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ABSTRACT CCS CONCEPTS

Let X be an alphabet and p be a distribution on 3k for some k > 2.
Let a > 0 be the minimum probability of a tuple in the support of
4t (denoted supp(u)). Here, the support of y is the set of all tuples
in ¥ that have a positive probability mass under p. We treat the
parameters X, k, y1, o as fixed and constant.

We say that the distribution p has a linear embedding if there
exist an Abelian group G (with the identity element 05) and map-
pings o; : £ — G, 1 < i < k, such that at least one of the map-
pings is non-constant and for every (ay,az,...,ax) € supp(y),
¥k ailai) = 06.

Let f; : " — [—1, 1] be bounded functions, such that at least one
of the functions f; essentially has degree at least d, meaning that
the Fourier mass of f; on terms of degree less than d is negligible,
say at most §. In particular, |E[f;]| < §. The Fourier representation
is w.r.t. the marginal of y on the ith co-ordinate, denoted (, ;).
If y has no linear embedding (over any Abelian group), then is it
necessarily the case that

[E(xy, %0, .o ~pn [f1(x1) f(x2) - - - fie(xp)] = 0g,5(1),

where the right hand side — 0 as the degree d — coand § — 0?

In this paper, we answer this analytical question fully and in the
affirmative for k = 3. We also show the following two applications
of the result. The first application is related to hardness of approx-
imation. We show that for every 3-ary predicate P : 33 — {0, 1}
such that P has no linear embedding, an SDP integrality gap instance
of a P-CSP instance with gap (1, s) can be translated into a dictator-
ship test with completeness 1 and soundness s + o(1), under certain
additional conditions on the instance. The second application is
related to additive combinatorics. We show that if the distribution
4 on 23 has no linear embedding, marginals of y are uniform on
3, and (a, a, a) € supp(p) for every a € %, then every large enough
subset of 3" contains a triple (x1, x2, x3) from p®" (and in fact a
significant density of such triples).
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1 INTRODUCTION

The motivation for this paper is to study the following quantity
associated with the product of functions fi, f2,. .., fr : 2" = R,
[fix1)fa(x2) - - fie(xp)], (1)
(X1,Xz, .., Xp ) ~p®"
where each coordinate of (xy, X2, ...,Xy) is distributed indepen-
dently, according to the same distribution y on %¥. We assume
that all the functions are bounded, i.e., || fi||co < 1. This expression
appears naturally in many areas including additive combinatorics,
social choice, pseudorandomenss and hardness of approximation.
Here are a few examples.

(1) Example 1: For 1 < i < 3, 1let f; : Z’; — {0,1} be the
indicator functions of the sets A; C Zz. Let p be the uniform
distribution on the three-term arithmetic progressions (x, x+
Yy, x + 2y) in Zy. Then the quantity

[f1(x1) fa(x2) f3(x3)],
(x1,%2,X3)~p®"
up to a normalization factor, precisely counts the number
of arithmetic progressions (x1, X2, x3) from Zg such that
x; € A; for every i € [3].

(2) Example 2: Consider a Boolean function f : {-1,+1}" —
{~1, +1}. For a given p € [~1, 1], the stability of f, Stab,(f),
is defined as E [ f(x) f(y)] where for each i € [n], x; and y;
are uniformly distributed, and E [x;y;] = p. The Majority is
Stablest Theorem [18], which is instrumental in the area of
hardness of approximation and the theory of social choice,
is about estimating Stab,(f) for the class of so-called low-
influence functions.

(3) Example 3: Fix a predicate P : sk = {0, 1} and a distribution
[ on sk, Dictatorship tests corresponding to a predicate P
and a distribution y are extensively studied in hardness of
approximation. Here, one is given a function f : 3" — 3
and the acceptance probability of the test is precisely

Pr [(fF(x1), f(xa), - f(x)) € PH(D)].

(X1,X2, - Xp )~ p®"
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One is interested in estimating this probability for the class
of low influence functions. Using the multilinear expansions
of P and f, the above expectation can be expressed as a linear
combination of expectations of the form (1).

Let ¢ = Pr(g,,q,,...,a)~pl(a1, a2, ..., ax) € PL(D). Tt is
seen that the test accepts any Dictatorship function, namely
functions of the form f(x) = x;, for a fixed co-ordinate
ip € [n], with probability c¢. While tests with imperfect
completeness, namely with ¢ < 1, are interesting and well-
studied in hardness of approximation,! in the current pa-
per, we exclusively focus on tests with perfect completeness,
namely with ¢ = 1. That is, we assume that supp(z) € P~1(1).
In fact, we will generally assume that p has full support, i.e.
supp(¢) = P~1(1) and then talk interchangeably in terms
of either the predicate P or the distribution p. In terms of
hardness of approximation, this amounts to studying ap-
proximability of Constraint Satisfaction Problems (CSPs) on
(fully) satisfiable instances, and this indeed has been the
main motivation for authors’ work in [5], continuing in the
current paper.

One way to analyze the expectation from (1) is to write each
function f; as the sum of two functions g; + h;, where g; is the
structured part of f; and h; is the remaining unstructured part (re-
sembling noise). The idea is that whenever the term h; appears in
the product of functions, then the expectation is negligible. There-
fore, the expectation can be estimated by replacing each f; by its
structured part g;. For instance, in Example 1, Roth’s Theorem [22]
estimates the desired density of arithmetic progressions; therein,
the structured part is taken as all the heavy-weight Fourier terms
of f;. It is shown that the contribution of the unstructured part is
negligible; formally, if we let ﬁ be the Fourier terms of f;, then we
have

E

(x1,X2,%3)~p

[fi(x1) fa(x2) f3(x3)]] < min || fileo-

n 1<i<3

On the other hand, it is often useful (especially in hardness of
approximation) to take the structured part as the low-degree part of
fi- In this case, after replacing the functions f; by their low degree
parts g;, provided that g; are low influence functions, it is possible
to estimate the expectation well using invariance principles. Here,
one replaces the discrete inputs from 2" by Gaussian inputs and
then the expectation is estimated using bounds in the Gaussian
space. Still, the question remains as to when one can argue that the
expectation is negligible for the unstructured, i.e. the high-degree,
part of the functions.

Specifically, one is naturally led to the following analytic ques-
tion.

QuEsTION 1. (Informal) Find the necessary and sufficient condition

on the distribution yi on Zk, such that

d — oo,

@)

!Indeed, Example 2 corresponds to the hardness of approximation result for the Max-
Cut problem. Here the predicate is x # y over a binary alphabet, p is the p-correlated

L2 and-1<p<o.

G fe(xe) - fixp)]f = 0 as

(X1,X2, .. Xg )~

distribution on {~1, 1} as mentioned, completeness ¢ =
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where the functions are bounded in [—1, 1] and at least one function
(essentially) has degree at least d.

Mossel [17] showed a sufficient condition: if the distribution
1 is connected, then Conclusion (2) as above holds. The connect-
edness condition is defined as follows: for every pair of tuples
(a1,a2,...,ax) € supp(u) and (af, ay, ..., a;c) € supp(p), there is a
way to convert the first tuple to the second by replacing only one
coordinate at a time such that every intermediate tuple remains in
supp(p).

The connectedness condition however is not necessary. An ex-
ample is noted implicitly in [4]. Let G be a non-Abelian group with
no dimension one representation. Consider the group-equation
predicate P : G*> — {0,1}, P~1(1) = {(x,y,2)|x - y - z = 15}, along
with the distribution y that is uniform on P~1(1). The distribution
1 is (clearly) not connected and Conclusion (2) still holds as can be
shown using basic representation theory.

A certain necessary condition was observed in [5] (for Con-
clusion (2) to hold), namely that the distribution g has no linear
embedding as defined below. To illustrate that this condition is
necessary, one considers the contra-positive: if the distribution y
does have a linear embedding (in particular, it is not connected),
then there do exist high-degree, bounded functions that make the
expectation in (2) non-negligible.

DEFINITION 1. We say that a distribution u on 3k has a linear
embedding (or that p satisfies a linear equation or simply that p is
linear) if there exists an Abelian group G and mappings o; : & — G,
1 < i < k, such that (i) at least one of the maps o; is non-constant
and (ii) for every (a1, az, . . ., ax) € supp(y), Zé‘zl oi(a;j) = 0G.

The illustration is as follows. Suppose u does have a linear em-
bedding as in the definition. We show that it is possible to achieve
non-negligible expectation in (2). To see this, let y be any non-
trivial character of the Abelian group G, namely a non-trivial group
homomorphism y : G — C, and define f;(x;) = H;’:1 x(oi((x1)))).
Now,

k

]‘[ﬁ x(@i((x:)))

i=1 j=1

fix)fa(x2) - - fie(xk)

:[:

k
[ ] [xteu(em

i=1
( 01((Xl)] )

x(0G)

~.
Il
—_

t

X

~.
Il
—_

=

—-

Jj=

=1.

Here one uses the multiplicativity of the character y and that

x(0g) = 1. For every 1 < j < n, we have Zle oi((xi)j) = 0g

noting that the tuple ((x1);, ..., (Xg);) € supp(y) and using the def-

inition of the linear embedding. Moreover, for large n, whenever o;

is non-constant, the corresponding f; is a (essentially) high-degree
function.?

2The functions here are complex valued with absolute value 1; one can take their real
part if one insists on having real valued functions.
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Motivated by these examples and certain long-term applications
to approximability of constraint satisfaction problems (CSPs) on sat-
isfiable instances, authors of [5] hypothesized that the non-linearity
is indeed the necessary and sufficient condition. We state the hy-
pothesis below.

HypoTHEsIs 1. (Informal): The necessary and sufficient condition
on a distribution u on sk so that the Conclusion (2) holds is that U
has no linear embedding over any Abelian group.

In [5], the authors were able to prove the hypothesis for a sub-
class of 3-ary predicates referred to therein as semi-rich predicates. A
predicate P: =3 — {0, 1} is called semi-rich if for each (x, y) € ExZ,
there exists a z € 3 such that (x, y, z) € P~1(1) and also, for every
(x,z) € X x %, there exists a y € X such that (x,y,z) € P~1(1).
We recall that while considering predicates, we always have an
underlying distribution y (in this case on =) such that supp(u) =
P71(1) and we may interchangeably talk in terms of either the
predicate P or the distribution p.

In this paper, we prove the hypothesis for all 3-ary predicates.
The result, referred to as the Main Lemma in the rest of the paper,
is stated below. It is more convenient (and general) to work with
distributions 1 on ¥ X T’ X ®, allowing a different alphabet for each
co-ordinate. In this case, a linear embedding consists of maps into
an Abelian group G, 0 : 2 - G,y : T — G, ¢ : & — G, not all
constant, such that o(x)+y(y)+¢(z) = 0 for all (x, y, z) € supp(p).
We assume, unless stated otherwise, that the marginals of p have
full support on X, T, ® respectively. In the following, m denotes
the maximum size of 2,I,® and ¢ > 0 denotes the minimum
probability of a tuple in supp(u). We always treat p as fixed and
m, « as fixed constants.

LEmMMA 1 (MAIN ANALYTICAL LEMMA). Suppose |Z|, [T, |®| < m
and y is a distribution over ¥ X I' X ® such that

o The support of i cannot be linearly embedded.

® u(x,y,z) > a for some a > 0 and all (x,y, z) € supp(p).

o Marginals of i (denoted as jix, jiy, ji; resp.) have full support
on 3, T, @ respectively.

Considering m and a as fixed, for all ¢ > 0, there are £,6 > 0
such that the following holds. If f: 3" — [-1,1],¢: T" — [-1,1],
h: ®" — [-1,1] and Staby_¢(h; pz) < 6, then we have that

[fx)g(y)h(2)]| < e.
(x.y,2)~p"

We clarify the condition that Stab;_z(h) < J. Note that we
have dropped ji, from the notation for convenience. The parameter
Stab;_(h) denotes the stability of h under the noise parameter ¢. It
is defined as <h, Ti- ffh) where T;_ is the standard Beckner (noise)
operator. We refer to the full-version of the paper for all analytic
definitions and basic tools.

The condition that Stab;_s(h) < & serves as a proxy for the
condition that the function h is essentially of high degree. Indeed,
if Stab;_#(h) < &, it implies that the Fourier mass of h on terms
of degree less than % is at most O(8). Conversely, if the Fourier

mass on terms of degree less than O(+ log(%)) is at most %, then
Stab;_g(h) < &. Hence the low-stability condition is a proxy for
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the high-degree condition and turns out to be more convenient to
work with.

One may wonder when a function h is bounded in [—1, 1] as well
as essentially of high degree. A natural example is when b’ : " —
[-1,1] is an arbitrary function and h = h" — T;_gh’. In this case,
since b’ is bounded and T;_¢ is an averaging operator, h is also
bounded. In addition, the operator T;_¢, roughly speaking, retains
only the low-degree part of b, and hence h = b’ — T;_¢h’, roughly
speaking, corresponds to the high-degree part of h’. More precisely,

2

the Fourier mass of h on terms of degree less than 3 is at most

5.3 In applications, it is almost always the case that the lemma is
applied with h = h’ — Ty_¢h’ for some bounded function 4’. One
refers to h as a soft-truncation of h’, as opposed to a hard-truncation
that would simply drop terms of degree less than a certain degree
threshold. The advantage of using soft-truncation is that it preserves
boundedness of functions whereas the hard-truncation in general
does not.

Applications. In this section, we state a couple of applications of
our main analytical lemma.

Hardness of approximation: Our first application is new results
on dictatorship tests from integrality gap instances of constraint
satisfaction problems (CSPs). Given a predicate P : sk {0,1},
for some alphabet ¥, a P-CSP instance consists of a set of variables
Xx1,%2, ..., xn and a collection of local constraints Cq,Cy, . ..,Cn.
Each constraint is of the type P(x;,, Xi,, . . ., X;; ). The constraints
might involve literals instead of just the variables. An algorith-
mic task is to decide if there exists an assignment to the variables
that satisfies all the constraints. In a related problem, called the
Max-P-CSP problem, the task is to find an assignment to the vari-
ables that satisfies the maximum fraction of the constraints. An
a-approximation algorithm is a polynomial-time algorithm which
always returns an assignment that satisfies at least o - OpT frac-
tion of the constraints, where OPT is the value of the optimum
assignment.

Assuming the Unique Games Conjecture [15], Raghavendra [21]
gave optimal hardness of approximation result for every Max-P-
CSP. His work can be succinctly described as a two-step scheme:

SDP integrality gap = A dictatorship test =

A hardness of approximation result.

However in his work, one necessarily loses perfect completeness
and the hardness result does not hold on CSP instances that are
(fully) satisfiable.

In order to prove hardness results on satisfiable instances, one
would need a similar scheme that preserves perfect completeness
in both the steps. Towards this goal, the Rich 2-to-1 Games Conjec-
ture was introduced in [7] and further explored in [6]. Under this
conjecture, [6, 7] showed how to convert, in certain specific cases,
dictatorship test with completeness 1 and soundness s to a hardness
result on satisfiable CSP instances with hardness threshold s + ¢,
for every constant ¢ > 0. This result can be interpreted as fulfilling
the second step in the scheme above (albeit only morally speaking,
since the implication is not entirely seamless and general yet).

3Given the connection between stability and degree before, h also has low stability,
albeit with somewhat different parameters.
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It thus remains to fulfill the first step in the scheme while preserv-
ing perfect completeness. The authors [5] made progress on this
question, showing that a (1, s) integrality gap instance for certain
CSPs can be converted into a dictatorship test with completeness 1
and soundness s+¢. Their result however was limited to (non-linear)
3-ary predicates satisfying the aforementioned semi-richness con-
dition, and this was because in [5], the authors were able to prove
analytic Lemma 1 only under the additional semi-richness condi-
tion. Since we are now able to prove the lemma for all (non-linear)
3-ary predicates, we now get the intergality gap to dictatorship test
implication for all such predicates. The formal statement of our
result appears below (one wishes that the condition (2b) therein
could be dropped, if so, we would have a full-proof implication).

For definitions and a more detailed discussion, we refer to Section
3 and the introductory section of [5].

THEOREM 1. Let P: 33 — {0, 1} be any predicate that satisfies the
following conditions: (1) P has no linear embedding, (2a) there exists
an instance of Max-P-CSP that has a (1, s)-integrality gap for the
basic SDP relaxation, (2b) on every constraint, the local distribution
in the SDP solution is not linearly embeddable. Then for every ¢ > 0,
there is a dictatorship test for P-CSP that has perfect completeness
and soundness s + ¢.

Counting Progressions: In additive combinatorics, finding a cer-
tain fixed progression (i.e. a pattern) in a subset of a given group is
a cornerstone question. Such questions have had huge implications
in understanding the pseudo-random properties of subsets of a
group. Below we list a few of these results answering this question
in different settings.

Fix a finite Abelian group (G, +). A subset A C G is said to
be three term arithmetic progression (3-AP) free if there is no
arithmetic progression of size 3 in A. In other words, there are
no elements x,y,z € A such that x + z = 2y. The famous Roth’s
Theorem [22] shows that any 3-AP free subset of Zn must be of
size o(N). In the contrapositive, any constant density subset of Z
contains a 3-term AP. Szemerédi [23] generalized Roth’s Theorem
to any k-term AP. In these and similar results quoted next, one
actually shows that a density J subset of the group contains an ¢
fraction of all the progressions; the precise dependence of ¢ as a
function of § is also interesting, but for the sake of conciseness, we
skip quantitative statements to that effect.

Now let (G, -) be a finite group that is not necessarily Abelian.
A subset of G is called product free if it does not contain three
elements x,y,z with x - y = z. If G is any Abelian group, then
it is easy to come up with product-free sets of constant density.
Gowers [12] showed that this is not true for a class of non-Abelian
groups called quasirandom groups.* That is, every constant density
subset of a quasirandom group contains the progression (x, y, xy).
Tao [24] extended Gowers’ result to other progressions of the form
(x,xg, xg?) and (x, xg, xg?, xg°) for some very specific quasiran-
dom groups. Bergelson and Tao [2] established it for progressions
(x, xg, gx) and (g, x, xg, gx) for every quasirandom group. Recently,
following the work by Peluse [19], Bhangale, Harsha and Roy [3]
established it for the progression (x, xg, xg?) for every quasirandom
group. In a high-dimensional setting, finding the largest size of the

4A group (or rather a family of groups) is quasirandom if the minimum dimension of
any non-trivial group representation grows with the size of the group.
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3-AP free set in FJ has received considerable attention [1, 8, 16].
Ellenberg and Gijswijt [11], building on a beautiful work by Croot,
Lev, Pach [10], obtained a substantial quantitative improvement
over Roth’s Theorem (applied to F7).

We now state our general theorem that establishes a similar
result in high-dimensional setting for arbitrary 3-ary progression
provided that the progression has no linear embedding (along with
a couple of other conditions).

THEOREM 1. Suppose y is a distribution over =* such that (1) the
marginal distributions jix, jty, jiz are uniformon3, (2) {(x,x,x) | x €
3} C supp(p), and (3) supp(p) cannot be linearly embedded. Then
forall§ > 0, there exists ¢ > 0 such that for S € X" with|S| > §|Z|",

Pr

[xeS,yeS,zeS]>e.
(X,y,2)~p®"

Note that the condition (2) is necessary for such a conclusion
to hold. This can be seen by the following example. Consider ¥ =
{0, 1,2} and p be uniform on =3\ {(0, 0, 0}. It is easy to check that y is
not linearly embeddable. Now, if we take S C " tobe S = {x € =" |
x1 = 0}, then clearly the conclusion does not hold. Our theorem
is comparable to the result by Hazla, Holenstein and Mossel [13]
with the same conclusion under the additional condition that the
distribution p is connected. As there are distributions that are not
linearly embeddable as well as not connected, Theorem 1 extends
their result.

2 TECHNIQUES

In this section, we elaborate on the ideas involved in the proof of
Lemma 1. We focus only on a few high-level ideas here. Since we
will skip many technical (and even conceptual) details, there might
be some discrepancies between the high-level exposition here and
formal proofs appearing later.

Let p be a distribution on ¥ X ' X ® such that supp(p) is not
linearly embeddable. We wish to show that

[f(x)g(y)h(2)]| ~ 0,
(x.y.2)~po"

where f : 3" — [-1,1],¢g: T" — [-1,1], h : ®" — [-1,1], are
{-bounded and at least one of the functions essentially has high
degree. We begin by sketching Mossel’s proof [17] that works in
the 2-ary case, i.e. for a (non-linear) distribution y on ¥ X I'. This
will help us understand various hurdles and new ideas needed to
overcome these hurdles in our proof of the 3-ary case as above.

©)

2.1 The 2-ary Case: Sketch of Mossel’s Proof

Let p be a distribution on ¥ X I such that supp(p) is not linearly
embeddable. It is easily seen that the non-linearity condition, in
this special 2-ary case, is same as saying that supp(u), viewed as a
bipartite graph Gy on the vertex set X UT, is connected. Indeed, if
this graph were disconnected, with components CoUDy, . ..,Cr—1U
Dy—1, then an embedding o : Cj — j,y : Dj — —jis an embedding
of ¥ and T respectively into Z, and for all (x, y) € supp(p) (i.e. the
edges of the graph G,), we have o(x) + y(y) = 0in Z,.

We intend to show that if f : £ — R,g : T — R are n-
dimensional {s-bounded functions where g has high degree, then

E(x,y)~uen [f(*)g(y)]| is small. For simplicity of exposition, we
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assume that ¢ in fact has full degree n.° In this case, we are able

to show that [E(y y)~yen [f(x)g(y)]]| < (1= 7)"[| fl2lgll2 for some
constant 7 = 7(i) > 0. We emphasize here that one gets an upper
bound in terms of the £3-norm of the functions. This of course
implies an upper bound in terms of the £ -norms. Thus we really
do not need the n-dimensional functions to be £s-bounded in the
2-ary case. This is one aspect (among many) in which the 3-ary case
is fundamentally different, where one does need the n-dimensional
functions to be {s-bounded (as we will soon demonstrate via an
example).

Continuing the consideration of the 2-ary case, the proof pro-
ceeds in two steps: first establishing a base case inequality (for
n = 1) and then observing that the inequality tensorizes, leading to
an inductive proof and the desired bound for the general case of
n-dimensional functions. The base case inequality is necessarily an
l2-inequality and this fact is essential for the inductive proof (and
the same holds in the 3-ary case).

Towards stating the base case inequality,let f : ¥ - R,g: T —
R be functions. By Cauchy-Schwarz,

< [Iflizllgll2-

E [f(x)g9®)]
(x,y)~p

We refer to this essentially trivial inequality as the (base case) sanity
check inequality. The inequality that is actually needed is that when
E[f] =E [g] = 0, we in fact have the improvement

(x ;E)N,, [f g < A=)l fll2lgll2, E[f]=E[g] = 0, (4)

for some constant 7 = 7(u) > 0. It is not difficult to see that this fol-
lows from the connectedness of the distribution p (or equivalently
the graph G ,), but we skip the proof. An equivalent way to express
the inequality is that the operator T : I:Z(T;py) — Ly(3; px) de-
fined as Tg(Nx) = E(x",y)~u [9(y)lx” = x] has operator norm at most
1—17. Here L2(T; py) denotes the subspace of L2(T'; 1) consisting of
those functions ¢ for which E [g] = 0 (and similarly for Ly(Z; yi)).
The operator norm of T, denoted ||T|| = maxgg(g)=0 1Tgll2/11gll2,
is at most 1 — 7 according to the equivalent interpretation of the
inequality (4), which can then be derived as:

E [fG)g]l = Kf,Tg)l
(x,y)~p
< |Ifl20Tgll2
< IfI201T1lgllz < (1 = D) fll2llgll2-

Now we consider the n-dimensional case. Let f : 2" — R, g :
I'" — R be n-dimensional functions. As mentioned before, we
assume that g has full degree, which amounts to saying that g €
Ly(T; j1y)®". In this case, it follows directly that

)E on LfgW]| < @ =)™ (I fll2llgllz,
~u

(x.y

using the well-known fact that the operator norm is multiplicative
(i.e. it tensorizes), namely that ||T®"| = ||T||" < (1 — 7)". Using

5This amounts to saying that after restricting any n — 1 co-ordinates, the expectation
of g over the remaining co-ordinate is zero.
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this fact, one immediately concludes that

[f(x)g(y)]

(x,y)~p®"

= (£, 7%"g)|

< 10T " gll2
< AT Mlgllz < (1 =)™l fllzllgllz,

as desired. If one wishes, one can prove the multiplicativity of oper-
ator norm by induction and view the overall proof as an inductive
proof, using the base case inequality (4) and “gaining” a factor 1 — 7
in each step of the induction. While we don’t demonstrate it here,
we mention it because the proof for the 3-ary case proceeds along
similar lines, albeit with many conceptual and technical hurdles.
Therein, it is rather challenging even to formulate the “correct”
base case inequality.

2.2 Towards 3-ary Base Case: Restoring Sanity
First

Moving onto the 3-ary case, let 1 be a distribution on X XTI X ® such
that supp(y) is not linearly embeddable. One hopes to write down a
suitable base case inequality and use it towards an inductive proof.
However, it turns out that even the sanity check inequality fails in
general! Thatis, for f : ¥ > R,g: T - R, h: ® — R, while we
desire a base case inequality (say when E [f] = 0) of the form

E
(e,y,2)~p

[fx)gWh)]| < @ =Dl flzllgll2llpllz, )

it may actually happen that

[fx)g@h)]| > NI fll2llgll2]lAll2-

E
(x,y,2)~p

In other words, we may not even have the upper bound of the ex-
pression || f||2]|gll2]|1 2|2 in the 3-ary case whereas the corresponding
upper bound in the 2-ary case is the essentially trivial application
of Cauchy-Schwarz! Here is an example.

Suppose that . =T = @, |X| = m > 54, and y has a probability
mass of 1 — ¢ uniformly spread on the triples {(x, x, x)|x € X} and
the remaining probability mass of ¢ uniformly spread on all the
remaining triples in 3. Clearly, supp(y) = 2% and hence y is not
linearly embeddable. The marginals of i are uniform on X. We can
certainly construct a function f : ¥ — R such thatE [f(x)] = 0 and
E [f(x)3] > ||f||g For instance, f could take the values 2m, —m, —m
at three distinct points in ¥ and zero at the remaining points in X.
In this case, B [f(x)] = 0,E [f(x)z] = 6m,and E [f(x)3] = 6m?,
and thus E [f(x)°] > vm/6 - IfII3 > 3 |IfII}. Letting f = g = h
and recalling that the triples (x, x, x) receive 1 — ¢ of the probability
mass, it follows that

E [f)gwh)] > (1 -E[f(x)’] - Om(1)

(x,y,2)~p
> 2-|If I3 =2 I fll2ligllzllAllz.

by making ¢ sufficiently small. This example also shows that in
order to claim the desired bound for n-dimensional functions as
in Equation (3), we must use the fact that the functions are {o-
bounded (i.e. in [—1, 1])! Indeed, consider the same example here
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and let n-dimensional functions f = § = h : 2" — R be all equal
to f®/|| f®"||2. Then these have all £,-norm 1, whereas
B |feiie)]
(x.y,2)~p®"
1

I£115"

= E
(x,y,2)~p

> 2",

[f(x)g(y)h(2)]" -

We thus face a seemingly intractable hurdle and a contradictory
set of constraints: (i) we do need the {w-boundedness of the n-
dimensional functions, (ii) an inductive proof is some form of
tensorization argument and hence inherently an £3-proof; conse-
quently, the intermediate functions arising during the induction
can only be assumed to have {3 norm at most 1, (iii) the induc-
tive argument requires a base case {-inequality such as (5) which
actually happens to fail miserably!

We now show how to overcome this hurdle step-by-step. This is
achieved in a round-about manner, by carefully transforming the
distribution and the alphabet (X X ' X @, y1) to another distribution
and alphabet (£ x T x ®, i). Formally, we show that

o If ;1 was not linearly embeddable to begin with, then I isn’t
either.

e If Lemma 1 (i.e. our Main Lemma/Result) holds for i, then it
also holds for p.

In this sense, we are able to reduce our task of proving the lemma for
the original distribution y to proving the same lemma for the new
distribution /. In fact, there will be a series of such transformations.
The (first) transformation will ensure that the marginal of ji on T x ®
is a uniform, product distribution. Once we have this additional
property, we at least have the (base case) sanity check inequality
as demonstrated next. For the sake of notational convenience, we
rename the new distribution and the alphabet again as (XTI X ®, 1)
and assume that the marginal of g on T X ® is a uniform, product
distribution. If so, it is easily seen that we get the (base case) sanity
check inequality, namely thatfor f : £ > R,g: T > R,h: ® - R,
we have

E
(x,y,2)~p

[fx)g@h()]| < [ fll2llgllzllAll2-

Indeed, by Cauchy-Schwarz,

E  [fx)g(y)h(x)]? (6)
(x,y,2)~p
< E [f&?] E  [9@)*h(z)?]
X~ fx (y,z ~Hy,z
_ 2 2 2
=B [£(x) ]y}ELy [9(y) ]ZEZ [h(2)?]
= [If1I21glI11Al13, (7)

where in the second step, we used the property that (y, z) are
uniform and independent! It is also possible to ensure (after the
transformation) another property of p that is quite convenient:
for all pairs (y,z) € T X ®, there is a unique x € X such that
(x,y,z) € supp(y) (we then say that (y, z) determine x). The details
of this transformation and related proofs appear in the full-version
of the paper are borrowed from authors’ earlier work [5].
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2.3 The 3-ary Relaxed Base Case: Overcoming
the Horn-SAT Obstruction

We will henceforth assume that the distribution g on £ X T X ®
has no linear embedding and has uniform marginal on " X ®. Now
that we at least have the sanity check inequality, we ask ourselves
whether we can claim the desired base case inequality as below:

QuEsTION 2. (Desired, Hypothetical Base Case Inequality:) If u
has no linear embedding and has uniform marginal onT X @, is it
necessarily the case that for f : X > R,g: T > R h: ® - R,

E
(x,y,2)~p
where |E [f]] < (1 =0)||fll2. To avoid the trivial case when f, g, h
are all constant functions, we added here the condition that f is
non-constant and has some variance, the condition captured by the
requirement |E [f]] < (1 - 0)||f]l2-

We note that such a base case inequality seems necessary towards
an inductive proof since one hopes to “gain" a factor of 1 — 7 in each
step of the induction. However it turns out that such an inequality
need not necessarily hold and there could be an obstruction that we
refer to as the Horn-SAT obstruction (and this is the only possible
obstruction).

[fx)gh()]) < (1 =@ fllzllgllzllPllz,  (8)

DEFINITION 2. Assume that a distribution g on ¥ X T X ® has
no linear embedding and its marginal on T X ® is unform. We say
that y has a Horn-SAT embedding if there are Boolean functions
f:2—>{0,1},9:T — {0,1}, h: ® — {0, 1}, such that

o Forall (x,y,z) € supp(), we have f(x) = g(y)h(z).

o f is non-constant (and in that case so must be g and h).

The condition f(x) = g(y)h(z) for Boolean functions is equiva-
lent to the conjunction of clauses m V g(y), m V h(z), f(x) v
@ V h(z). These are all Horn-SAT clauses (i.e. having at most one
positive literal), explaining the term Horn-SAT embedding. We now
make several remarks towards understanding how a Horn-SAT
embedding is an obstruction towards the desired inequality (8) and
how it is the only possible obstruction.

o Firstly, we note that having a Horn-SAT embedding vio-
lates inequality (8). Indeed, since f(x) = g(y)h(z) in supp(u)
and (y, z) are uniform and independent, we have || f]|2
llgllz2IAll2 and then

[f(x)gW)h(z)] = (

E

Y,2)~Hy,z
= llgli311Al13 = 11£ ll2llgll2 lAll2-

One also notes that since f is Boolean and non-constant, it
does have constant variance.

e Secondly, we note that if the inequality (8) is not possible,
then there is necessarily a Horn-SAT embedding. A sketch of
the proof is as follows. For a fixed 0, suppose that there are
functions that violate the inequality for all  — 0. Then by
standard compactness argument, there are three functions
f:2>R g:T >R h:® — R,such that

[fx)g()h(2)] = I fllzllgll2IlAll2,

E [9v)?h(2)?]
(x,y,2)~p

E
(x,y,2)~p
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i.e. achieving an exact equality. This means that the applica-
tion of Cauchy-Schwarz in Equation (7) must be tight and
therefore f(x) = g(y)h(z) in supp() (as equality of real num-
bers). If f(x) is always non-zero, then so are g(y) and h(z).
In this case, if at least one of f, g, h has a non-constant sign
(i.e. positive and negative), then turning f(x), g(y), h(z) into
their {+1, —1}- signs, we have

sign(f(x)) = sign(g(y))sign(h(z)),

which yields a linear embedding of , a contradiction. On the
other hand, if f, g, h all have constant sign, then w.l.og. this
sign is positive, and then log f(x) = log g(y) + log h(z) gives
a linear emebdding, again a contradiction. Here f has some
variance, so log f(x) is non-constant and the embedding is
non-trivial. The embedding is not into a finite Abelian group,
but this is not difficult to fix. One concludes therefore that
f(x) takes the zero value for some x € ¥ and of course
also takes a non-zero value for some x’ € 3. We can now
define the Horn-SAT embedding by turning f(x), g(y), h(z)
into Boolean 1 if the value is non-zero and Boolean 0 if the
value is zero!

o In the definition, if f is non-constant, then so must be g
and h. Let’s suppose on the contrary that g is constant (the
same proof applies for h). If g = 0, then the condition f(x) =
g(y)h(z) implies that f = 0, reaching a contradiction. If
g = 1, then one concludes that f(x) = h(z) for all (x,z) €
supp(fix,z)- Since 1 is not linearly embeddable, its marginals
are not linearly embeddable either.® In particular, yix , has
no linear embedding and hence is connected, implying that
both f and h are constant, again a contradiction.

Considering these remarks, if y does not have a Horn-SAT em-
bedding, then we do have the base case inequality (8) and we can
hope to carry out the induction. However, if ;1 does have a Horn-
SAT embedding as in Definition 2, then the embedding serves as a
violation of the inequality and we are stuck with a similar hurdle as
before. The Horn-SAT embedding leads to n-dimensional functions
=1 e g =g /g®" . b = h®"/||h®"||, with £,-norm
1, and

B |feimie)| = 1.
(x.y,2)~p®"
As before, this hinders the possibility of proving the n-dimensional
inequality (3) by induction: there is no base case inequality and
there is a counter-example if one allows functions to have £2 norm
1 instead of {0 norm 1.

We overcome this hurdle in a similar manner as before, albeit
with even more subtleness. We carefully transform the distribution
and the alphabet (X X T X ®, i) to another distribution and alphabet

(2 x T x @, ji). Formally, we show that

e If Lemma 1 (i.e. our Main Lemma/Result) holds for f, then it
also holds for p.

o All the key properties of i are retained by fi which has further
additional properties.

OThis is seen easily from the definition of a linear embedding, Definition 1. If marginal
of 1 on a subset of co-ordinates has a linear embedding, then so does y by letting the
embedding on other co-ordinates to be 0.
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In this sense, we are able to reduce our task of proving the lemma for
the original distribution y to proving the same lemma for the new
distribution fi. Now we state what additional properties /i has. For
the sake of notational convenience, we rename the new distribution
and the alphabet as (X xI' x ®, i) again. The key additional property
is stated below, referred to as the relaxed base case inequality.

DEFINITION 3. (Relaxed Base Case Inequality) Suppose a distribu-
tion 1 on X XT X ® has no linear embedding and has uniform support
onT X ®. We say that i satisfies the relaxed base case inequality if:

e There is some >’ C 3, |3'| > 2, and constants C > 0 and
0 < ¢ < 1 such that the following holds. For all t > 0, let
functions f: ¥ > R,g: T — R and h: ® — R be such that
f has variance at least r||f||§ onY’, that is

B E@ =67 >l f1l
Then
B U@ < max(t = <, O)l flalglellhle

o Furthermore, the distribution on 3’ XT'X®, derived as (x, y, z) ~
u conditioned on x € ¥/, cannot be linearly embedded.

We remark that if  did not have a Horn-SAT embedding, no
transformation is needed, and one can simply take 3’ = ¥ in the
above definition. However in general there might be a Horn-SAT
embedding and the transformation would be needed. The trans-
formation is rather subtle and while we do consider it to be one
of the key ideas, we skip the discussion here and refer to the full-
version of the paper for details. To summarize, we reduce the task
of proving our Main Lemma 1 to the same task with the additional
property that y satisfies the relaxed base case inequality, i.e. to the
task of proving the lemma stated below. In the following lemma,
properties numbered 1 and 2 are as before, 3 and 4 can be assumed
from the authors’ earlier work as discussed in Section 2.2, and that
numbered 5 is the key relaxed base case inequality.

LEmMA 2. (Main Analytical Lemma under Relaxed Base Case
Inequality) Suppose |Z|, |T'|, |®| < m and yu is a distribution over
2 X TI' X ® such that:

(1) p(x,y,2) > a for some a > 0 and all (x,y, z) € supp(p).

(2) supp(p) cannot be linearly embedded.

(3) The marginal yiyy, , is uniform and independent over T' x ®.

(4) For all (y,z) € T X @, there is a unique x € X such that

(x,y, z) € supp(p) (i.e. y, z determine x).

(5) p satisfies the relaxed base case inequality as in Definition 3.
Then for all ¢ > 0, there are &, 8 > 0 such that the following holds. If
f:Z" > [-1,1],9: T" = [-1,1] and h: ®" — [-1, 1] satisfy that
either Staby_z(g) < & or Stab;_¢(h) < &, then we have that

[f®)g(y)h(2)]| < e
(XaYsZ)ﬂU@"
2.4 The Inductive Argument (Without the
Horn-SAT Obstruction)

Armed with the “correct” relaxed base case inequality, we now give
an overview of the inductive proof (of Lemma 2). It is instructive
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and less cumbersome to first consider the special case when there
is no Horn-SAT embedding and we already have the base case
inequality as in (8). We will indicate how to incorporate the relaxed
base case inequality later. Formal proofs appear in the full-version
of the paper.

So let us focus on this special case and assume the base case
inequality (8) holds. The inductive proof proceeds in several steps.
We emphasize again that an inductive proof must necessarily work
with €5 norms of functions that arise as intermediate functions
during the induction and we have no control over their £ norms.”
We are given that either g or h has essentially high degree, so let’s
say this holds for g, formalized in terms of its low-stability. The first
step towards the inductive proof is to note that it is sufficient (and
necessary as far as our proof goes) to focus on the case when f, g, h
are homogenous functions. We will skip details regarding how this
is sufficient towards the general case. Therefore let’s assume that
f, g, h are homogenous and define the parameter

IE;(x,y,z)~;4®" [f(X)g(Y)h(Z)]
I £l llgliz 11 All2 ’

where the maximum is taken over all f: 3" — R, g: IT" — R,
h: ®" — R homogenous of degrees di, d2, d3 respectively. Since
we assumed that g had high degree, we think of dy as (roughly) the
largest among the degrees. Indeed, it is sufficient to consider the
case whend, d3 < 10dz, and we make this assumption skipping
the details. We will be able to show an exponential decay, namely

Bn.dy,dy,ds < (1= Qq,m(1)%,

completing the proof. We now describe how this exponential decay
is proved. First, we reduce the dimension n so that n < O(dy).
Then comes the core inductive argument, where we “gain" a factor
1 — Qq,m(1) in each step of the induction, reducing the degree d

sup
f.g.h

ﬂn,dl,dz,d3 =

by one, until we have reduced it to say %

Reducing Dimension: We show here that it is sufficient to consider
the case when n < O(dz) (and we already assume that dj, d3 < 10dy).
The idea is as follows. As long as n > da, we can find a coordinate
i € [n] which has very small “influence” on f, g and h; assume
without loss of generality that this co-ordinate is i = n.

If the influence was zero, then f, g and h would only be functions
of the first n — 1 co-ordinates, and hence we would conclude that
Pn.dy.dy.ds < Bn-1.d;.d,.d,» making “progress" in reducing n. How-
ever in general, that influence may be very small but still non-zero.
In that case one may write the decompositions

f=A+f, g=g1+9, h=h +F,
where fi, g1, h1 depend only on the first n — 1 co-ordinates, and
f’.g’, i’ do depend on the n'" co-ordinate but have very small
{y-norm (which is precisely what influence is). Since f’, g/, h” have
very small norm, one doesn’t expect them to contribute much, and
one still hopes to deduce that B, 4, 4,.d, < Bn-1.d,.dp.ds- Alas,
this doesn’t quite work. While their contribution is very small, it

"When there is no Horn-SAT embedding, we do not need an £ bound on the original
functions either. This is indeed the special case we are considering here. When there
is a Horn-SAT embedding, as noted before, we must somehow use the fact that the
original functions f, g, h do have £o norm at most 1. We still have no control however
over the £o norm of the intermediate functions. This issue is addressed later.
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is still non-zero, and a naive application of this idea would only
give B dy.dy.ds < Pn-1.dy,dy.dy + 0(1), and the o(1) error terms
will keep accumulating in successive inductive steps. To overcome
this difficulty, we perform a more detailed analysis, and need more
refined decompositions of f, g and h. For the sake of simplicity, we
consider only a specialized scenario that allows us to write

f = fl + fgle, g=aqg +g2g§, h= h] + hghé,
where fi, g1, h1 depend only on the first n — 1 coordinates and have
the same degrees as f, g, h, the functions f2, g2, h2 also depend only
on the first n — 1 coordinates but have degrees one less than f, g, h
respectively, and f;, g, h7, are functions that only depend on the last
coordinate and have very small £5-norm. Using this decomposition,
we can write

E
(x,y,2)~p®

[ xg(y)h()]
= LA GOg1 (3P ()]
(x.y,z)~p®n!

+ [f2(x)g2(y)h1(2)]

(x,y,2)~p®n!
+ [2(x)g1(y)h2(2)] yE;)w [f5 (x)hs(2)]

(x.y,2)~p®" *x
+ [f2(x)g2(y)h2(2)] [£;x)g5(1)h5(2)]

(x,y,2)~p®n!
+ Other terms.

E

(x,y.2

[f5x)g5(y)]

~
-1

E
(x,y,z)~p

The other terms are zero thanks to the fact that yi;), ; is uniform and
independent. The first term is the dominant term, the second and
the third terms constitute as error terms, and the fourth term can
be ignored when compared to the second and third terms. Roughly
speaking, the reason is that if ¢ denotes the small norm of f;, g5, h7,
then the corresponding expectations are of the order ¢? in the
second and third terms, and of the order &3 in the fourth term.
The second and third terms are error terms, which however can-
not be ignored altogether (as said before) and require care. Skipping
many details, it turns out that the key is to bound the expectation

E [ +hy@)].

(x,y,2)~p

This can be upper bounded by (1 — Q(1))If; ll2+/ ||g§||§ + ||h;||§

We emphasize here that this is an inequality on functions of a single
co-ordinate. It is referred to as the additive base case inequality.
Using this bound, one can obtain an effective enough bound on the
second and third terms above, somehow recover the loss from these
error terms and get that 8, 4. 4, 4, < Bn-1.d,.d,.d, @ desired.

The Core Induction: We now show the core inductive step giving
the exponential decay, namely that f,, 4, 4, 4, < (1 - Qa.m(1))%.
We assume that n < O(dz) as discussed and that dj,ds < 10ds.
Skipping details, it is sufficient to assume further that d; > Q(d)
as well. It follows from these assumptions that average influence of
a coordinate on f is % > Q(1). Let us assume that the coordinate
n has influence Q(1) on f. For the sake of simplicity, consider
furthermore only a specialized scenario that allows us to write f, g
and h as

f=Afl,  g=gqi97  h=Mhh,
where f1, g1, h1 depend only on the first n — 1 co-ordinates and have
degrees one less than f, g, h, and the functions f/, g;, h] depend
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only on the single coordinate n, and f;" has constant norm (which
amounts to the said influence). In this case, we would have that

[f(®)g(y)h(2)]
(x,y,2)~p®"
= E [A®g (@] E  [f®g;(yhi(=)].
(x.y,2)~p®"! (xy,2)~p

By the inductive hypothesis, the first term is at most the quan-
tity fn—1,d,~1,d,~1,ds—1 and by the base case inequality,we have
[Ex,y,2)~u [f{(¥)g; ()R} (2)]| < 2 =1 - Q(1). Hence we get that

Bn,dy,dy,ds < ABr—1,di-1,dy—1,d5—1
as desired, and iterating this gives an exponential decay.

In general, the main complication is that f, g and h need not take
the specialized form as above, and instead one has to decompose
them in a more complicated manner (amounting to decomposing a
tensor into a sum of mutually orthogonal rank one tensors). Using
a more complicated argument (but vaguely similar in spirit) one
can still recover that B, 4, 4, 4, < ABn—1,d,-1,dy—1,ds—1-

2.5 The Inductive Argument (Incorporating the
Relaxed Base Case Inequality)

As discussed before, in general the base case inequality (8) does not
hold and we are able to use only the relaxed base case inequality in
Definition 3. We now indicate the main modification necessary in
the inductive proof, skipping most other details from this overview.

Let 3’ C I be the subset that exhibits the relaxed base case
inequality in Definition 3. We consider the effective influence and
effective degree of the function f : " — R. We recall that the
standard influence of the i co-ordinate is

E [(f(xisxi) = fx—inx))?].
Xi,X;€X
That is, the influence is the variance of the function on the ‘%
co-ordinate after randomly restricting the rest of the co-ordinates.
We define the effective influence as
E [(f(xoinxi) = fxoix))?],
xi,x; €Y’
which is similar, except that the variance is considered only over
the subset 3.

We also indicate the related notion of the effective degree of f.
We set up a suitable orthonormal basis B of characters for (single
co-ordinate) functions in La(Z; ix). We ensure that B = B; U By
so that characters in B; span all functions that are constant on 3’
(including the All-1 function), and characters in By are zero outside
>’. The effective degree of a monomial is then the degree when only
the characters in By are counted towards the degree. The inductive
proof is now carried out assuming that f not only has high degree,
but also has high effective degree.

We do mention a crucial detail here. We do need to argue that
starting with the original function f : £ — [-1, 1] that has essen-
tially high degree, we can “reduce” to the case where it has high
effective degree as well. This argument does need that the original
functions f, g, h are £e-bounded.® As noted before, Lemmas 1, 2

80ne needs £« -boundedness also while transforming the original distribution y to
achieve additional properties.
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could simply be false (for certain distributions ) if only £2-norm
of the functions is assumed to be 1.

3 APPLICATIONS

In this section, we give a few applications of our main analytical
lemma.

3.1 Hardness of Approximation of CSPs

In this section we use our main analytical lemma to get optimal
dictatorship tests with completeness 1 for a large class of 3-ary
predicates.

DEFINITION 4. A dictatorship test for a predicate P : sk - {0,1}
can query a function f : 3" — 3. The test picks a random k X n
matrix by letting every column to be a random satisfying assignment
to P (i.e., in P~1(1), with some fixed distribution yu on P~1(1)) and
letting X1, X3, . . ., X} € X" be the rows of the matrix. The test accepts
if (f(x1), f(x2), ..., f(xx)) is also a satisfying assignment to P.

We now describe the dictatorship test that was studied in [5].
The test is given in Figure 1. The starting point is an instance ¢ of
P-CSP and let the value (i.e., maximum fraction of the constraints
that can be satisfied by an assignment) of this instance be s. The
distribution y in the test depends on the SDP solution for ¢ and we
only consider instances whose SDP value is 1.” The SDP solution
consists of vectors as well as local distribution for each constraint.
Since the SDP value is 1, all these local distributions are supported
on the satisfying assignments to P. Let y; be the local distribution
corresponding to the i h constraint of the instance. The test is as
follows. Here ¢ > 0 is a small constant independent of n.

Let P : 5 — {0, 1} be the predicate. Given f : 3" — 3,

(1) Select a constraint from ¢ according to the

weights of the constraints. Let i be the selected
constraint.

(2) Construct a k X n matrix by setting each column

of the matrix independently according to the fol-

lowing distribution: sample the column using ;.

(3) Check if P(f(x1), f(x2), ..., f(xg) = 1.

Figure 1: Dictatorship test for the predicate P.

If f is a dictator function, then the test accepts with probability
1. This follows because for every i, the distribution y; is supported
on the satsifying assignments to P and therefore every column of
the matrix is from P~1(1). A challenging task is to compute the
acceptance probability when f is far from dictator functions.

This test is exactly the same as the one given in [5]. If we use our
main analytical lemma, Lemma 1, to analyze the above dictatorship
test, then we have the following theorem on the soundness of the
above test.

THEOREM 2 (RESTATEMENT OF THEOREM 1). Let P: 33 — {0, 1}
be any predicate that satisfies the following conditions. (1) P does
not satisfy any linear embedding, and (2) there exists an instance of

9We refer the readers to [5, 20] for detailed information on the semidefinite program,
its value and the local distributions.
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P-CSP that has a (1, s)-integrality gap for the basic SDP relaxation
and every local distribution is not linearly embeddable. Then for every
e > 0, there is a dictatorship test for P that has perfect completeness
and soundness s + €.

The proof of this theorem is identical to the proof of [5, Theo-
rem1.1]. The only difference is that in the proof of [5, Theorem1.1],
Lemma 1 with the added condition that the distribution y is semi-
rich was used. As the proof is identical to the proof of [5, Theo-
rem1.1], we skip the proof of Theorem 2 in this version.

3.2 Counting Lemmas

THEOREM 2. Suppose u is a distribution over ¥ X I X ® such that
supp(y) cannot be linearly embedded. Then for all § > 0, there
existd € N, 7 > 0,& > 0 and N € N such that forn > N, if
f:3" > [0,1],9: I — [0,1], h: ®" — [0, 1] are functions with
average at least & andmax,(ll[de] L[g%9], L[h<9) <

E  [f®9yh(z)] >«
(x’yvz)N”®n

7, then

PrOOF. Let 0 < 7 < d ' < < v < k < ) < £ < §; first,
we argue that

IE':(x y,2)~u®n [f®)g(y)h(z)]-

Ex,y,z)~pen [Tl gf(X)Tl §g(Y)T1 5/’1(2)]
Here, it is understood that the operator T;_¢ applied on each one of
the functions refers to the standard noise operator with respect to
the marginal distribution of y on that coordinate. This is done by a
hybrid argument, wherein we switch at each time a single function
to a noisy version of it and bound the difference. For example, we
argue that

E
(x,y,2)~p®"
Indeed, note that

Staby (I = T1—¢)f) = IT1—y (I = Ty_) I3
<max(1-vY(1-(1-¢&Y),

J

[ - T1-p) f®)g(yh(2)] | <

LAJIQ

as these are the eigenvalues of T1—v(I — T1_¢). As { < v, these
eigenvalues smaller than «, and the bound follows from Lemma 1.
Consider the distribution p’ defined as follows:
(1) Sample (x,y,z) ~
(2) sample x’ by taking x” = x with probability V1 —v and
otherwise resample it according to jix;
(3) sample y’ by taking y’ = y with probability V1 —v and
otherwise resample it according to py;
(4) sample z’ by taking z’ = z with probability V1 - v and
otherwise resample it according to yi;
(5) output (x’,y’,z’).
Note that

E
(x,y,2)~p®"

= o B [TV 0Ty )T g

Also note that the distribution p’ is connected and each atom has
probability Q, ,(1), and also that the individual influences are at

[Ti—e fOT1_£g(y)T1—gh(z)]
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most 7 + (1 — §)d, Hence by [17, Theorem 1.14] it follows that this
expectation is at least ¢, provided 7 is small enough. O

Using regularity lemma for low-degree influences, one may re-
move the assumption on influences in some cases.

LEMMA 3. Forall @ > 0, m € N, if y is a distribution over ¥
in which each atom has probability at least a, |3| < m, then the
following holds. For alle > 0,d € N and t > 0 there exists D € N
such for every f: 3™ — [0, 1], there exists a decision tree T~ of depth
at most D such that sampling a root to path leaf in it (I, x") yields

S il <tVie[n]\I| > 1-e.

Pr
{1 ’)
Proor. We omit the full details of the proof, as it is virtually
identical to the proof of Jones’ regularity lemma [14] (see also [9]
for details). m]

THEOREM 3 (RESTATEMENT OF THEOREM 1). Suppose y is a distri-
bution over3? such that (1) the three marginal distributions iy, Hy» Pz
are identical, (2) {(x,x,x) | x € £} C supp(u), and (3) supp(u) can-
not be linearly embedded. Then for all § > 0, there exists ¢ > 0 and
N € N such that forn > N and S C 3" with |S| > §|Z|",

Pr

[xeS,yeS,zeS]>¢
(x,y,2)~p®"

ProoF. Let f = 1sand 0 < ¢ <« D! < 7 < d™! <« & <
Vv < K < 1§ < §. By Lemma 3 we may find a decision tree 7~ of
depth at most D(d, 7, §) such that sampling a path on it according
Jix, i.e. a subset I of at most D variables and x’ ~ L, we get that
Ifd[ fi—x] < 7 for all except with probability §/100. We denote
the process that samples a path on it by (I, x’).

Note that by an averaging argument, p(f7—x’) > 6/2 with prob-
ability at least §/2, hence we get that with probability at least §/4
we have that all influences are small and the average is at least §/2;
we refer to this event by E. If we denote,

Zayx) = [fiox &) fiox () fiox (2)]
(x,y,z)~pln\!
then, we get that
Pr x€eS,yeS,zeS
(x’y’z)~#®n [ y ]

E
1.x)

> B (1B e . [y - Zox) [ ¥

>50"E ) fiow 0o () fiox(2) | E]
(x.yz)~pl

> &,

where the last inequality is by Theorem 2. O

For example, Theorem 1 may be applied to find progressions
of the form (x,x + a, x + a%) in dense subsets of F”; we omit the
details.
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