedness of distribution in our set-
ting (which is much stronger than pairwise connectedness). This
motivated a recent line of works [14-16, 20] that studied parallel
repetition of 3-player games over binary questions. This line of
work started with studying a game known as the GHZ game (which
is well known in the physics literature and is a bottleneck to the
techniques of [10]), proving polynomial decay for it, and using this
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as a stepping stone to prove polynomial decay parallel repetition
theorems for more general classes of games.

We believe that the notion of Abelian embeddability should have
a fundamental connection to the problem of parallel repetition
in multiplayer games. In a sense, this question too is about “ten-
sorization” of some value, but in this time one has to deal with
k-dimensional tensors as opposed to matrices. Some evidence to
that has been given in [7], wherein the authors give a very simple
proof for the fact that the value of the GHZ game is exponentially
vanishing with ¢ (as opposed to just polynomial) which is inspired
by Abelian embeddability. In a sense, the proof proceeds by identi-
fying that the GHZ game actually entails within it a (Z4, +)-type
additive structure. Then, using this fact along with powerful the-
orems from additive combinatorics, the authors give a structural
result on the set of strategies for the players that perform well,
which are then analyzed directly.

While being speculative, we believe that such connection should
indeed exist, and in it the quantitative aspects of Theorem 1.4 should
be highly relevant. At the current state, the quantitative bounds we
get are not very good, but we believe that with more effort these
could be improved to results that would be able to show 2=t
rate of decay in parallel repetition.

1.4 High Level Overview of the Proof of
Theorem 1.4

In this section we give a high level overview of the proof of Theo-
rem 1.4. As such, we often omit details, make simplifying assump-
tions and appeal to intuition in order to concentrate on the main
ideas. The details appear in the full version of the paper.

At its core, our argument relies on the following intuition: if
1 does not admit any Abelian embedding, then Theorem 1.4 is
just equivalent to the main result of [2, 4]. Thus, one idea is to
try to identify all Abelian embeddings of y, define partial basis for
Lo (7 u®™), Ly(T™, ,ug’") and Ly (®"; u2™) based on these Abelian
embeddings and then show that for f, g and h to satisfy (1), it must
be the case that they correlated with a function from the span
of this partial basis. The intuition is completing the partial bases
into complete bases, once we “peel off” these embeddings based
functions the rest of the functions in the bases are “oblivious” to
the fact that y admits Abelian embeddings. So, once we “peel off”
these embedding functions, the situation is analogous to the case
that y does not have any Abelian embeddings, in which case the
result of [2, 4] kick in.

Much of the effort in our proof goes into formalizing this rough
idea, and once one is able to do that the rest of the proof is more
streamline (but still requires a significant effort). Below, we give
step by step description of the way we formalize this intuition.

1.4.1  Step 1: Master Embedding. The first issue is a distribution y
may have multiple linear embeddings, and they may interact in a
non-trivial way. Indeed, given an Abelian embedding (o, y, ¢) of
4 into H, one can define a partial basis by composing characters
of H with the embedding functions. But how do we know that
different embeddings give us different basis elements? How do we
combine these partial bases into something that makes sense and
is convenient to work with?
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Our first step is to identify that one may define a single embed-
ding, which we refer to as the master embedding, that encapsulates
within it all of the Abelian embeddings of y. Indeed, we show that
if u does not have any (Z, +) embedding, then there is a size M such
that any Abelian embedding of 1 “comes from” an Abelian embed-
ding of y into an Abelian group of size at most M. Hence, to include
all Abelian embeddings it suffices to only look into embeddings
of y1 into Abelian groups of size at most M, and as there are only
finitely many such embeddings we can just tensorize them. That
is, letting o;: ¥ — H; be all possible ¢’s in linear embeddings of
u, where (Hj, +) are Abelian groups, the master embedding of x is

R
Omaster: ~ — || Hj defined by
i=1

Omaster (x) = (01(x), ..., or(x)),

and similarly one may define ymaster and @master- With the master
embeddings in hand we now have a sensible way of defining a
partial basis for functions in x, y and z by considering compositions
of characters from H with the master embeddings.

At the present state, this partial basis is not very convenient. For
example, it may well be the case that there are distinct y, y’ € H
such that y o omaster = ¥’ © Omaster- Indeed, this would be the case
if the image of omaster Was a strict subgroup of H. More generally,
linear dependencies within { )(oamaster})( <py @lready start appearing

as soon as the image of omaster is not the entire group H, and this
presents issues which we wish to avoid.

1.4.2  Step 2: Saturating the Master Embeddings. Our goal is there-
fore to arrange for the master embeddings omaster, Ymaster and
@master to be saturated, meaning that the image of each one of them
is the entire group H. To do so, we must change the distribution y
into a distribution p” such that (a) on p’ the master embeddings are
saturated, (b) there is a good enough relationship between 3-wise
correlations over p and 3-wise correlations over g/, and (c) we can
deduce the conclusion of Theorem 1.4 on y from the conclusion of
Theorem 1.4 on y’.

This transformation is achieved via the path trick, introduced
in [2], which is ultimately just an application of the Cauchy-Schwarz
inequality. The path trick is used in our arguments extensively, and
often time the structure we need is quite subtle thereby requiring a
very careful application of the path-trick. Nevertheless, below we
explain at a high level the intuition behind the path trick and what
it achieves.

Given a distribution g, the path trick distribution (of length 2t +1)
with respect to x can be described as the following distribution p’:

(1) Sample (x1,y1,21) ~ .

(2) Make a step from y: sample (x7,y1,27) ~ i conditioned on

Yy =y
(3) Make a step from z: sample (x2, y2, z2) conditioned on z3 =
Z’

(4) Rlepeat make a step from y/ make a step from z for ¢ times.
Thus, the sequences (Y1, Y7, Y2, Y5, - - -» Yt Yy Ye+1) of y’s and the
sequence (z1, zi, z2, zé, ...,21, 25, Zt41) of 2’s are generated (where
ziy1 = z; and y} = y;), as well as X = (x1, X7, ..., X¢, X7, X¢41) of Xs.
The output of the distribution v is (X, yz+1, z1), and it is thought of
as a 3-ary distribution over 3’ x T' x ® where =’ C %2*1 is the set

of feasible tuples of x in the procedure.
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We refer to this procedure as the path trick since one may
consider the bi-partite graph G = (I' U @, E) whose edges are
(y,z) € T X @ that are in the support of y|rxe. Thus, thinking
of the x’es as labeling the edges of G, namely labeling an edge
(y,z) by x if (x,y, z) € supp(y), one gets that the above procedure
generates a random path of length 2¢ + 1 in the graph and record
the labels of the edges that it traversed on.

Moving from the distribution u to y’ has several benefits that
have been used in our earlier papers:

(1) Improving connectivity: if ;1 is {2, 3}-connected, then for
large enough ¢ the support of i’ on the last two coordinates is
full. Indeed, taking the random path view of the path trick, it
is clear that as the graph G is connected, for sufficiently large
t the same graph corresponding to y” would be a complete
bipartite clique.

(2) Preserving properties of y: he distribution y’ preserves
much of the properties of the distribution y. In particular, if
 is pairwise connected then so is ¢/, and if p does not admit
any Abelian embeddings, then so does /.

(3) The 3-wise correlations relations: 3-wise correlations of
functions over y can be upper bounded by 3-wise correlations
of functions related to the original functions over y’. Indeed,
assume for simplicity that the functions are real valued. If
f, g and h achieve large 3-wise correlation in y, then for
(x,y,z) ~ u®" one has that the values h(z) and f(x)g(y)
are correlated, so looking at the above path we get that
h(zit1) = f(xi+1)9(yi+1) and g(yir1) = f(x;,)h(z},,) and
combining these we get that

h(zt+1) ~ f(xl/‘+1)h(zé+1)
Fle)f(x)g(ye)

X

FOp)f () - f(xa) f(x]g ().

Thus, we expect g, hand F(X) = f(x;, ) f(x¢) -+ f(x2) f(x])
to achieve a significant correlation in p’. Indeed, this can be
proved via an appropriate application of the Cauchy-Schwarz
inequality.

Q

For the purposes of this paper we need additional properties of

the path trick transformations, which we explain next.

(1) Abelian ebmeddings of y lift to Abelian embeddings
of 'z not only does the path trick preserve lack of Abelian
embeddings, but in fact if ;1 does admit Abelian embeddings,
then p” does not introduce any new ones. To be more precise,
suppose that 0: ¥ — H, y: ' — Hand ¢: & — H are
Abelian embeddings of p. Then, these embeddings give rise
to an Abelian embedding o: 3/ — H with y and ¢ of v, as
follows:

t
0r(%) = ) 0(xi) = o(x]) + o (xra1).
i=1
With the notation above, we have that o(x;) +y(y;) +¢(z;) =
0, o(x]) +y(y;) + #(2;) = 0, and doing a proper addition/
substraction one gets that

0t (%) +y(ye+1) + ¢(21) =0,
hence (oy,¥, ¢) form an Abelian embedding of p’ into H.

©)
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(2) The only Abelian embeddings of i’ are lifts of Abelian
embeddings of y: all Abelian embeddings of ji” are precisely
of this form. Namely, for any Abelian embedding (¢’,y, ¢)
of i/ into an Abelian group (H,+) there is an Abelian em-
bedding (o, y, ¢) of u into (H, +) where o satisfies a relation
as in (3) where ¢’ plays the role of o; This result has a few
important consequences, and in particular it says that the
path trick preserves master embeddings. Namely, if we start
with a master embedding of y, apply the path trick and the
above transformation corresponding to it on the embeddings,
then we will get the master embedding of y’.
Saturating the embeddings: it can be easily observed that
if (Omaster, Ymaster> @master) is @ master embedding of y (or
for this purpose, any embedding of p), then after the path
trick we get the embedding (omaster, s> Ymasters Pmaster) that
clearly satisfies that Image(omaster,t) € Image(omaster); this
follows by looking at trivial paths that traverse the same
edge back and fourth and use the same label of x all of the
time. Moreover, it is clear that if Image(omaster) Was a sub-
group of H then we would have that Image(omaster,t) =
Image(omaster)- It is reasonable to expect that unless the set
Image(omaster) is indeed a subgroup, then for large enough
t we would have that Image(omaster,r) & Image(omaster), in
which case we enlarged the image of omaster via the path
trick.
Indeed, something along these lines is true. Namely, we show
that by combination of path tricks along different directions
(not only x) one can indeed always enlarge the image of an
embedding so long as it is not a subgroup.’
In conclusion, using the path trick multiple times we can pass to
a new distribution v on which the embeddings are all saturated,
3-wise correlations over y are upper bounded by 3-wise correlations
over v, and v has improved connectivity — say that its support on
the last two coordinates is full. It can be easily shown that in that
case, the images of all of the components must be the same sub-
group, and without loss of generality we assume it is the group H
itself.

Note that in particular, the above properties mean that if

(Omaster Ymaster ¢master)

is a saturated master embedding of v, then the distribution of
(Omaster (x), Ymaster (), $master (2)) where (x,y,z) ~ v has a full
support on

{(a,b,c) e H? |a+b+c:0},
which intuitively says that by moving from y to v we have “exposed”
all of the Abelian structure in the distribution p.

1.4.3 Step 3: Setting up a Basis Consisting of Embedding and Non-
embedding Functions. Fix distributions y over ¥ X I’ X ® and v over
3’ x T/ x @ as we have done so far, and suppose that (a power of)
the 3-wise correlation of f, g and h over y is upper bounded by the
3-wise correlation of F, G and H over v.

Now that we have saturated the master embeddings in v we
can set up a partial for functions in x € ¥’ as basis as before
7(x) = x(Omaster (x)) forall y € H as before and get that now these

'In our formal proof this has to be done rather carefully as we wish to preserve the
property that the alphabet of x is always a power of the original alphabet X.
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functions are indeed linearly independent We can then complete
it to a basis of Ly(Z’; vx) by adding to it the functions y1, ..., Vs
that are orthogonal to all functions in Span(Bj), so that writing
By = {)Z |X€H} and By = {¢1,...,¥s} we have a basis B; U By

for Ly(3’; vx). Tensorizing, we get that { } where

be(B;UBy)®"
vy > — C is defined by vl;(x) = ]_[ o, (xi), is a basis for
i=1

2.

a€(B;UBy)"

Ly (2'™; v&™). Thus, we can write

F(xi,...,xn) = F(a)vg(x).

We can define analogous bases for Ly (I'; vy) and Ly(®’;v;). Now,
each one of the functions F, G and H has an “embedding part”,
which is the parts of the monomials that use functions from By,
and “non-embedding parts”, which are monomials using functions
from Bg. Intuitively, it should be the case that the more mass the
functions have on the non-embedding parts, the smaller the 3-
wise correlations would be; this is because that for uni-variate
functions u: ¥ — C,0: I/ — Cand w: ® — C of 2-norm
1, to achieve perfect 3-wise correlation it must be the case that
u(x) = v(y)w(z) in the support of v, in which case u,v and w
behave like an embedding function. We remark that there is a
serious leap in this last step, which causes complications in later
points of the argument. Later on, we refer to this gap as the Horn-
SAT obstruction, and we will explain how it arises and how to
overcome it later on.

In light of the above, it makes sense to define two notions of
degrees for our partial basis. The first of which is the embedding
degree of a monomial v, embeddeg(v;), which is the number of
components vy, that come from the partial embedding basis B;. The
second of which is the non-embedding degree of a monomial v,
nedeg(vl;), which is the number of components of vy, that come
from Bj.

1.4.4 Step 4: Analyzing the Contribution of High Non-embedded
Degree Components. The above discussion suggests that the parts
of F, G and H of high non-embedding degree should contribute
very little to their 3-wise correlation according to v. Formally show-
ing this, however, is quite tricky and this is where a considerable
amount of effort in this paper is devoted to. Our argument here
builds on an argument from [4].

To give some intuition for the argument we make several sim-
plifying assumptions (some of which can be ensured, while other
are not necessary). Assume that the marginal distribution of v over
Yy, z is uniform, and that the distribution of

(omaster (%), Ymaster (y)) Pmaster (2))

where (x,y,z) ~ v is uniform over
{(a,b,c) el |a+b+c:0}.

Further assume that the functions F, G and H are embedding ho-
mogenous and non-embedding homogenous functions, by which
we mean that the embedding degree of each monomial of F is the
same, and also the non-embedding degree of each monomial in F
is the same; the same goes for G and H. Our argument here will be
inductive on the number of coordinates n, and we show that the
3-wise correlation of functions F, G and H as above can be upper
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bounded by either the 3-wise correlation of n—1 variate functions of
the same non-embedding degree, or by (1 — Q(1)) times the 3-wise
correlation of n — 1 variate functions with non-embedding degree
smaller by 1. Thus, iterating we would ultimately get a bound of
(1-Q(1))"edee(F) on the 3-wise correlations, which is small if the
non-embedding degree of F is high.

In fact, we have two separate inductive arguments depending
on if n is much larger than the non-embedding degree of F, or if
it is comparable to it; we refer to this last case as the “near linear
non-embedding degree case”, and we now elaborate on each one of
these cases.

The case that n is much larger than the non-embedding degree
of F. In this case there is a variable, say the nth variable, such
that in almost all of the mass of F lies on monomials in which the
component of x5, is an embedding function. Using the homogeneity
of F we can use find a decomposition of F as

> Fe(x, . xn-1)F ()
teT
where each F; is either from B; or from By, and {F;}, {Ft’} form

orthonormal setsand Y, |¢/|? = 1. Similarly, we can find analogous
teT
decompositions form G and H as

Z KrGr(yls cees yn—l)G;(yn),

rer

ZPSHS(ZL ey

seS

zn-1)Hg (2n).

Moreover, if F; is a function from B; then F; has the same non-
embedding degree as F, and if F; is from B then F; has one smaller
non-embedding degree. The same goes for G and H, so to simplify
presentation we consider the specialized case where

F(x) =1 F1(x1,. .. )xn—l)F{(xn) + Yo Fa(x1, .. wxn—l)Fé(xn);
G(y) = k1G1(y1, - - - Yn-1)G{ (yn) + k2G2(y1, - - -, Yn—-1)G3 (yn),
H(y) = p1Hi(z1,...,2n-1)G(zn) + p2Ha(z1, .. ., 2n-1)Hy (zn),

where F|, G| and H] are embedding functions and Fj, G, and H,,
are non-embedding functions. Thus, the coefficient ¢/, is related
to the mass x, has on non-embedding functions and by choice is
therefore small, and similarly we can expect it to be the case that k3
and py are also small (which is true, but requires some preparatory
work). Thus, the 3-wise correlation of F, G and H according to v
can be written as

55” [FGH] = ynx1p1 V®I§_ [F1G1H1]E [F GHj|
+Y1K1p2 E, [F1G1H:]E [F G H;)
+ l,//1K2p1V®I§_ [F1IG.H1]E [F G,H; |
+l//1K2,02V®I§ [F1G2H,|E [F G,Hy|
+¢2K1P1V®]§7 [F2G1H1]E [F GH]|
+Y2K1p2 B, [F,G1H,]E [ JG1H; |
+l//2K2,01V®]§_ [F,G2H:|E [F G,Hj |
[F G,Hj). (4)

+YrK2p2 E [F2G2Hz |E
V! n
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It turns out that terms the only term involving F; that does not
vanish is E, [F{G{H{] Indeed, as F] is a function from By we may
write it as a product of a function on y with a function on z, and thus
expectations such as Ey [F{G|H}| can be written as expectation
of product of a function of y and a function of z. Using indepen-
dence, this product can be further written as the product of two
expectations where at least one of these expectations is 0.

Thus, if the terms involving F, were not existent, then we would
get the upper bound

E [FGH]| < |[Y1Kk1p1] E [F1G1H1] I%[F{GiH{]
yn yon—
<| E [FiGiH1]|,
v®n—1

and we have decreased the number of variables n by 1 (while
keeping the non-embedding degree. In a sense, as i/, is small this
term indeed should constitute the majority of the contribution to
E,en [FGH], but we cannot just ignore the contribution from the
other terms.

A naive attempt at bounding the other term (and using the
Cauchy-Scharz in a favorable way) can show that |E,e» [FGH]| is
at most the maximum of |Ev®n—1 [F,-Gij] | over i, j and k, however
this bound is not good enough for us; indeed, if this maximum is
achieved at anywhere other than i = j = k = 1 then the non-
embedding degrees decrease, and in that case we must gain a factor
of (1 — Q(1)) for our argument to go through.

The key to improve upon this naive attempt lies in what we refer
to as the “additive base case”. The additive base case is a statement
about univariate functions that helps us to control the contribution
form terms involving F; in a favorable way. Stated simply, the
additive base case we use is the statement that if F’ is a univariate
non-embedding function, and G, H’ are any univariate functions,
then

< (1= QO)IF[I2/IG" + H'|.

Ig[F’(G' +H')]

The intuition for this inequality is that otherwise, the value of F/
would be very close to the value of G’ + H’, but this is only possible
for embedding functions.

The point of the additive base case is that except for E,, [F;G,Hy |,
the contribution of the terms not involving F| in (4) may be re-
casted as an expectation of the form dealt with in the additive
base case. Indeed, if F{ Gi and H{ were the simplest of embedding
functions — namely constant functions — then this is rather clear,
as these terms can be written as

IlF/j [Fé (aGy + sz)]

for some coefficients a and b. In the case F{, Gi and H{ are not
the constant functions more effort is needed, and in particular one
needs to guarantee that they “come” from the same character of H.
Namely, that there is y € H such that F/, G} and H] are multiples
of y o Omasters X © Ymaster and y © ¢master respectively. As we are
able to guarantee this fact, the contribution of these terms can still

be associated with the additive base case, as essentially G{ = F{H{

and H] = F{ G{. Hence, that contribution can be re-written as

I%[F{Fé(aGg +bHy)|
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for some coefficients a and b, and this is still an expectation of the
form handled by the additive base case.

Making an effective enough use of the additive base case, one can
use 4 to either reduce n by 1 and keep the non-embedding degrees
the same, or else reduce both n and the non-embedding degrees by
1 and then gain a factor of 1 — Q(1).

The near linear non-embedding degree case. We now consider the
case that the non-embedding degree of F, G and H is comparable
to n, the above argument no-longer works, and the reason is that
the last term in (4) is no longer negligible, and at the same time
we do not know how to give an effective upper bound on it using
only the additive base case. Thus we must have a new base case
that handles this last term, and intuitively one would expect the
following base case to hold. Suppose that F: 3’ — C is a function
from By, and G: I’ — C, H:  — C are any functions of 2-norm
1. Then

E

(x,y,z)~v

[FGWAG)]| < 1- Q).

The reason we expect this to be true is that otherwise, by com-
pactness we would be able to find 3 such functions satisfying
F(x) = é(y)I:I(z) on the support of v. Thus, the logs of these
functions form an Abelian embedding so log(F) must be an embed-
ding function, in which case F is also an embedding function in
contradiction.

As stated, this argument is not quite correct, since it may be
the case that the function F’ gets the value 0 sometimes, in which
case we cannot take logs and get away with it. This obstruction has
already appeared in [4] wherein it was referred to as the “Horn-
SAT obstruction”, and here too we have to face it. In fact, as in
our scenario we need to maintain many more properties of the
distribution v (compared to what was necessary in [4]), more care
is needed to handle the Horn-SAT obstruction. Ultimately, the Horn-
SAT obstruction is dealt with by stating a more complicated base
case statement which we can guarantee to hold for the distribution
v while being useful enough to make our argument go through. For
the simplicity of presentation however, we ignore this obstruction
for now and explain the argument in the case the ideal base case
holds.

Equipped with the ideal base case, we can give effective enough
bounds on the last term in (4). In particular, if all of the contribution
came from it, we would have been able to conclude that

E [FGH]

yen

>

<(1- Q(l))‘ E [F2G2H, ]

and iterating would finish the proof. One again however, there are
other terms in (4) that need to be accounted for (the other terms
involving F,). To do so, ideally we would have liked (as in the
additive base case) to re-arrange these terms so as to view their
total contribution as an instantiation of the ideal base case, but this
is not possible. Using a similar (but more complicated) argument
we can still show that it is in fact the case that

E [FGH]

yen

<(1-Q(1)

5

E [152(521;[2]
pen-1

where FZ,GNZ and Hz are functions of non-embedding degree at
most 1 less of Fy, Gy and Hy.
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Overcoming the Horn-SAT Obstruction. A large part of our ar-
gument is devoted to gaining additional properties of v, as well
as other crucial reductions (for example, to allow us to assume
homogeneity of F, G and H as above). One of the key properties
achieved in this section is the so-called relaxed base case, which
is a replacement for the ideal base case above that we are able to
ensure.

A triplet of functions u: 3’ — C,0: [ - Cand w: ® — Cis
called a Horn-SAT embedding if u(x) = v(y)w(z) in the support of
v. If u never vanishes, a Horn-SAT embedding can be transformed
into an Abelian embedding, and thus (simply put) the Horn-SAT
obstruction is really about the possible 0-patterns non-embedding
functions may have. By careful manipulations (once again utilizing
the path trick) we are able to find a set 3 ,pdest € 2’ of size at
least 2 such no Horn-SAT embedding can vanish on. Thus, we get
that if u doesn’t vanish on X,,dest then it can never be a part of a
Horn-SAT embedding. Therefore, it is natural to expect that if u
has variance at least 7 on 2,0 dest, then

E [uow]

\4

<1-0(7)

where 0(t) > 0 is some function of 7. This turns out to be true and
useful, but there are many subtleties. For once, we need additional
properties from X o dest to make this relaxed base case useful, and
most important we need the symbols in X, 4est to be mapped to
the same group element in H by the master embedding. Secondly
(and this has already appeared in [4]) we need a decent dependency
between 7 and 6(7).

1.4.5 Step 5: Reducing to Functions over H. We now return our
functions F, G and H, armed with the knowledge that the contri-
bution of high non-embedding degree parts if small. Thus, taking
their parts of small non-embedding degree F’, G’ and H’, we are
able to conclude that |Een [FGH] — Eyen [F'G’'H']| < 155, and
so the 3-wise correlation of F’, G’ and H” according to v is still
significant.

We remark that as in our actual argument we will need the
functions F’, G’ and H’ to be bounded, so harsh truncations as we
described do not fit the bill. Thus, we use a softer notion of trun-
cations given by the non-embedding noise operator. For p € [0,1]
consider the Markov chain Tyon-embed,p 0n 2’ that on x, with prob-
ability p takes x” = x, and otherwise samples x” ~ v|x conditioned
on omaster (X”) = omaster (x). When p is not specified, that is, when
we write Tpon-embed, We mean that p is taken to be 0. Given such
Markov chain one may consider the corresponding averaging oper-
ator on Ly (', vy) given as

[F&N].

Tnon—embed,pf(x) =, E

X"~ Lnon-embed, pX
and tensorize it to get an averaging operator

on PLp (3 vEM) - La(37 v,

non-embed,p

Simiarly, we can get averaging operators on the spaceL,(T’", vg’")
as well as on the space Ly(®’", v®"), which by abuse of notation
we also denote by Tyon-embed,p- These averaging operators can be
shown to essentially kill monomials of high non-embedding degree,
hence serve as a replacement for harsh truncation arguments as

above.
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With these operators in hand, we can replace the harsh trun-

cations above by F/ = T®" F, G on G and
non-embed,p non-embed,p
H =T%"

on-embe d,pH (for suitably chosen p) and effectively be in
the same situation as before, wherein we have functions F/, G’ and
H’ that have almost all of their mass on monomials with small
non-embedding degrees, and also that

E [FGH] - E [F'G'H'|| <

y®n y®n

100°

We wish to transform the functions F/, G’ and H’ into related
bounded functions with non-embedding degree 0 for which the 3-
wise correlation over v is still significant. For that, we use a combina-
tion of random restrictions (so as the mass of F/, G’, and H’ of small
but not 0 non-embedding degree would almost all collapse to level
0), followed by averaging (to get rid of all monomials of positive non-
embedding degree). Thus, we get functions F””” = Tyon-embed (F”),
G"”" = Thon-embed (G”') and H"”" = Tyon-embed (H") where F”/, G”
and H”' are random restrictions of F/, G’ and H’, so that with no-
ticeable probability we have that
£

= 2

(x,y,2)~ven

[F/// (x)G//I (y)H/N (Z)] 2

"

where n’”’ is the number of coordinates left alive after the random
restriction. Now the functions F’”/, G’’’ and H’”/ can be viewed as
functions defined over H "m, so the above expectation should be
amendable to standard tools from discrete Fourier analysis.

1.4.6  Step 6: Applying the Linearity Testing Argument. Indeed, we
re-cast the functions F’”’, G’’’ and H”"’ above as J LR S LN C,
G H"” — Cand H¥: H"” — C defined in the natural way (for
example, Fil (a) = F(x) for x such that omaster(x;) = a; for each
coordinate, where we know that the specific choice of x doesn’t
matter). Thus, from the distribution v we get a corresponding dis-
tribution v# over {(ab,c) e H® |a +b+c =0} whose support is
full, and

E
(a,b,c)~(vi)en"

|[F@ct )| >

£
5

We now use random restrictions again, but for a different reason.

Namely, we use random restrictions to shift from the distribution

v to the uniform over { (a,b,c) € H3 | a+b+c= 0}, and get from
7 7’ !’

F ﬁ, GY and HY restrictions F! R G and HY so that with noticeable

probability

E
a,be H"

P

1

[Fﬁ’(a)cﬂ’(b)Hﬂ’(—a - b)]

3
2

where n’””’ is the number of coordinates left alive. In this case,

a straightforward, classical Fourier analytic computation can be
applied to relate the left hand side to the Fourier coefficients of F ﬁ,,
G and HY so that we get

> FOoGY GoHb (0| > 4.
XEI:I‘X’"””
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from which one can quickly conclude that there is y such that
Ft’ ( )()’ > %. In words, after a sequence of random restrictions, av-

eraging and further random restriction, the function F is correlated
with a function of the form y o omaster. This is the type of result
we are after, except that we wish to have such result for F and not
for F after this sequence of operations.

1.4.7  Step 7: Going back to F via the Restriction Inverse Theorem. We
have thus concluded that after random restriction, F' # is correlated
with a function of the form y o omaster where y € 8" and we
wish to unravel the steps we took to get from F to F # and conclude
a structural result about F.

Noting that y o omaster is @ product function, this is precisely
a situation in which the restriction inverse theorem kicks in, and
using a modified version of Theorem 1.5 we are able to conclude that
F# is correlated with a function of the form L o Omaster * X © Omaster
where y € H"” and Lis a low-degree function of 2-norm at most
1. Thus, the same conclusion holds for F””” (as it is essentially the
same function as F¥.

Recalling that F’" = Tpop-embed oF’’, We get that

|<Tnon—embed,0FH’L O Omaster * X © O'master>| >

>

= ™

but on the other hand we also have that
|<Tnon-embed,0Fﬂa Lo omaster - Y © O'master>|
= |<F”s T:on—embed,o (L © Omaster - Y © Umaster))‘

= |<FN, Thon-embed,0 (L © Omaster - Y © Umaster)>|
= |<F”:L O Omaster * X © Umaster)la

where we used the fact that Tpop-embed o is self-adjoint. Hence, we
conclude that F” is correlated with L o omaster * ¥ © Omaster-

We now wish to unravel the last step of random restriction (that
goes from F to F’’), and for that we once again want to appeal
to the restriction inverse theorem. However, the correlations we
are talking about now are not quite about correlations with prod-
uct functions. Amusingly, to circumvent this issue we apply more
random restrictions. Intuitively, after a suitably chosen random
restriction, the function L becomes close to constant, hence one
expects the fact that F” is correlated with L o omaster * X © Omaster
to convert to the fact that a random restriction of F”/ is correlated
with a restriction of y o omaster (Which is a product function), and
we show that this is indeed the case. Thus, we conclude that a
random restriction of F’/ is correlated with a function of the form
X © Omaster- Noting that a random restriction of F”” is (overall) a
random restriction of F (with different parameters), we are thus
able to conclude from the restriction inverse theorem that F itself
is correlated with a function of the form L - y o omaster-

1.4.8 Step 8: Going back to f via Properties of the Master Embedding.
The last step in the proof of Theorem 1.4 is to use the structural
result obtained for the function F to deduce a similar structural
result for f. For that, we recall that (ignoring complex conjugates)
the value of F(x1,...,xs) is f(x1) - - - f(xs), and, ignoring the low-
degree part L for now, we know that F is correlated with y o omaster
for some y € H". Recalling the relation 3, one quickly gets from it
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that
S

X © Omaster (X1, ..., Xs) = l—[ X © Omaster (i),

i=1

where, by abuse of notation, omaster on the right hand side is the
master embedding of p (which is the original distribution, prior to
any application of the path trick). Hence, the correlation between
F and y o omaster translates to the fact that

S
E on nf(xi))( 0 Omaster (Xi) || = ¢ =¢'(e) > 0
i=1

(315005 ) ~ 1

As discussed earlier, in [23] it is shown that if v, is a connected
distribution, a correlation such as in the above can be noticeable
only if f - y © Omaster is correlated with a low-degree function. Thus,
the proof would be concluded if we are able to ensure connectivity
of vy, which we are indeed able to. This requires some care in some
of our earlier steps, and most notably in the way we apply the path
trick. In fact, we are able to guarantee that the support of vy is full,
that is, >5.

Bringing the low-degree part L back, essentially the same ar-
gument works except that we need to apply a suitable random
restriction beforehand to get rid of the low-degree part. Thus, the
previous argument gives that with noticeable probability, a ran-
dom restriction of f - y © Omaster is correlated with a low-degree
function. Hence, after more random restrictions, we conclude that
with noticeable probability a random restriction of f - y © omaster iS
correlated with a constant function. Re-phrasing, this means that
with noticeable probability a random restriction of f is correlated
with a function of the form y o omaster, and a final invocation of
the restriction inverse theorem finishes the proof.
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