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—— Abstract

We show improved monotonicity testers for the Boolean hypercube under the p-biased measure, as

well as over the hypergrid [m]™. Our results are:

1. For any p € (0, 1), for the p-biased hypercube we show a non-adaptive tester that makes O(y/n/e?)
queries, accepts monotone functions with probability 1 and rejects functions that are e-far from
monotone with probability at least 2/3.

2. For all m € N, we show an O(y/nm®/e?) query monotonicity tester over [m]".

We also establish corresponding directed isoperimetric inequalities in these domains, analogous to
the isoperimetric inequality in [15]. Previously, the best known tester due to Black, Chakrabarty
and Seshadhri [2] had Qn® 5) query complexity. Our results are optimal up to poly-logarithmic

factors and the dependency on m.

Our proof uses a notion of monotone embeddings of measures into the Boolean hypercube that
can be used to reduce the problem of monotonicity testing over an arbitrary product domains to
the Boolean cube. The embedding maps a function over a product domain of dimension n into
a function over a Boolean cube of a larger dimension n’, while preserving its distance from being
monotone; an embedding is considered efficient if n” is not much larger than n, and we show how to
construct efficient embeddings in the above mentioned settings.
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1 Introduction

Let [m] = {0,1,...,m — 1} be thought of as an ordered set, and consider the partial ordering
induced by it on [m]™: two points z,y € [m]™ satisfy x < y if and only if 2; < y; for all
i=1,...,n. A function f: [m]™ — {0,1} is called monotone if for every x,y € [m]™ such
that < y we have f(x) < f(y). Given a function f: [m]™ — {0, 1}, we measure its distance
from being monotone, with respect to a probability measure p over [m]™, by

n
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e(fip) = min A(f,g; 1), where A(f,g;p) = p({z € m]™ | f(z) # g(z)}).

g: [m]®—{0,1} monotone
In this paper we present monotonicity testers for functions over [m]™ (under the uniform
measure), as well as over the Boolean hypercube {0,1}" with the p-biased measure, defined
as p"(z) = pll(1 — p)n-lel.
oracle queries to an unknown function f over the domain, which accepts with probability 1
if f is monotone, and rejects with probability > % if f is e-far from monotone.

That is, we construct a randomized algorithm that makes

1.1 Prior Works

The monotonicity testing problem has received significant attention over the years, as we
shall now review. For simplicity, below we think of £ as being a small constant. The problem
was originally studied over Boolean hypercube with the uniform measure [13], where a
non-adaptive algorithm that makes O(n) queries was shown. This bound was improved by [8],
who showed an O(n"/®) query tester by proving a directed version of Margulis’ isoperimetric
inequality [17] and using it towards developing improved monotonicity testers. Following it,
Chen, Servedio and Tan [9] modified the algorithm and the analysis of [8] and established
a O(n%/%) query tester. Finally, an O(y/n) query tester was given in [15], who proved a
directed version of an isoperimetric inequality due to Talagrand [19]. The tester of [15] is
tight up to poly-logarithmic factors, by a bound for non-adaptive testers due to [12]. The
best known lower bound for adaptive testers is not too far off [10], and currently stands at
Q(n'/3).

Following the investigation of complexity of monotonicity testing over the hypercube,
variants of the problem were also considered in the literature, in which either the domain or
the range of the function are different [11, 7, 2, 3, 5]. Most relevant to us is the monotonicity
testing problem over different measures on the Boolean hypercube as well as the closely
related hypergrid [m]”, wherein the state of the art result is an O(n®/%poly(logm)) query
tester due to [2]. To prove their result, the authors of [2] established an analog of the directed
isoperimetric inequality of [8] for the hypergrid.

n

1.2 Parallel Works

Following initial submission of this paper, we have learned that Black, Chakrabarty and
Seshadhri have independently obtained results similar to ours [4]. They use a different
method, first proving analogous directed isoperimetric inequalities over the hypergrid, and
then using these to construct and analyze a monotonicity tester for the hypergrid.

1.3 Main Results

Our first result is an essentially-optimal monotonicity tester for the p-biased cube:

» Theorem 1. For every p € (0,1), there is a non-adaptive monotonicity tester over
({0,1}™, u™) that makes O(y/n/€*) queries.

Second, we focus on the hypergrid [m]™. Here and throughout, U,, refers to the uniform
distribution over [m], and we often drop the subscript m when it is clear from the context.

» Theorem 2. For all m,n € N, there is a non-adaptive monotonicity tester over ([m]™, U®™)
that makes O(y/nm3/e?) queries.
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Our techniques also imply analogs of the directed isoperimetric inequality of [15] for the
hypergrid as well as for the p-biased cube. For simplicity we state the result for the hypergrid,
and defer the statement for the p-biased cube to Theorem 13.

Let f: [m]™ — {0,1} be a function and fix an input x € [m]™. The negative sensitivity
of f at x, denoted by s;( x), is defined to be the number of coordinates i such that there

is an input y differing from z only on the 4"

coordinate, such that the pair (z,y) violates
monotonicity. Namely, it is the number of coordinates i such that for the point y which
differs from x only on its i*" coordinate, we have that = < y and f(z) > f(y) (if f(z) =1)
orz >y and f(x) < f(y) (if f(z)=0).

» Theorem 3. If f: [m]" — {0,1} is e-far from monotone with respect to U™, then

3

@] (mlg<m/>)

1.4 Our Technique

Our proofs rely on the following elementary notion of an embedding of a domain (that we
wish to test monotonicity over) into a hypercube of not too-large dimension.

» Definition 4. We say that a probability distribution ([m], u1) can be r-locally embedded if
there is a Boolean hypercube {0,1}", a map ¢: {0,1}" — [m], a collection ¥ = {V,},cq of
maps U, : [m] = {0,1}", and a probability distribution P over Q such that:
1. Each one of ¢ and ¥, is monotone.
2. Sampling x ~ U({0,1}"), the distribution of ¢(z) is pu1.
3. Sampling y ~ p1 and w ~ P, the distribution of ¥, (y) is uniform over {0,1}".
4. For each w € Q, the composition ¢ o U, is the identity on [m].

The usefulness of Definition 4 comes from the fact that given a local embedding of [m],
we can reduce the problem of testing monotonicity over ([m]™, u$™) to that of testing it over
Boolean hypercubes of dimension rn, which we already know how to solve. Towards showing

the reduction we note that if ([m], u1) can be r-locally embedded, then given a function
f:[m]™ — {0,1} we may define g: {0,1}"*™ — {0,1} by

g9(x(1),...,z(n)) = f(o(z(1)),. .., d(x(n))).

The following lemma asserts that if f is monotone then ¢ is also monotone, and if f is e-far
from monotone, then g is e-far from monotone.

» Lemma 5. If f is monotone, then g is monotone. Moreover, £(g; U®™) = e(f; u™).

Proof. Assume f is monotone. Then taking any (z(1),...,z(n)) < (z(1),...,z(n)") in
{0,1}7*™, by the monotonicity of ¢ we have (¢(x(1)),...,¢(z ( ))) < (o(z(1)), ..., ¢(z(n)),
and using the monotonicity of f we get that g(z(1),...,z(n)) < g(z(1)’,... ,x(n)/).

For the other direction, let ¢’ be the closest monotone function to g, and choose & =
(Wi, .-, wy) ~ P®". Define

fo(xi, ... xn) = gl(\ijl(xl)7 e Uy, ()

Since each W, is monotone we have that fz is monotone as well. Also,

E [A(f, fa;u¥™)] = E

E [U(w)#h(wﬂ] Ig[ E . [U(w);ﬁg'(%l(xn,u.,wmxxn))”

Teopy T
= ]]j; ]E i |:lg(\pwl(Il)v"»\ljwn(wn))ig/(qlbﬂ(w1)7'~~;\1/wn(1n)):| ’
S | grp®n
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where in the last equality we used the fact that ¢o ¥, is the identity. Note that by property 3
of an embedding, given the distribution of & and z, the distribution of (U, (z1),..., Y, (zn))
is uniform over {0,1}"*", so the last expression is equal to A(g,g’;U®") = e(g; U®"). Tt
follows that there is an & such that A(f, fz; u$™) < e(g; U), and the proof is concluded. <«

For the Boolean hypercube with the uniform measure, a 2-query path tester is constructed
in [15] which always accepts monotone functions, and rejects functions that are e-far from
monotone with probability at least

52

R(ne) = o o) W

Combining that tester with Lemma 5 we get the following conclusion:

» Lemma 6. Suppose that ([m],p1) can be r-locally embedded; then there is a 2-query
monotonicity testing algorithm for functions over ([m]"™, u$™) that always accepts monotone
functions, and rejects functions that are e-far from monotone with probability at least R(rn,e).

Proof. Given f: ([m]", u$™) — {0, 1}, define g as above, then run the monotonicity tester
of the hypercube on g, and accept/reject accordingly. Note that a single query to g can be
answered by making a single query to f. By Lemma 5, if f is monotone then g is monotone,
hence the tester always accepts. If f is e-far from monotone, then by Lemma 5 g is also e-far
from monotone, hence the tester rejects with probability at least R(rn,¢). |

Thus, Theorems 1 and 2 follow from Lemma 6 once we show the existence of sufficiently
good local embeddings. In Section 2 we show constructions of such embeddings for the
p-biased measure on {0, 1}, as well as basic embeddings for [m]™ which are not good enough
for our purpose (but gives some intuition). To construct efficient embeddings for [m]™ we have
to work harder, and for divisibility reasons we only know how to construct such embeddings
for m’s that are power of 2. For other m’s, we have to consider a slightly relaxed notion of
embeddings, asserting that there are distributions p} and p} that are extremely close to the
distributions ([m], 1) and ({0,1}",U) such that one can embed ([m], p}) into ({0,1}", ub);
see Sections 2.3, 2.4 for the formal definition. This relaxed notion has the same monotonicity
testing and directed isoperimetric implications. The construction of embeddings for the
hypergrid is more involved than our construction of embeddings for the p-biased cube, and
can be found in Section 3.

As for the directed isoperimetric inequalities, we recall the isoperimetric result from [15]

» Theorem 7. If f: ({0,1}",U®") — {0,1} is e-far from monotone, then E, { s;(x)} >

()

Combining Theorem 7 with Lemma 5 we get:

» Lemma 8. Suppose that ([m], u1) can be r-locally embedded; then for any f: (Im]|™, u1) —

{0,1} that is e-far from monotone it holds that Ey.pe [ sy (y)| = (m)

Proof. Define g: {0,1}"*" — {0,1} as above, and note that s, (z) < sy (¢(x)) for all z €
{0,1}7". Indeed, letting k = L5, (z) and viewing x = (z(1),...,z(n)) where (i) € {0,1}",
there are at least k ¢’s such that there is 2’ such that z’(j) = x(j) for all j # i and the pair x, =’
violates monotonicity of g. In that case, we see that the pair y = ¢(x) = (¢p(x(1)),. .., o(x(n)))
and 3 = ¢(z') = (¢(2'(1)),...,¢(z'(n))) only differ in their i'" coordinate and violate
monotonicity of f, hence s} (¢(z)) > k. It follows that
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]Ei@" [ g (y)} " oy [ S;((b(x))} g \}er{OE}Txn [ 89 (x)}

1 £(9) )
> 79 T 7 7 7 NN 9
VT (10g(7‘n/ £(9))
and the proof is concluded by Lemma 5. |

We note that Theorem 3 follows from Lemma 8 (or rather, a slight variant of it which is
suitable for slightly relaxed embeddings) by showing that ([m], U) can be r-locally embedded
for 7 = O(m®) (under the aforementioned slightly relaxed notion of embeddings).

2 Elementary Constructions of Embeddings

In this section we present several ideas for constructing local embeddings and prove Theorem 1.

2.1 Embedding p-biased Cubes

We begin by constructing some basic embeddings for p-biased distributions over {0, 1}, and
then combining them to prove Theorem 1. First, we show that the measure p, can be locally
embedded when p is a powers of 2.

» Lemma 9. Let p = 27", and consider the distribution u, over {0,1} where pu,(1) = p.
Then ({0,1}, up) can be r-locally embedded.

Proof. We define ¢(x1,...,2,) =x1 A ... Az As for U, we take the distribution (9, P) to
be uniform over {0,1}"\ {1}, and define ¥, (1) = (1,...,1) and ¥, (0) = w. <

Secondly, we show that if u, can be locally embedded, then so can 1_p.

» Lemma 10. Let p € (0,1), and suppose ({0,1}, np) can be r-locally embedded. Then
({0,1}, p1—p) can be r-locally embedded.

Proof. Let (¢, {¥,}weq, P) be an r-local embedding of y,. Define ¢/(z) =1 — ¢(1 — z) and
¥ (a) =1 — W, (1 — a). First, note that ¢’ and ¥/, are monotone. Second, sampling z ~ U,
¢'(x) is distributed according to p1_,. Also,

¢ (U,(a) =1 -1 = V,(a)) =1-¢(Vu(l—a))=1—(1—a)=a.
Finally, if @ ~ p1—p, then 1 —a ~ p,, hence ¥, (1 —a) ~ U and so ¥/, (a) ~ U. <

Third, we show how f,,,, can be locally embedded given local embeddings for j,, and
Hops -

» Lemma 11. Suppose that p,, can be ry locally embedded, and py,, can be ro locally embedded.
Then pip, p, can be r1 + 1o locally embedded.

Proof. Let (¢1,{¥1,w}wea,,P1) and (¢2,{¥2 }weq,, P2) be the local embeddings of p,,
and p,,, respectively. We define ¢: {0,1}1%72 — {0,1} by ¢(x,y) = ¢1(x) A d2(y).

Now let Q" = {0,1}2\ {(1,1)}, and define P’ to be the distribution obtained by taking
(a,b) ~ pp, X pp, and conditioning on the event [(a,b) # (1,1)]. We take Q@ = Qq x Qg x ¥
and P = P; x P, x P'. For w = (w1, ws,w’) € Q where w' = (a,b), we finally define ¥, as
follows:

25:5
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\Ij(whwz,w') (1) = (\Ijl7wl (1)5 \11270)2 (1))7

\IJ(UJl,UJz,w') (O) = (\Ijl7wl (CL), \I’Q,wz (b))

It is clear that ¢ and ¥ are monotone, that ¢ o ¥z = identity, and that the distributions are
correct. |

Next, by an easy approximation argument we conclude that for all values of p there is
some p’ close to p such that p, can be locally embedded.

» Corollary 12. For all § > 0 and p € (0, 1), there exists a p’ € (0,1) such that |p—p'| < 35

and that i,y can be O(log?(n/d))-locally embedded.
Proof. By Lemma 10, we may assume that p < 1/2. Set s = [10log(n/d)], and for a € Z*,

5 .
define ¢(a@) = J](1 —27*)%.
i=1
Below, we show that there exists a vector a € Z*® such that p’ = g(a) satisfies

)
pP<P <pt+ (2)

and where a; € {1,...,s} and a; € {0,1,2,3} for any i > 1. Note that this implies, by
Lemmas 9, 10, and 11, that p’ can be r-locally embedded for < s + O(s?) = O(log*(n/?)),
finishing the proof.

To find the required vector a, we begin by taking k to be the maximal number that
satisfies 2% >p If k> s we set ag = s, and note that we are done since the vector
a = (a1,0,...,0) satisfies (2) as required. Otherwise if k < s, we continue to set a; = k, and
define a! = (a1,0,...,0). We then go over i = 2, ..., s, finding at each step the largest number
k that satisfies q(a*~! + k - €;) = p, and then taking a; = k and a* = (ay,...,a;0,...,0)
(here e; is the 3" unit vector).

We set our final vector to be a = a®. It follows immediately from the definition of a°
that q(a) > p and that q(a) - (1 — 27°) < p, which implies that g(a) < p- (1 —27°)71 <
p-(1+2-27°) <p+27° <p+ S5. We therefore have that a satisfies (2). It is also clear
from the definition that a; € {1,...,s}. To show that a; € {0,1,2,3} for all ¢ > 1, we first
observe that it is clear from the definition of the a;’s that for all i, p < g(a’) < p-(1—-27%)71.

It then follows for each i > 1 that
g@ T +4-e)<p-(1—2"0"D)"1 1 —27H < p,

as can be verified by a simple application of the binomial expansion to (1 —27%)%. The
definition of a; therefore dictates that a; < 4, as desired. <

Proof of Theorem 1

Notice that if [p’ —p| < 5, a function f : {0,1}"™ — {0, 1} which is € far from monotone with
respect to py; is 5 far from monotone with respect to the measure y,. Hence it is enough to
apply a monotonicity testing algorithm to f with respect to ;. We thus use Corollary 12 to
find a p’ that is sufficiently close to p and that is r-locally embeddable for r = O(log?(n/¢)),
and then apply the tester from Lemma 6 with respect to the measure ug, and the error €/2.
To obtain Theorem 1, we independently repeat this tester R(#?,S/Q) = O(y/n/e?) times.
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A directed isoperimetric inequality over the p-biased hypercube

By Corollary 12 and Lemma 8, we get an analog of Theorem 7 for the p-biased cube, stated
below.

» Theorem 13. For allp € (0,1), if f: ({0,1}", u3™) — {0,1} is e-far from monotone, then

E [0 > (zm)

Proof. Let » € N and p’ € (0,1) be from Corollary 12 for § = 3. Note that the distributions
pg™ and ufﬁ" are §/nY close, hence f is at least /2 far from monotone over uf?/" and

o € 0
N > N —VN—Qg 2 =~ — —3
wNIEcan [ 5 (x)} wNIE@ﬂ { 5 (x)} \/ﬁng’ Vrlog(nr/e) n
P p’
where the last inequality is by Lemma 8. The theorem follows as r = O(log?(n/¢)). <

2.2 Monotone Symmetric Embeddings

A function T': {0,1}" — [m] is monotone and symmetric, if and only if for each i € [m],
T~1(i) contains all elements x with hamming weights in some segment, and the segment that
corresponds to ¢ is 'below’ that which corresponds to i 4+ 1 for each i. Next, we show that
if a function T: {0,1}" — [m] is monotone and symmetric, then the distribution T'(U) is
r-locally embedded. Here by T(U) we mean the distribution over [m] resulting from choosing
2 uniformly from {0,1}", and outputting T'(x).

» Lemma 14. Suppose T': {0,1}" — [m] is monotone and symmetric. Then the distribution
T(U) is r-locally embedded.

Proof. Denote v = T(U). Defining ¢: {0,1}" — [m] by ¢(x) = T(x), it is clear that ¢
is monotone and that the distribution of ¢(U) is the same as v, and we next discuss the
construction of ¥,,.

A monotone path in {0,1}" is a sequence of vertices vy = 0,v1,...,v, = 1 wherein
vg < v1 < ... < v, and any two consecutive vertices differ in exactly one coordinate. The
probability space (€2, P) indexes a uniform choice of a monotone path in {0, 1}" and additional
auxiliary randomness. One way to generate such path is by choosing a random permutation
7 in S, considering the path going through 0,e1,e; +ea,...,e1+...4e€;,...,1, and applying
the permutation to re-label the indices {1,...,7}. We remark that taking a random path
¢ = (vg,...,v), the marginal distribution of v; is uniform in {0,1}" among all vertices of
Hamming weight ¢.

To define ¥, we look at w which specifies a path ¢ = (vg,...,v,) and additional
randomness w’. We use the additional randomness to generate, for each a € [m], a Hamming
weight ¢, according to the distribution of |z| where we sample z ~ T~ !(a) uniformly. We
then define ¥, (a) = vq,.

Note that ¢ o ¥, = identity, and that for a specific choice of w, ¥, (0) < ... < U, (m —1)
since these are vertices from a monotone path. Finally, fixing a, the distribution of ¥, (a)
over the randomness of w is vy, where t, = |z| and z ~ T~ !(a), so v;, is the t, vertex on
a random monotone path in {0,1}". In other words, ¥, (a) is a uniformly chosen vertex
from layer t,, where t, is distributed as above, hence it is uniform in 7-*(a). Hence, the
distribution of ¥, (a) over w ~ P and a ~ v is uniform over {0,1}". <

25:7
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Lemma 14 can be used to show that distributions that are close to uniform over [3] can
be locally embedded. For example, one can choose two thresholds ¢; < ¢35 and consider
the function T}, 4, : {0,1}" — [3] defined as T'(z) = 0 if |z| < #1, T(x) = 2 if |z| > 2, and
otherwise T'(x) = 1. A straightforward argument shows that for any r, one can choose t1,to
so that the distribution T}, +,(U) is O(1/4/r) close to uniform over [3]. This implies, in
particular that as long as r > 4, the distributions T}, +, (U)®" and U®™ over [3] are O(9)-
close to each other, hence for 0 < 1555, if f: ([3]",U®") — {0,1} is e-far from monotone,
then f: ([3]", %, +,(U)®™) — {0, 1} is e/2-far from monotone, and using Lemma 6 we get a
2-query monotonicity tester with rejection probability at least R(rn,e/2). A closer inspection
shows that the resulting rejection probability is Q(g2/1/rn) = Q(e3/n) hence worse than
known results.

Having said that, the above argument also highlights that if we can design an approximate
embedding 7" such that T(U) is &-close to uniform over [3] for £ = o(1/4/r), then we will
get a non-trivial monotonicity tester over [3]". Using elementary arguments, one can show
that for any r, there is v = ©(r) and thresholds ¢1,¢2 such that T3, 4, (U) is O(1/r)-close
to uniform, which allows one to take r = ©(y/n/?) and thus get a tester with rejection
probability Q(e?/n3/*), which already improves upon the state of the art result.

Using threshold as embedding strategy though has its limits. Indeed, it seems that using
thresholds we will never be able to get T(U) to be &-close to uniform over [3] for &€ = o(1/73/2).
For each 7’ € [r,1007] consider the threshold function T' = Ty, ;,: {0,1}" — {0,1,2} that
minimizes the distance between T'(U) and Us. Heuristically, one can think of this distance
as a random number in the interval [0,©(1)//r], hence we would expect the minimum of
these to be of the order 1/ r3/2. Thus, to get near optimal monotonicity testers we have to
venture beyond threshold functions. In the the next section we facilitate this by formulating
embeddings in the language of monotone perfect matchings (or almost perfect matchings),
and show that slight perturbations of thresholds can be used for embeddings.

2.3 Embeddings from Monotone Perfect Matchings

In this section, we present a combinatorial method of constructing embeddings using monotone
matchings on the hypercube. For simplicity, we tailor our presentation for uniform measures,
however one may consider analogs for other distributions.

We will think of the hypercube G = ({0,1}", F) as a directed graph, wherein (z,y) is
an edge if © < y. We may thus view any ¢: {0,1}" — [m] as defining a partitioning of the
vertices into sets Ao, ..., Ay—1 where A; = {z | ¢(x) = i}.

» Definition 15. For 6 > 0, we say a function ¢: {0,1}" — [m] admits a §-almost perfect
matching if there are matchings Ey, ..., Ey_o in G, wherein E; is a matching between A;
and A;11, such that for each i, E; covers all but & fraction of the vertices of A; and A;y1.

If ¢ admits a §-almost perfect matching for 6 = 0, we simply say that ¢ admits a perfect
matching.

The following lemma asserts that a monotone function ¢ that admits a perfect matching
can be used toward constructing an embedding of ([m],U).

! This can be observes by computing either the KL-divergence or the Hellinger distance between T3, 1, (U)
and U, which by sub-additivity implies a bound on that measure between Ty, ¢, (U)®™ and U®™. One
may then conclude a bound on the statistical distance between T3, 1, (U)®™ and U®™ by the relation
between KL-divergence and statistical distance (via Pinsker’s inequality) or by an analogous result for
the Hellinger distance.
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» Lemma 16. Let m € N and let ¢: {0,1}" — [m] be a monotone function. If ¢ admits a
perfect matching, then ([m],U) can be r-locally embedded.

Proof. Let Ey,..., Ep_2 be monotone matchings in G that cover all vertices for ¢, and
consider the collection P of vertex disjoint paths of length m — 1 they form. ILe., starting
from a vertex z € Ay we use the matching edge of x from Ej to go to a vertex Aj, then use
the edge of E; to go upwards and so on, until we reach A,,_1. We construct an embedding
(6,9 = (¥,,)weq, 2, P), where the probability space  is P and the measure P is uniform
over Q). We define ¥, (i) = w;, where w; is the vertex from A; on the path w.

The monotonicity of ¢ is clear by assumption and the monotonicity of ¥, follows because
w is a monotone path. Finally, it is clear that ¢ o W, = identity and that the distribution
of ¥, (i) when choosing ¢ € [m] uniformly and w ~ P is uniform over {0,1}", as P is a
collection of vertex disjoint paths that covers all of {0,1}". <

In light of Lemma 16, it makes sense it should be possible to locally embed ([m],U)
with good parameters. Indeed, for m = 4 we found an 9-local embedding of [4] using
computer search [1], which immediately gives near optimal monotonicity testers and directed
isoperimetric inequalities. For divisibility reasons though, to have a perfect matching m
must be a power of 2, however as we show in subsequent sections, this is the only limitation
that exists. To address the divisibility issues, we need to state an analog of approximate
embeddings and prove analogs of Lemmas 6, 8 and 16.

2.4 Monotonicity Testers and Isoperimetric Inequalities from Almost
Perfect Matchings

To circumvent the divisibility issues we consider a more general version of embeddings, which
is nevertheless sufficient for the purposes of monotonicity testing as well as for proving
isoperimetric inequalities:

» Definition 17. We say that a probability distribution ([m], pu1) can be r-locally embedded
in ({0,1}", ua) if there are a map ¢: {0,1}" — [m], a collection of maps ¥ = {¥,,: [m] —
{0,1}"}weq and a probability distribution P over Q such that:

1. Each one of ¢ and ¥, are monotone.

2. Sampling x ~ pa, the distribution of ¢(x) is p1.

3. Sampling y ~ p1 and w ~ P, the distribution of U, (y) is us.

4. For each w € Q, ¢ o U, is the identity on [m].

Definition 17 generalizes Definition 4 in the sense that now we allow the distribution over
the hypercube {0,1}" to not be uniform. In all consequent applications of Definition 17 the
distribution ps will be very close to uniform, though. We now prove analogs of Lemmas 6, 8
and 16 for relaxed embeddings. We begin by showing that almost perfect matchings imply
local embeddings as per Definition 17:

» Lemma 18. Let m € N and 6 > 0, and let ¢: {0,1}" — [m] be a monotone function.
If ¢ admits a §-almost perfect matching, then there are distributions pi over [m] and ps
over {0,1}", such that py is md-close to uniform over [m], s is md-close to uniform? over
{0,1}" and ([m], p1) can be r-locally embedded in ({0,1}", ua).

2 In fact, p1 is the uniform distribution over a subset of {0,1}" of fractional size at least 1 — 2ms.
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Proof. We repeat the same construction in Lemma 16, except that now the collection P
may include paths of length less than m — 1. We take P’ C P to be the collection of paths of
length m — 1. We argue that P’ covers at least 1 — mJd fraction of vertices of G. To see that,
note that each path in P whose length is shorter than m — 1 can be uniquely associated
with some ¢ = 0,...,m — 2 and a vertex x either from A; or A;;; that is not matched in E;.
Thus, the number of paths in P shorter than m — 1 is at most the total number of (¢, z) such
that = € A; is unmatched in E; plus the number of (i,2) such that € A;4; is unmatched
in E;, which is at most 26 fraction of {0,1}". Since each such path contains at most m — 1
vertices, it follows that P’ covers all but 1 — 2(m — 1)d fraction of {0,1}".

With this in mind, we define the distribution ps over {0,1}" by picking £ € P’ uniformly,
j € [m] uniformly and outputting the vertex at the j** spot of the path ¢, i.e. ¢;. The
distribution p1 over [m] is defined by sampling = ~ g and outputting ¢(z). We also define
(Q, P) by taking 2 = P’ and P to be the uniform distribution over 2, and take as before
U = (V,,)weq defined as ¥(j) = w;.

By definition, the distribution over ¥, (j) where j ~ p1 and w ~ P’ is up, and the
distribution of ¢(z) where x ~ ps is p7. The monotonicity of ¢, ¥, is clear as before, as well
as the fact that ¢ o U, = identity. <

We now turn to the analog of Lemmas 6, 8.

» Lemma 19. There is an absolute constant ¢ > 0 such that the following holds. Let
r,m,n € N, €, > 0 and suppose that 0 < § < —=—. If there is a monotone function
¢: {0,1}" — [m] that admits a §-almost perfect matching, then:

1. there is a 2-query monotonicity testing algorithm for functions over ([m]™, U®™) that
always accepts monotone functions, and rejects functions that are e-far from monotone
with probability at least R(rn,e/4) (recall (1) for the definition of R).

2. If f: [m]™ — {0,1} is e-far from monotone with respect to U™, then

ze%ﬁ]n [ 3;(26)} >0 (ﬁloga(Tn/s)> .

Proof. Let puq and ps be the distributions from Lemma 18 from ¢, and let (¢, (¥),ecq, P)
be an r-local embedding of ([m], u1) in ({0,1}", u2). Given f: ([m]™, U®") — {0, 1}, define
g9:{0,1}7" — {0, 1} by

To prove the first item, run the monotonicity tester of the hypercube on g, and accept/re-
ject accordingly. Note that a single query to g can be answered by making a single query
to f, and that if f is monotone then g is monotone, hence the tester always accepts in this
case. If e(f;U®™) > ¢, then e(f; ud™) > e(f) — A(uS™, U®™) = ¢ — 2mnd > /2. By the
same argument as in Lemma 5, it follows that g: ({0,1}"™, u$™) — {0,1} is ¢/2-far from
monotone, and so £(g; U™) > e(g; u$™) — AU™, uS™) > /2 — 2mrnd > /4, hence the
tester rejects with probability at least R(rn,e/4).
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To prove the second item, we note that

E [ s;(m)}? IE — /nAuE™, U®™)

ze[m]n

SQ y \fA U®n)

y"")ufz

= 75 B [V )] - vasgin oo

1
>— E Sq —VrnA 2", U™ — /A (p@", U
Jr e 01y [\/ g (9)] (13 ) = VnA(u )

c €
> - - /. A ®n’U®rn _ A ®7L7U®n ,

= \/7*,_410g(rn) m (:u2 ) \/H (:ul )
where ¢ > 0 is an absolute constant; in the last transition, we used Theorem 7. Bounding
A(pS™, U®™) < 2rmnd and A(p$™, U®™) < 2mnd and using the upper bound on & shows
that the second and third terms are negligible compared to the first, hence we get that

Ezem]n [ sp(z)| = WZ(W) as required. <

With these lemmas in hand, to prove Theorems 2, 3 it now suffices to construct good
enough almost perfect matchings for some monotone function ¢: {0,1}" — [m]. The following
result asserts that such almost perfect monotone matchings exists:

» Theorem 20. There is an absolute constant C > 0 such that for all m € N, for any
r = C-mb there is a monotone function ¢: {0,1}" — [m] that admits a 6-almost perfect
matching for § < m2~".

The proof of Theorem 20 is deferred to Section 3. Before embarking on this proof, we quickly
show how it implies several results stated in the introduction.

» Lemma 21. Theorem 20 implies Theorems 2, 3.

Proof. Take r = Cm°®log(mn/e) for sufficiently large absolute constant C' > 0. By The-
orem 20 we get that there is ¢: {0,1}" — [m] that admits a §-almost perfect matching for
0 < m27", and the result is concluded by appealing to Lemma 19. |

3 Constructing Efficient Monotone Matchings on the Hypercube

3.1 Theorem 20: Proof Overview

We start from a threshold embedding as in Section 2.2, that is T =Ty, ¢, ,: {0,1}" — [m]
defined as T'(x) =4 if t; < |#| < ¢;41. Using it, we can make sure that the partition it defines,
A; ={z|T(x) =i} is d-almost perfect matching for § = O(1/4/r). The reason for this J is
that A;’s may have sizes which differ by 2"§, as this is the number of points in each slice.
Therefore, to improve upon this construction a natural idea is shift elements around by
adding to some A;’s elements either from the bottom level of A;y; or from top level of A;_1,
so that eventually the sizes of all A;’s are equal up to 1. We do not know though how to
carry out this adjustment so that the embedding construction from Section 2.2 still works.
Instead, we vary the sets A; in a randomized way, and show that with high probability there
is an almost perfect monotone matching between each A; and A;; for all i’s.
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In more details, consider a random ordering m of {0,1}" which starts with some ordering
of {0,1}" according to Hamming weight (that is, the vertices of Hamming weight ¢ appear
in a chunk before the vertices of Hamming weight ¢ + 1, for all 7), and within each Hamming
weight chunk applies a random ordering. We think of 7 as 7: {0,1}" — [2"], wherein 7~ 1(i)
is the ith point in the order. We then define, for each i = 1,...,m, the set A; as the chunk
of L%J next elements in 7, namely

([ )

and show that, with high probability, there is a monotone matching between each P; and
Pit1.

To show that, we first develop a bit of machinery. First, we generalize the notion of
perfect matching to that of fractional perfect matching (see Definition 26): a fractional
perfect matching can be defined between two sets of equal size, in which case it is promised
that it can be replaced by a true matching. But it can also be defined over two sets that
are each endowed with a arbitrary measure, as long as the total measure of each set is the
same. Another important property is that the existence of a fractional perfect matching is
transitive, namely if there is a perfect matching between p and v, and also between v and 7
(where p, v and T are sets endowed with measures), then there exists a perfect matching
between p and 7.

Then, we view P; as a collection of t slices, s1(i),...,s:(i) and two random subsets
So(i) and Siy1(7) of the slices so(i) and s¢41(7). We show that there is a perfect fractional
matching between the vertices of { | € So(i) or # has Hamming weight s1(i), ..., s¢/2(i)},
and vertices of Hamming weight s:(i) (when weighted appropriately). In words, this
says that we can find a fractional matching between a union of layers with a random
subset of another subsequent layer, and a layer that is a bit above them. Using the
same arguments, we prove that there is a perfect fractional matching between the ver-
tices of { « |z € Sy41(i) or  has Hamming weight s;/511(4), ..., s¢(i) } and Hamming weight
5¢/4(i + 1) vertices. Thus, in effect we are reduced to matching complete slices again; indeed,
to show the matching between P; and P; 1, we break them into “lower half” and “upper half”
and use the above statements to find matchings of these with slices a bit above them and a
bit below them. Using transitivity now and the fact there are perfect fractional matchings
between s;/5(i) and so(i + 1) (which exists as we make sure that s,/5(i) < so(i + 1)), and
s¢/4(i +1) and s4/5(i + 1) (which again exists as we make sure that s;/4(i + 1) < s4/2(i + 1)),
one can then stitch these matchings to get a perfect fractional matching between P; and
P; 11, and thus conclude the existence of perfect matching.

The proof of statements such that “there is a perfect fractional matching between Sy (%)
and the slices s1(i), ..., s:/2(i) and s;/5(i) (when weighted appropriately)” consists the bulk
of the work, and to do that we show that with high probability Hall’s condition holds. To do
that, we use the notion of upper shadows (which, roughly speaking, counts the number of
neighbours a set of vertices S has in the directed hypercube graph) as well as the Kruskal-
Katona theorem which gives us a lower bound on it. We show that only sets of vertices T
which have very smaller upper shadow can violate Hall’s condition, and for them we show
by a careful application of Chernoff’s bound that, with high probaiblity, Hall’s condition
still holds. The main difficulty in the last step is that the number of such sets T is quite
large, however we show that these sets admit an efficient “c-net” type approximations. This
reduces the number of sets 7" we need to union bound over enough so that Chernoff’s bound
works.
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3.2 Shadows, Kruskal-Katona and Approximating Collections with Small
Shadow

3.2.1 The Kruskal-Katona Theorem

Throughout this section, we consider slices of the Boolean hypercube,
[n] n
(%) = e 0y 11 =0y,

and denote by pui the uniform measure on ([Z]). Our proof uses the Kruskal-Katona
Theorem [14, 16, 6], which we present next. We will use a more convenient form of it as
stated in [18, Section 1.2].

» Definition 22. For a collection A C ([Z]), define the upper shadow “A and lower shadow
0A of A as

asfre (1) rearss). mamfoe ()

The Kruskal-Katona Theorem states:

3x€A,y<x}.

» Lemma 23. For all AC ([Z]) we have that

1 1

prg1 (9" A) = g (A pii—1(0%A) = pr(A) .

In words, Lemma 23 asserts that if A is a small sub-set of a slice, then the upper shadow
(as well as the lower shadow) have considerably larger densities. Typically, we will apply
the upper shadow/ lower shadow operators more than once; given A C ([Z]), we will look at
pr (0% ... 0" A) where we applied the upper shadow operator ¢-times. To simplify notations,
we denote this by g4 (08*A),

3.2.2 Approximating a Collection with a Small Shadow

In general, the conclusion of Lemma 23 is tight, as can be evidenced by collections of the
type

a={ae (%)

Intuitively, the reason that A above is tight for Kruskal-Katona is that for any element in
Yy € (k[i]l), we either have that almost all of the z < y of Hamming weight &k are in A — in
which case y € 9" A, or else none of these z’s are in A. Hence, many of the z’s “vote” for
the same set of y’s to be included in the upper shadow, leading to only a moderate increase

in density. We show that in general, collections A with small shadow exhibit such behaviour,

.’1?1:...:3}@:1}.

and use it to show that this collection of families admits a small e-net:

» Lemma 24. Let s,t,n € N such that 0 <t <n—3s, and let 0 < ¢ < ﬁ. If A C ([Z])
satisfies ps1(0"™A) < (14 €)us(A), then there is a collection M C A and By C ([Z]),
B\, C (a[i]t) (defined only by M) such that

L M| < 1001?&/,;) | Al

2. By = 8t'“/\/lt(md pstt(Bug A ™ A) < 6e - pust (014 A).

3. By = {2 € (1) | Pryejyimese [y € Bpd > 1} and i, (BiAA) < 1821,(A).
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Proof. We show that taking M C A randomly of size M = 100 |.A| 1‘2&{;), the collections
B and By, as defined in the statement work with positive probability.

Consider the bi-partite graph G = (V U U, E) where the sides are V = A and U = §*“ A,
and (z,y) € F is an edge if z € A, y € 0" A and z < y. Then G is left-regular with degree

hr = (";s), and so

Bl =1V (nts) :“S(A)(nts> (Z) :“s(A)sLt!-(:!—s—t)!'

s+t
t

As for the right side, the degree of each vertex is at most hg = ( ) and the average degree

of a vertex is
!

1Bl _ Atz _ ps(A(E)hr (A he
U] U U] prore(A) T 14e
Thus, choosing y € U uniformly, the expected value of hr — d(y) is at most ehg, and by

Markov’s inequality it follows that hr — d(y) < hg/2 except with probability 2. Thus,
denoting by § the fraction of y € U such that d(y) < hr/2, we get that § < 2e. Thus,

hr/2\M
E (B 80 A)] < g (0 Ay (100 ) (1= T2 ) < s a(0°04)
. . . hr2\M _ Mhp —501n(1
where in the last inequality we used the fact that (1 — 2B <e 2Vl e n(l/e) < ¢

V]

The third item follows similarly, and we first upper bound Eq [ps(A \ Ba)]. For each
x € A\ Ba we have that = has at most hz /2 of its neighbours in B, hence at least hr,/2
of its neighbours in U \ B/y,. It follows that

1 _[IU\Bylhr] _ 2he(})
e (AN Baa)] < E[ = ] e

(4) M
< 6e - page (07 A),

E E 15+ (B AO"" A)]

which is at most Teps(A). To upper bound Eaq [us(Bag \ A)], we note that any x € By \ A
has at least hr /2 of the y of Hamming weight s + ¢ for which « < y in B/, and in particular
in U. The total number of pairs (z,y) such that ¢ < y and ¢ ¢ A, y € U is at most
hr|U| — |E| (as these are all non-edges in G), so we get that

1 hR|U|—|E| 1 2hR|U|E /L5+t(U)
_ < — < 2¢ < 2epus(A).

O hz SO he(ive S 1re S EmA
In conclusion, we get that

s (BMAA)] < 9epis(A), B [t (Bu A0 A)] < Bepe (97" A),

E [na(Bum\ A <

E
M
so by Markov’s inequality there is a choice for M satisfying the conclusion of the claim. <=

For future reference, we state a version of Lemma 24 for the operator 9% %:

» Lemma 25. Let s,t,n € N such that 0 <t <n—s, and let 0 < e < 155. If AC (")
satisfies ps—(042A) < (1 + €)us(A), then there is a collection M C A and By, C (S[ﬁ]t)7
B C () such that

L IM] € 1008014

2. By = 0"IM and ps—+(B\ A" LA) < 6e - ps—i(0V1A).

3. B ={ @€ () | Pryceyime i Iy € Big] > 3} and juy(BuAA) < 185p5(A).

Proof. The proof is essentially the same as the proof of Lemma 24 and we omit the details. <
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3.3 Fractional Monotone Matchings

We now formally define the concept of a monotone fractional matching, which is central to
the proof of Theorem 20:

» Definition 26. Let wy: {0,1}" — [0,00) and wy: {0,1}™ — [0,00) be weight functions

such that > wy(x)= Y, wy(z). We say there is a monotone fractional matching
ze{0,1}" ze{0,1}"

from wy to wy, and denote wy < wy if, letting U be the support of wy and V' be the support

of wy, there is a weight function w: U X V — [0, 00) such that w(u,v) > 0 only when u < v,

and for every x € U y € V it holds that

Yowlwz) =wu(z), Y w(zy)=wy(y)

zeV zeU

In this section, we establish several basic properties of fractional monotone matchings.
The first of which is a fractional version of Hall’s Theorem for monotone matchings. For
completeness, we include the (straight-forward) deduction of it from the usual formulation of
Hall’s Theorem.

» Lemma 27. Suppose that wy and wy are as in Definition 26, let U and V their supports,
and suppose that for all S C U, defining N(S) ={v €V |Ju € S,u < v} we have that

Z wy (v) = ZwU(u)

vEN(S) uesS
Then there is a monotone fractional matching between wy and wy .

Proof. By approximation, it suffices to show that statement for weight functions wy and wy
that assign rational values. Let M be a number such that all values of Mwy and Mwy are
integers, and define the bi-partite graph G whose sides are U’ and V', where each u € U has
Mwy (u) copies in U" and v € V' has Mwy (v) copies in V’. We connect (u/,v’) by an edge if
they are copies of u € U, v € V respectively where u < v. Our assumption then implies that
G satisfies Hall’s condition, so we may find a perfect matching M C U’ x V'. Define

w(u,v) = Z L vyeM;

u’ copy of u
v’ copy of v

and note that then w forms a fractional monotone matching showing wy < wy . |

Secondly, we have the following basic properties of <:

» Lemma 28. Suppose that wy, wy,wr,wr: {0,1}" — [0,00) are weight functions.
1. Transitivity: if wy S wy and wy S wg, then wy S wg.
2. Linearity: if wy < wgr and wy S wp, then for all p,q > 0, pwy + quy < pwr + qug.

Proof. For the first item, let U, V, R be the supports of wy, wy and wg respectively, and let
wy: U XV —[0,00) and wy: V x R — [0,00) be the weight functions demonstrating that
wy S wy and wy S wg, respectively. Define w: U x R — [0,00) by

w(u,r) = Z ;wl(u,v)wg(v,r).

veV wy (U)
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First, if w(u,r) > 0 then there is v € V such that wy(u,v),wa(v,7) > 0 and so u < v < 7,
hence u < r. Secondly, note that for all u,

1 1
Zw(u,r) = Z mwl(uvv) ZU&(U,T) = Z mwl(u,u)wv@) = Z w1 (u,v)

reR veV reER veV veV

which is equal to wy(u). Similarly, for all » € R we have > w(u,r) = wgr(r). It follows
uelU
that w is a monotone matching between showing that wy < wg.

For the second item, let U, R, V, L be the supports of wy,wg,wy and wy respectively
and let w1: U x R — [0,00) and we: V x L — [0,00) be weight functions demonstrating
that wy < wr and wy S wr. Then w(z,y) = pwi(z,y) + qwa(x,y) is a weight function
showing that pwy + qwy < pwgr + qug. |

Third, we show that if & < k', then pp < pg.
» Lemma 29. If k < k', then g < pigr-

Proof. Let P = (vy,...,v,) be a uniformly chosen monotone path in {0,1}" starting at

(0,...,0) and ending at (1,...,1), and define w(z,y) to be the probability that vy = x and

vg = y. Then it is easily seen that w(z,y) > 0 only if < y, and also for every z of Hamming

weight k, > w(x,y) is equal to the probability a uniformly chosen vertex of Hamming weight
Yy

k is equal to x, hence is py(z). Similarly, > w(x,y) = pr (y). <

xr

The last statement is a standard connection between fractional matchings and perfect

matchings.

» Lemma 30. Suppose that p,p' are distributions which are uniform over A, A’ C {0,1}"

respectively, where |A| = |A'|. If p < i/, then there is a monotone perfect matching between
A and A’.

Proof. Consider the bipartite graph G = (AU A’, E') whose sides are A and A’ and the edge
set is E = {(a,a’) |a€ A,a’ € A';a<a'}. As u < 1/, we get that there is w: A x A" —
[0,0) supported only on E satisfying the properties of a monotone fractional matching.

Define w’ = |A|w, and note that for all a € A we have that Y w'(a,a’) = 1 and also
a’ €A’

> w'(a,a’) =1 for all a’ € A’. Thus, the fractional matching number of G is at least

acA

Z w'(a,a’) = |A|.
a€A,a’ €A’

We argue that the smallest vertex cover in G has size |A|. Indeed, if W C AU A’ is a vertex
cover then

A= "w'(e)< > Y w(e)=> 1=|W].
eeE zEW edz zeEW

It now follows from Ké&nig’s theorem that G has a perfect matching, and we are done. <«

3.4 Monotone Matchings on Random Subsets of the Slice

The next lemma is the heart of the proof that our construction admits a good monotone
almost perfect matching. For a collection S C ([Z]), we denote us(x) = pr(z)lzes.
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» Lemma 31. For all C' > 0 there is ng € N such that the following holds. Let n,k,s,t € N
and assume that g —Cy/nlogn < k < % + Cy/nlogn and 10nY/3 <t < Cv/nlogn. Then

for every 0 < s < (Z), setting p = =~ we have

—~

%)
Pr [(t+ p)in—s S tpk + ps] > 1 — 279",
sc()
|S|=s
Proof. We will use Lemma 27. Denoting pu = (t + p)ur—t and v = vs = tux + ps, our goal
is to show that with high probability over the choice of S, for all T C (k[f]t) it holds that
v(0"T) = u(T). Equivalently, we will upper bound the probability that there is 7 that

violates it, and we present two arguments depending on the fractional size of T.

The case that p,_+(7) < 1/2. Let T be such that ux—¢(7) < 1/2, and suppose that
v(0"T) < u(T). We denote by N the size of 7. Then we have that

, 1 . 1 t+1
(07 T) < Sv(07T) < SilT) < ——mee(T), (3)
On the other hand, using Lemma 23 we can deduce a lower bound on the measure of the
upper shadow of T, namely that

1

(@ T) > g (T) 075" (4)

First, this implies a lower bound on the measure of 7, as we get that %uk,t(T) >

Mk—t(T)(l_%)t, and standard manipulations now imply that pug_(7) > (1 —1/(t +1))"/*
and so pgp—+(7) = 6_0("/tz), which implies in particular that N > 6_0("/t2)(k7it) > 2080,
Secondly, from (4) and the fact that pgr—+(7) < 1/2 we also get that

(@ T) 2 i o(T)(1/2) 03 1> (207, (5)
Combining our assumption on 7 and (5) yields
0 < u(T) = v(0"T) = (t+ p)pn—e(T) — tpr(0""T) — e (0""T N S)
< (t+p)pr—e(T) — t,uk_t(T)Qt/n — ’uk(at'“TQ S)

t2
< (- 55 ) mdD = (@70 )

and in particular we get that
2 2

(0T NS) < (p - ;) pr—t(T) < (p - t) pr (08T, (6)
n 2n

Noting that the expectation of the left hand side, over the choice of S, is pu (97T, this

inequality suggests that the probability for this for a specific T is small. A naive application

of Chernoff’s bound is not good enough since we would need to union bound over too many

choices for 7. To cut down on the number of events we union bound over, we observe that

as (3) holds we may move to a sparse approximator of 7 and thus handle much less sets.
More precisely, using Lemma 24 and the guarantee from (3) we get that there is M of

size at most aN for a = %k)’gt satisfying the conclusion of the lemma for By and By, as

therein. It follows that '

2

t 6
1 (Bl NS) < (8T A1 8) + (0T ABl) < (p -+ t) (9T

<(o- £+ D) masp
S\P 79, T ) HEEM
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where in the last inequality we used the fact that u,(0"“T) < (1+ 1) pe(B)y) by the
conclusion of Lemma 24. By the condition on ¢, p — % + % <p-— % and hence we conclude
that

2
(Bl S) < (p - ;) (B,

We may assume that p > t2/3n, otherwise the last inequality is 1mp0551b1e We also note
that from Lemma 24 we have 14 (B)y,) = 2pe(9"“T) = 2pe—o(T) = 2( Ty From everything
k—t

claimed so far we conclude that

P;r [3T with |T| = N such that v(0"“T) < pu(T)]

2
<Pr [a M| < aN, ju(Brg) > 2(N) (B0 8) < (- 1) mBM)]
<X wlmEns < (oo )i ™
ik
(BM)>m

For each M such that |M| < aN and ux(B),) > ( bk let Exq be the event that p (B, N
k—

S) < (p - %) pr(B,); we upper bound the probability of each Eaq separately, and for
that we use Chernoff’s bound. There is a slight technical issue in applying Chernoft’s bound,
namely that S is selected to be of fixed size, and to circumvent it we consider S’ C ([Z])
chosen randomly by including each set from ([z]) in it with probability p’ = p —t?/6n. Then
we get that

2 +2 n
Pr[|S'| > s] =Pr [|8/ > (pl + én) (Z)] < e_Q(Fp(k)) <0.5,

where we used Chernoff’s bound and p > t2/3n. Note that Prs [Ex] < Prs/ [Eaq ||S'] < 8],
and combining with the above bound on the probability that |S’| > s we get that

2
P;r[c‘,'M] 2Pr [Em] —2Pr we(By NS’ (p—?f)uk(l? )}

|
= 2Pr [Mk By NS (p é;) Mk(B}vl)]

Thus, using (7) we get that the left hand side therein is upper bounded by

3 J’(ﬁ i) ;“”(53 i) ﬂ”“”(* (gﬁt))).

@
—
>3
~—

@
2
—~

3

X X
()
[IM|<aN



M. Braverman, S. Khot, G. Kindler, and D. Minzer

Estimating, we get that ((:’ZL)) >279® and o < 1(()2}‘2)%” < n 2 hence na—Q (Tt; ((:’%))) <

k—t k—t

—279(®) and plugging this above yields that the left hand side of (7) is upper bounded by
9-27°“'N_ Thus, we conclude that

Pr [37 with p—(T) < 1/2 such that v(9"*T) < u(T)] < Y 920N

N}QO.STL

9—0()50.8n on/2

which is at most 2~ <2-
The case that pg_+(7) > 1/2. Let T be such that pr—.(7) > 1/2, and suppose that
v(0"“T) < p(T). The analysis is similar to before, except that we look at R = 9% instead
of T. Thus, we get that v(R) > u(T), and we argue that 0*?R C T. Indeed, if 2 € 9*IR,
then there is y € R such that z < y, and as y € R it follows that y ¢ 0T so for all 2’ < y
of Hamming weight (k —t) — and in particular for 2’ = 2 — we have that 2’ ¢ T, so x € T.

Thus, it follows that (9**R) < v(R) and now pux(R) = pr(984T) = 1 — pg (984T <
1 — pi—+(T) < 1/2, and the rest of the argument is analogous to the previous argument. Let
N = |R]|. First, we have

1 1 t+1
- (079R) < Tp(0"R) < 7 ki

V(R) < R (R) (5)

On the other hand, using Lemma 23 we have j;_;(0"9R) > ,uk(R)(k%)t. As before,
this implies p(R) > e=O0/t) and so N > e*O("/tQ)(Z) > 2087 Also, it implies
pe-e(@7UR) > e (R)(1/2) ) T > g (R)2 (9)
We now conclude from (9) that
0 < ¥(R) = u(d""R) = tpx(R) + px (RN S) = (¢ + p)ux (8" R)
Su(RNS) = (t+p— 127"y (9"'R)
< (RNS) = (p+2/2n) (9" R),
so analogously to (6) we get that

pe(RNS) = (p+ 12 /20—t (8“'R) = (p + t*/2n) 1 (R). (10)

100 log ¢
k

t

As (8) holds, using Lemma 25, we get that there is M of size at most aN for o =

satisfying the conclusion of the lemma for By and B, as therein. It follows that

2 18
1B N8) > (RN S) — jn(RAB) > (p+ C t) (R
2 36
> - 2=
> <p+ o )Mk(BM)

t2
> -
> <P+ 3n) ke (Bat)s

where we used the fact that ¢ > 10n'/3. We may assume p < 1 — -, otherwise this is

3n?

impossible. We denote p' = p + %, so that now we are guaranteed that t2/6n < p’ <1 — %

We also get that

1
i (Ba) = 5/%(73) >

2(5)
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Denote by Eaq the event that pr(BaNS) > (p + é—i) 1k (Baq). We now apply the Chernoff
argument again; letting S’ C (Z) be chosen randomly by including each set with probability
Pl =0+ %, we get by Chernoff’s bound that |§’| > s except with probability at most 1/2
and so

6 (Z)N)
4 4 n £ n3 n
Prieml < 2rfEml < 9 2 mB0(1) ¢ ( @)/

Thus, by the union bound
N-o(£N
%r [IR of size N such that w(0VIR) < v(R)] < Z li‘gr [Em] <27 (3 )’
IM|<aN

and by a direct computation the last expression is at most 9-2 7N, Summing over
N > 208n yields that

1:"51“ [3T such that puy_(T) > 1/2, p(8"“T) > v(T)]
Sf;r [IR such that px(R) < 1/2, w(0IR) < v(R)]
< Y 2w,
N}QO'S”
which is at most 272" provided that ng is large enough. |

We will also need a version of Lemma 31 that works the other way around — namely
one that matches a slice and a random subset of it with a slice above it, and we state it
separately below.

» Lemma 32. For all C > 0 there is ng € N such that the following holds. Let n,k,s,t € N
and assume that % —Cy/nlogn <k < % + Cy/nlogn and 10n1/3 <t < Cy/nlogn. Then

S

for every 0 < s < (Z), setting p = @ we have
k

~—1

a2/
Pr [t +ps S (t+ p)pingr] =1 — 27270,

sc()

|S|=s

Proof. Let S’ = {[n] \ A |A € S} and note that it is a random subset of (") of size s, so
applying Lemma 31 on n — k instead of k we get that with probability at least 1 — 9-0(2"%)
there is a monotone fractional matching w(z,y) from (¢ + p)pn—k—+ t0 tin—r + psr. Define
w'(A, B) = w(B, A), and note that it is a monotone fractional matching from tuy, + ps to

(t + p) k-t <

3.5 Matching Union of Slices and a Random Subset to a Slice

Next, we use Lemma 31 to show that given a union of consecutive slices and a random subset
of the topmost one, one can find a monotone fractional matching with each of the following:
(1) a slice which is a bit above them, and (2) a slice which is a bit below them.

» Corollary 33. For all C > 0 there is ng € N, such that the following holds for all n = ng.
Let n,t, k,s be as in Lemma 31, let S be random subset of ([Z]) of size s and let t < d < k/2

%

k—1
be a parameter such that (7;) > t(:) Denote T =S U Ui:,i_d (["]), and let vy be the
i=k—d

i=k—

uniform distribution over T. Then

l?sr (k24 SvT < Hta) 21— -2
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Proof. We show that with probability 1 — 2-9(2""*) \we have that vy < pk+d, and also that
with probability 1 — 2-92"*) we have that pr—24 S vr. The statement then follows from
the union bound.

For the first statement, let p = s/(Z) By Lemma 29 we have that p; < py for i < k, so
using Lemma 28 we get that

Bl £.8) (o £

zk:d

- (e T

By Lemma 32 we have that tux + pps S (t+ p)pk++ with probability 1 — 27 Q@ ), in which

case we get that

(&)

vr S =2 | (t+ +
TS (( P) Mkt

IT1=p(3) —t(})
B “’“) ’

?

k—1
where we used the fact that |7|—p(}) = > (7) = t(}). Using py S ptr4s and Lemma 28
i=k—d

again and then simplifying, we conclude that vy < ppis.
For the second statement, we note that by Lemmas 29, 31 we have that (t + p)pr—t S
tur + pus with probability at least 1 — 9-00e"%),

> Claim 34, If (t + p)pr—t S tpk + pus, then (84 p)puk—t—a S tpg—d + pits.

Proof. Let w(x,y) be a weight function showing that (t + p)ur—+ S tux + pus. We consider
the probability distribution p(x,y) =
over (z/,y’) as follows:

tip w(z,y), and define a probability distribution p’

1. Sample (z,y) ~ p and independently a random permutation = on [n].

2. Let J C [n] be the set of first d coordinates according to 7 wherein z; = 1. We define
=z, oni¢Jandz; =0onieJ.

3. If y € S, with probability 1/2 take y' = y. Otherwise, let J’ C [n] be the set of first d
coordinates according to 7 wherein y; = 1, and take y’ to be the vector where y; = y; on
i¢J andy,=0onieJ.

We argue that w'(x,y) = (t + p)p'(x,y) shows that the fractional monotone matching as

stated in the claim exists. For y € § we have

SSwal ) = 3 S wley) = p = (prca+ pus)(v).

and for y' ¢ S we have that > p/(a’,y’) is the probability that we pick y according to uy,
3:./

turn from 1 to 0 a random set of d coordinates and reach y’, which is the pi_4(y"). Thus,
2 w'(@y') = (thk—a + pps)(y')-
For 2/, > p'(a',y’) is the probability we take x ~ pg_¢, turn from 1 to 0 a random set of d

y
coordinates and reach z’, which is equal to pg—¢—q(2’), hence > w'(2’,y') = (t+p)pg—t—a(x’).
y/

<
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Using Claim 34 we get by Lemmas 28, 29

) DROEH

He—2d S (fkr the—a + ppis + DT,WCde
k=l n n
N @ the—a + pps + —i}k:_d o Hk—d
T T (2)
s 0
= (72.)| pus + izk(g) "
k=l n
S &) pus + i_kdn(i)m ,
T )
which is equal to 7. <

3.6 Proof of Theorem 20

In this section, we prove Theorem 20 which by Lemma 21 implies Theorems 2, 3. Theorem 20
is a direct consequence of the following more precise statement:

» Theorem 35. There exists C > 0 such that for allm € N and all n > C -mS, there are m

sets Py, ..., Py, C{0,1}" satisfying the following properties:

1. PiﬂPj :@foralli7£j,

2. |P| = L%J for all i.

3. For each i, x € P; and y € P11 we have that |x| < |y|. For allz € PyU...UP,, and
y¢& PLU...UP, we have that |z| < |y|.

4. For each i there is a monotone matching from P; to Pyq.

In particular, the following function ¢ is monotone and admits an m2~"-almost perfect

matching: ¢(x) =i — 1 if x € P;, and otherwise ¢(x) =m — 1.

Proof. We present a randomized construction and show that it works with probability 1—o(1).
Consider a random 7: {0,1}™ — [27] such that m(z) < 7(y) whenever |z| < |y|; in other

words, we first think of an ordering of {0,1}" as zg,...,zon_1, where we first enumerate
according to Hamming weight and within each layer we order randomly. Thus, we may take

Define the Py,..., P, as

e ({2 )

so that the first three items holds trivially. In the rest of the proof, we argue that the fourth
item holds with probability 1 — o(1). Denote by ¢; and u; the smallest and largest Hamming
weight of vectors from P;, and by v; the uniform distribution over P;. It suffices to prove
that with probability 1 — 2-22""*) we have that v; S vy for all 4 Indeed, then we get by

Lemma 30 that there is a monotone matching from P; and P;y;, and the fourth item follows.
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v;+1 with probability 1 — 2_9(2n/2), and then the
claim follows by the union bound. We intend to use Corollary 33 to show that and therefore

We now show that for each i, v; <
we break each one of v;, v;11 into lower and upper part. Let m; be the median Hamming
weight of v;, namely such that v;({z | |z] < m;}) < 0.5 but v;({z | |x] < m;}) = 0.5. Define
pi = vil{z ||z| <mi}), ¢ = vi({x [[z] > m;}), and let

07 @) = e g+ (5= (o @) = 5o, + (5 = ) s 0.

Let t = [10n'/3 +1]. Our goal is to show that with probability 1 — 2*9(2”/2), for all 7 we
have

1 _ _ 1 1 1
5”51‘—215 f/ Vi v, S ilu‘mw Vi+ S iﬂui“er? §Mm7 5 Vi+7 (11)

in which case we get, using Lemma 28, that

_ 1 1 1 B
vi=v; +v S 5 Hmi + o5 Hui+2t S SHeia—2t + S Hmit SVt 1/;;1 = Vit1-

Here, we also the facts that m; < £;41 —2¢, u; +2t < m;41 and Lemma 29. This follows since
the probability mass of each layer in the hypercube is at most O(1/+/n), hence each P; must
intersect at least Q(y/n/m) distinct layers and so u; —m; > Q(v/n/m) > Q(CY/%n1/3) > 100t,
and in the same way m; —¢; > 100t and ¢; 11 —m; > 100t. We also note that all of the u;, m;
and ¢;’s are all in the range [§ — +/100nlogn, & + /100nlog n] since the total probability
mass outside this range is at most e~ 2100logn < =10 ~ 1/m.

We finish by arguing that (11) holds for each ¢ with probability 1 — 2*9(271/2), and for
that we apply Corollary 33. Set d = 2t; we argue that for each ¢; < k < u,, it holds that

k—1
> (1))
) i)~ \k)
i=k—d
Indeed, this follows since the ratio between any two consecutive binomial coefficients (’Z)
fori = k—d,...,k is 1 + O(y/logn/n), so the ratio between any two (not necessarily

d
consecutive) binomial coefficients in that range is at most (1 + O(y/log n/n)) =1+ o(1),

S0 kzl (M) = (14 0(1))d(}) = (2+0(1))t(}) > t(}). Thus, the conditions of Corollary 33
i=k—d
hold, and applying it for various k’s we get that (11) holds with probability 1 — 9-002"%),
Below, we explain in details how to deduce that % te;—2¢ S v, , and the other arguments are
similar.

We view v;(2)1|3/<m, as a uniform weight function over the part of P; of Hamming weight
less than m;, which is a union of slices and a random subset of the appropriate size of the slice
£;. Thus by Corollary 33 we get that p;pe, —2¢ S vi(2)1z|<m, With probability 1 — 2*9(2”/2),

and as fig,—2; S tm, We get from Lemma 28 that %/Lgi_gt Sy . <
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