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Abstract—Due to the inherent error-tolerance of machine learning
(ML) algorithms, many parts of the inference computation can be
performed with adequate accuracy and low power under relatively low
precision. Early approaches have used digital approximate computing
methods to explore this space. Recent approaches using analog-based
operations achieve power-efficient computation at moderate precision.
This work proposes a mixed-signal optimization (MiSO) approach that
optimally blends analog and digital computation for ML inference. Based
on accuracy and power models, an integer linear programming formula-
tion is used to optimize design metrics of analog/digital implementations.
The efficacy of the method is demonstrated on multiple ML architectures.

I. INTRODUCTION

Machine learning (ML) hardware requires high energy-efficiency, but
is primarily built using digital circuits today. For low-to-moderate
precision tasks, at iso-precision, analog circuits are much more
energy-efficient than their digital counterparts [1], [2]. The selective
use of analog computing is thus an excellent fit for ML, where lower
precision can be used for less sensitive operations without harming
overall accuracy; for sensitive operations that require high precision,
digital circuitry may be used. There has been no systematic EDA
exploration of this tradeoff space to achieve optimal energy-efficiency.
DNN models are resilient to small computation errors, and this has
been widely exploited to optimize digital ML hardware through low-
precision fixed-point computations [3], approximate computing [4],
and model compression [5]. There has been also work on specialized
hardware for energy optimization of these quantized models [6].
Analog approaches often target small networks/datasets [7], [8];
those that address larger networks [9], [10] focus on single-layered
analog operations, adding an analog-to-digital/digital-to-analog con-
verter (ADC/DAC) after each simple analog operation. This results
in massive ADC/DAC energy overheads. To amortize these costs,
approaches such as interleaved bit-partitioning, or a combination of
digital and charge-domain accumulation are proposed [9], [10], but
data conversion costs remain a major system-level consideration.
We propose MiSO-ML (Mixed Signal Optimization for low-power
ML), which builds optimal hardware architectures that bring the best
of both worlds, analog and digital, for energy-efficient ML inference.
We create energy and noise models for fundamental analog and digital
operations, at different precision levels. Using these models, our
system-level optimization creates energy-efficient hardware under
an accuracy specification. Unlike prior single-layered approaches,
we amortize the cost of ADCs/DACs across multiple layers of an
ML architecture. This provides significant energy efficiency benefits,
reducing data conversion overhead to just 13.2% (as opposed to
52.2% in [11]) while harnessing the efficiency gains of mixed-signal
computation. The contributions of MiSO-ML are listed below:
1) We propose a framework for optimizing ML models for low
power using mixed-signal computing.
2) We propose a novel hardware-aware mixed-precision quanti-
zation using an integer linear programming (ILP) formulation
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to find an optimal bit-precision setting, and to optimize the
ADC overhead by performing analog-to-digital conversions after
multiple layers, when possible within noise constraints.

3) We demonstrate substantial power improvement on common
ML-architectures, as compared to a digital-only quantization.

Intuitive concept. When ML operations are performed using analog
circuits, they inevitably accumulate an analog noise voltage, V,,, that
acts as an offset to the equivalent digital value. Since the resolution
of an ADC is 0.5 LSB (least-significant bit), as long as the analog
computation is recoverted to digital form while V,, < 0.5 LSB,
the signal is “restored” to full digital precision, with no accuracy
loss [1]. Firstly, our optimization scheme tracks the maximum noise
over multiple layers of a DNN, and finds that one can often introduce
ADCs after multiple layers of DNN computation. This allows
the cost of data conversion to be amortized over multiple layers,
unlike [7], [8]. Secondly, we optimize the precision for each layer:
typically, 8-bit precision requires an ADC after each layer, but relaxed
precision allows greater amortization, and with the right optimization,
does not significantly affect accuracy. Our approach is guided by a
metric of sensitivity of the output to noise in an operation, driving
noise-sensitive computations to be performed in digital or higher
precision analog modes, an less sensitive operations using analog
circuits at lower precision. Through these ILP-based optimizations,
we demonstrate large gains from mixed-signal computing.

Next, in Section II, we propose our building block module, a
foundational element for modeling a range of digital/analog oper-
ations. Section III delves into the modeling of energy and noise
values for various state-of-the-art computation operations; Section IV
then models the propagation of noise propagation from digital/analog
operations across layers in an ML architecture. These are used
to build energy lookup table and noise sensitivity models for ML
architectures in Section V, and invoked in our ILP-based approach
in Section VI. Finally, Section VII evaluates MiSO-ML across several
ML architectures, and Section VIII concludes this article.

II. PROPOSED MIXED-SIGNAL ML HARDWARE SCHEME

To extend analog computations to deeper architectures with a diverse
set of operations, hybrid computation is necessary, in which analog
processing must be followed by restoration of the analog signal to
discrete values to overcome noise accumulation problems. As pointed
out above, the high energy overhead of these domain-switching
operations (using ADCs/DACs) must be balanced with the amount
of noise accumulation over multiple analog stages.

For this optimization, we propose a building block (Fig. 1) to map
operations from ML architectures, leveraging multiple stacked analog
operations before the conversion to the digital domain. This block
takes two input operands (e.g., weight and activation), and generates
its output after performing the operation. For each operation, we have
three optimization parameters: (1) the operation domain (digital or
analog), (2) the operation precision, and (3) the presence/absence
of a data converter (ADC or DAC), required when the input signal
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Figure 1: Building block diagram of the MiSO-ML unit.
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Figure 2: Hardware mapping of a CNN architecture by MiSO-ML.

domain differs from the operation domain. Based on a data-flow graph
(DFG), created by mapping all operations from the input architecture
to the building block model, we optimize the energy of the hardware
implementation using an ILP solver. In a post-processing step for
multiple fan-out nodes, multiple data converters are merged.

For example, in an analog sum operation, digital weights and
activations from memory are first converted into the analog domain
using DACs. Next, the addition is performed using charge sharing
[12]. The analog output is sent out to the next stage, where it
may be passed through an analog max-pooling operation and an
analog sigmoid/tanh operator without any data domain conversion.
Multiple such analog stages can be cascaded, with the total noise
increasing as more stages are cascaded, until the noise reaches the
threshold level of requisite precision. The MiSO-ML unit block
includes data conversion (ADC/DAC), which enables the ability to
handle individual operations as well as complex operations with
specialized circuits, e.g., digital-to-analog MAC operations [9], [13].

Fig. 2 shows a CNN architecture being mapped to hardware by
MiSO-ML. The convolution operation is mapped to analog MAC
hardware with 4-bit precision, whose results are fed through an analog
max-pooling circuit with 4-bit precision before being converted to
the digital domain. Next, the fully-connected layer is mapped to
digital MAC hardware with 6-bit precision and is then sent to ReLU
hardware with 6-bit precision. In this hardware mapping, the input
features size is larger thus larger number of operations (21600 MAC
+ 216 Max-pool) are performed in the analog domain and very few
(432 MAC + 2 ReLU) operations are carried out in the digital domain,
thus improving the energy cost of this model over a purely digital
implementation, even after including the cost of the ADC operations.

III. ANALYTICAL ENERGY AND ERROR MODELS
A. Digital computations: quantization models

Energy models for digital computation blocks are well understood [4],
[6], [14], [15], and are summarized in Section V. We focus here on the
impact of bitwidth-dependent quantization in digital blocks on error.
The error arising from quantizing analog signals in an ADC, relative
to the signal strength, is quantified as signal-to-quantization noise
ratio (SQNR), where quantization noise reflects the loss in accuracy
due to quantization. For B bits of precision, the SQNR is [16]:

SQNR = 1.76 + 6.02B 1)
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Figure 3: Implementation of addition operation (a) circuit diagram of
addition operation using charge sharing [12], and (b) circuit diagram of
passive analog MAC implementations [17].

Thus, to achieve an extra bit of precision, the signal-to-noise ratio
(SNR~SQNR) of the system should increase by 6.02 dB, i.e., it
should approximately double. Thus, for the same signal, reducing
digital precision by one bit increases noise by ~ 2x.

B. Analog computations: Noise and energy models

Mapping an ML algorithm to hardware requires hardware blocks
for multiple types of operations such as MAC, sum, linear scaling,
ReLU/sigmoid/tanh, and max-pooling. We analyze analog building
blocks for these operations and present their energy and noise models.
Sources of variation. There are several sources of noise in analog
circuits. Process-induced drifts and parasitic effects can largely
be canceled out [17] by using state-of-the-art precise sub-femtofarad
capacitors with 1% standard deviation (in active switched-capacitor-
based structures) and differential structures. This leaves intrinsic
mechanisms, i.e., thermal noise and 1/ f flicker noise: at >100 MHz,
as in this work, thermal noise is the dominant contributor [16].

In resistors, the thermal noise voltage is proportional to VkT' R,
where k is Boltzmann’s constant, 7" is the temperature, and R is
the resistance. In switched capacitor circuits (which we will use
extensively), the RMS thermal noise is proportional to /kT/C
(and independent of R [16]). To improve the precision of switched
capacitor networks by one bit, \/k7/C must be halved: thus, every
bit of precision requires 4 X larger capacitors, with 4x higher energy.
This makes analog circuits unsuitable for high precision, but for < 8-
bit precision, analog implementations remain attractive [1].

1) Addition/subtraction: Addition can be performed in the analog
domain using charge sharing [12], as illustrated in Fig. 3(a). Initially,
the switch is open and the operands are loaded as analog voltages on
the capacitors. When the switch is closed, the operands are averaged,
thus implementing a scaled addition operation. The energy consumed
in the circuit is the switching energy for the transistor, used to
charge/discharge the gate capacitor of the transistor, and the energy
for charging the two capacitors. The energy and noise are given by:

FEapp = Eswiten + C(Va2 + ‘@2);

Napp = 2kT/C

2) Analog multiplication: Matrix multiplication (y = Az, = €
R™",y € R™, A € R™*™), is a fundamental operation in ML that
has been traditionally realized by MAC units. We explore two analog
multipliers [17], with analog or digital inputs, and an analog output.
Analog input voltage MAC (AMAC): In ML hardware, the weights
are typically stored in digital form. For a MAC operation with analog
inputs, we use a highly energy-efficient switched-capacitor matrix
multiplier as shown in Fig. 3(b) [17]. Here C is a capacitive DAC
that is controlled based on the weights stored in the memory. In the
first phase (®1), the input voltage V.. is multiplied by C', and in the
second phase (®2), the multiplied charge V,C; is redistributed on
capacitor C>. For an N-dimensional inner product, this operation is
performed N times such that Ve, = (1/C2) SN, Vi [i]C4[i]. For
low-resolution multiplication, C > C1, i.e., for 3-bit precision, Ca
is 39x larger than the maximum C1, and for every bit of precision,




we increase the size of C2 by 4x to overcome thermal noise. The
total energy is the sum of the energy dissipated in the capacitors and
in the switches. The energy and noise equations for this circuit are:

Eamac = 4Eswiten + (C1 + C2)VEp; Namac ~ kT/Co (2)

where Esitch 1S the average energy dissipated in charging/discharg-
ing the gate capacitor of each of the four switches and C> > C}.
Digital input voltage MAC (DMAC): When both the weights and the
signal are digital, one option is to convert the data input to an analog
value using a DAC, and then use the analog MAC as explained in
the previous paragraph. In some cases, the digital properties of the
signal can be utilized to perform a bit-wise product to reduce the
energy loss in the DAC capacitance. In [9], XNOR gates are used for
bitwise multiplication, reducing the energy consumed in the DACs.
The noise in this operation comes from digital quantization noise and
from thermal noise (KT/C) from the switching of the unit capacitors
connected to the output of XNOR gates. The energy consumption
and noise for this circuit for a B-bit operation is given by:

Epmac = B*a(Eswiten + CuVEp); Nomac = kT/(2°Cu) 3)

3) Max-pooling operation: Pooling layers downsample features to
reduce the computational burden on subsequent layers. Two common
pooling methods are average- and max-pooling. Average-pooling can
be implemented using the sum operation described earlier, and max-
pooling can be implemented using a voltage-mode-max circuit [18].
Using transistor noise equations for a single pooling operation,
energy and noise are a function of the signal path current (/p):

Epool = 2-[D‘/DD; Npool ~ K//ID (4)

where K’ is derived using the circuit topology and device sizes.

4) Activation functions: ML models use nonlinear activation functions
such as ReLLU, tanh, and sigmoid. The ReLLU function selects the
maximum of the input signal and the reference (usually 0), and
thus max-pooling circuits can implement ReLU. A tanh or sigmoid
function can be realized by a common-source differential amplifier
by leveraging intrinsic transistor nonlinearity [19]." The total energy
and output-referred noise of the ST-OTA circuit is [19]:

Esigmoid = 2IpVDD; Neigmoid = 32kTn s (Vys — Vin)/(3X*Ip) (5)

where A = 1 (channel length modulation); ns depends on the ratio
of transistors sizes; Ip is the current through each signal path.

C. Signal conversion

In multi-stage analog operation, the accumulation of noise over
multiple stages can cause significant degradation in SNR, to the
point where the system may not be able to retain enough precision.
Therefore, as described at the end of Section I, after a set of analog
operations, we must restore the signals to the digital domain using
an ADC [1]. After restoration, the computations can be performed in
the digital domain or converted back to analog using a DAC.

1) ADC: The ADC energy is dependent on the effective number of
bits (ENOB) [9], where ENOB is derived from the full-scale signal
range (signalgg) and noise at the ADC input. For a B-bit ADC,

Eapc = K1 - ENOB + K, - 458 (6)
RMS (signal
ENOB = log, ( S(signals) ) @
RMS (noiseapc) x v/12

'As tanh = (1 — e 2%)/(1 4+ e~ 2%) is a scaled and shifted form of
sigmoid = 1/(1 + e~ %), their energy and noise models are similar.

As the energy is proportional to ADC precision, we choose a
minimum-precision ADC under the noise requirements. In convo-
lution operations, since the ADC energy is shared across all filter
elements, using a larger filter size can reduce the overall ADC energy.
2) DAC: We use a charge-distribution DAC [16], which also behaves
as a sample-and-hold circuit (SHA). This saves chip area and power
by removing the need for an external SHA. If C,, is the minimum
realizable capacitance, the energy and the noise for a B-bit DAC are:

EDAC - 2BO‘(C(U‘/gD + Eswitch) NDAC - kT/(QBCu)

IV. NOISE PROPAGATION IN ML ARCHITECTURES

Based on the operations described in the previous section, we can
model the energy and noise within each layer. Next, we consider noise
propagation across layers. The weight distribution across layers in a
deep neural network spans diverse numerical ranges [3]; therefore, a
layer-wise quantization scheme improves the overall accuracy. We use
the quantization noise arising from a uniform quantization scheme to
explain how the noise is propagated through typical analog or digital
operations in ML inference [20].

Digital noise. We use linear integer quantization noise for digital sig-
nals based on chosen bit precision. Quantization noise in each digital
operator is assumed independent. After propagation over multiple
operators, by the Central Limit Theorem, noise can be approximated
as a normal distribution with zero mean/constant variance, o.
Analog noise. This is calculated for each analog operation using
noise equations (Section III-B), for a chosen equivalent bit precision.
ADC/DAC noise is captured using methods from Section III-C.
Analog/Digital noise propagation. We show how the noise
is propagated through some typical ML inference operations.
Assuming noise at each layer weight to be independent with zero
mean, if the input noise variances are o and o3 for a two-input
operation (or just o7 if unary), the output variance, o2, is:

e Add/Subtract: o2 + o2 e Multiply: 0?03
an—1 5902

o sigmoid [21]; SR WIFOSTD 1 g ReLU: o7 /2

Consider the operation z3 = xz1 + x2. Let Ugm [0312] be

the variance of noise at input x1 [z2]. Let afmg be variance of
the noise introduced by the addition operator. For addition in the
digital [analog] domain, 03“53 represents the noise variance from the
quantization of the adder [analog circuit nonidealities]. Since the total
noise variance of the operation is the sum of all three variances, if
09253 is the signal power at the output, then the SNR at the output is:

SNR, = 033/(0311 + 0312 + UVQLIQ,) ®)

Table I: LUT for analog/digital operations, at various precisions.

Operations Analog Energy (fJ)

Precision 1-bit | 2-bit | 3-bit | 4-bit | 5-bit | 6-bit | 7-bit 8-bit
ADC 100 200 300 400 501 624 747 885 [9]
Addition 2.5 4.0 6.5 10.0 14.5 20.0 26.5 34.0 [12]
DMAC 0.2 0.7 1.5 2.7 42 6.1 8.3 10.8 [9]
Max-pool 1 4 16 64 2.6e2 1.0e3 | 4.1e3 1.6e4 [18]
sigmoid 1 4 16 64 2.7¢2 | 1.0e3 | 4.1e3 | 1.6e4 [19]
Operations Digital Energy (fJ)

Precision 1-bit | 2-bit | 3-bit | 4-bit | 5-bit | 6-bit | 7-bit 8-bit
DAC 0.5 1.0 2.0 4.0 8.0 16.0 32.0 64.0 [16]
Addition 9.5 12.5 15.4 18.3 21.2 24.1 27.0 30.0 [14]
DMAC 9.7 18.7 33.8 55.0 82.1 1154 | 154.6 200 [14]
Max-pool 3.7¢2 | 7.4e2 1.1e3 1.5e3 1.9e3 | 2.2¢3 2.6e3 2.9e3 [14]
sigmoid 2.3e3 | 3.1e3 | 3.9e3 | 4.7e3 | 5.5e3 | 6.2¢e3 7.0e3 7.8e3 [15]
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Figure 4: Inference performance of pre-trained ResNet18 trained on
ImageNet dataset due to (a) quantization (b) added Gaussian noise with
o equivalent to bit-precision (one layer at a time).

V. MiSO-ML SETUP

Energy lookup table. The operations may be performed at a
precision (or equivalent precision for analog computation) of 1-8
bits. Based on the models described previously, we generate a lookup
table for energy and noise for each operation, as listed in Table 1.

The energy for digital operations in Table I is based on a 12nm
node at Vpp = 1V and include the energy for memory read/write.
We assume an activity factor o« = 0.1. The energy values for all
bit precisions are derived by scaling the energy for 8-bit operations
based on the number of bit operations, e.g., addition scales linearly
and multiplication scales with the square of the number of bits.

For analog topologies, for any clock/data switching, we consider a
switching energy of 2fJ. For the energy model corresponding to 1-
bit precision, the minimum realizable capacitor (C,) of 0.3fF. We set
current (Ip) of 50 nA, temperature ' = 300K, k = 1.38 x 10~ 23J/K,
and channel length modulation A = 1. To increase the precision by
one bit under same the signal strength, noise must be reduced by
half; this is achieved by quadrupling the capacitor sizes and current
(Ip). In Eq. (4) for the max-pooling operation, K’ = 2.96 x 10~2°
as derived based on the circuit in [18] to achieve minimum energy,
and in Eq. (5) for sigmoid, ny = 1.5, AV = 0.1V [19].

For the ADC, we select the power numbers that correspond to the
best ADC design for a given number of bits using [22], which gives
K, = 100f], Ko = 1laJ. For lower precision, we use successive-
approximation-register (SAR) ADCs which use B + 1 cycles for
computation. Based on the choice of capacitor sizes the ADCs can
easily work up to 1 GHz, thus keeping the throughput of the model
at 100 MHz (=111 MHz for an 8-bit ADC operation [16])
Modeling error sensitivity. We estimate digital noise using the
quantization model from Section IV. Analog noise is modeled as
white Gaussian noise with zero mean and variance = 1/ 2B [1).

A pretrained model using 32-bit floating point (FP32) weights is
used and layer-wise quantization is implemented. Fig. 4(a) shows
the layer-by-layer analysis of the resilience of the ResNet18 model
towards quantization. Quantization levels above 6-bit integers per-
form well, and these curves are not shown in the graph for enhanced
readability. Below 6-bit quantization, we can see that the ResNet18
model has significant degradation in accuracy, though some accuracy
can be regained after quantization-aware fine tuning of the model.
A similar characteristic was observed while adding Gaussian noise
to the weights of the model (Fig. 4(b)), but in this case, the
network shows minimal degradation up to noise equivalent to 5-
bits (0noise = 1/32). This shows that the ResNet18 model is more
resilient to analog noise than to quantization loss.

We evaluate the sensitivity of the model S, indexed by the j**
operation of type t, as the ratio of the error of ML model to the added
noise (analog Gaussian or digital quantization) for the operation. We
will utilize these relative sensitivities of the added quantization and
Gaussian noise in the ILP formulation described next.

Table II: ILP notation.

t Operator type; t € O

O; 4™ operator in the network of type .

ADCp(DACE) | B-bit ADC (DAC); 1 < B<8

DE(A%) B-bit precision digital(analog) operator of type
If X is Al (DY), this indicator variable chooses
variant X of j‘h operator, O;; else if X is ADCp

I7X € {0,1} (DACB), this indicates the presence(absence) of an
ADCg(DACBE) at output of j" operator, O;A
Energy consumed (Noise generated) by an operator X

BEEOWNED | in Table 1.

Bl (B Total energy consumed by all ADCs (DACs).

Sjt. Noise sensitivity for ;" operator of type ¢.

FO(X) the fan-out vertices of operator X

N Noise threshold beyond which successive analog op-

T erations has to be succeeded by a digital operation.

VI. MiSO-ML PRECISION OPTIMIZATION

Consider an ML architecture composed of M layers, each of
which performs one operation from the available set of operations
{Addition, MAC, Max-pool, ReLU, sigmoid}. Each operation can
have a precision of B bits, 1 < B < 8, and can either be implemented
using an analog or digital operation (OY); if the output is very
sensitive to an operation, it should preferably be performed using
digital circuitry, but a less sensitive operation can be implemented
in analog, using a noise threshold based on the desired precision to
determine ADC insertion points (see “Intuitive concept,” Section I).
The set of allowable operations O is all combinations of
{operation set, bit precision, implementation mode (analog/digital)}
Our goal is to minimize the overall energy and noise in the system,
trading off noise/energy using digital and analog components, and
inserting ADCs/DACs as needed. Using the notation in Table II, we
formulate an ILP to find the bit-precision assignment, the choice of
analog/digital for each operation, and the ADC/DAC locations.
ILP Objective: We seek the best compromise in energy and noise
as we solve the assignment problem. The objective function mini-
mizes the sum of the overall energy consumed and noise generated
(weighted by sensitivity Sﬁ) by all operators and ADCs/DACs, as
represented in the optimization formulation below:

min 320, (E(0}) + SIN(OY)) + Eiit + i

At Dt

st Y8 (Ij L B) —1 )

Al Dt
BO}) =5, (1 By + 17 - E(DY)  10)

t 8 k
prer = ie oy (V I,?B) (11)

kE€FO(j) \B=1
At Dt
(/\ LD N(AtBk)> 1, PU < Np (12)
kepP keP

Bt =30, 35, I7P°P - E(ADCp) (13)

The logical AND (A), OR (V), and NOT (™) operations in the ILP
formulation can be easily modeled using ILP constraints [23].
Unique variant constraint: A special order set (SOS) constraint is
formulated in (9) to choose one of the available variants (analog
or digital, and a specific number of bits) for an ML layer.

Energy computation: With the above SOS representation, the energy
consumed by an operator O§ (defined in Table II) can be evaluated
as shown in (10). A similar expression represents the noise for O;-.
ADC/DAC constraint: A B-bit ADC is required at the output of an
analog operator of B-bit equivalent precision, whose output drives at
least one operator that is digital, regardless of the digital precision.
This is specified as the logical constraint (11). As described in
Table II, operator O; is an analog operator with B-bit equivalent




precision if the indicator variable I Al is 1. At least one of the fan-
out operators of j is digital if any of the corresponding indicator
variables of the digital variant of any precision is 1. This condition
can be detected by ORing all such digital indicator variables as shown
in (11). A similar constraint is included for DAC indicator variables
when a digital operator drives one or more analog operators.
Noise threshold constraint: The SNR may degrade significantly when
multiple analog operators are cascaded. To prevent this, a chain
of analog operators must be followed by a digital operator to
restore signals to discrete values, as described in Section III-C. To
specify this constraint, consider a path P in the network comprising
successively adjacent operators, whose last operator drives a digital
operator [. Any path composed of all-analog operators must have an
accumulated noise of less than Np. All the operators in a path are
analog if and only if the analog indicator variables of all operators
in the path are 1, which is captured by an AND constraint. A Bj-bit
precision for operator k € P is specified as shown in (12).

The ILP solution assigns to each operator a bit-precision and
analog/digital variant based on the indicator variable. An ADC/DAC
is added to the output of an operator if its indicator variable is 1.

VII. EVALUATION OF MISO-ML

We demonstrate our approach on multiple ML architectures.
ResNet18 with ImageNet. We first apply our approach on ResNet18
with a workload from the ImageNet 1k dataset. Our ILP solution
provides the bit-precision, choice of analog/digital implementation,
and the locations and bitwidths of the ADCs/DACs corresponding
to the optimal noise and minimum energy. We compare this with a
reduced bitwidth digital optimization, i.e., digital quantization.
Table III shows energy and quantization numbers corresponding
to uniform digital quantization across all layers of ResNetl8 on the
ImageNet dataset. Models with uniform 8-bit quantization achieve
similar accuracy compared to the baseline FP32 model. The use of
6-bit and 4-bit uniform quantization sees some accuracy drop, which
is recovered after retraining, accounting for quantization and analog
noise (“fine tuning”). However, for 2-bit uniform quantization, the
accuracy degrades greatly and cannot be recovered by fine tuning.

Table III: Energy vs top-1 accuracy trade-off for ResNet-18
architecture on the ImageNet dataset.

Precision Accuracy Energy

(D) = Digital, (A) = Analog Inference | Fine tuning (Improvement) ‘
FP32 (D) 69.57% - -

8B Activation, 8B Weight (D) 69.49% 69.49% 25.62pJ (1.00x)
6B Activation, 6B Weight (D) 68.43% 69.21% 18.74uJ (1.37x)
4B Activation, 4B Weight (D) 66.82% 68.66% 12.32uJ (2.08x)
2B Activation, 2B Weight (D) 62.14% 65.38% 6.18uJ (4.14x)
MiSO-ML (4/6B Activation, 4/6B Weight (mix)) | 67.14% 69.16% 3.14pJ (8.16x)

The MiSO-ML mixed precision method, with mixed analog/digital
implementations with cascaded analog MAC structures, uses 6 less
energy than 6-bit uniform quantization, which provides the same
accuracy. Relative to [9], [13], which use ADCs between successive
layers, the benefit of MiSO-ML comes due to explicit optimization of
the number of ADCs between multiple analog stages: since ResNet
uses convolution filters of size 3 x 3 for all of the convolution stages
(except the first convolution layer with 7 x 7 filter size), the ADC
energy cost becomes a significant portion of MAC energy in [9], [13].

The results of optimizing ResNet18 on ImageNet using MiSO-ML
are shown in Fig. 5. For each layer (1-18 on the x-axis), the weights
are always digital; depending on the ILP optimization, the activations
and operation may be digital (“D”) or analog (“A”). The bars show the
equivalent number of bits (if analog) or truncated bits (if digital) for

the weights, activations, and operation, according to the left y-axis.
The ILP places data converters at layers 6, 9, 13, and 17.

The green line shows the energy reduction per layer (right y-
axis) as compared to a 6B digital implementation, which has similar
accuracy (Table III). Layers with analog operations provide large
energy reductions; those with digital operations (1, 17, 18) less so, but
maintain accuracy. For a threshold noise of oymaz(N7) = 1/20, 2 to
3 layers can be stacked in the analog domain before data conversion.
Accuracy vs. energy tradeoffs. For the same experimental setup
(ResNet18 on ImageNet), Fig. 6 shows the energy vs. accuracy trade-
off for different noise thresholds for MiSO-ML, and with equivalent
bit truncation for a digital implementation. We see a large energy
improvement by the MiSO-ML model for lower bit precisions, and
more modest improvement for digital truncation. The accuracy cost
is minimal up to 4-bit precision but is more noticeable for a lower
number of bits. Using this energy vs. accuracy tradeoff curve, we
select 4-bit precision, and this limits the AND constraints in the ILP.
Benefit of stacking analog operations. To understand the benefit of
stacking multiple layers before ADC insertion, we plot the percentage
contribution of the ADCs to the overall energy in Fig. 7. We assume
that the input and output layers of the ML architecture are in
the digital domain. The yellow bars correspond to the MiSO-ML
architecture with ADCs inserted based on the ILP, and the gray bars
correspond to the operations at a bit precision optimized in MiSO-
ML, but with an ADC/DAC after each ML layer, similar to [9], [13].
The energy gain is considerable for 4-6 bit operations as compared to
7-8 bit operations. At stricter 7- and 8-bit precision, smaller benefits
from analog operations are seen, due to high ADC/DAC energy costs.

The improved benefit of analog operation at 6-bits and below is
attributed to the amortization of the cost of ADC and DAC over a
stack of multiple layers; this is less so at 7-8 bits. We observe a
stacking of up to two layers for a 6-bit equivalent precision and a
stacking of up to four layers for a 4-bit equivalent precision. At 3-bit
and lower precision, we do not observe any significant reduction of
ADC energy component due to reduced energy scaling for the ADC
operation, as seen in Table I. For a 4-bit noise threshold, the ADC
energy overhead is just 13.2% of the total energy of ResNet18, much
smaller as compared to single-layer architectures (52.2% in [11]).
General ML Architectures. We have tested various networks and
observed consistent improvement across all. In Table IV, we describe
the energy efficiency achieved by our model on multiple ML architec-
tures. We chose four datasets to test our model: MNIST (using image-
pixel 28x28), ImageNet (using image-pixel 224 x224), Imagenette
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Table IV: Energy reduction and accuracy for different methods.

‘ Dataset ‘ ML Architecture ‘ Accuracy ‘ Energy/inference ‘
[ MNIST [ SVM (Accuracy = 94.23%) [ MiISO-ML [ 92.31% [ 0.16u] (3.16x) |
ImageNet ResNet18 (Accuracy = 69.57%) Bl_tBlade (6] 08.66% 158 (1.64)
MiSO-ML 69.16% | 3.14 pJ (8.16x)

VGG16 (Accuracy = 92.32%) MiSO-ML 90.51% | 8.48uJ (7.69x)

Imagenette | GoogLeNet (Accuracy = 93.23%) | MiSO-ML 91.46% | 2.56pJ (6.25x)
ResNet101 (Accuracy = 96.55%) | MiSO-ML 93.76% | 5.08uJ (9.12%)

ResNet20 (Accuracy = 91.12%) A/_\-ResNel [71 | 80.90% | 0.6 pJ (5.76x)

CIFAR-10 MiSO-ML 87.25% | 0.66pJ (5.52x)
ResNet110 (Accuracy = 93.55%) MiSO-ML 92.55% 2.89uJ (5.56x)

(a subset of ImageNet with 10 classes using image-pixel 112x112),
and CIFAR-10 (using image-pixel 32x32). The Baseline architecture
is an 8-bit digital implementation of the ML architecture. Based on
our energy vs. accuracy tradeoff (Fig. 6), we target a maximum
degradation of 5%, i.e., 0noise = 1/20 for the ILP. For the MNIST
dataset, there exists a large literature of binary classifiers [3], [4] that
can achieve better accuracy, but considering our objective of energy
efficiency we choose a simple SVM classifier. We achieve minimal
degradation with a 6-bit SVM classifier. Our optimization provides a
3.16x energy efficiency as compared to the digital implementation.

For ImageNet, the table shows MiSO-ML on ResNet18, and also 4-
bit optimized digital hardware [6] (with energy scaled from 28nm to
12nm). MiSO-ML can achieve higher energy improvement through
mixed-signal implementation and bit-width optimization.

For Imagenette [24], we evaluate MiSO-ML on three architectures
— VGG16, GoogleNet, and ResNet101 — and achieve considerable
energy efficiency. This shows that our method can be extended to
a large number of ML architectures. VGG16 is highly computation-
intensive and consists of 38.7G MAC, 49.21M pool, 100 add, 100 div,
and 100 exp operations. GoogleNet uses an inception module with
convolutions of different sizes and consists of 4.01G MAC, 40.26M
pool, 2.2IM add, 4.16M div, and 2.8M exp operations. ResNets
use residual blocks to overcome the vanishing gradient problem in
previous architectures and allow the stacking of a large number of
convolution layers varying from 18 up to 1202. ResNet101 consists of
1.93G MAC, 5.44M pool, 8.11M add, 5.29 div, and 10 exp operations.

We apply the MiSO-ML strategy on ResNet architecture and
the CIFAR-10 dataset and observe a similar trend. The ResNet
architectures for the CIFAR-10 dataset do not contain a max-pool
layer at the beginning. We observed that the impact of adding noise
is lower for the initial layers of the architecture. Since the number
of convolution operations decreases faster in ResNet-Imagenette
layers than in ResNet-CIFAR-10 layers, the impact of energy benefit
due to low bit-analog operations is significant. This explains the
8.16x energy improvement for ResNetl8-ImageNet as compared
to 5.52x improvement for ResNet20-CIFAR-10. We compare our
results against a 4B Weight, 7B Activation analog implementation
[7] and observe that we can achieve much higher accuracy with a
mixed signal approach with minimal increase in energy.

The ILP size depends on the size of the ML model and the number
of possible bit-precisions. We use Gurobi [25], which solves the ILP
in less than a minute for ResNet18 and 35 minutes for ResNet101 on
an Ubuntu host with a 2.6GHz Intel Core i7 processor and NVIDIA
Quadro P620 GPU. The runtime of MiSO-ML is very small compared
to the full training for these models which run for multiple days.

VIII. CONCLUSION

We propose MiSO-ML, a mixed-signal optimization framework for
low-power ML inference. We demonstrate that it can enable image
recognition for multiple ML architectures. We observe a gain of 5-
8X lower energy than 8-bit quantized digital implementations, with
minimal accuracy loss. The main energy benefit comes from the low
ADC energy (13.2%, amortized across multiple layers) and selection
of energy-efficient analog/digital hardware for different precisions.
The ILP formulation ensures that accuracy loss is minimal.
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