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ABSTRACT

Let Σ be an alphabet and µ be a distribution on Σ
k for some k ⩾ 2.

Let α > 0 be the minimum probability of a tuple in the support of

µ (denoted supp(µ)). Here, the support of µ is the set of all tuples

in Σ
k that have a positive probability mass under µ. We treat the

parameters Σ,k, µ,α as �xed and constant.

We say that the distribution µ has a linear embedding if there

exist an Abelian group G (with the identity element 0G ) and map-

pings σi : Σ → G, 1 ⩽ i ⩽ k , such that at least one of the map-

pings is non-constant and for every (a1,a2, . . . ,ak ) ∈ supp(µ),
∑k
i=1 σi (ai ) = 0G .

Let fi : Σ
n → [−1, 1] be bounded functions, such that at least one

of the functions fi essentially has degree at least d , meaning that

the Fourier mass of fi on terms of degree less than d is negligible,

say at most δ . In particular, |E[fi ]| ⩽ δ . The Fourier representation

is w.r.t. the marginal of µ on the ith co-ordinate, denoted (Σ, µi ).
If µ has no linear embedding (over any Abelian group), then is it

necessarily the case that

|E(x1,x2, ...,xk )∼µ⊗n [f1(x1)f2(x2) · · · fk (xk )] = od ,δ (1),

where the right hand side→ 0 as the degree d → ∞ and δ → 0?

In this paper, we answer this analytical question fully and in the

a�rmative for k = 3. We also show the following two applications

of the result. The �rst application is related to hardness of approx-

imation. We show that for every 3-ary predicate P : Σ3 → {0, 1}
such that P has no linear embedding, an SDP integrality gap instance

of a P-CSP instance with gap (1, s) can be translated into a dictator-

ship test with completeness 1 and soundness s +o(1), under certain
additional conditions on the instance. The second application is

related to additive combinatorics. We show that if the distribution

µ on Σ
3 has no linear embedding, marginals of µ are uniform on

Σ, and (a,a,a) ∈ supp(µ) for every a ∈ Σ, then every large enough

subset of Σn contains a triple (x1, x2, x3) from µ⊗n (and in fact a

signi�cant density of such triples).
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1 INTRODUCTION

The motivation for this paper is to study the following quantity

associated with the product of functions f1, f2, . . . , fk : Σn → R,

E
(x1,x2, ...,xk )∼µ⊗n

[f1(x1)f2(x2) · · · fk (xk )], (1)

where each coordinate of (x1, x2, . . . , xk ) is distributed indepen-

dently, according to the same distribution µ on Σ
k . We assume

that all the functions are bounded, i.e., ∥ fi ∥∞ ⩽ 1. This expression

appears naturally in many areas including additive combinatorics,

social choice, pseudorandomenss and hardness of approximation.

Here are a few examples.

(1) Example 1: For 1 ⩽ i ⩽ 3, let fi : Znp → {0, 1} be the

indicator functions of the setsAi ⊆ Znp . Let µ be the uniform

distribution on the three-term arithmetic progressions (x, x+
y, x + 2y) in Zp . Then the quantity

E
(x1,x2,x3)∼µ⊗n

[f1(x1)f2(x2)f3(x3)],

up to a normalization factor, precisely counts the number

of arithmetic progressions (x1, x2, x3) from Znp such that

xi ∈ Ai for every i ∈ [3].
(2) Example 2: Consider a Boolean function f : {−1,+1}n →

{−1,+1}. For a given ρ ∈ [−1, 1], the stability of f , Stabρ (f ),
is de�ned as E [f (x)f (y)] where for each i ∈ [n], xi and yi
are uniformly distributed, and E [xiyi ] = ρ. The Majority is

Stablest Theorem [18], which is instrumental in the area of

hardness of approximation and the theory of social choice,

is about estimating Stabρ (f ) for the class of so-called low-

in�uence functions.

(3) Example 3: Fix a predicate P : Σk → {0, 1} and a distribution
µ on Σ

k . Dictatorship tests corresponding to a predicate P

and a distribution µ are extensively studied in hardness of

approximation. Here, one is given a function f : Σn → Σ

and the acceptance probability of the test is precisely

Pr
(x1,x2, ...,xk )∼µ⊗n

[

(f (x1), f (x2), · · · f (xk )) ∈ P−1(1)
]

.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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One is interested in estimating this probability for the class

of low in�uence functions. Using the multilinear expansions

of P and f , the above expectation can be expressed as a linear

combination of expectations of the form (1).

Let c = Pr(a1,a2, ...,ak )∼µ [(a1,a2, . . . ,ak ) ∈ P−1(1)]. It is
seen that the test accepts any Dictatorship function, namely

functions of the form f (x) = xi0 for a �xed co-ordinate

i0 ∈ [n], with probability c . While tests with imperfect

completeness, namely with c < 1, are interesting and well-

studied in hardness of approximation,1 in the current pa-

per, we exclusively focus on tests with perfect completeness,

namely with c = 1. That is, we assume that supp(µ) ⊆ P−1(1).
In fact, we will generally assume that µ has full support, i.e.

supp(µ) = P−1(1) and then talk interchangeably in terms

of either the predicate P or the distribution µ. In terms of

hardness of approximation, this amounts to studying ap-

proximability of Constraint Satisfaction Problems (CSPs) on

(fully) satis�able instances, and this indeed has been the

main motivation for authors’ work in [5], continuing in the

current paper.

One way to analyze the expectation from (1) is to write each

function fi as the sum of two functions дi + hi , where дi is the

structured part of fi and hi is the remaining unstructured part (re-

sembling noise). The idea is that whenever the term hi appears in

the product of functions, then the expectation is negligible. There-

fore, the expectation can be estimated by replacing each fi by its

structured part дi . For instance, in Example 1, Roth’s Theorem [22]

estimates the desired density of arithmetic progressions; therein,

the structured part is taken as all the heavy-weight Fourier terms

of fi . It is shown that the contribution of the unstructured part is

negligible; formally, if we let f̂i be the Fourier terms of fi , then we

have

�

�

�

�

�

E
(x1,x2,x3)∼µ⊗n

[f1(x1)f2(x2)f3(x3)]
�

�

�

�

�

⩽ min
1⩽i⩽3

∥ f̂i ∥∞.

On the other hand, it is often useful (especially in hardness of

approximation) to take the structured part as the low-degree part of

fi . In this case, after replacing the functions fi by their low degree

parts дi , provided that дi are low in�uence functions, it is possible

to estimate the expectation well using invariance principles. Here,

one replaces the discrete inputs from Σ
n by Gaussian inputs and

then the expectation is estimated using bounds in the Gaussian

space. Still, the question remains as to when one can argue that the

expectation is negligible for the unstructured, i.e. the high-degree,

part of the functions.

Speci�cally, one is naturally led to the following analytic ques-

tion.

�estion 1. (Informal) Find the necessary and su�cient condition

on the distribution µ on Σ
k , such that

�

�

�

�

�

E
(x1,x2, ...,xk )∼µ⊗n

[f1(x1)f2(x2) · · · fk (xk )]
�

�

�

�

�

→ 0 as d → ∞,

(2)

1Indeed, Example 2 corresponds to the hardness of approximation result for the Max-
Cut problem. Here the predicate is x , y over a binary alphabet, µ is the ρ-correlated

distribution on {−1, 1}2 as mentioned, completeness c =
1−ρ
2 , and −1 < ρ < 0.

where the functions are bounded in [−1, 1] and at least one function
(essentially) has degree at least d .

Mossel [17] showed a su�cient condition: if the distribution

µ is connected, then Conclusion (2) as above holds. The connect-

edness condition is de�ned as follows: for every pair of tuples

(a1,a2, . . . ,ak ) ∈ supp(µ) and (a′1,a
′
2, . . . ,a

′
k
) ∈ supp(µ), there is a

way to convert the �rst tuple to the second by replacing only one

coordinate at a time such that every intermediate tuple remains in

supp(µ).
The connectedness condition however is not necessary. An ex-

ample is noted implicitly in [4]. LetG be a non-Abelian group with

no dimension one representation. Consider the group-equation

predicate P : G3 → {0, 1}, P−1(1) = {(x,y, z)|x · y · z = 1G }, along
with the distribution µ that is uniform on P−1(1). The distribution
µ is (clearly) not connected and Conclusion (2) still holds as can be

shown using basic representation theory.

A certain necessary condition was observed in [5] (for Con-

clusion (2) to hold), namely that the distribution µ has no linear

embedding as de�ned below. To illustrate that this condition is

necessary, one considers the contra-positive: if the distribution µ

does have a linear embedding (in particular, it is not connected),

then there do exist high-degree, bounded functions that make the

expectation in (2) non-negligible.

Definition 1. We say that a distribution µ on Σ
k has a linear

embedding (or that µ satis�es a linear equation or simply that µ is

linear) if there exists an Abelian group G and mappings σi : Σ → G,

1 ⩽ i ⩽ k , such that (i) at least one of the maps σi is non-constant

and (ii) for every (a1,a2, . . . ,ak ) ∈ supp(µ), ∑k
i=1 σi (ai ) = 0G .

The illustration is as follows. Suppose µ does have a linear em-

bedding as in the de�nition. We show that it is possible to achieve

non-negligible expectation in (2). To see this, let χ be any non-

trivial character of the Abelian groupG , namely a non-trivial group

homomorphism χ : G → C, and de�ne fi (xi ) =
∏n

j=1 χ (σi ((xi )j )).
Now,

f1(x1)f2(x2) · · · fk (xk ) =
k
∏

i=1

n
∏

j=1

χ (σi ((xi )j ))

=

n
∏

j=1

k
∏

i=1

χ (σi ((xi )j ))

=

n
∏

j=1

χ

(

k
∑

i=1

σi ((xi )j )
)

=

n
∏

j=1

χ (0G )

= 1.

Here one uses the multiplicativity of the character χ and that

χ (0G ) = 1. For every 1 ⩽ j ⩽ n, we have
∑k
i=1 σi ((xi )j ) = 0G

noting that the tuple ((x1)j , . . . , (xk )j ) ∈ supp(µ) and using the def-
inition of the linear embedding. Moreover, for large n, whenever σi
is non-constant, the corresponding fi is a (essentially) high-degree

function.2

2The functions here are complex valued with absolute value 1; one can take their real
part if one insists on having real valued functions.
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Motivated by these examples and certain long-term applications

to approximability of constraint satisfaction problems (CSPs) on sat-

is�able instances, authors of [5] hypothesized that the non-linearity

is indeed the necessary and su�cient condition. We state the hy-

pothesis below.

Hypothesis 1. (Informal): The necessary and su�cient condition

on a distribution µ on Σ
k so that the Conclusion (2) holds is that µ

has no linear embedding over any Abelian group.

In [5], the authors were able to prove the hypothesis for a sub-

class of 3-ary predicates referred to therein as semi-rich predicates. A

predicate P : Σ3 → {0, 1} is called semi-rich if for each (x,y) ∈ Σ×Σ,
there exists a z ∈ Σ such that (x,y, z) ∈ P−1(1) and also, for every

(x, z) ∈ Σ × Σ, there exists a y ∈ Σ such that (x,y, z) ∈ P−1(1).
We recall that while considering predicates, we always have an

underlying distribution µ (in this case on Σ
3) such that supp(µ) =

P−1(1) and we may interchangeably talk in terms of either the

predicate P or the distribution µ.

In this paper, we prove the hypothesis for all 3-ary predicates.

The result, referred to as the Main Lemma in the rest of the paper,

is stated below. It is more convenient (and general) to work with

distributions µ on Σ × Γ × Φ, allowing a di�erent alphabet for each

co-ordinate. In this case, a linear embedding consists of maps into

an Abelian group G, σ : Σ → G, γ : Γ → G, ϕ : Φ → G, not all

constant, such that σ (x)+γ (y)+ϕ(z) = 0G for all (x,y, z) ∈ supp(µ).
We assume, unless stated otherwise, that the marginals of µ have

full support on Σ, Γ,Φ respectively. In the following, m denotes

the maximum size of Σ, Γ,Φ and α > 0 denotes the minimum

probability of a tuple in supp(µ). We always treat µ as �xed and

m,α as �xed constants.

Lemma 1 (Main Analytical Lemma). Suppose |Σ| , |Γ | , |Φ| ⩽ m

and µ is a distribution over Σ × Γ × Φ such that

• The support of µ cannot be linearly embedded.

• µ(x,y, z) ⩾ α for some α > 0 and all (x,y, z) ∈ supp(µ).
• Marginals of µ (denoted as µx , µy , µz resp.) have full support

on Σ, Γ,Φ respectively.

Considering m and α as �xed, for all ε > 0, there are ξ , δ > 0

such that the following holds. If f : Σn → [−1, 1], д : Γn → [−1, 1],
h : Φn → [−1, 1] and Stab1−ξ (h; µz ) ⩽ δ , then we have that

�

�

�

�

�

E
(x,y,z)∼µ⊗n

[f (x)д(y)h(z)]
�

�

�

�

�

⩽ ε .

We clarify the condition that Stab1−ξ (h) ⩽ δ . Note that we

have dropped µz from the notation for convenience. The parameter

Stab1−ξ (h) denotes the stability of h under the noise parameter ξ . It

is de�ned as
〈

h,T1−ξh
〉

whereT1−ξ is the standard Beckner (noise)

operator. We refer to the full-version of the paper for all analytic

de�nitions and basic tools.

The condition that Stab1−ξ (h) ⩽ δ serves as a proxy for the

condition that the function h is essentially of high degree. Indeed,

if Stab1−ξ (h) ⩽ δ , it implies that the Fourier mass of h on terms

of degree less than 1
ξ
is at most O(δ ). Conversely, if the Fourier

mass on terms of degree less than O( 1
ξ
log( 1

δ
)) is at most δ

2 , then

Stab1−ξ (h) ⩽ δ . Hence the low-stability condition is a proxy for

the high-degree condition and turns out to be more convenient to

work with.

One may wonder when a function h is bounded in [−1, 1] as well
as essentially of high degree. A natural example is when h′ : Φn →
[−1, 1] is an arbitrary function and h = h′ − T1−ξh

′. In this case,

since h′ is bounded and T1−ξ is an averaging operator, h is also

bounded. In addition, the operator T1−ξ , roughly speaking, retains

only the low-degree part of h′, and hence h = h′ −T1−ξh
′, roughly

speaking, corresponds to the high-degree part of h′. More precisely,

the Fourier mass of h on terms of degree less than δ
ξ
is at most

δ .3 In applications, it is almost always the case that the lemma is

applied with h = h′ −T1−ξh
′ for some bounded function h′. One

refers toh as a soft-truncation ofh′, as opposed to a hard-truncation
that would simply drop terms of degree less than a certain degree

threshold. The advantage of using soft-truncation is that it preserves

boundedness of functions whereas the hard-truncation in general

does not.

Applications. In this section, we state a couple of applications of

our main analytical lemma.

Hardness of approximation: Our �rst application is new results

on dictatorship tests from integrality gap instances of constraint

satisfaction problems (CSPs). Given a predicate P : Σk → {0, 1},
for some alphabet Σ, a P-CSP instance consists of a set of variables

x1, x2, . . . , xn and a collection of local constraints C1,C2, . . . ,Cm .

Each constraint is of the type P(xi1 , xi2 , . . . , xik ). The constraints
might involve literals instead of just the variables. An algorith-

mic task is to decide if there exists an assignment to the variables

that satis�es all the constraints. In a related problem, called the

Max-P-CSP problem, the task is to �nd an assignment to the vari-

ables that satis�es the maximum fraction of the constraints. An

α-approximation algorithm is a polynomial-time algorithm which

always returns an assignment that satis�es at least α · Opt frac-

tion of the constraints, where Opt is the value of the optimum

assignment.

Assuming the Unique Games Conjecture [15], Raghavendra [21]

gave optimal hardness of approximation result for every Max-P-

CSP. His work can be succinctly described as a two-step scheme:

SDP integrality gap =⇒ A dictatorship test =⇒
A hardness of approximation result.

However in his work, one necessarily loses perfect completeness

and the hardness result does not hold on CSP instances that are

(fully) satis�able.

In order to prove hardness results on satis�able instances, one

would need a similar scheme that preserves perfect completeness

in both the steps. Towards this goal, the Rich 2-to-1 Games Conjec-

ture was introduced in [7] and further explored in [6]. Under this

conjecture, [6, 7] showed how to convert, in certain speci�c cases,

dictatorship test with completeness 1 and soundness s to a hardness

result on satis�able CSP instances with hardness threshold s + ε ,

for every constant ε > 0. This result can be interpreted as ful�lling

the second step in the scheme above (albeit only morally speaking,

since the implication is not entirely seamless and general yet).

3Given the connection between stability and degree before, h also has low stability,
albeit with somewhat di�erent parameters.
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It thus remains to ful�ll the �rst step in the schemewhile preserv-

ing perfect completeness. The authors [5] made progress on this

question, showing that a (1, s) integrality gap instance for certain

CSPs can be converted into a dictatorship test with completeness 1

and soundness s+ε . Their result however was limited to (non-linear)

3-ary predicates satisfying the aforementioned semi-richness con-

dition, and this was because in [5], the authors were able to prove

analytic Lemma 1 only under the additional semi-richness condi-

tion. Since we are now able to prove the lemma for all (non-linear)

3-ary predicates, we now get the intergality gap to dictatorship test

implication for all such predicates. The formal statement of our

result appears below (one wishes that the condition (2b) therein

could be dropped; if so, we would have a full-proof implication).

For de�nitions and amore detailed discussion, we refer to Section

3 and the introductory section of [5].

Theorem 1. Let P : Σ3 → {0, 1} be any predicate that satis�es the
following conditions: (1) P has no linear embedding, (2a) there exists

an instance of Max-P-CSP that has a (1, s)-integrality gap for the

basic SDP relaxation, (2b) on every constraint, the local distribution

in the SDP solution is not linearly embeddable. Then for every ε > 0,

there is a dictatorship test for P-CSP that has perfect completeness

and soundness s + ε .

Counting Progressions: In additive combinatorics, �nding a cer-

tain �xed progression (i.e. a pattern) in a subset of a given group is

a cornerstone question. Such questions have had huge implications

in understanding the pseudo-random properties of subsets of a

group. Below we list a few of these results answering this question

in di�erent settings.

Fix a �nite Abelian group (G,+). A subset A ⊆ G is said to

be three term arithmetic progression (3-AP) free if there is no

arithmetic progression of size 3 in A. In other words, there are

no elements x,y, z ∈ A such that x + z = 2y. The famous Roth’s

Theorem [22] shows that any 3-AP free subset of ZN must be of

size o(N ). In the contrapositive, any constant density subset of ZN
contains a 3-term AP. Szemerédi [23] generalized Roth’s Theorem

to any k-term AP. In these and similar results quoted next, one

actually shows that a density δ subset of the group contains an ε

fraction of all the progressions; the precise dependence of ε as a

function of δ is also interesting, but for the sake of conciseness, we

skip quantitative statements to that e�ect.

Now let (G, ·) be a �nite group that is not necessarily Abelian.

A subset of G is called product free if it does not contain three

elements x,y, z with x · y = z. If G is any Abelian group, then

it is easy to come up with product-free sets of constant density.

Gowers [12] showed that this is not true for a class of non-Abelian

groups called quasirandom groups.4 That is, every constant density

subset of a quasirandom group contains the progression (x,y, xy).
Tao [24] extended Gowers’ result to other progressions of the form

(x, xд, xд2) and (x, xд, xд2, xд3) for some very speci�c quasiran-

dom groups. Bergelson and Tao [2] established it for progressions

(x, xд,дx) and (д, x, xд,дx) for every quasirandom group. Recently,

following the work by Peluse [19], Bhangale, Harsha and Roy [3]

established it for the progression (x, xд, xд2) for every quasirandom
group. In a high-dimensional setting, �nding the largest size of the

4A group (or rather a family of groups) is quasirandom if the minimum dimension of
any non-trivial group representation grows with the size of the group.

3-AP free set in Fn3 has received considerable attention [1, 8, 16].

Ellenberg and Gijswijt [11], building on a beautiful work by Croot,

Lev, Pach [10], obtained a substantial quantitative improvement

over Roth’s Theorem (applied to Fn3 ).

We now state our general theorem that establishes a similar

result in high-dimensional setting for arbitrary 3-ary progression

provided that the progression has no linear embedding (along with

a couple of other conditions).

Theorem 1. Suppose µ is a distribution over Σ3 such that (1) the

marginal distributions µx , µy , µz are uniform on Σ, (2) {(x, x, x) | x ∈
Σ} ⊆ supp(µ), and (3) supp(µ) cannot be linearly embedded. Then

for all δ > 0, there exists ε > 0 such that for S ⊆ Σ
n with |S | ⩾ δ |Σ|n ,

Pr
(x,y,z)∼µ⊗n

[x ∈ S, y ∈ S, z ∈ S] ⩾ ε .

Note that the condition (2) is necessary for such a conclusion

to hold. This can be seen by the following example. Consider Σ =

{0, 1, 2} and µ be uniform on Σ3\{(0, 0, 0}. It is easy to check that µ is
not linearly embeddable. Now, if we take S ⊆ Σ

n to be S = {x ∈ Σ
n |

x1 = 0}, then clearly the conclusion does not hold. Our theorem

is comparable to the result by Hązła, Holenstein and Mossel [13]

with the same conclusion under the additional condition that the

distribution µ is connected. As there are distributions that are not

linearly embeddable as well as not connected, Theorem 1 extends

their result.

2 TECHNIQUES

In this section, we elaborate on the ideas involved in the proof of

Lemma 1. We focus only on a few high-level ideas here. Since we

will skip many technical (and even conceptual) details, there might

be some discrepancies between the high-level exposition here and

formal proofs appearing later.

Let µ be a distribution on Σ × Γ × Φ such that supp(µ) is not
linearly embeddable. We wish to show that

�

�

�

�

�

E
(x,y,z)∼µ⊗n

[f (x)д(y)h(z)]
�

�

�

�

�

≈ 0, (3)

where f : Σn → [−1, 1], д : Γn → [−1, 1], h : Φn → [−1, 1], are
ℓ∞-bounded and at least one of the functions essentially has high

degree. We begin by sketching Mossel’s proof [17] that works in

the 2-ary case, i.e. for a (non-linear) distribution µ on Σ × Γ. This

will help us understand various hurdles and new ideas needed to

overcome these hurdles in our proof of the 3-ary case as above.

2.1 The 2-ary Case: Sketch of Mossel’s Proof

Let µ be a distribution on Σ × Γ such that supp(µ) is not linearly
embeddable. It is easily seen that the non-linearity condition, in

this special 2-ary case, is same as saying that supp(µ), viewed as a

bipartite graph Gµ on the vertex set Σ ∪ Γ, is connected. Indeed, if

this graph were disconnected, with componentsC0∪D0, . . . ,Cr−1∪
Dr−1, then an embedding σ : Cj → j , γ : D j → −j is an embedding

of Σ and Γ respectively into Zr and for all (x,y) ∈ supp(µ) (i.e. the
edges of the graph Gµ ), we have σ (x) + γ (y) = 0 in Zr .

We intend to show that if f : Σ
n → R,д : Γ

n → R are n-

dimensional ℓ∞-bounded functions where д has high degree, then
�

�

�E(x,y)∼µ⊗n [f (x)д(y)]
�

�

� is small. For simplicity of exposition, we
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assume that д in fact has full degree n.5 In this case, we are able

to show that
�

�

�E(x,y)∼µ⊗n [f (x)д(y)]
�

�

� ⩽ (1 − τ )n ∥ f ∥2∥д∥2 for some

constant τ = τ (µ) > 0. We emphasize here that one gets an upper

bound in terms of the ℓ2-norm of the functions. This of course

implies an upper bound in terms of the ℓ∞-norms. Thus we really

do not need the n-dimensional functions to be ℓ∞-bounded in the

2-ary case. This is one aspect (among many) in which the 3-ary case

is fundamentally di�erent, where one does need the n-dimensional

functions to be ℓ∞-bounded (as we will soon demonstrate via an

example).

Continuing the consideration of the 2-ary case, the proof pro-

ceeds in two steps: �rst establishing a base case inequality (for

n = 1) and then observing that the inequality tensorizes, leading to

an inductive proof and the desired bound for the general case of

n-dimensional functions. The base case inequality is necessarily an

ℓ2-inequality and this fact is essential for the inductive proof (and

the same holds in the 3-ary case).

Towards stating the base case inequality, let f : Σ → R,д : Γ →
R be functions. By Cauchy-Schwarz,

�

�

�

�

�

E
(x ,y)∼µ

[f (x)д(y)]
�

�

�

�

�

⩽ ∥ f ∥2∥д∥2.

We refer to this essentially trivial inequality as the (base case) sanity

check inequality. The inequality that is actually needed is that when

E [f ] = E [д] = 0, we in fact have the improvement
�

�

�

�

�

E
(x ,y)∼µ

[f (x)д(y)]
�

�

�

�

�

⩽ (1−τ )∥ f ∥2∥д∥2, E [f ] = E [д] = 0, (4)

for some constant τ = τ (µ) > 0. It is not di�cult to see that this fol-

lows from the connectedness of the distribution µ (or equivalently

the graphGµ ), but we skip the proof. An equivalent way to express

the inequality is that the operator T : L̃2(Γ; µy ) → L̃2(Σ; µx ) de-
�ned as Tд(x) = E(x ′,y)∼µ [д(y)|x ′ = x] has operator norm at most

1−τ . Here L̃2(Γ; µy ) denotes the subspace of L2(Γ; µy ) consisting of
those functions д for which E [д] = 0 (and similarly for L̃2(Σ; µx )).
The operator norm of T , denoted ∥T ∥ = maxд:E[д]=0 ∥Tд∥2/∥д∥2,
is at most 1 − τ according to the equivalent interpretation of the

inequality (4), which can then be derived as:
�

�

�

�

�

E
(x ,y)∼µ

[f (x)д(y)]
�

�

�

�

�

= |⟨f ,Tд⟩|

⩽ ∥ f ∥2∥Tд∥2
⩽ ∥ f ∥2∥T ∥∥д∥2 ⩽ (1 − τ )∥ f ∥2∥д∥2.

Now we consider the n-dimensional case. Let f : Σn → R,д :

Γ
n → R be n-dimensional functions. As mentioned before, we

assume that д has full degree, which amounts to saying that д ∈
L̃2(Γ; µy )⊗n . In this case, it follows directly that

�

�

�

�

�

E
(x,y)∼µ⊗n

[f (x)д(y)]
�

�

�

�

�

⩽ (1 − τ )n ∥ f ∥2∥д∥2,

using the well-known fact that the operator norm is multiplicative

(i.e. it tensorizes), namely that ∥T ⊗n ∥ = ∥T ∥n ⩽ (1 − τ )n . Using
5This amounts to saying that after restricting any n − 1 co-ordinates, the expectation
of д over the remaining co-ordinate is zero.

this fact, one immediately concludes that
�

�

�

�

�

E
(x,y)∼µ⊗n

[f (x)д(y)]
�

�

�

�

�

=

�

�

〈

f ,T ⊗nд
〉�

�

⩽ ∥ f ∥2∥T ⊗nд∥2
⩽ ∥ f ∥2∥T ⊗n ∥∥д∥2 ⩽ (1 − τ )n ∥ f ∥2∥д∥2,

as desired. If one wishes, one can prove the multiplicativity of oper-

ator norm by induction and view the overall proof as an inductive

proof, using the base case inequality (4) and “gaining" a factor 1−τ

in each step of the induction. While we don’t demonstrate it here,

we mention it because the proof for the 3-ary case proceeds along

similar lines, albeit with many conceptual and technical hurdles.

Therein, it is rather challenging even to formulate the “correct"

base case inequality.

2.2 Towards 3-ary Base Case: Restoring Sanity
First

Moving onto the 3-ary case, let µ be a distribution on Σ× Γ×Φ such

that supp(µ) is not linearly embeddable. One hopes to write down a

suitable base case inequality and use it towards an inductive proof.

However, it turns out that even the sanity check inequality fails in

general! That is, for f : Σ → R,д : Γ → R,h : Φ → R, while we
desire a base case inequality (say when E [f ] = 0) of the form

�

�

�

�

�

E
(x ,y,z)∼µ

[f (x)д(y)h(z)]
�

�

�

�

�

⩽ (1 − τ )∥ f ∥2∥д∥2∥h∥2, (5)

it may actually happen that
�

�

�

�

�

E
(x ,y,z)∼µ

[f (x)д(y)h(z)]
�

�

�

�

�

> ∥ f ∥2∥д∥2∥h∥2.

In other words, we may not even have the upper bound of the ex-

pression ∥ f ∥2∥д∥2∥h∥2 in the 3-ary case whereas the corresponding
upper bound in the 2-ary case is the essentially trivial application

of Cauchy-Schwarz! Here is an example.

Suppose that Σ = Γ = Φ, |Σ| =m ⩾ 54, and µ has a probability

mass of 1 − ε uniformly spread on the triples {(x, x, x)|x ∈ Σ} and
the remaining probability mass of ε uniformly spread on all the

remaining triples in Σ
3. Clearly, supp(µ) = Σ

3 and hence µ is not

linearly embeddable. The marginals of µ are uniform on Σ. We can

certainly construct a function f : Σ → R such that E [f (x)] = 0 and

E

[

f (x)3
]

> ∥ f ∥32 . For instance, f could take the values 2m,−m,−m
at three distinct points in Σ and zero at the remaining points in Σ.

In this case, E [f (x)] = 0,E
[

f (x)2
]

= 6m, and E
[

f (x)3
]

= 6m2,

and thus E
[

f (x)3
]

⩾

√

m/6 · ∥ f ∥32 ⩾ 3 ∥ f ∥32 . Letting f = д = h

and recalling that the triples (x, x, x) receive 1− ε of the probability

mass, it follows that

E
(x ,y,z)∼µ

[f (x)д(y)h(z)] ⩾ (1 − ε)E
[

f (x)3
]

− ε ·Om (1)

⩾ 2 · ∥ f ∥32 = 2 · ∥ f ∥2∥д∥2∥h∥2,

by making ε su�ciently small. This example also shows that in

order to claim the desired bound for n-dimensional functions as

in Equation (3), we must use the fact that the functions are ℓ∞-

bounded (i.e. in [−1, 1])! Indeed, consider the same example here
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and let n-dimensional functions f̃ = д̃ = h̃ : Σn → R be all equal

to f ⊗n/∥ f ⊗n ∥2. Then these have all ℓ2-norm 1, whereas

E
(x,y,z)∼µ⊗n

[

f̃ (x)д̃(y)h̃(z)
]

= E
(x ,y,z)∼µ

[f (x)д(y)h(z)]n · 1

∥ f ∥3n2
⩾ 2n .

We thus face a seemingly intractable hurdle and a contradictory

set of constraints: (i) we do need the ℓ∞-boundedness of the n-

dimensional functions, (ii) an inductive proof is some form of

tensorization argument and hence inherently an ℓ2-proof; conse-

quently, the intermediate functions arising during the induction

can only be assumed to have ℓ2 norm at most 1, (iii) the induc-

tive argument requires a base case ℓ2-inequality such as (5) which

actually happens to fail miserably!

We now show how to overcome this hurdle step-by-step. This is

achieved in a round-about manner, by carefully transforming the

distribution and the alphabet (Σ × Γ × Φ, µ) to another distribution

and alphabet (Σ̃ × Γ̃ × Φ̃, µ̃). Formally, we show that

• If µ was not linearly embeddable to begin with, then µ̃ isn’t

either.

• If Lemma 1 (i.e. our Main Lemma/Result) holds for µ̃, then it

also holds for µ.

In this sense, we are able to reduce our task of proving the lemma for

the original distribution µ to proving the same lemma for the new

distribution µ̃. In fact, there will be a series of such transformations.

The (�rst) transformation will ensure that the marginal of µ̃ on Γ̃×Φ̃
is a uniform, product distribution. Once we have this additional

property, we at least have the (base case) sanity check inequality

as demonstrated next. For the sake of notational convenience, we

rename the new distribution and the alphabet again as (Σ×Γ×Φ, µ)
and assume that the marginal of µ on Γ × Φ is a uniform, product

distribution. If so, it is easily seen that we get the (base case) sanity

check inequality, namely that for f : Σ → R,д : Γ → R,h : Φ → R,
we have

�

�

�

�

�

E
(x ,y,z)∼µ

[f (x)д(y)h(z)]
�

�

�

�

�

⩽ ∥ f ∥2∥д∥2∥h∥2.

Indeed, by Cauchy-Schwarz,

E
(x ,y,z)∼µ

[f (x)д(y)h(z)]2 (6)

⩽ E
x∼µx

[

f (x)2
]

E
(y,z)∼µy ,z

[

д(y)2h(z)2
]

= E
x∼µx

[

f (x)2
]

E
y∼µy

[

д(y)2
]

E
z∼µz

[

h(z)2
]

= ∥ f ∥22 ∥д∥
2
2 ∥h∥

2
2 , (7)

where in the second step, we used the property that (y, z) are
uniform and independent! It is also possible to ensure (after the

transformation) another property of µ that is quite convenient:

for all pairs (y, z) ∈ Γ × Φ, there is a unique x ∈ Σ such that

(x,y, z) ∈ supp(µ) (we then say that (y, z) determine x ). The details

of this transformation and related proofs appear in the full-version

of the paper are borrowed from authors’ earlier work [5].

2.3 The 3-ary Relaxed Base Case: Overcoming
the Horn-SAT Obstruction

We will henceforth assume that the distribution µ on Σ × Γ × Φ

has no linear embedding and has uniform marginal on Γ × Φ. Now

that we at least have the sanity check inequality, we ask ourselves

whether we can claim the desired base case inequality as below:

�estion 2. (Desired, Hypothetical Base Case Inequality:) If µ

has no linear embedding and has uniform marginal on Γ × Φ, is it

necessarily the case that for f : Σ → R,д : Γ → R,h : Φ → R,
�

�

�

�

�

E
(x ,y,z)∼µ

[f (x)д(y)h(z)]
�

�

�

�

�

⩽ (1 − τ (θ ))∥ f ∥2∥д∥2∥h∥2, (8)

where |E [f ]| ⩽ (1 − θ )∥ f ∥2. To avoid the trivial case when f ,д,h

are all constant functions, we added here the condition that f is

non-constant and has some variance, the condition captured by the

requirement |E [f ]| ⩽ (1 − θ )∥ f ∥2.

Wenote that such a base case inequality seems necessary towards

an inductive proof since one hopes to “gain" a factor of 1−τ in each

step of the induction. However it turns out that such an inequality

need not necessarily hold and there could be an obstruction that we

refer to as the Horn-SAT obstruction (and this is the only possible

obstruction).

Definition 2. Assume that a distribution µ on Σ × Γ × Φ has

no linear embedding and its marginal on Γ × Φ is unform. We say

that µ has a Horn-SAT embedding if there are Boolean functions

f : Σ → {0, 1}, д : Γ → {0, 1}, h : Φ → {0, 1}, such that

• For all (x,y, z) ∈ supp(µ), we have f (x) = д(y)h(z).
• f is non-constant (and in that case so must be д and h).

The condition f (x) = д(y)h(z) for Boolean functions is equiva-

lent to the conjunction of clauses f (x) ∨ д(y), f (x) ∨ h(z), f (x) ∨
д(y) ∨h(z). These are all Horn-SAT clauses (i.e. having at most one

positive literal), explaining the term Horn-SAT embedding. We now

make several remarks towards understanding how a Horn-SAT

embedding is an obstruction towards the desired inequality (8) and

how it is the only possible obstruction.

• Firstly, we note that having a Horn-SAT embedding vio-

lates inequality (8). Indeed, since f (x) = д(y)h(z) in supp(µ)
and (y, z) are uniform and independent, we have ∥ f ∥2 =
∥д∥2∥h∥2 and then

E
(x ,y,z)∼µ

[f (x)д(y)h(z)] = E
(y,z)∼µy ,z

[

д(y)2h(z)2
]

= ∥д∥22 ∥h∥
2
2 = ∥ f ∥2∥д∥2∥h∥2.

One also notes that since f is Boolean and non-constant, it

does have constant variance.

• Secondly, we note that if the inequality (8) is not possible,

then there is necessarily a Horn-SAT embedding. A sketch of

the proof is as follows. For a �xed θ , suppose that there are

functions that violate the inequality for all τ → 0. Then by

standard compactness argument, there are three functions

f : Σ → R, д : Γ → R, h : Φ → R, such that

E
(x ,y,z)∼µ

[f (x)д(y)h(z)] = ∥ f ∥2∥д∥2∥h∥2,
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i.e. achieving an exact equality. This means that the applica-

tion of Cauchy-Schwarz in Equation (7) must be tight and

therefore f (x) = д(y)h(z) in supp(µ) (as equality of real num-

bers). If f (x) is always non-zero, then so are д(y) and h(z).
In this case, if at least one of f ,д,h has a non-constant sign

(i.e. positive and negative), then turning f (x),д(y),h(z) into
their {+1,−1}- signs, we have

sign(f (x)) = sign(д(y))sign(h(z)),

which yields a linear embedding of µ, a contradiction. On the

other hand, if f ,д,h all have constant sign, then w.l.og. this

sign is positive, and then log f (x) = logд(y) + logh(z) gives
a linear emebdding, again a contradiction. Here f has some

variance, so log f (x) is non-constant and the embedding is

non-trivial. The embedding is not into a �nite Abelian group,

but this is not di�cult to �x. One concludes therefore that

f (x) takes the zero value for some x ∈ Σ and of course

also takes a non-zero value for some x ′ ∈ Σ. We can now

de�ne the Horn-SAT embedding by turning f (x),д(y),h(z)
into Boolean 1 if the value is non-zero and Boolean 0 if the

value is zero!

• In the de�nition, if f is non-constant, then so must be д

and h. Let’s suppose on the contrary that д is constant (the

same proof applies for h). If д ≡ 0, then the condition f (x) =
д(y)h(z) implies that f ≡ 0, reaching a contradiction. If

д ≡ 1, then one concludes that f (x) = h(z) for all (x, z) ∈
supp(µx ,z ). Since µ is not linearly embeddable, its marginals

are not linearly embeddable either.6 In particular, µx ,z has

no linear embedding and hence is connected, implying that

both f and h are constant, again a contradiction.

Considering these remarks, if µ does not have a Horn-SAT em-

bedding, then we do have the base case inequality (8) and we can

hope to carry out the induction. However, if µ does have a Horn-

SAT embedding as in De�nition 2, then the embedding serves as a

violation of the inequality and we are stuck with a similar hurdle as

before. The Horn-SAT embedding leads to n-dimensional functions

f̃ = f ⊗n/∥ f ⊗n ∥, д̃ = д⊗n/∥д⊗n ∥, h̃ = h⊗n/∥h⊗n ∥, with ℓ2-norm
1, and

E
(x,y,z)∼µ⊗n

[

f̃ (x)д̃(y)h̃(z)
]

= 1.

As before, this hinders the possibility of proving the n-dimensional

inequality (3) by induction: there is no base case inequality and

there is a counter-example if one allows functions to have ℓ2 norm

1 instead of ℓ∞ norm 1.

We overcome this hurdle in a similar manner as before, albeit

with even more subtleness. We carefully transform the distribution

and the alphabet (Σ× Γ ×Φ, µ) to another distribution and alphabet

(Σ̃ × Γ̃ × Φ̃, µ̃). Formally, we show that

• If Lemma 1 (i.e. our Main Lemma/Result) holds for µ̃, then it

also holds for µ.

• All the key properties of µ are retained by µ̃ which has further

additional properties.

6This is seen easily from the de�nition of a linear embedding, De�nition 1. If marginal
of µ on a subset of co-ordinates has a linear embedding, then so does µ by letting the
embedding on other co-ordinates to be 0G .

In this sense, we are able to reduce our task of proving the lemma for

the original distribution µ to proving the same lemma for the new

distribution µ̃. Now we state what additional properties µ̃ has. For

the sake of notational convenience, we rename the new distribution

and the alphabet as (Σ×Γ×Φ, µ) again. The key additional property
is stated below, referred to as the relaxed base case inequality.

Definition 3. (Relaxed Base Case Inequality) Suppose a distribu-

tion µ on Σ× Γ ×Φ has no linear embedding and has uniform support

on Γ × Φ. We say that µ satis�es the relaxed base case inequality if:

• There is some Σ′ ⊆ Σ, |Σ′ | ⩾ 2, and constants C > 0 and

0 < c < 1 such that the following holds. For all τ > 0, let

functions f : Σ → R, д : Γ → R and h : Φ → R be such that

f has variance at least τ ∥ f ∥22 on Σ
′, that is

E
x ,x ′∈Σ′

[

(f (x) − f (x ′))2
]

⩾ τ ∥ f ∥22 .

Then
�

�

�

�

�

E
(x ,y,z)∼µ

[f (x)д(y)h(z)]
�

�

�

�

�

⩽ max(1 − τC , c)∥ f ∥2∥д∥2∥h∥2.

• Furthermore, the distribution on Σ′×Γ×Φ, derived as (x,y, z) ∼
µ conditioned on x ∈ Σ

′, cannot be linearly embedded.

We remark that if µ did not have a Horn-SAT embedding, no

transformation is needed, and one can simply take Σ′ = Σ in the

above de�nition. However in general there might be a Horn-SAT

embedding and the transformation would be needed. The trans-

formation is rather subtle and while we do consider it to be one

of the key ideas, we skip the discussion here and refer to the full-

version of the paper for details. To summarize, we reduce the task

of proving our Main Lemma 1 to the same task with the additional

property that µ satis�es the relaxed base case inequality, i.e. to the

task of proving the lemma stated below. In the following lemma,

properties numbered 1 and 2 are as before, 3 and 4 can be assumed

from the authors’ earlier work as discussed in Section 2.2, and that

numbered 5 is the key relaxed base case inequality.

Lemma 2. (Main Analytical Lemma under Relaxed Base Case

Inequality) Suppose |Σ| , |Γ | , |Φ| ⩽ m and µ is a distribution over

Σ × Γ × Φ such that:

(1) µ(x,y, z) ⩾ α for some α > 0 and all (x,y, z) ∈ supp(µ).
(2) supp(µ) cannot be linearly embedded.

(3) The marginal µy,z is uniform and independent over Γ × Φ.

(4) For all (y, z) ∈ Γ × Φ, there is a unique x ∈ Σ such that

(x,y, z) ∈ supp(µ) (i.e. y, z determine x).

(5) µ satis�es the relaxed base case inequality as in De�nition 3.

Then for all ε > 0, there are ξ , δ > 0 such that the following holds. If

f : Σn → [−1, 1], д : Γn → [−1, 1] and h : Φn → [−1, 1] satisfy that

either Stab1−ξ (д) ⩽ δ or Stab1−ξ (h) ⩽ δ , then we have that
�

�

�

�

�

E
(x,y,z)∼µ⊗n

[f (x)д(y)h(z)]
�

�

�

�

�

⩽ ε .

2.4 The Inductive Argument (Without the
Horn-SAT Obstruction)

Armed with the “correct" relaxed base case inequality, we now give

an overview of the inductive proof (of Lemma 2). It is instructive
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and less cumbersome to �rst consider the special case when there

is no Horn-SAT embedding and we already have the base case

inequality as in (8). We will indicate how to incorporate the relaxed

base case inequality later. Formal proofs appear in the full-version

of the paper.

So let us focus on this special case and assume the base case

inequality (8) holds. The inductive proof proceeds in several steps.

We emphasize again that an inductive proof must necessarily work

with ℓ2 norms of functions that arise as intermediate functions

during the induction and we have no control over their ℓ∞ norms.7

We are given that either д or h has essentially high degree, so let’s

say this holds for д, formalized in terms of its low-stability. The �rst

step towards the inductive proof is to note that it is su�cient (and

necessary as far as our proof goes) to focus on the case when f ,д,h

are homogenous functions. We will skip details regarding how this

is su�cient towards the general case. Therefore let’s assume that

f ,д,h are homogenous and de�ne the parameter

βn,d1,d2,d3 = sup
f ,д,h

�

�

�E(x,y,z)∼µ⊗n [f (x)д(y)h(z)]
�

�

�

∥ f ∥2∥д∥2∥h∥2
,

where the maximum is taken over all f : Σn → R, д : Γn → R,

h : Φn → R homogenous of degrees d1,d2,d3 respectively. Since

we assumed that д had high degree, we think of d2 as (roughly) the

largest among the degrees. Indeed, it is su�cient to consider the

case whend1,d3 ⩽ 10d2, and we make this assumption skipping

the details. We will be able to show an exponential decay, namely

βn,d1,d2,d3 ⩽ (1 − Ωα ,m (1))d2 ,
completing the proof. We now describe how this exponential decay

is proved. First, we reduce the dimension n so that n ⩽ O(d2).
Then comes the core inductive argument, where we “gain" a factor

1 − Ωα ,m (1) in each step of the induction, reducing the degree d2

by one, until we have reduced it to say d2
2 .

Reducing Dimension: We showhere that it is su�cient to consider

the casewhenn ⩽ O(d2) (andwe already assume thatd1,d3 ⩽ 10d2).

The idea is as follows. As long as n ≫ d2, we can �nd a coordinate

i ∈ [n] which has very small “in�uence” on f ,д and h; assume

without loss of generality that this co-ordinate is i = n.

If the in�uence was zero, then f , д andh would only be functions

of the �rst n − 1 co-ordinates, and hence we would conclude that

βn,d1,d2,d3 ⩽ βn−1,d1,d2,d3 , making “progress" in reducing n. How-

ever in general, that in�uence may be very small but still non-zero.

In that case one may write the decompositions

f = f1 + f ′, д = д1 + д
′
, h = h1 + h

′
,

where f1,д1,h1 depend only on the �rst n − 1 co-ordinates, and

f ′,д′,h′ do depend on the nth co-ordinate but have very small

ℓ2-norm (which is precisely what in�uence is). Since f ′,д′,h′ have
very small norm, one doesn’t expect them to contribute much, and

one still hopes to deduce that βn,d1,d2,d3 ⩽ βn−1,d1,d2,d3 . Alas,
this doesn’t quite work. While their contribution is very small, it

7When there is no Horn-SAT embedding, we do not need an ℓ∞ bound on the original
functions either. This is indeed the special case we are considering here. When there
is a Horn-SAT embedding, as noted before, we must somehow use the fact that the
original functions f , д, h do have ℓ∞ norm at most 1. We still have no control however
over the ℓ∞ norm of the intermediate functions. This issue is addressed later.

is still non-zero, and a naive application of this idea would only

give βn,d1,d2,d3 ⩽ βn−1,d1,d2,d3 + o(1), and the o(1) error terms

will keep accumulating in successive inductive steps. To overcome

this di�culty, we perform a more detailed analysis, and need more

re�ned decompositions of f , д and h. For the sake of simplicity, we

consider only a specialized scenario that allows us to write

f = f1 + f2 f
′
2 , д = д1 + д2д

′
2, h = h1 + h2h

′
2,

where f1,д1,h1 depend only on the �rst n − 1 coordinates and have

the same degrees as f ,д,h, the functions f2,д2,h2 also depend only

on the �rst n − 1 coordinates but have degrees one less than f ,д,h

respectively, and f ′2 ,д
′
2,h

′
2 are functions that only depend on the last

coordinate and have very small ℓ2-norm. Using this decomposition,

we can write

E
(x,y,z)∼µ⊗n

[f (x)д(y)h(z)]

= E
(x,y,z)∼µ⊗n−1

[f1(x)д1(y)h1(z)]

+ E
(x,y,z)∼µ⊗n−1

[f2(x)д2(y)h1(z)] E
(x,y,z)∼µ

[

f ′2 (x)д
′
2(y)

]

+ E
(x,y,z)∼µ⊗n−1

[f2(x)д1(y)h2(z)] E
(x,y,z)∼µ

[

f ′2 (x)h
′
2(z)

]

+ E
(x,y,z)∼µ⊗n−1

[f2(x)д2(y)h2(z)] E
(x,y,z)∼µ

[

f ′2 (x)д
′
2(y)h

′
2(z)

]

+ Other terms.

The other terms are zero thanks to the fact that µy,z is uniform and

independent. The �rst term is the dominant term, the second and

the third terms constitute as error terms, and the fourth term can

be ignored when compared to the second and third terms. Roughly

speaking, the reason is that if ε denotes the small norm of f ′2 ,д
′
2,h

′
2,

then the corresponding expectations are of the order ε2 in the

second and third terms, and of the order ε3 in the fourth term.

The second and third terms are error terms, which however can-

not be ignored altogether (as said before) and require care. Skipping

many details, it turns out that the key is to bound the expectation

E
(x,y,z)∼µ

[

f ′2 (x)(д
′
2(y) + h

′
2(z))

]

.

This can be upper bounded by (1 − Ω(1))∥ f ′2 ∥2
√

∥д′2∥
2
2 + ∥h′2∥

2
2 .

We emphasize here that this is an inequality on functions of a single

co-ordinate. It is referred to as the additive base case inequality.

Using this bound, one can obtain an e�ective enough bound on the

second and third terms above, somehow recover the loss from these

error terms and get that βn,d1,d2,d3 ⩽ βn−1,d1,d2,d3 as desired.

The Core Induction: We now show the core inductive step giving

the exponential decay, namely that βn,d1,d2,d3 ⩽ (1 − Ωα ,m (1))d2 .
We assume that n ⩽ O(d2) as discussed and that d1,d3 ⩽ 10d2.

Skipping details, it is su�cient to assume further that d1 ⩾ Ω(d2)
as well. It follows from these assumptions that average in�uence of

a coordinate on f is d1
n ⩾ Ω(1). Let us assume that the coordinate

n has in�uence Ω(1) on f . For the sake of simplicity, consider

furthermore only a specialized scenario that allows us to write f , д

and h as

f = f1 f
′
1 , д = д1д

′
1 h = h1h

′
1,

where f1,д1,h1 depend only on the �rst n−1 co-ordinates and have

degrees one less than f ,д,h, and the functions f ′1 ,д
′
1,h

′
1 depend
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only on the single coordinate n, and f ′1 has constant norm (which

amounts to the said in�uence). In this case, we would have that

E
(x,y,z)∼µ⊗n

[f (x)д(y)h(z)]

= E
(x,y,z)∼µ⊗n−1

[f1(x)д1(y)h1(z)] E
(x,y,z)∼µ

[

f ′1 (x)д
′
1(y)h

′
1(z)

]

.

By the inductive hypothesis, the �rst term is at most the quan-

tity βn−1,d1−1,d2−1,d3−1 and by the base case inequality,we have

|E(x,y,z)∼µ
[

f ′1 (x)д
′
1(y)h

′
1(z)

]

| ⩽ λ = 1 − Ω(1). Hence we get that
βn,d1,d2,d3 ⩽ λβn−1,d1−1,d2−1,d3−1,

as desired, and iterating this gives an exponential decay.

In general, the main complication is that f , д and h need not take

the specialized form as above, and instead one has to decompose

them in a more complicated manner (amounting to decomposing a

tensor into a sum of mutually orthogonal rank one tensors). Using

a more complicated argument (but vaguely similar in spirit) one

can still recover that βn,d1,d2,d3 ⩽ λβn−1,d1−1,d2−1,d3−1.

2.5 The Inductive Argument (Incorporating the
Relaxed Base Case Inequality)

As discussed before, in general the base case inequality (8) does not

hold and we are able to use only the relaxed base case inequality in

De�nition 3. We now indicate the main modi�cation necessary in

the inductive proof, skipping most other details from this overview.

Let Σ′ ⊆ Σ be the subset that exhibits the relaxed base case

inequality in De�nition 3. We consider the e�ective in�uence and

e�ective degree of the function f : Σn → R. We recall that the

standard in�uence of the ith co-ordinate is

E
x−i ,

xi ,x
′
i
∈Σ

[

(f (x−i , xi ) − f (x−i , x ′i ))
2
]

.

That is, the in�uence is the variance of the function on the ith

co-ordinate after randomly restricting the rest of the co-ordinates.

We de�ne the e�ective in�uence as

E
x−i ,

xi ,x
′
i
∈Σ′

[

(f (x−i , xi ) − f (x−i , x ′i ))
2
]

,

which is similar, except that the variance is considered only over

the subset Σ′.
We also indicate the related notion of the e�ective degree of f .

We set up a suitable orthonormal basis B of characters for (single

co-ordinate) functions in L2(Σ; µx ). We ensure that B = B1 ∪ B2
so that characters in B1 span all functions that are constant on Σ

′

(including the All-1 function), and characters in B2 are zero outside

Σ
′. The e�ective degree of a monomial is then the degree when only

the characters in B2 are counted towards the degree. The inductive

proof is now carried out assuming that f not only has high degree,

but also has high e�ective degree.

We do mention a crucial detail here. We do need to argue that

starting with the original function f : Σn → [−1, 1] that has essen-
tially high degree, we can “reduce" to the case where it has high

e�ective degree as well. This argument does need that the original

functions f ,д,h are ℓ∞-bounded.8 As noted before, Lemmas 1, 2

8One needs ℓ∞-boundedness also while transforming the original distribution µ to
achieve additional properties.

could simply be false (for certain distributions µ) if only ℓ2-norm

of the functions is assumed to be 1.

3 APPLICATIONS

In this section, we give a few applications of our main analytical

lemma.

3.1 Hardness of Approximation of CSPs

In this section we use our main analytical lemma to get optimal

dictatorship tests with completeness 1 for a large class of 3-ary

predicates.

Definition 4. A dictatorship test for a predicate P : Σk → {0, 1}
can query a function f : Σn → Σ. The test picks a random k × n

matrix by letting every column to be a random satisfying assignment

to P (i.e., in P−1(1), with some �xed distribution µ on P−1(1)) and
letting x1, x2, . . . , xk ∈ Σ

n be the rows of the matrix. The test accepts

if (f (x1), f (x2), . . . , f (xk )) is also a satisfying assignment to P .

We now describe the dictatorship test that was studied in [5].

The test is given in Figure 1. The starting point is an instance ϕ of

P-CSP and let the value (i.e., maximum fraction of the constraints

that can be satis�ed by an assignment) of this instance be s . The

distribution µ in the test depends on the SDP solution for ϕ and we

only consider instances whose SDP value is 1.9 The SDP solution

consists of vectors as well as local distribution for each constraint.

Since the SDP value is 1, all these local distributions are supported

on the satisfying assignments to P . Let µi be the local distribution

corresponding to the ith constraint of the instance. The test is as

follows. Here ε > 0 is a small constant independent of n.

Let P : Σk → {0, 1} be the predicate. Given f : Σn → Σ,

(1) Select a constraint from ϕ according to the

weights of the constraints. Let i be the selected

constraint.

(2) Construct a k × n matrix by setting each column

of the matrix independently according to the fol-

lowing distribution: sample the column using µi .

(3) Check if P(f (x1), f (x2), . . . , f (xk ) = 1.

Figure 1: Dictatorship test for the predicate P .

If f is a dictator function, then the test accepts with probability

1. This follows because for every i , the distribution µi is supported

on the satsifying assignments to P and therefore every column of

the matrix is from P−1(1). A challenging task is to compute the

acceptance probability when f is far from dictator functions.

This test is exactly the same as the one given in [5]. If we use our

main analytical lemma, Lemma 1, to analyze the above dictatorship

test, then we have the following theorem on the soundness of the

above test.

Theorem 2 (Restatement of Theorem 1). Let P : Σ3 → {0, 1}
be any predicate that satis�es the following conditions. (1) P does

not satisfy any linear embedding, and (2) there exists an instance of

9We refer the readers to [5, 20] for detailed information on the semide�nite program,
its value and the local distributions.
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P-CSP that has a (1, s)-integrality gap for the basic SDP relaxation

and every local distribution is not linearly embeddable. Then for every

ε > 0, there is a dictatorship test for P that has perfect completeness

and soundness s + ε .

The proof of this theorem is identical to the proof of [5, Theo-

rem1.1]. The only di�erence is that in the proof of [5, Theorem1.1],

Lemma 1 with the added condition that the distribution µ is semi-

rich was used. As the proof is identical to the proof of [5, Theo-

rem1.1], we skip the proof of Theorem 2 in this version.

3.2 Counting Lemmas

Theorem 2. Suppose µ is a distribution over Σ × Γ × Φ such that

supp(µ) cannot be linearly embedded. Then for all δ > 0, there

exist d ∈ N, τ > 0, ε > 0 and N ∈ N such that for n ⩾ N , if

f : Σn → [0, 1], д : Γn → [0, 1], h : Φn → [0, 1] are functions with
average at least δ and maxi (Ii [f ⩽d ], Ii [д⩽d ], Ii [h⩽d ]) ⩽ τ , then

E
(x,y,z)∼µ⊗n

[f (x)д(y)h(z)] ⩾ ε .

Proof. Let 0 ≪ τ ≪ d−1 ≪ ξ ≪ ν ≪ κ ≪ η ≪ ε ≪ δ ; �rst,

we argue that
�

�

�

�

E(x,y,z)∼µ⊗n [f (x)д(y)h(z)]−
E(x,y,z)∼µ⊗n

[

T1−ξ f (x)T1−ξд(y)T1−ξh(z)
]

�

�

�

�

⩽ η.

Here, it is understood that the operator T1−ξ applied on each one of

the functions refers to the standard noise operator with respect to

the marginal distribution of µ on that coordinate. This is done by a

hybrid argument, wherein we switch at each time a single function

to a noisy version of it and bound the di�erence. For example, we

argue that
�

�

�

�

�

E
(x,y,z)∼µ⊗n

[

(I − T1−ξ )f (x)д(y)h(z)
]

�

�

�

�

�

⩽
η

3
.

Indeed, note that

Stab1−ν ((I − T1−ξ )f ) = ∥T1−ν (I − T1−ξ )f ∥22
⩽ max

j
(1 − ν )j (1 − (1 − ξ )j ),

as these are the eigenvalues of T1−ν (I − T1−ξ ). As ξ ≪ ν , these

eigenvalues smaller than κ, and the bound follows from Lemma 1.

Consider the distribution µ ′ de�ned as follows:

(1) Sample (x,y, z) ∼ µ;

(2) sample x ′ by taking x ′ = x with probability
√
1 − ν and

otherwise resample it according to µx ;

(3) sample y′ by taking y′ = y with probability
√
1 − ν and

otherwise resample it according to µy ;

(4) sample z′ by taking z′ = z with probability
√
1 − ν and

otherwise resample it according to µz ;

(5) output (x ′,y′, z′).
Note that

E
(x,y,z)∼µ⊗n

[

T1−ξ f (x)T1−ξд(y)T1−ξh(z)
]

= E
(x′,y′,z′)∼µ′⊗n

[

T√
1−ξ f (x

′)T√
1−ξд(y

′)T√
1−ξh(z

′)
]

.

Also note that the distribution µ ′ is connected and each atom has

probability Ων ,α (1), and also that the individual in�uences are at

most τ + (1 − ξ )d . Hence by [17, Theorem 1.14] it follows that this

expectation is at least ε , provided τ is small enough. □

Using regularity lemma for low-degree in�uences, one may re-

move the assumption on in�uences in some cases.

Lemma 3. For all α > 0, m ∈ N, if µ is a distribution over Σ

in which each atom has probability at least α , |Σ| ⩽ m, then the

following holds. For all ε > 0, d ∈ N and τ > 0 there exists D ∈ N
such for every f : Σn → [0, 1], there exists a decision tree T of depth

at most D such that sampling a root to path leaf in it (I, x′) yields

Pr
(I,x′)

[

I⩽di [fI→x′ ; µ] ⩽ τ ∀i ∈ [n] \ I
]

⩾ 1 − ε .

Proof. We omit the full details of the proof, as it is virtually

identical to the proof of Jones’ regularity lemma [14] (see also [9]

for details). □

Theorem 3 (Restatement of Theorem 1). Suppose µ is a distri-

bution over Σ3 such that (1) the three marginal distributions µx , µy , µz
are identical, (2) {(x, x, x) | x ∈ Σ} ⊆ supp(µ), and (3) supp(µ) can-
not be linearly embedded. Then for all δ > 0, there exists ε > 0 and

N ∈ N such that for n ⩾ N and S ⊆ Σ
n with |S | ⩾ δ |Σ|n ,

Pr
(x,y,z)∼µ⊗n

[x ∈ S, y ∈ S, z ∈ S] ⩾ ε .

Proof. Let f = 1S and 0 ≪ ε ≪ D−1 ≪ τ ≪ d−1 ≪ ξ ≪
ν ≪ κ ≪ η ≪ δ . By Lemma 3 we may �nd a decision tree T of

depth at most D(d, τ , δ ) such that sampling a path on it according

µx , i.e. a subset I of at most D variables and x′ ∼ µIx , we get that

I⩽di [fI→x′] ⩽ τ for all except with probability δ/100. We denote

the process that samples a path on it by (I, x′).
Note that by an averaging argument, µ(fI→x ′) ⩾ δ/2 with prob-

ability at least δ/2, hence we get that with probability at least δ/4
we have that all in�uences are small and the average is at least δ/2;
we refer to this event by E. If we denote,

Z(I,x′) := E
(x,y,z)∼µ [n]\I

[fI→x′(x)fI→x′(y)fI→x′(z)],

then, we get that

Pr
(x,y,z)∼µ⊗n

[x ∈ S, y ∈ S, z ∈ S]

⩾ E
(I,x′)

[

1EE(y,z)∈µ Iy ,z
[

1y=z=x′ · Z(I,x′)
�

� x′
]

]

⩾
δ

4
αDE (x′,I)

(x,y,z)∼µ [n]\I
[ fI→x′(x)fI→x′(y)fI→x′(z) | E]

⩾ ε,

where the last inequality is by Theorem 2. □

For example, Theorem 1 may be applied to �nd progressions

of the form (x, x + a, x + a2) in dense subsets of Fnp ; we omit the

details.
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