
Improved Monotonicity Testers via Hypercube
Embeddings
Mark Braverman #

Department of Computer Science, Princeton University, NJ, USA

Subhash Khot #

Courant institute of Mathematical Sciences, New York University, NY, USA

Guy Kindler #

Engineering and Computer Science Department, The Hebrew University, Jerusalem, USA

Dor Minzer #

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract
We show improved monotonicity testers for the Boolean hypercube under the p-biased measure, as
well as over the hypergrid [m]n. Our results are:
1. For any p ∈ (0, 1), for the p-biased hypercube we show a non-adaptive tester that makes Õ(

√
n/ε2)

queries, accepts monotone functions with probability 1 and rejects functions that are ε-far from
monotone with probability at least 2/3.

2. For all m ∈ N, we show an Õ(
√

nm3/ε2) query monotonicity tester over [m]n.
We also establish corresponding directed isoperimetric inequalities in these domains, analogous to
the isoperimetric inequality in [15]. Previously, the best known tester due to Black, Chakrabarty
and Seshadhri [2] had Ω(n5/6) query complexity. Our results are optimal up to poly-logarithmic
factors and the dependency on m.

Our proof uses a notion of monotone embeddings of measures into the Boolean hypercube that
can be used to reduce the problem of monotonicity testing over an arbitrary product domains to
the Boolean cube. The embedding maps a function over a product domain of dimension n into
a function over a Boolean cube of a larger dimension n′, while preserving its distance from being
monotone; an embedding is considered efficient if n′ is not much larger than n, and we show how to
construct efficient embeddings in the above mentioned settings.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms; Mathematics of computing → Combinatorics

Keywords and phrases Property Testing, Monotonicity Testing, Isoperimetric Inequalities

Digital Object Identifier 10.4230/LIPIcs.ITCS.2023.25

Funding Mark Braverman: Research supported in part by the NSF Alan T. Waterman Award,
Grant No. 1933331, a Packard Fellowship in Science and Engineering, and the Simons Collaboration
on Algorithms and Geometry.
Subhash Khot: Supported by the NSF Award CCF-1422159, NSF Award CCF-2130816, and the
Simons Investigator Award.
Guy Kindler : upported by Israel Science Foundation grant no. 2635/19.
Dor Minzer : Supported by a Sloan Research Fellowship.

1 Introduction

Let [m] = {0, 1, . . . , m − 1} be thought of as an ordered set, and consider the partial ordering
induced by it on [m]n: two points x, y ∈ [m]n satisfy x ⩽ y if and only if xi ⩽ yi for all
i = 1, . . . , n. A function f : [m]n → {0, 1} is called monotone if for every x, y ∈ [m]n such
that x ⩽ y we have f(x) ⩽ f(y). Given a function f : [m]n → {0, 1}, we measure its distance
from being monotone, with respect to a probability measure µ over [m]n, by

© Mark Braverman, Subhash Khot, Guy Kindler, and Dor Minzer;
licensed under Creative Commons License CC-BY 4.0

14th Innovations in Theoretical Computer Science Conference (ITCS 2023).
Editor: Yael Tauman Kalai; Article No. 25; pp. 25:1–25:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mbraverm@cs.princeton.edu
mailto:khot@cims.nyu.edu
mailto:guy.kindler@mail.huji.ac.il
mailto:dminzer@mit.edu
https://doi.org/10.4230/LIPIcs.ITCS.2023.25
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Improved Monotonicity Testers via Hypercube Embeddings

ε(f ; µ) = min
g : [m]n→{0,1} monotone

∆(f, g; µ), where ∆(f, g; µ) = µ ({x ∈ [m]n | f(x) ̸= g(x)}) .

In this paper we present monotonicity testers for functions over [m]n (under the uniform
measure), as well as over the Boolean hypercube {0, 1}n with the p-biased measure, defined
as µ⊗n

p (x) = p|x|(1 − p)n−|x|. That is, we construct a randomized algorithm that makes
oracle queries to an unknown function f over the domain, which accepts with probability 1
if f is monotone, and rejects with probability ⩾ 2

3 if f is ε-far from monotone.

1.1 Prior Works
The monotonicity testing problem has received significant attention over the years, as we
shall now review. For simplicity, below we think of ε as being a small constant. The problem
was originally studied over Boolean hypercube with the uniform measure [13], where a
non-adaptive algorithm that makes O(n) queries was shown. This bound was improved by [8],
who showed an Õ(n7/8) query tester by proving a directed version of Margulis’ isoperimetric
inequality [17] and using it towards developing improved monotonicity testers. Following it,
Chen, Servedio and Tan [9] modified the algorithm and the analysis of [8] and established
a Õ(n5/6) query tester. Finally, an Õ(

√
n) query tester was given in [15], who proved a

directed version of an isoperimetric inequality due to Talagrand [19]. The tester of [15] is
tight up to poly-logarithmic factors, by a bound for non-adaptive testers due to [12]. The
best known lower bound for adaptive testers is not too far off [10], and currently stands at
Ω̃(n1/3).

Following the investigation of complexity of monotonicity testing over the hypercube,
variants of the problem were also considered in the literature, in which either the domain or
the range of the function are different [11, 7, 2, 3, 5]. Most relevant to us is the monotonicity
testing problem over different measures on the Boolean hypercube as well as the closely
related hypergrid [m]n, wherein the state of the art result is an O(n5/6poly(log m)) query
tester due to [2]. To prove their result, the authors of [2] established an analog of the directed
isoperimetric inequality of [8] for the hypergrid.

1.2 Parallel Works
Following initial submission of this paper, we have learned that Black, Chakrabarty and
Seshadhri have independently obtained results similar to ours [4]. They use a different
method, first proving analogous directed isoperimetric inequalities over the hypergrid, and
then using these to construct and analyze a monotonicity tester for the hypergrid.

1.3 Main Results
Our first result is an essentially-optimal monotonicity tester for the p-biased cube:

▶ Theorem 1. For every p ∈ (0, 1), there is a non-adaptive monotonicity tester over
({0, 1}n, µ⊗n

p) that makes Õ(
√

n/ε2) queries.

Second, we focus on the hypergrid [m]n. Here and throughout, Um refers to the uniform
distribution over [m], and we often drop the subscript m when it is clear from the context.

▶ Theorem 2. For all m, n ∈ N, there is a non-adaptive monotonicity tester over ([m]n, U⊗n)
that makes Õ(

√
nm3/ε2) queries.

M. Braverman, S. Khot, G. Kindler, and D. Minzer 25:3

Our techniques also imply analogs of the directed isoperimetric inequality of [15] for the
hypergrid as well as for the p-biased cube. For simplicity we state the result for the hypergrid,
and defer the statement for the p-biased cube to Theorem 13.

Let f : [m]n → {0, 1} be a function and fix an input x ∈ [m]n. The negative sensitivity
of f at x, denoted by s−

f (x), is defined to be the number of coordinates i such that there
is an input y differing from x only on the ith coordinate, such that the pair (x, y) violates
monotonicity. Namely, it is the number of coordinates i such that for the point y which
differs from x only on its ith coordinate, we have that x < y and f(x) > f(y) (if f(x) = 1)
or x > y and f(x) < f(y) (if f(x) = 0).

▶ Theorem 3. If f : [m]n → {0, 1} is ε-far from monotone with respect to U⊗n, then

E
x∈[m]n

[√
s−

f (x)
]
⩾ Ω

(
ε

m3 log(mn/ε)2

)
.

1.4 Our Technique
Our proofs rely on the following elementary notion of an embedding of a domain (that we
wish to test monotonicity over) into a hypercube of not too-large dimension.

▶ Definition 4. We say that a probability distribution ([m], µ1) can be r-locally embedded if
there is a Boolean hypercube {0, 1}r, a map ϕ : {0, 1}r → [m], a collection Ψ = {Ψω}ω∈Ω of
maps Ψω : [m] → {0, 1}r, and a probability distribution P over Ω such that:
1. Each one of ϕ and Ψω is monotone.
2. Sampling x ∼ U({0, 1}r), the distribution of ϕ(x) is µ1.
3. Sampling y ∼ µ1 and ω ∼ P , the distribution of Ψω(y) is uniform over {0, 1}r.
4. For each ω ∈ Ω, the composition ϕ ◦ Ψω is the identity on [m].

The usefulness of Definition 4 comes from the fact that given a local embedding of [m],
we can reduce the problem of testing monotonicity over ([m]n, µ⊗n

1) to that of testing it over
Boolean hypercubes of dimension rn, which we already know how to solve. Towards showing
the reduction we note that if ([m], µ1) can be r-locally embedded, then given a function
f : [m]n → {0, 1} we may define g : {0, 1}r×n → {0, 1} by

g(x(1), . . . , x(n)) = f(ϕ(x(1)), . . . , ϕ(x(n))).

The following lemma asserts that if f is monotone then g is also monotone, and if f is ε-far
from monotone, then g is ε-far from monotone.

▶ Lemma 5. If f is monotone, then g is monotone. Moreover, ε(g; U⊗n) ⩾ ε(f ; µ⊗n
1).

Proof. Assume f is monotone. Then taking any (x(1), . . . , x(n)) ⩽ (x(1)′
, . . . , x(n)′) in

{0, 1}r×n, by the monotonicity of ϕ we have (ϕ(x(1)), . . . , ϕ(x(n))) ⩽ (ϕ(x(1)′), . . . , ϕ(x(n)′)),
and using the monotonicity of f we get that g(x(1), . . . , x(n)) ⩽ g(x(1)′

, . . . , x(n)′).
For the other direction, let g′ be the closest monotone function to g, and choose ω⃗ =

(ω1, . . . , ωn) ∼ P ⊗n. Define

fω⃗(x1, . . . , xn) = g′(Ψω1(x1), . . . , Ψωn(xn)).

Since each Ψωi
is monotone we have that fω⃗ is monotone as well. Also,

E⃗
ω

[
∆(f, fω⃗; µ⊗n

1)
]

= E⃗
ω

[
E

x∼µ⊗n
1

[
1f(x) ̸=fω⃗(x)

]]
= E⃗

ω

[
E

x∼µ⊗n
1

[
1f(x) ̸=g′(Ψω1 (x1),...,Ψωn (xn))

]]

= E⃗
ω

[
E

x∼µ⊗n
1

[
1g(Ψω1 (x1),...,Ψωn (xn)) ̸=g′(Ψω1 (x1),...,Ψωn (xn))

]]
,

ITCS 2023

25:4 Improved Monotonicity Testers via Hypercube Embeddings

where in the last equality we used the fact that ϕ◦Ψω is the identity. Note that by property 3
of an embedding, given the distribution of ω⃗ and x, the distribution of (Ψω1(x1), . . . , Ψωn

(xn))
is uniform over {0, 1}r×n, so the last expression is equal to ∆(g, g′; U⊗n) = ε(g; U⊗n). It
follows that there is an ω⃗ such that ∆(f, fω⃗; µ⊗n

1) ⩽ ε(g; U), and the proof is concluded. ◀

For the Boolean hypercube with the uniform measure, a 2-query path tester is constructed
in [15] which always accepts monotone functions, and rejects functions that are ε-far from
monotone with probability at least

R(n, ε) = ε2
√

npoly(log n)
. (1)

Combining that tester with Lemma 5 we get the following conclusion:

▶ Lemma 6. Suppose that ([m], µ1) can be r-locally embedded; then there is a 2-query
monotonicity testing algorithm for functions over ([m]n, µ⊗n

1) that always accepts monotone
functions, and rejects functions that are ε-far from monotone with probability at least R(rn, ε).

Proof. Given f : ([m]n, µ⊗n
1) → {0, 1}, define g as above, then run the monotonicity tester

of the hypercube on g, and accept/reject accordingly. Note that a single query to g can be
answered by making a single query to f . By Lemma 5, if f is monotone then g is monotone,
hence the tester always accepts. If f is ε-far from monotone, then by Lemma 5 g is also ε-far
from monotone, hence the tester rejects with probability at least R(rn, ε). ◀

Thus, Theorems 1 and 2 follow from Lemma 6 once we show the existence of sufficiently
good local embeddings. In Section 2 we show constructions of such embeddings for the
p-biased measure on {0, 1}, as well as basic embeddings for [m]n which are not good enough
for our purpose (but gives some intuition). To construct efficient embeddings for [m]n we have
to work harder, and for divisibility reasons we only know how to construct such embeddings
for m’s that are power of 2. For other m’s, we have to consider a slightly relaxed notion of
embeddings, asserting that there are distributions µ′

1 and µ′
2 that are extremely close to the

distributions ([m], µ1) and ({0, 1}r, U) such that one can embed ([m], µ′
1) into ({0, 1}r, µ′

2);
see Sections 2.3, 2.4 for the formal definition. This relaxed notion has the same monotonicity
testing and directed isoperimetric implications. The construction of embeddings for the
hypergrid is more involved than our construction of embeddings for the p-biased cube, and
can be found in Section 3.

As for the directed isoperimetric inequalities, we recall the isoperimetric result from [15]

▶ Theorem 7. If f : ({0, 1}n, U⊗n) → {0, 1} is ε-far from monotone, then Ex

[√
s−

f (x)
]
⩾

Ω
(

ε
log(n/ε)

)
.

Combining Theorem 7 with Lemma 5 we get:

▶ Lemma 8. Suppose that ([m], µ1) can be r-locally embedded; then for any f : ([m]n, µ1) →
{0, 1} that is ε-far from monotone it holds that Ey∼µ⊗n

1

[√
s−

f (y)
]
⩾ Ω

(
ε(f)√

r log(rn/ε(f))

)
.

Proof. Define g : {0, 1}r×n → {0, 1} as above, and note that 1
r s−

g (x) ⩽ s−
f (ϕ(x)) for all x ∈

{0, 1}r×n. Indeed, letting k = 1
r s−

g (x) and viewing x = (x(1), . . . , x(n)) where x(i) ∈ {0, 1}r,
there are at least k i’s such that there is x′ such that x′(j) = x(j) for all j ̸= i and the pair x, x′

violates monotonicity of g. In that case, we see that the pair y = ϕ(x) = (ϕ(x(1)), . . . , ϕ(x(n)))
and y′ = ϕ(x′) = (ϕ(x′(1)), . . . , ϕ(x′(n))) only differ in their ith coordinate and violate
monotonicity of f , hence s−

f (ϕ(x)) ⩾ k. It follows that

M. Braverman, S. Khot, G. Kindler, and D. Minzer 25:5

E
y∼µ⊗n

1

[√
s−

f (y)
]

= E
x∈{0,1}r×n

[√
s−

f (ϕ(x))
]
⩾

1√
r

E
x∈{0,1}r×n

[√
s−

g (x)
]

⩾
1√
r

Ω
(

ε(g)
log(rn/ε(g))

)
,

and the proof is concluded by Lemma 5. ◀

We note that Theorem 3 follows from Lemma 8 (or rather, a slight variant of it which is
suitable for slightly relaxed embeddings) by showing that ([m], U) can be r-locally embedded
for r = O(m6) (under the aforementioned slightly relaxed notion of embeddings).

2 Elementary Constructions of Embeddings

In this section we present several ideas for constructing local embeddings and prove Theorem 1.

2.1 Embedding p-biased Cubes
We begin by constructing some basic embeddings for p-biased distributions over {0, 1}, and
then combining them to prove Theorem 1. First, we show that the measure µp can be locally
embedded when p is a powers of 2.

▶ Lemma 9. Let p = 2−r, and consider the distribution µp over {0, 1} where µp(1) = p.
Then ({0, 1}, µp) can be r-locally embedded.

Proof. We define ϕ(x1, . . . , xr) = x1 ∧ . . . ∧ xr. As for Ψ, we take the distribution (Ω, P) to
be uniform over {0, 1}r \ {⃗1}, and define Ψω(1) = (1, . . . , 1) and Ψω(0) = ω. ◀

Secondly, we show that if µp can be locally embedded, then so can µ1−p.

▶ Lemma 10. Let p ∈ (0, 1), and suppose ({0, 1}, µp) can be r-locally embedded. Then
({0, 1}, µ1−p) can be r-locally embedded.

Proof. Let (ϕ, {Ψω}ω∈Ω, P) be an r-local embedding of µp. Define ϕ′(x) = 1 − ϕ(1 − x) and
Ψ′

ω(a) = 1⃗ − Ψω(1 − a). First, note that ϕ′ and Ψ′
ω are monotone. Second, sampling x ∼ U ,

ϕ′(x) is distributed according to µ1−p. Also,

ϕ′(Ψ′
ω(a)) = 1 − ϕ(1 − Ψ′

ω(a)) = 1 − ϕ(Ψω(1 − a)) = 1 − (1 − a) = a.

Finally, if a ∼ µ1−p, then 1 − a ∼ µp, hence Ψω(1 − a) ∼ U and so Ψ′
ω(a) ∼ U . ◀

Third, we show how µp1p2 can be locally embedded given local embeddings for µp1 and
µp2 .

▶ Lemma 11. Suppose that µp1 can be r1 locally embedded, and µp2 can be r2 locally embedded.
Then µp1p2 can be r1 + r2 locally embedded.

Proof. Let (ϕ1, {Ψ1,ω}ω∈Ω1 , P1) and (ϕ2, {Ψ2,ω}ω∈Ω2 , P2) be the local embeddings of µp1

and µp2 , respectively. We define ϕ : {0, 1}r1+r2 → {0, 1} by ϕ(x, y) = ϕ1(x) ∧ ϕ2(y).
Now let Ω′ = {0, 1}2 \ {(1, 1)}, and define P ′ to be the distribution obtained by taking

(a, b) ∼ µp1 × µp2 and conditioning on the event [(a, b) ̸= (1, 1)]. We take Ω = Ω1 × Ω2 × Ω′

and P = P1 × P2 × P ′. For w = (ω1, ω2, ω′) ∈ Ω where w′ = (a, b), we finally define Ψω as
follows:

ITCS 2023

25:6 Improved Monotonicity Testers via Hypercube Embeddings

Ψ(ω1,ω2,ω′)(1) = (Ψ1,ω1(1), Ψ2,ω2(1)),

and

Ψ(ω1,ω2,ω′)(0) = (Ψ1,ω1(a), Ψ2,ω2(b)).

It is clear that ϕ and Ψ are monotone, that ϕ ◦ Ψω⃗ = identity, and that the distributions are
correct. ◀

Next, by an easy approximation argument we conclude that for all values of p there is
some p′ close to p such that µp′ can be locally embedded.

▶ Corollary 12. For all δ > 0 and p ∈ (0, 1), there exists a p′ ∈ (0, 1) such that |p − p′| ⩽ δ
n10

and that µp′ can be O(log2(n/δ))-locally embedded.

Proof. By Lemma 10, we may assume that p ⩽ 1/2. Set s = ⌈10 log(n/δ)⌉, and for a ∈ Zs,
define q(⃗a) =

s∏
i=1

(1 − 2−i)ai .

Below, we show that there exists a vector a ∈ Zs such that p′ = q(a) satisfies

p ⩽ p′ ⩽ p + δ

n10 , (2)

and where a1 ∈ {1, . . . , s} and ai ∈ {0, 1, 2, 3} for any i > 1. Note that this implies, by
Lemmas 9, 10, and 11, that p′ can be r-locally embedded for r ⩽ s + O(s2) = O(log2(n/δ)),
finishing the proof.

To find the required vector a, we begin by taking k to be the maximal number that
satisfies 1

2k ⩾ p. If k ⩾ s we set a1 = s, and note that we are done since the vector
a = (a1, 0, . . . , 0) satisfies (2) as required. Otherwise if k < s, we continue to set a1 = k, and
define a1 = (a1, 0, . . . , 0). We then go over i = 2, . . . , s, finding at each step the largest number
k that satisfies q(ai−1 + k · ei) ⩾ p, and then taking ai = k and ai = (a1, . . . , ai, 0, . . . , 0)
(here ei is the ith unit vector).

We set our final vector to be a = as. It follows immediately from the definition of as

that q(a) ⩾ p and that q(a) · (1 − 2−s) < p, which implies that q(a) ⩽ p · (1 − 2−s)−1 ⩽
p · (1 + 2 · 2−s) ⩽ p + 2−s ⩽ p + δ

n10 . We therefore have that a satisfies (2). It is also clear
from the definition that a1 ∈ {1, . . . , s}. To show that ai ∈ {0, 1, 2, 3} for all i > 1, we first
observe that it is clear from the definition of the ai’s that for all i, p ⩽ q(ai) ⩽ p · (1−2−i)−1.
It then follows for each i > 1 that

q(ai−1 + 4 · ei) ⩽ p · (1 − 2−(i−1))−1 · (1 − 2−i)4 < p,

as can be verified by a simple application of the binomial expansion to (1 − 2−i)4. The
definition of ai therefore dictates that ai < 4, as desired. ◀

Proof of Theorem 1

Notice that if |p′ − p| ⩽ ε
2n , a function f : {0, 1}n → {0, 1} which is ε far from monotone with

respect to µn
p is ε

2 far from monotone with respect to the measure µn
p′ . Hence it is enough to

apply a monotonicity testing algorithm to f with respect to µn
p′ . We thus use Corollary 12 to

find a p′ that is sufficiently close to p and that is r-locally embeddable for r = O(log2(n/ε)),
and then apply the tester from Lemma 6 with respect to the measure µn

p′ and the error ε/2.
To obtain Theorem 1, we independently repeat this tester 10

R(rn,ε/2) = Õ(
√

n/ε2) times.

M. Braverman, S. Khot, G. Kindler, and D. Minzer 25:7

A directed isoperimetric inequality over the p-biased hypercube

By Corollary 12 and Lemma 8, we get an analog of Theorem 7 for the p-biased cube, stated
below.

▶ Theorem 13. For all p ∈ (0, 1), if f : ({0, 1}n, µ⊗n
p) → {0, 1} is ε-far from monotone, then

E
x∼µ⊗n

p

[√
s−

f (x)
]
⩾ Ω

(
ε

log(n/ε)2

)
.

Proof. Let r ∈ N and p′ ∈ (0, 1) be from Corollary 12 for δ = ε3. Note that the distributions
µ⊗n

p and µ⊗n
p′ are δ/n9 close, hence f is at least ε/2 far from monotone over µ⊗n

p′ and

E
x∼µ⊗n

p

[√
s−

f (x)
]
⩾ E

x∼µ⊗n

p′

[√
s−

f (x)
]

−
√

n
δ

n9 ⩾
ε√

r log(nr/ε)
− δ

n8 ,

where the last inequality is by Lemma 8. The theorem follows as r = O(log2(n/ε)). ◀

2.2 Monotone Symmetric Embeddings
A function T : {0, 1}r → [m] is monotone and symmetric, if and only if for each i ∈ [m],
T −1(i) contains all elements x with hamming weights in some segment, and the segment that
corresponds to i is ’below’ that which corresponds to i + 1 for each i. Next, we show that
if a function T : {0, 1}r → [m] is monotone and symmetric, then the distribution T (U) is
r-locally embedded. Here by T (U) we mean the distribution over [m] resulting from choosing
x uniformly from {0, 1}r, and outputting T (x).

▶ Lemma 14. Suppose T : {0, 1}r → [m] is monotone and symmetric. Then the distribution
T (U) is r-locally embedded.

Proof. Denote ν = T (U). Defining ϕ : {0, 1}r → [m] by ϕ(x) = T (x), it is clear that ϕ

is monotone and that the distribution of ϕ(U) is the same as ν, and we next discuss the
construction of Ψω.

A monotone path in {0, 1}r is a sequence of vertices v0 = 0⃗, v1, . . . , vr = 1⃗ wherein
v0 < v1 < . . . < vr and any two consecutive vertices differ in exactly one coordinate. The
probability space (Ω, P) indexes a uniform choice of a monotone path in {0, 1}r and additional
auxiliary randomness. One way to generate such path is by choosing a random permutation
π in Sr, considering the path going through 0⃗, e1, e1 +e2, . . . , e1 + . . .+ei, . . . , 1⃗, and applying
the permutation to re-label the indices {1, . . . , r}. We remark that taking a random path
ℓ = (v0, . . . , vr), the marginal distribution of vt is uniform in {0, 1}r among all vertices of
Hamming weight t.

To define Ψω, we look at ω which specifies a path ℓ = (v0, . . . , vr) and additional
randomness ω′. We use the additional randomness to generate, for each a ∈ [m], a Hamming
weight ta according to the distribution of |z| where we sample z ∼ T −1(a) uniformly. We
then define Ψω(a) = vta

.
Note that ϕ ◦ Ψω = identity, and that for a specific choice of ω, Ψω(0) ⩽ . . . ⩽ Ψω(m − 1)

since these are vertices from a monotone path. Finally, fixing a, the distribution of Ψω(a)
over the randomness of ω is vta

where ta = |z| and z ∼ T −1(a), so vta
is the ta vertex on

a random monotone path in {0, 1}r. In other words, Ψω(a) is a uniformly chosen vertex
from layer ta, where ta is distributed as above, hence it is uniform in T −1(a). Hence, the
distribution of Ψω(a) over ω ∼ P and a ∼ ν is uniform over {0, 1}r. ◀

ITCS 2023

25:8 Improved Monotonicity Testers via Hypercube Embeddings

Lemma 14 can be used to show that distributions that are close to uniform over [3] can
be locally embedded. For example, one can choose two thresholds t1 < t2 and consider
the function Tt1,t2 : {0, 1}r → [3] defined as T (x) = 0 if |x| ⩽ t1, T (x) = 2 if |x| ⩾ t2, and
otherwise T (x) = 1. A straightforward argument shows that for any r, one can choose t1, t2
so that the distribution Tt1,t2(U) is O(1/

√
r) close to uniform over [3]. This implies, in

particular that as long as r ⩾ n
δ2 , the distributions Tt1,t2(U)⊗n and U⊗n over [3] are O(δ)-

close to each other,1 hence for δ < ε
1000 , if f : ([3]n, U⊗n) → {0, 1} is ε-far from monotone,

then f : ([3]n, Tt1,t2(U)⊗n) → {0, 1} is ε/2-far from monotone, and using Lemma 6 we get a
2-query monotonicity tester with rejection probability at least R(rn, ε/2). A closer inspection
shows that the resulting rejection probability is Ω(ε2/

√
rn) = Ω(ε3/n) hence worse than

known results.
Having said that, the above argument also highlights that if we can design an approximate

embedding T such that T (U) is ξ-close to uniform over [3] for ξ = o(1/
√

r), then we will
get a non-trivial monotonicity tester over [3]n. Using elementary arguments, one can show
that for any r, there is r′ = Θ(r) and thresholds t1, t2 such that Tt1,t2(U) is O(1/r)-close
to uniform, which allows one to take r = Θ(

√
n/δ2) and thus get a tester with rejection

probability Ω(ε3/n3/4), which already improves upon the state of the art result.
Using threshold as embedding strategy though has its limits. Indeed, it seems that using

thresholds we will never be able to get T (U) to be ξ-close to uniform over [3] for ξ = o(1/r3/2).
For each r′ ∈ [r, 100r] consider the threshold function T = Tt1,t2 : {0, 1}r′ → {0, 1, 2} that
minimizes the distance between T (U) and U3. Heuristically, one can think of this distance
as a random number in the interval [0, Θ(1)/

√
r], hence we would expect the minimum of

these to be of the order 1/r3/2. Thus, to get near optimal monotonicity testers we have to
venture beyond threshold functions. In the the next section we facilitate this by formulating
embeddings in the language of monotone perfect matchings (or almost perfect matchings),
and show that slight perturbations of thresholds can be used for embeddings.

2.3 Embeddings from Monotone Perfect Matchings
In this section, we present a combinatorial method of constructing embeddings using monotone
matchings on the hypercube. For simplicity, we tailor our presentation for uniform measures,
however one may consider analogs for other distributions.

We will think of the hypercube G = ({0, 1}r, E) as a directed graph, wherein (x, y) is
an edge if x < y. We may thus view any ϕ : {0, 1}r → [m] as defining a partitioning of the
vertices into sets A0, . . . , Am−1 where Ai = {x | ϕ(x) = i}.

▶ Definition 15. For δ > 0, we say a function ϕ : {0, 1}r → [m] admits a δ-almost perfect
matching if there are matchings E0, . . . , Em−2 in G, wherein Ei is a matching between Ai

and Ai+1, such that for each i, Ei covers all but δ fraction of the vertices of Ai and Ai+1.
If ϕ admits a δ-almost perfect matching for δ = 0, we simply say that ϕ admits a perfect

matching.

The following lemma asserts that a monotone function ϕ that admits a perfect matching
can be used toward constructing an embedding of ([m], U).

1 This can be observes by computing either the KL-divergence or the Hellinger distance between Tt1,t2 (U)
and U , which by sub-additivity implies a bound on that measure between Tt1,t2 (U)⊗n and U⊗n. One
may then conclude a bound on the statistical distance between Tt1,t2 (U)⊗n and U⊗n by the relation
between KL-divergence and statistical distance (via Pinsker’s inequality) or by an analogous result for
the Hellinger distance.

M. Braverman, S. Khot, G. Kindler, and D. Minzer 25:9

▶ Lemma 16. Let m ∈ N and let ϕ : {0, 1}r → [m] be a monotone function. If ϕ admits a
perfect matching, then ([m], U) can be r-locally embedded.

Proof. Let E0, . . . , Em−2 be monotone matchings in G that cover all vertices for ϕ, and
consider the collection P of vertex disjoint paths of length m − 1 they form. I.e., starting
from a vertex x ∈ A0 we use the matching edge of x from E0 to go to a vertex A1, then use
the edge of E1 to go upwards and so on, until we reach Am−1. We construct an embedding
(ϕ, Ψ = (Ψω)ω∈Ω, Ω, P), where the probability space Ω is P and the measure P is uniform
over Ω. We define Ψω(i) = ωi, where ωi is the vertex from Ai on the path ω.

The monotonicity of ϕ is clear by assumption and the monotonicity of Ψω follows because
ω is a monotone path. Finally, it is clear that ϕ ◦ Ψω = identity and that the distribution
of Ψω(i) when choosing i ∈ [m] uniformly and ω ∼ P is uniform over {0, 1}r, as P is a
collection of vertex disjoint paths that covers all of {0, 1}r. ◀

In light of Lemma 16, it makes sense it should be possible to locally embed ([m], U)
with good parameters. Indeed, for m = 4 we found an 9-local embedding of [4] using
computer search [1], which immediately gives near optimal monotonicity testers and directed
isoperimetric inequalities. For divisibility reasons though, to have a perfect matching m

must be a power of 2, however as we show in subsequent sections, this is the only limitation
that exists. To address the divisibility issues, we need to state an analog of approximate
embeddings and prove analogs of Lemmas 6, 8 and 16.

2.4 Monotonicity Testers and Isoperimetric Inequalities from Almost
Perfect Matchings

To circumvent the divisibility issues we consider a more general version of embeddings, which
is nevertheless sufficient for the purposes of monotonicity testing as well as for proving
isoperimetric inequalities:

▶ Definition 17. We say that a probability distribution ([m], µ1) can be r-locally embedded
in ({0, 1}r, µ2) if there are a map ϕ : {0, 1}r → [m], a collection of maps Ψ = {Ψω : [m] →
{0, 1}r}ω∈Ω and a probability distribution P over Ω such that:
1. Each one of ϕ and Ψω are monotone.
2. Sampling x ∼ µ2, the distribution of ϕ(x) is µ1.
3. Sampling y ∼ µ1 and ω ∼ P , the distribution of Ψω(y) is µ2.
4. For each ω ∈ Ω, ϕ ◦ Ψω is the identity on [m].
Definition 17 generalizes Definition 4 in the sense that now we allow the distribution over
the hypercube {0, 1}r to not be uniform. In all consequent applications of Definition 17 the
distribution µ2 will be very close to uniform, though. We now prove analogs of Lemmas 6, 8
and 16 for relaxed embeddings. We begin by showing that almost perfect matchings imply
local embeddings as per Definition 17:

▶ Lemma 18. Let m ∈ N and δ > 0, and let ϕ : {0, 1}r → [m] be a monotone function.
If ϕ admits a δ-almost perfect matching, then there are distributions µ1 over [m] and µ2
over {0, 1}r, such that µ1 is mδ-close to uniform over [m], µ2 is mδ-close to uniform2 over
{0, 1}r and ([m], µ1) can be r-locally embedded in ({0, 1}r, µ2).

2 In fact, µ1 is the uniform distribution over a subset of {0, 1}r of fractional size at least 1 − 2mδ.

ITCS 2023

25:10 Improved Monotonicity Testers via Hypercube Embeddings

Proof. We repeat the same construction in Lemma 16, except that now the collection P
may include paths of length less than m − 1. We take P ′ ⊆ P to be the collection of paths of
length m − 1. We argue that P ′ covers at least 1 − mδ fraction of vertices of G. To see that,
note that each path in P whose length is shorter than m − 1 can be uniquely associated
with some i = 0, . . . , m − 2 and a vertex x either from Ai or Ai+1 that is not matched in Ei.
Thus, the number of paths in P shorter than m − 1 is at most the total number of (i, x) such
that x ∈ Ai is unmatched in Ei plus the number of (i, x) such that x ∈ Ai+1 is unmatched
in Ei, which is at most 2δ fraction of {0, 1}r. Since each such path contains at most m − 1
vertices, it follows that P ′ covers all but 1 − 2(m − 1)δ fraction of {0, 1}r.

With this in mind, we define the distribution µ2 over {0, 1}r by picking ℓ ∈ P ′ uniformly,
j ∈ [m] uniformly and outputting the vertex at the jth spot of the path ℓ, i.e. ℓj . The
distribution µ1 over [m] is defined by sampling x ∼ µ2 and outputting ϕ(x). We also define
(Ω, P) by taking Ω = P ′ and P to be the uniform distribution over Ω, and take as before
Ψ = (Ψω)ω∈Ω defined as Ψ(j) = ωj .

By definition, the distribution over Ψω(j) where j ∼ µ1 and ω ∼ P ′ is µ1, and the
distribution of ϕ(x) where x ∼ µ2 is µ1. The monotonicity of ϕ, Ψω is clear as before, as well
as the fact that ϕ ◦ Ψω = identity. ◀

We now turn to the analog of Lemmas 6, 8.

▶ Lemma 19. There is an absolute constant c > 0 such that the following holds. Let
r, m, n ∈ N, ε, δ > 0 and suppose that 0 < δ < cε

mr2n2 . If there is a monotone function
ϕ : {0, 1}r → [m] that admits a δ-almost perfect matching, then:

1. there is a 2-query monotonicity testing algorithm for functions over ([m]n, U⊗n) that
always accepts monotone functions, and rejects functions that are ε-far from monotone
with probability at least R(rn, ε/4) (recall (1) for the definition of R).

2. If f : [m]n → {0, 1} is ε-far from monotone with respect to U⊗n, then

E
x∈[m]n

[√
s−

f (x)
]
⩾ Ω

(
ε√

r log(rn/ε)

)
.

Proof. Let µ1 and µ2 be the distributions from Lemma 18 from ϕ, and let (ϕ, (Ψ)ω∈Ω, P)
be an r-local embedding of ([m], µ1) in ({0, 1}r, µ2). Given f : ([m]n, U⊗n) → {0, 1}, define
g : {0, 1}r·n → {0, 1} by

g(x(1), . . . , x(n)) = f(ϕ(x(1)), . . . , ϕ(x(n))).

To prove the first item, run the monotonicity tester of the hypercube on g, and accept/re-
ject accordingly. Note that a single query to g can be answered by making a single query
to f , and that if f is monotone then g is monotone, hence the tester always accepts in this
case. If ε(f ; U⊗n) ⩾ ε, then ε(f ; µ⊗n

1) ⩾ ε(f) − ∆(µ⊗n
1 , U⊗n) ⩾ ε − 2mnδ > ε/2. By the

same argument as in Lemma 5, it follows that g : ({0, 1}rn, µ⊗n
2) → {0, 1} is ε/2-far from

monotone, and so ε(g; Urn) ⩾ ε(g; µ⊗n
2) − ∆(Urn, µ⊗n

2) ⩾ ε/2 − 2mrnδ ⩾ ε/4, hence the
tester rejects with probability at least R(rn, ε/4).

M. Braverman, S. Khot, G. Kindler, and D. Minzer 25:11

To prove the second item, we note that

E
x∈[m]n

[√
s−

f (x)
]
⩾ E

x∼µ⊗n
1

[√
s−

f (x)
]

−
√

n∆(µ⊗n
1 , U⊗n)

⩾ E
y∼µ⊗n

2

√s−
g (y)
r

−
√

n∆(µ⊗n
1 , U⊗n)

= 1√
r

E
y∼µ⊗n

2

[√
s−

g (y)
]

−
√

n∆(µ⊗n
1 , U⊗n)

⩾
1√
r

E
y∈{0,1}rn

[√
s−

g (y)
]

−
√

rn∆(µ⊗n
2 , U⊗rn) −

√
n∆(µ⊗n

1 , U⊗n)

⩾
c√
r

ε

4 log(rn) −
√

rn∆(µ⊗n
2 , U⊗rn) −

√
n∆(µ⊗n

1 , U⊗n),

where c > 0 is an absolute constant; in the last transition, we used Theorem 7. Bounding
∆(µ⊗n

2 , U⊗rn) ⩽ 2rmnδ and ∆(µ⊗n
1 , U⊗n) ⩽ 2mnδ and using the upper bound on δ shows

that the second and third terms are negligible compared to the first, hence we get that
Ex∈[m]n

[√
s−

f (x)
]
⩾ cε

8
√

r log(rn) as required. ◀

With these lemmas in hand, to prove Theorems 2, 3 it now suffices to construct good
enough almost perfect matchings for some monotone function ϕ : {0, 1}r → [m]. The following
result asserts that such almost perfect monotone matchings exists:

▶ Theorem 20. There is an absolute constant C > 0 such that for all m ∈ N, for any
r ⩾ C · m6 there is a monotone function ϕ : {0, 1}r → [m] that admits a δ-almost perfect
matching for δ ⩽ m2−r.

The proof of Theorem 20 is deferred to Section 3. Before embarking on this proof, we quickly
show how it implies several results stated in the introduction.

▶ Lemma 21. Theorem 20 implies Theorems 2, 3.

Proof. Take r = Cm6 log(mn/ε) for sufficiently large absolute constant C > 0. By The-
orem 20 we get that there is ϕ : {0, 1}r → [m] that admits a δ-almost perfect matching for
δ ⩽ m2−r, and the result is concluded by appealing to Lemma 19. ◀

3 Constructing Efficient Monotone Matchings on the Hypercube

3.1 Theorem 20: Proof Overview
We start from a threshold embedding as in Section 2.2, that is T = Tt1,...,tm−1 : {0, 1}r → [m]
defined as T (x) = i if ti ⩽ |x| < ti+1. Using it, we can make sure that the partition it defines,
Ai = {x | T (x) = i} is δ-almost perfect matching for δ = O(1/

√
r). The reason for this δ is

that Ai’s may have sizes which differ by 2rδ, as this is the number of points in each slice.
Therefore, to improve upon this construction a natural idea is shift elements around by
adding to some Ai’s elements either from the bottom level of Ai+1 or from top level of Ai−1,
so that eventually the sizes of all Ai’s are equal up to 1. We do not know though how to
carry out this adjustment so that the embedding construction from Section 2.2 still works.
Instead, we vary the sets Ai in a randomized way, and show that with high probability there
is an almost perfect monotone matching between each Ai and Ai+1 for all i’s.

ITCS 2023

25:12 Improved Monotonicity Testers via Hypercube Embeddings

In more details, consider a random ordering π of {0, 1}n which starts with some ordering
of {0, 1}n according to Hamming weight (that is, the vertices of Hamming weight i appear
in a chunk before the vertices of Hamming weight i + 1, for all i), and within each Hamming
weight chunk applies a random ordering. We think of π as π : {0, 1}n → [2n], wherein π−1(i)
is the ith point in the order. We then define, for each i = 1, . . . , m, the set Ai as the chunk
of
⌊ 2n

m

⌋
next elements in π, namely

Pi = π−1
({⌊

2n

m

⌋
(i − 1) + j

∣∣∣∣ j = 1, . . . ,

⌊
2n

m

⌋})
,

and show that, with high probability, there is a monotone matching between each Pi and
Pi+1.

To show that, we first develop a bit of machinery. First, we generalize the notion of
perfect matching to that of fractional perfect matching (see Definition 26): a fractional
perfect matching can be defined between two sets of equal size, in which case it is promised
that it can be replaced by a true matching. But it can also be defined over two sets that
are each endowed with a arbitrary measure, as long as the total measure of each set is the
same. Another important property is that the existence of a fractional perfect matching is
transitive, namely if there is a perfect matching between µ and ν, and also between ν and τ

(where µ, ν and τ are sets endowed with measures), then there exists a perfect matching
between µ and τ .

Then, we view Pi as a collection of t slices, s1(i), . . . , st(i) and two random subsets
S0(i) and St+1(i) of the slices s0(i) and st+1(i). We show that there is a perfect fractional
matching between the vertices of

{
x | x ∈ S0(i) or x has Hamming weight s1(i), . . . , st/2(i)

}
,

and vertices of Hamming weight st(i) (when weighted appropriately). In words, this
says that we can find a fractional matching between a union of layers with a random
subset of another subsequent layer, and a layer that is a bit above them. Using the
same arguments, we prove that there is a perfect fractional matching between the ver-
tices of

{
x | x ∈ St+1(i) or x has Hamming weight st/2+1(i), . . . , st(i)

}
and Hamming weight

st/4(i + 1) vertices. Thus, in effect we are reduced to matching complete slices again; indeed,
to show the matching between Pi and Pi+1 we break them into “lower half” and “upper half”
and use the above statements to find matchings of these with slices a bit above them and a
bit below them. Using transitivity now and the fact there are perfect fractional matchings
between st/2(i) and s0(i + 1) (which exists as we make sure that st/2(i) < s0(i + 1)), and
st/4(i + 1) and st/2(i + 1) (which again exists as we make sure that st/4(i + 1) < st/2(i + 1)),
one can then stitch these matchings to get a perfect fractional matching between Pi and
Pi+1, and thus conclude the existence of perfect matching.

The proof of statements such that “there is a perfect fractional matching between S0(i)
and the slices s1(i), . . . , st/2(i) and st/2(i) (when weighted appropriately)” consists the bulk
of the work, and to do that we show that with high probability Hall’s condition holds. To do
that, we use the notion of upper shadows (which, roughly speaking, counts the number of
neighbours a set of vertices S has in the directed hypercube graph) as well as the Kruskal-
Katona theorem which gives us a lower bound on it. We show that only sets of vertices T

which have very smaller upper shadow can violate Hall’s condition, and for them we show
by a careful application of Chernoff’s bound that, with high probaiblity, Hall’s condition
still holds. The main difficulty in the last step is that the number of such sets T is quite
large, however we show that these sets admit an efficient “ε-net” type approximations. This
reduces the number of sets T we need to union bound over enough so that Chernoff’s bound
works.

M. Braverman, S. Khot, G. Kindler, and D. Minzer 25:13

3.2 Shadows, Kruskal-Katona and Approximating Collections with Small
Shadow

3.2.1 The Kruskal-Katona Theorem
Throughout this section, we consider slices of the Boolean hypercube,(

[n]
k

)
= {x ∈ {0, 1}n | |x| = k} ,

and denote by µk the uniform measure on
([n]

k

)
. Our proof uses the Kruskal-Katona

Theorem [14, 16, 6], which we present next. We will use a more convenient form of it as
stated in [18, Section 1.2].

▶ Definition 22. For a collection A ⊆
([n]

k

)
, define the upper shadow ∂uA and lower shadow

∂dA of A as

∂uA =
{

y ∈
(

[n]
k + 1

) ∣∣∣∣ ∃x ∈ A, x < y

}
, ∂dA =

{
y ∈

(
[n]

k − 1

) ∣∣∣∣ ∃x ∈ A, y < x

}
.

The Kruskal-Katona Theorem states:

▶ Lemma 23. For all A ⊆
([n]

k

)
we have that

µk+1(∂uA) ⩾ µk(A)1− 1
n , µk−1(∂dA) ⩾ µk(A)1− 1

n .

In words, Lemma 23 asserts that if A is a small sub-set of a slice, then the upper shadow
(as well as the lower shadow) have considerably larger densities. Typically, we will apply
the upper shadow/ lower shadow operators more than once; given A ⊆

([n]
k

)
, we will look at

µk+t(∂u . . . ∂uA) where we applied the upper shadow operator t-times. To simplify notations,
we denote this by µk+t(∂t·uA),

3.2.2 Approximating a Collection with a Small Shadow
In general, the conclusion of Lemma 23 is tight, as can be evidenced by collections of the
type

A =
{

x ∈
(

[n]
k

) ∣∣∣∣x1 = . . . = xℓ = 1
}

.

Intuitively, the reason that A above is tight for Kruskal-Katona is that for any element in
y ∈

([n]
k+1
)
, we either have that almost all of the x < y of Hamming weight k are in A – in

which case y ∈ ∂uA, or else none of these x’s are in A. Hence, many of the x’s “vote” for
the same set of y’s to be included in the upper shadow, leading to only a moderate increase
in density. We show that in general, collections A with small shadow exhibit such behaviour,
and use it to show that this collection of families admits a small ε-net:

▶ Lemma 24. Let s, t, n ∈ N such that 0 ⩽ t ⩽ n − s, and let 0 < ε ⩽ 1
100 . If A ⊆

([n]
s

)
satisfies µs+t(∂t·uA) ⩽ (1 + ε)µs(A), then there is a collection M ⊆ A and BM ⊆

([n]
s

)
,

B′
M ⊆

([n]
s+t

)
(defined only by M) such that

1. |M| ⩽ 100 ln(1/ε)
(s+t

t) · |A|.
2. B′

M = ∂t·uM and µs+t(B′
M∆∂t·uA) ⩽ 6ε · µs+t(∂t·uA).

3. BM =
{

x ∈
([n]

s

) ∣∣∣Pry>x,|y|=s+t [y ∈ B′
M] ⩾ 1

2

}
and µs(BM∆A) ⩽ 18εµs(A).

ITCS 2023

25:14 Improved Monotonicity Testers via Hypercube Embeddings

Proof. We show that taking M ⊆ A randomly of size M = 100 |A| ln(1/ε)
(s+t

t) , the collections
BM and B′

M as defined in the statement work with positive probability.
Consider the bi-partite graph G = (V ∪ U, E) where the sides are V = A and U = ∂t·uA,

and (x, y) ∈ E is an edge if x ∈ A, y ∈ ∂t·uA and x < y. Then G is left-regular with degree
hL =

(
n−s

t

)
, and so

|E| = |V | ·
(

n − s

t

)
= µs(A)

(
n − s

t

)(
n

s

)
= µs(A) n!

s! · t! · (n − s − t)! .

As for the right side, the degree of each vertex is at most hR =
(

s+t
t

)
and the average degree

of a vertex is

|E|
|U |

=
µs(A) n!

s!·t!·(n−s−t)!

|U |
=

µs(A)
(

n
s+t

)
hR

|U |
= h

µs(A)
µs+t(A) ⩾

hR

1 + ε
.

Thus, choosing y ∈ U uniformly, the expected value of hR − d(y) is at most εhR, and by
Markov’s inequality it follows that hR − d(y) ⩽ hR/2 except with probability 2ε. Thus,
denoting by δ the fraction of y ∈ U such that d(y) < hR/2, we get that δ ⩽ 2ε. Thus,

E
M

[
µs+t(B′

M∆∂t·uA)
]
⩽ δµs+t(∂t·uA)+(1−δ)µs+t(∂t·uA)

(
1 − hR/2

|V |

)M

⩽ 3ε·µs+t(∂t·uA),

where in the last inequality we used the fact that
(

1 − hR/2
|V |

)M

⩽ e− MhR
2|V | ⩽ e−50 ln(1/ε) ⩽ ε.

The third item follows similarly, and we first upper bound EM [µs(A \ BM)]. For each
x ∈ A \ BM we have that x has at most hL/2 of its neighbours in B′

M, hence at least hL/2
of its neighbours in U \ B′

M. It follows that

E
M

[µs(A \ BM)] ⩽ 1(
n
s

) E
M

[
|U \ B′

M| hR

hL/2

]
=

2hR

(
n

s+t

)
hL

(
n
s

) E
M

[
µs+t(B′

M∆∂t·uA)
]

⩽ 6ε · µs+t(∂t·uA),

which is at most 7εµs(A). To upper bound EM [µs(BM \ A)], we note that any x ∈ BM \ A
has at least hL/2 of the y of Hamming weight s + t for which x < y in B′

M, and in particular
in U . The total number of pairs (x, y) such that x < y and x ̸∈ A, y ∈ U is at most
hR |U | − |E| (as these are all non-edges in G), so we get that

E
M

[µs(BM \ A)] ⩽ 1(
n
s

) hR |U | − |E|
hL/2 ⩽

1(
n
s

) 2hR |U | ε

hL(1 + ε) ⩽ 2ε
µs+t(U)

1 + ε
⩽ 2εµs(A).

In conclusion, we get that

E
M

[µs(BM∆A)] ⩽ 9εµs(A), E
M

[
µs+t(B′

M∆∂t·uA)
]
⩽ 3εµs+t(∂t·uA),

so by Markov’s inequality there is a choice for M satisfying the conclusion of the claim. ◀

For future reference, we state a version of Lemma 24 for the operator ∂t·d:

▶ Lemma 25. Let s, t, n ∈ N such that 0 ⩽ t ⩽ n − s, and let 0 < ε ⩽ 1
100 . If A ⊆

([n]
s

)
satisfies µs−t(∂t·dA) ⩽ (1 + ε)µs(A), then there is a collection M ⊆ A and B′

M ⊆
([n]

s−t

)
,

BM ⊆
([n]

s

)
such that

1. |M| ⩽ 100 ln(1/ε)
(s

s−t)
· |A|.

2. B′
M = ∂t·dM and µs−t(B′

M∆∂t·dA) ⩽ 6ε · µs−t(∂t·dA).
3. BM =

{
x ∈

([n]
s

) ∣∣∣Pry<x,|y|=s−t [y ∈ B′
M] ⩾ 1

2

}
and µs(BM∆A) ⩽ 18εµs(A).

Proof. The proof is essentially the same as the proof of Lemma 24 and we omit the details. ◀

M. Braverman, S. Khot, G. Kindler, and D. Minzer 25:15

3.3 Fractional Monotone Matchings
We now formally define the concept of a monotone fractional matching, which is central to
the proof of Theorem 20:

▶ Definition 26. Let wU : {0, 1}n → [0, ∞) and wV : {0, 1}n → [0, ∞) be weight functions
such that

∑
x∈{0,1}n

wU (x) =
∑

x∈{0,1}n

wV (x). We say there is a monotone fractional matching

from wU to wV , and denote wU ≲ wV if, letting U be the support of wU and V be the support
of wV , there is a weight function w : U × V → [0, ∞) such that w(u, v) > 0 only when u ⩽ v,
and for every x ∈ U y ∈ V it holds that∑

z∈V

w(x, z) = wU (x),
∑
z∈U

w(z, y) = wV (y).

In this section, we establish several basic properties of fractional monotone matchings.
The first of which is a fractional version of Hall’s Theorem for monotone matchings. For
completeness, we include the (straight-forward) deduction of it from the usual formulation of
Hall’s Theorem.

▶ Lemma 27. Suppose that wU and wV are as in Definition 26, let U and V their supports,
and suppose that for all S ⊆ U , defining N(S) = {v ∈ V | ∃u ∈ S, u ⩽ v} we have that∑

v∈N(S)

wV (v) ⩾
∑
u∈S

wU (u).

Then there is a monotone fractional matching between wU and wV .

Proof. By approximation, it suffices to show that statement for weight functions wV and wU

that assign rational values. Let M be a number such that all values of MwV and MwU are
integers, and define the bi-partite graph G whose sides are U ′ and V ′, where each u ∈ U has
MwU (u) copies in U ′ and v ∈ V has MwV (v) copies in V ′. We connect (u′, v′) by an edge if
they are copies of u ∈ U , v ∈ V respectively where u ⩽ v. Our assumption then implies that
G satisfies Hall’s condition, so we may find a perfect matching M ⊆ U ′ × V ′. Define

w(u, v) =
∑

u′ copy of u
v′ copy of v

1(u′,v′)∈M ,

and note that then w forms a fractional monotone matching showing wU ≲ wV . ◀

Secondly, we have the following basic properties of ≲:

▶ Lemma 28. Suppose that wU , wV , wR, wL : {0, 1}n → [0, ∞) are weight functions.
1. Transitivity: if wU ≲ wV and wV ≲ wR, then wU ≲ wR.
2. Linearity: if wU ≲ wR and wV ≲ wL, then for all p, q ⩾ 0, pwU + qwV ≲ pwR + qwL.

Proof. For the first item, let U, V, R be the supports of wU , wV and wR respectively, and let
w1 : U × V → [0, ∞) and w2 : V × R → [0, ∞) be the weight functions demonstrating that
wU ≲ wV and wV ≲ wR, respectively. Define w : U × R → [0, ∞) by

w(u, r) =
∑
v∈V

1
wV (v)w1(u, v)w2(v, r).

ITCS 2023

25:16 Improved Monotonicity Testers via Hypercube Embeddings

First, if w(u, r) > 0 then there is v ∈ V such that w1(u, v), w2(v, r) > 0 and so u ⩽ v ⩽ r,
hence u ⩽ r. Secondly, note that for all u,∑

r∈R

w(u, r) =
∑
v∈V

1
wV (v)w1(u, v)

∑
r∈R

w2(v, r) =
∑
v∈V

1
wV (v)w1(u, v)wV (v) =

∑
v∈V

w1(u, v)

which is equal to wU (u). Similarly, for all r ∈ R we have
∑

u∈U

w(u, r) = wR(r). It follows

that w is a monotone matching between showing that wU ≲ wR.
For the second item, let U, R, V, L be the supports of wU , wR, wV and wL respectively

and let w1 : U × R → [0, ∞) and w2 : V × L → [0, ∞) be weight functions demonstrating
that wU ≲ wR and wV ≲ wL. Then w(x, y) = pw1(x, y) + qw2(x, y) is a weight function
showing that pwU + qwV ≲ pwR + qwL. ◀

Third, we show that if k ⩽ k′, then µk ≲ µk′ .

▶ Lemma 29. If k ⩽ k′, then µk ≲ µk′ .

Proof. Let P = (v1, . . . , vn) be a uniformly chosen monotone path in {0, 1}n starting at
(0, . . . , 0) and ending at (1, . . . , 1), and define w(x, y) to be the probability that vk = x and
vk′ = y. Then it is easily seen that w(x, y) > 0 only if x < y, and also for every x of Hamming
weight k,

∑
y

w(x, y) is equal to the probability a uniformly chosen vertex of Hamming weight

k is equal to x, hence is µk(x). Similarly,
∑
x

w(x, y) = µk′(y). ◀

The last statement is a standard connection between fractional matchings and perfect
matchings.

▶ Lemma 30. Suppose that µ, µ′ are distributions which are uniform over A, A′ ⊆ {0, 1}n

respectively, where |A| = |A′|. If µ ≲ µ′, then there is a monotone perfect matching between
A and A′.

Proof. Consider the bipartite graph G = (A ∪ A′, E) whose sides are A and A’ and the edge
set is E = { (a, a′) | a ∈ A, a′ ∈ A′, a ⩽ a′}. As µ ≲ µ′, we get that there is w : A × A′ →
[0, ∞) supported only on E satisfying the properties of a monotone fractional matching.
Define w′ = |A| w, and note that for all a ∈ A we have that

∑
a′∈A′

w′(a, a′) = 1 and also∑
a∈A

w′(a, a′) = 1 for all a′ ∈ A′. Thus, the fractional matching number of G is at least

∑
a∈A,a′∈A′

w′(a, a′) = |A| .

We argue that the smallest vertex cover in G has size |A|. Indeed, if W ⊆ A ∪ A′ is a vertex
cover then

|A| =
∑
e∈E

w′(e) ⩽
∑
z∈W

∑
e∋z

w′(e) =
∑
z∈W

1 = |W | .

It now follows from Kőnig’s theorem that G has a perfect matching, and we are done. ◀

3.4 Monotone Matchings on Random Subsets of the Slice
The next lemma is the heart of the proof that our construction admits a good monotone
almost perfect matching. For a collection S ⊆

([n]
k

)
, we denote µS(x) = µk(x)1x∈S .

M. Braverman, S. Khot, G. Kindler, and D. Minzer 25:17

▶ Lemma 31. For all C > 0 there is n0 ∈ N such that the following holds. Let n, k, s, t ∈ N
and assume that n

2 − C
√

n log n ⩽ k ⩽ n
2 + C

√
n log n and 10n1/3 ⩽ t ⩽ C

√
n log n. Then

for every 0 ⩽ s ⩽
(

n
k

)
, setting ρ = s

(n
k) we have

Pr
S⊆([n]

k)
|S|=s

[(t + ρ)µk−t ≲ tµk + µS] ⩾ 1 − 2−Ω(2n/2).

Proof. We will use Lemma 27. Denoting µ = (t + ρ)µk−t and ν = νS = tµk + µS , our goal
is to show that with high probability over the choice of S, for all T ⊆

([n]
k−t

)
it holds that

ν(∂t·uT) ⩾ µ(T). Equivalently, we will upper bound the probability that there is T that
violates it, and we present two arguments depending on the fractional size of T .

The case that µk−t(T) ⩽ 1/2. Let T be such that µk−t(T) ⩽ 1/2, and suppose that
ν(∂t·uT) < µ(T). We denote by N the size of T . Then we have that

µk(∂t·uT) ⩽ 1
t
ν(∂t·uT) ⩽ 1

t
µ(T) ⩽ t + 1

t
µk−t(T), (3)

On the other hand, using Lemma 23 we can deduce a lower bound on the measure of the
upper shadow of T , namely that

µk(∂t·uT) ⩾ µk−t(T)(1− 1
n)t

. (4)

First, this implies a lower bound on the measure of T , as we get that t+1
t µk−t(T) ⩾

µk−t(T)(1− 1
n)t

, and standard manipulations now imply that µk−t(T) ⩾ (1 − 1/(t + 1))n/t

and so µk−t(T) ⩾ e−O(n/t2), which implies in particular that N ⩾ e−O(n/t2)(n
k−t

)
⩾ 20.8n.

Secondly, from (4) and the fact that µk−t(T) ⩽ 1/2 we also get that

µk(∂t·uT) ⩾ µk−t(T)(1/2)(1− 1
n)t−1 ⩾ µk−t(T)2t/n. (5)

Combining our assumption on T and (5) yields

0 ⩽ µ(T) − ν(∂t·uT) = (t + ρ)µk−t(T) − tµk(∂t·uT) − µk(∂t·uT ∩ S)

⩽ (t + ρ)µk−t(T) − tµk−t(T)2t/n − µk(∂t·uT ∩ S)

⩽

(
ρ − t2

2n

)
µk−t(T) − µk(∂t·uT ∩ S),

and in particular we get that

µk(∂t·uT ∩ S) ⩽
(

ρ − t2

2n

)
µk−t(T) ⩽

(
ρ − t2

2n

)
µk(∂t·uT). (6)

Noting that the expectation of the left hand side, over the choice of S, is ρµk(∂t·uT), this
inequality suggests that the probability for this for a specific T is small. A naive application
of Chernoff’s bound is not good enough since we would need to union bound over too many
choices for T . To cut down on the number of events we union bound over, we observe that
as (3) holds we may move to a sparse approximator of T and thus handle much less sets.

More precisely, using Lemma 24 and the guarantee from (3) we get that there is M of
size at most αN for α = 100 log t

(k
t)

satisfying the conclusion of the lemma for BM and B′
M as

therein. It follows that

µk(B′
M ∩ S) ⩽ µk(∂t·uT ∩ S) + µk(∂t·uT ∆B′

M) ⩽
(

ρ − t2

2n
+ 6

t

)
µk(∂t·uT)

⩽

(
ρ − t2

2n
+ 7

t

)
µk(B′

M),

ITCS 2023

25:18 Improved Monotonicity Testers via Hypercube Embeddings

where in the last inequality we used the fact that µk(∂t·uT) ⩽
(
1 + 1

t

)
µk(B′

M) by the
conclusion of Lemma 24. By the condition on t, ρ − t2

2n + 7
t ⩽ ρ − t2

3n and hence we conclude
that

µk(B′
M ∩ S) ⩽

(
ρ − t2

3n

)
µk(B′

M).

We may assume that ρ ⩾ t2/3n, otherwise the last inequality is impossible. We also note
that from Lemma 24 we have µk(B′

M) ⩾ 1
2 µk(∂t·uT) ⩾ 1

2 µk−t(T) = N

2(n
k−t)

. From everything
claimed so far we conclude that

Pr
S

[
∃T with |T | = N such that ν(∂t·uT) < µ(T)

]
⩽ Pr

S

[
∃ |M| ⩽ αN , µk(B′

M) ⩾ N

2
(

n
k−t

) , µk(B′
M ∩ S) ⩽

(
ρ − t2

3n

)
µk(B′

M)
]

⩽
∑

M⊆(n
k)

|M|⩽αN

µk(B′
M)⩾ N

2(n
k−t)

Pr
S

[
µk(B′

M ∩ S) ⩽
(

ρ − t2

3n

)
µk(B′

M)
]
. (7)

For each M such that |M| ⩽ αN and µk(B′
M) ⩾ N

2(n
k−t)

, let EM be the event that µk(B′
M ∩

S) ⩽
(

ρ − t2

3n

)
µk(B′

M); we upper bound the probability of each EM separately, and for
that we use Chernoff’s bound. There is a slight technical issue in applying Chernoff’s bound,
namely that S is selected to be of fixed size, and to circumvent it we consider S ′ ⊆

([n]
k

)
chosen randomly by including each set from

([n]
k

)
in it with probability ρ′ = ρ − t2/6n. Then

we get that

Pr [|S ′| > s] = Pr
[
|S ′| >

(
ρ′ + t2

6n

)(
n

k

)]
⩽ e

−Ω
(

t2
n4 ρ(n

k)
)
⩽ 0.5,

where we used Chernoff’s bound and ρ ⩾ t2/3n. Note that PrS [EM] ⩽ PrS′ [EM | |S ′| ⩽ s],
and combining with the above bound on the probability that |S ′| > s we get that

Pr
S

[EM] ⩽ 2Pr
S′

[EM] = 2Pr
S′

[
µk(B′

M ∩ S ′) ⩽
(

ρ − t2

3n

)
µk(B′

M)
]

= 2Pr
S′

[
µk(B′

M ∩ S ′) ⩽
(

ρ′ − t2

6n

)
µk(B′

M)
]

⩽ 2e
−Ω
(

t4
n2 ρ′µk(B′

M)(n
k)
)

⩽ 2e
−Ω

(
t4
n2 ρ′ N

2(n
k−t)

(n
k)
)

⩽ e
−Ω

(
t6
n3

N(n
k)

(n
k−t)

)
.

Thus, using (7) we get that the left hand side therein is upper bounded by

∑
M⊆(n

k)
|M|⩽αN

e
−Ω

(
t6
n3

N(n
k)

(n
k−t)

)
⩽ 2

nαN−Ω

(
t6
n3

N(n
k)

(n
k−t)

)
⩽ 2

N

(
nα−Ω

(
t6
n3

(n
k)

(n
k−t)

))
.

M. Braverman, S. Khot, G. Kindler, and D. Minzer 25:19

Estimating, we get that (n
k)

(n
k−t)

⩾ 2−O(t) and α ⩽ 100 log n
(k/t)t ⩽ n−Ω(t), hence nα−Ω

(
t6

n3
(n

k)
(n

k−t)

)
⩽

−2−O(t) and plugging this above yields that the left hand side of (7) is upper bounded by
2−2−O(t)N . Thus, we conclude that

Pr
S

[
∃T with µk−t(T) ⩽ 1/2 such that ν(∂t·uT) < µ(T)

]
⩽

∑
N⩾20.8n

2−2−O(t)N ,

which is at most 2−2−O(t)20.8n

⩽ 2−2n/2 .

The case that µk−t(T) > 1/2. Let T be such that µk−t(T) > 1/2, and suppose that
ν(∂t·uT) < µ(T). The analysis is similar to before, except that we look at R = ∂t·uT instead
of T . Thus, we get that ν(R) > µ(T), and we argue that ∂t·dR ⊆ T . Indeed, if x ∈ ∂t·dR,
then there is y ∈ R such that x < y, and as y ∈ R it follows that y /∈ ∂t·uT so for all x′ < y

of Hamming weight (k − t) – and in particular for x′ = x – we have that x′ ̸∈ T , so x ∈ T .
Thus, it follows that µ(∂t·dR) < ν(R) and now µk(R) = µk(∂t·uT) = 1 − µk(∂t·uT) ⩽

1 − µk−t(T) ⩽ 1/2, and the rest of the argument is analogous to the previous argument. Let
N = |R|. First, we have

µk−t(∂t·dR) ⩽ 1
t
µ(∂t·dR) ⩽ 1

t
ν(R) ⩽ t + 1

t
µk(R). (8)

On the other hand, using Lemma 23 we have µk−t(∂t·dR) ⩾ µk(R)(1− 1
n)t

. As before,
this implies µk(R) ⩾ e−O(n/t2) and so N ⩾ e−O(n/t2)(n

k

)
⩾ 20.8n. Also, it implies

µk−t(∂t·dR) ⩾ µk(R)(1/2)(1− 1
n)t−1 ⩾ µk(R)2t/n. (9)

We now conclude from (9) that

0 < ν(R) − µ(∂t·dR) = tµk(R) + µk(R ∩ S) − (t + ρ)µk(∂t·dR)

⩽ µk(R ∩ S) − (t + ρ − t2−t/n)µk−t(∂t·dR)
⩽ µk(R ∩ S) − (ρ + t2/2n)µk−t(∂t·dR),

so analogously to (6) we get that

µk(R ∩ S) ⩾ (ρ + t2/2n)µk−t(∂t·dR) ⩾ (ρ + t2/2n)µk(R). (10)

As (8) holds, using Lemma 25, we get that there is M of size at most αN for α = 100 log t

(k
t)

satisfying the conclusion of the lemma for BM and B′
M as therein. It follows that

µk(BM ∩ S) ⩾ µk(R ∩ S) − µk(R∆BM) ⩾
(

ρ + t2

2n
− 18

t

)
µk(R)

⩾

(
ρ + t2

2n
− 36

t

)
µk(BM)

⩾

(
ρ + t2

3n

)
µk(BM),

where we used the fact that t ⩾ 10n1/3. We may assume ρ < 1 − t2

3n , otherwise this is
impossible. We denote ρ′ = ρ + t2

6n , so that now we are guaranteed that t2/6n ⩽ ρ′ ⩽ 1 − t2

6n .
We also get that

µk(BM) ⩾ 1
2µk(R) ⩾ N

2
(

n
k

) .

ITCS 2023

25:20 Improved Monotonicity Testers via Hypercube Embeddings

Denote by EM the event that µk(BM ∩ S) ⩾
(

ρ + t2

3n

)
µk(BM). We now apply the Chernoff

argument again; letting S ′ ⊆
(

n
k

)
be chosen randomly by including each set with probability

ρ′′ = ρ′ + t2

12n , we get by Chernoff’s bound that |S ′| ⩾ s except with probability at most 1/2
and so

Pr
S

[EM] ⩽ 2Pr
S′

[EM] ⩽ 2e
−Ω
(

t4
n2 ρ′µk(BM)(n

k)
)
⩽ e

−Ω

(
t6
n3

(n
k)N

(n
k)

)
.

Thus, by the union bound

Pr
S

[
∃R of size N such that µ(∂t·dR) < ν(R)

]
⩽

∑
|M|⩽αN

Pr
S

[EM] ⩽ 2nαN−Ω
(

t6
n3 N

)
,

and by a direct computation the last expression is at most 2−2−O(t)N . Summing over
N ⩾ 20.8n yields that

Pr
S

[
∃T such that µk−t(T) ⩾ 1/2, µ(∂t·uT) > ν(T)

]
⩽Pr

S

[
∃R such that µk(R) ⩽ 1/2, µ(∂t·dR) < ν(R)

]
⩽

∑
N⩾20.8n

2−2−O(t)N ,

which is at most 2−2n/2 provided that n0 is large enough. ◀

We will also need a version of Lemma 31 that works the other way around – namely
one that matches a slice and a random subset of it with a slice above it, and we state it
separately below.

▶ Lemma 32. For all C > 0 there is n0 ∈ N such that the following holds. Let n, k, s, t ∈ N
and assume that n

2 − C
√

n log n ⩽ k ⩽ n
2 + C

√
n log n and 10n1/3 ⩽ t ⩽ C

√
n log n. Then

for every 0 ⩽ s ⩽
(

n
k

)
, setting ρ = s

(n
k) we have

Pr
S⊆([n]

k)
|S|=s

[tµk + µS ≲ (t + ρ)µk+t] ⩾ 1 − 2−Ω(2n/2).

Proof. Let S ′ = { [n] \ A | A ∈ S} and note that it is a random subset of
(

n
n−k

)
of size s, so

applying Lemma 31 on n − k instead of k we get that with probability at least 1 − 2−Ω(2n/2)

there is a monotone fractional matching w(x, y) from (t + ρ)µn−k−t to tµn−k + µS′ . Define
w′(A, B) = w(B, A), and note that it is a monotone fractional matching from tµk + µS to
(t + ρ)µk+t ◀

3.5 Matching Union of Slices and a Random Subset to a Slice
Next, we use Lemma 31 to show that given a union of consecutive slices and a random subset
of the topmost one, one can find a monotone fractional matching with each of the following:
(1) a slice which is a bit above them, and (2) a slice which is a bit below them.

▶ Corollary 33. For all C > 0 there is n0 ∈ N, such that the following holds for all n ⩾ n0.
Let n, t, k, s be as in Lemma 31, let S be random subset of

([n]
k

)
of size s and let t ⩽ d ⩽ k/2

be a parameter such that
k−1∑

i=k−d

(
n
i

)
⩾ t
(

n
k

)
. Denote T = S ∪

⋃k−1
i=k−d

([n]
i

)
, and let νT be the

uniform distribution over T . Then

Pr
S

[µk−2d ≲ νT ≲ µk+d] ⩾ 1 − 2−Ω(2n/2).

M. Braverman, S. Khot, G. Kindler, and D. Minzer 25:21

Proof. We show that with probability 1 − 2−Ω(2n/2) we have that νT ≲ µk+d, and also that
with probability 1 − 2−Ω(2n/2) we have that µk−2d ≲ νT . The statement then follows from
the union bound.

For the first statement, let ρ = s/
(

n
k

)
. By Lemma 29 we have that µi ≲ µk for i ⩽ k, so

using Lemma 28 we get that

νT =
(

n
k

)
|T |

(
ρµS +

k−1∑
i=k−d

(
n
i

)(
n
k

)µi

)
≲

(
n
k

)
|T |

(
ρµS +

k−1∑
i=k−d

(
n
i

)(
n
k

)µk

)

=
(

n
k

)
|T |

(
ρµS +

|T | − ρ
(

n
k

)(
n
k

) µk

)
.

By Lemma 32 we have that tµk + ρµS ≲ (t + ρ)µk+t with probability 1 − 2−Ω(2n/2), in which
case we get that

νT ≲

(
n
k

)
|T |

(
(t + ρ)µk+t +

|T | − ρ
(

n
k

)
− t
(

n
k

)(
n
k

) µk

)
,

where we used the fact that |T | − ρ
(

n
k

)
=

k−1∑
i=k−d

(
n
i

)
⩾ t
(

n
k

)
. Using µk ≲ µk+t and Lemma 28

again and then simplifying, we conclude that νT ≲ µk+t.
For the second statement, we note that by Lemmas 29, 31 we have that (t + ρ)µk−t ≲

tµk + ρµS with probability at least 1 − 2−Ω(2n/2).

▷ Claim 34. If (t + ρ)µk−t ≲ tµk + ρµS , then (t + ρ)µk−t−d ≲ tµk−d + ρµS .

Proof. Let w(x, y) be a weight function showing that (t + ρ)µk−t ≲ tµk + ρµS . We consider
the probability distribution p(x, y) = 1

t+ρ w(x, y), and define a probability distribution p′

over (x′, y′) as follows:
1. Sample (x, y) ∼ p and independently a random permutation π on [n].
2. Let J ⊆ [n] be the set of first d coordinates according to π wherein xj = 1. We define

x′
i = xi on i ̸∈ J and x′

i = 0 on i ∈ J .
3. If y ∈ S, with probability 1/2 take y′ = y. Otherwise, let J ′ ⊆ [n] be the set of first d

coordinates according to π wherein yj = 1, and take y′ to be the vector where y′
i = yi on

i ̸∈ J ′ and y′
i = 0 on i ∈ J ′.

We argue that w′(x, y) = (t + ρ)p′(x, y) shows that the fractional monotone matching as
stated in the claim exists. For y ∈ S we have∑

x′

w′(x′, y) = 1
2
∑

x

w(x, y) = ρ = (tµk−d + ρµS)(y),

and for y′ ̸∈ S we have that
∑
x′

p′(x′, y′) is the probability that we pick y according to µk,

turn from 1 to 0 a random set of d coordinates and reach y′, which is the µk−d(y′). Thus,∑
x′

w′(x′, y′) = (tµk−d + ρµS)(y′).

For x′,
∑
y′

p′(x′, y′) is the probability we take x ∼ µk−t, turn from 1 to 0 a random set of d

coordinates and reach x′, which is equal to µk−t−d(x′), hence
∑
y′

w′(x′, y′) = (t+ρ)µk−t−d(x′).

◁

ITCS 2023

25:22 Improved Monotonicity Testers via Hypercube Embeddings

Using Claim 34 we get by Lemmas 28, 29

µk−2d ≲

(
n
k

)
|T |

tµk−d + ρµS +

k−1∑
i=k−d

(
n
i

)
− t
(

n
k

)
(

n
k

) µk−2d



≲

(
n
k

)
|T |

tµk−d + ρµS +

k−1∑
i=k−d

(
n
i

)
− t
(

n
k

)
(

n
k

) µk−d



=
(

n
k

)
|T |

ρµS +

k−1∑
i=k−d

(
n
i

)
(

n
k

) µk−d



≲

(
n
k

)
|T |

ρµS +

k−1∑
i=k−d

(
n
i

)
µi(

n
k

)
 ,

which is equal to νT . ◀

3.6 Proof of Theorem 20
In this section, we prove Theorem 20 which by Lemma 21 implies Theorems 2, 3. Theorem 20
is a direct consequence of the following more precise statement:

▶ Theorem 35. There exists C > 0 such that for all m ∈ N and all n ⩾ C · m6, there are m

sets P1, . . . , Pm ⊆ {0, 1}n satisfying the following properties:
1. Pi ∩ Pj = ∅ for all i ̸= j.
2. |Pi| =

⌊ 2n

m

⌋
for all i.

3. For each i, x ∈ Pi and y ∈ Pi+1 we have that |x| ⩽ |y|. For all x ∈ P1 ∪ . . . ∪ Pm and
y ̸∈ P1 ∪ . . . ∪ Pm we have that |x| ⩽ |y|.

4. For each i there is a monotone matching from Pi to Pi+1.
In particular, the following function ϕ is monotone and admits an m2−n-almost perfect
matching: ϕ(x) = i − 1 if x ∈ Pi, and otherwise ϕ(x) = m − 1.

Proof. We present a randomized construction and show that it works with probability 1−o(1).
Consider a random π : {0, 1}n → [2n] such that π(x) ⩽ π(y) whenever |x| ⩽ |y|; in other
words, we first think of an ordering of {0, 1}n as x0, . . . , x2n−1, where we first enumerate
according to Hamming weight and within each layer we order randomly. Thus, we may take
π(xi) = i.

Define the P1, . . . , Pm as

Pi = π−1
({⌊

2n

m

⌋
(i − 1) + j

∣∣∣∣ j = 1, . . . ,

⌊
2n

m

⌋})
,

so that the first three items holds trivially. In the rest of the proof, we argue that the fourth
item holds with probability 1 − o(1). Denote by ℓi and ui the smallest and largest Hamming
weight of vectors from Pi, and by νi the uniform distribution over Pi. It suffices to prove
that with probability 1 − 2−Ω(2n/2) we have that νi ≲ νi+1 for all i Indeed, then we get by
Lemma 30 that there is a monotone matching from Pi and Pi+1, and the fourth item follows.

M. Braverman, S. Khot, G. Kindler, and D. Minzer 25:23

We now show that for each i, νi ≲ νi+1 with probability 1 − 2−Ω(2n/2), and then the
claim follows by the union bound. We intend to use Corollary 33 to show that and therefore
we break each one of νi, νi+1 into lower and upper part. Let mi be the median Hamming
weight of νi, namely such that νi({x | |x| < mi}) < 0.5 but νi({x | |x| ⩽ mi}) ⩾ 0.5. Define
pi = νi({x | |x| < mi}), qi = νi({x | |x| > mi}), and let

ν−
i (x) = νi(x)1|x|<mi

+
(

1
2 − pi

)
µmi(x), ν+

i (x) = νi(x)1|x|>mi
+
(

1
2 − qi

)
µmi(x).

Let t = ⌈10n1/3 + 1⌉. Our goal is to show that with probability 1 − 2−Ω(2n/2), for all i we
have

1
2µℓi−2t ≲ ν−

i , ν−
i ≲

1
2µmi , ν+

i ≲
1
2µui+2t,

1
2µmi ≲ ν+

i , (11)

in which case we get, using Lemma 28, that

νi = ν−
i + ν+

i ≲
1
2µmi + 1

2µui+2t ≲
1
2µℓi+1−2t + 1

2µmi+1 ≲ ν−
i+1 + ν+

i+1 = νi+1.

Here, we also the facts that mi ⩽ ℓi+1 − 2t, ui + 2t ⩽ mi+1 and Lemma 29. This follows since
the probability mass of each layer in the hypercube is at most O(1/

√
n), hence each Pi must

intersect at least Ω(
√

n/m) distinct layers and so ui −mi ⩾ Ω(
√

n/m) ⩾ Ω(C1/6n1/3) > 100t,
and in the same way mi − ℓi > 100t and ℓi+1 − mi ⩾ 100t. We also note that all of the ui, mi

and ℓi’s are all in the range [n
2 −

√
100n log n, n

2 +
√

100n log n] since the total probability
mass outside this range is at most e− 1

2 100 log n ⩽ n−10 < 1/m.
We finish by arguing that (11) holds for each i with probability 1 − 2−Ω(2n/2), and for

that we apply Corollary 33. Set d = 2t; we argue that for each ℓ1 ⩽ k ⩽ um it holds that
k−1∑

i=k−d

(
n

i

)
⩾ t

(
n

k

)
.

Indeed, this follows since the ratio between any two consecutive binomial coefficients
(

n
i

)
for i = k − d, . . . , k is 1 + O(

√
log n/n), so the ratio between any two (not necessarily

consecutive) binomial coefficients in that range is at most
(

1 + O(
√

log n/n)
)d

= 1 + o(1),

so
k−1∑

i=k−d

(
n
i

)
⩾ (1 + o(1))d

(
n
k

)
= (2 + o(1))t

(
n
k

)
> t
(

n
k

)
. Thus, the conditions of Corollary 33

hold, and applying it for various k’s we get that (11) holds with probability 1 − 2−Ω(2n/2).
Below, we explain in details how to deduce that 1

2 µℓi−2t ≲ ν−
i , and the other arguments are

similar.
We view νi(x)1|x|<mi

as a uniform weight function over the part of Pi of Hamming weight
less than mi, which is a union of slices and a random subset of the appropriate size of the slice
ℓi. Thus by Corollary 33 we get that piµℓi−2t ≲ νi(x)1|x|<mi

with probability 1 − 2−Ω(2n/2),
and as µℓi−2t ≲ µmi

we get from Lemma 28 that 1
2 µℓi−2t ≲ ν−

i . ◀

References
1 A matching for [4]n. https://www.cs.huji.ac.il/w~gkindler/matchings/index.html. Ac-

cessed: 2022-08-06.
2 Hadley Black, Deeparnab Chakrabarty, and C. Seshadhri. A o(d) · polylog n monotonicity

tester for boolean functions over the hypergrid [n]d . In Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA,
January 7-10, 2018, pages 2133–2151, 2018. doi:10.1137/1.9781611975031.139.

ITCS 2023

https://www.cs.huji.ac.il/w~gkindler/matchings/index.html
https://doi.org/10.1137/1.9781611975031.139

25:24 Improved Monotonicity Testers via Hypercube Embeddings

3 Hadley Black, Deeparnab Chakrabarty, and C. Seshadhri. Domain reduction for monotonicity
testing: A o(d) tester for boolean functions in d-dimensions. In Proceedings of the 2020
ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA,
January 5-8, 2020, pages 1975–1994, 2020. doi:10.1137/1.9781611975994.122.

4 Hadley Black, Deeparnab Chakrabarty, and C. Seshadhri. Directed isoperimetric theorems
for boolean functions on the hypergrid and an Õ(n

√
d) monotonicity tester, 2022. doi:

10.48550/arXiv.2211.05281.
5 Hadley Black, Iden Kalemaj, and Sofya Raskhodnikova. Isoperimetric inequalities for real-

valued functions with applications to monotonicity testing. arXiv preprint, 2020. arXiv:
2011.09441.

6 Béla Bollobás and Arthur G Thomason. Threshold functions. Combinatorica, 7(1):35–38,
1987.

7 Deeparnab Chakrabarty and C. Seshadhri. An optimal lower bound for monotonicity testing
over hypergrids. Theory Comput., 10:453–464, 2014. doi:10.4086/toc.2014.v010a017.

8 Deeparnab Chakrabarty and C. Seshadhri. An o(n) monotonicity tester for boolean functions
over the hypercube. SIAM J. Comput., 45(2):461–472, 2016. doi:10.1137/13092770X.

9 Xi Chen, Rocco A. Servedio, and Li-Yang Tan. New algorithms and lower bounds for
monotonicity testing. In 55th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 286–295, 2014. doi:10.1109/
FOCS.2014.38.

10 Xi Chen, Erik Waingarten, and Jinyu Xie. Beyond talagrand functions: new lower bounds
for testing monotonicity and unateness. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017,
pages 523–536, 2017. doi:10.1145/3055399.3055461.

11 Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron, and Alex
Samorodnitsky. Improved testing algorithms for monotonicity. In Randomization, Approxima-
tion, and Combinatorial Optimization. Algorithms and Techniques, pages 97–108. Springer,
1999.

12 Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubinfeld, and
Alex Samorodnitsky. Monotonicity testing over general poset domains. In Proceedings on
34th Annual ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal, Québec,
Canada, pages 474–483, 2002. doi:10.1145/509907.509977.

13 Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samorodnitsky. Testing
monotonicity. Comb., 20(3):301–337, 2000. doi:10.1007/s004930070011.

14 Gyula Katona. A theorem of finite sets. In Classic Papers in Combinatorics, pages 381–401.
Springer, 2009.

15 Subhash Khot, Dor Minzer, and Muli Safra. On monotonicity testing and boolean isoperimetric-
type theorems. SIAM J. Comput., 47(6):2238–2276, 2018. doi:10.1137/16M1065872.

16 Joseph B Kruskal. The number of simplices in a complex. Mathematical optimization techniques,
10:251–278, 1963.

17 G. A. Margulis. Probabilistic characteristics of graphs with large connectivity. Problemy
Peredači Informacii, 10(2):101–108, 1974.

18 Ryan O’Donnell and Karl Wimmer. KKL, Kruskal–Katona, and monotone nets. SIAM
Journal on Computing, 42(6):2375–2399, 2013.

19 M. Talagrand. Isoperimetry, logarithmic Sobolev inequalities on the discrete cube, and
Margulis’ graph connectivity theorem. Geom. Funct. Anal., 3(3):295–314, 1993. doi:10.1007/
BF01895691.

https://doi.org/10.1137/1.9781611975994.122
https://doi.org/10.48550/arXiv.2211.05281
https://doi.org/10.48550/arXiv.2211.05281
http://arxiv.org/abs/2011.09441
http://arxiv.org/abs/2011.09441
https://doi.org/10.4086/toc.2014.v010a017
https://doi.org/10.1137/13092770X
https://doi.org/10.1109/FOCS.2014.38
https://doi.org/10.1109/FOCS.2014.38
https://doi.org/10.1145/3055399.3055461
https://doi.org/10.1145/509907.509977
https://doi.org/10.1007/s004930070011
https://doi.org/10.1137/16M1065872
https://doi.org/10.1007/BF01895691
https://doi.org/10.1007/BF01895691

	1 Introduction
	1.1 Prior Works
	1.2 Parallel Works
	1.3 Main Results
	1.4 Our Technique

	2 Elementary Constructions of Embeddings
	2.1 Embedding p-biased Cubes
	2.2 Monotone Symmetric Embeddings
	2.3 Embeddings from Monotone Perfect Matchings
	2.4 Monotonicity Testers and Isoperimetric Inequalities from Almost Perfect Matchings

	3 Constructing Efficient Monotone Matchings on the Hypercube
	3.1 Theorem 20: Proof Overview
	3.2 Shadows, Kruskal-Katona and Approximating Collections with Small Shadow
	3.2.1 The Kruskal-Katona Theorem
	3.2.2 Approximating a Collection with a Small Shadow

	3.3 Fractional Monotone Matchings
	3.4 Monotone Matchings on Random Subsets of the Slice
	3.5 Matching Union of Slices and a Random Subset to a Slice
	3.6 Proof of Theorem 20

