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Abstract

Person identification using biometrics has become a
safer and trustworthy mechanism with the advancement of
technology. Among all biometric identification methods,
iris recognition has achieved very low false acceptance
rates due to its complex and unique patterns. The low
acceptance rates apply only to frontal iris images.
Capturing frontal iris images is not always possible,
especially in uncontrolled environments, where most of the
iris images captured tend to be non-ideal, such as off-angle
images. Off-angle iris images suffer from several issues,
including corneal refraction, limbus occlusion, the effect of
gaze angle, and depth of field blur. These effects distort the
iris patterns, causing the similarity scores between the
same individual to widen and scores between different
individuals to become closer. This also causes false
acceptance rates to increase, as it increases the chances of
misclassification. This highlights the need for improving
the performance of off-angle iris recognition.

By leveraging the low false-acceptance rates of the
frontal iris images, we build generated frontal version of
the iris images using off-angle iris images and achieved
better performance compared with the perspective
transformation. We built a modified version of the Pix2Pix
GAN to achieve the frontal projection of off-angle iris
images. Instead of using a Mean Squared loss function in
the Pix2Pix GAN, we use a combination of Mean Squared
loss function, Matrix Multiplication loss, and SSIM loss
function to generate sharper images that can capture the
textural information of the original image better.

1. Introduction

The practice of biometric human identification is a
longstanding concept. Over time, humans have utilized
multiple sensory cues, including facial features, vocal
nuances, and occasional tactile interactions, to facilitate the
recognition and differentiation of individuals. These
methods of identification are adequate when subjects are in
close proximity. As human civilizations began expanding,

there was a need to identify other humans from a distance.
This problem gave rise to other identification mechanisms,
such as signatures, passwords, and encrypted messages.
However, these methods are highly prone to manipulation
and are not always reliable. This led humans to go back to
using biometrics as an identification mechanism even
when they are not in proximity. Fingerprints, handprints,
and footprints were used for a long time to handle
biometric identification.

Amongst these, fingerprints remain the most widely
used biometric identification method, even in
contemporary times. With continuous advancements in
camera technology, facial recognition has emerged as a
prominent area of research. Facial recognition relies on
various facial features, including the shape and position of
the eyes, ears, nose, and mouth, along with the skin.
Although frontal facial recognition has achieved low false
acceptance rates historically, the limitation lies in requiring
subjects to face the camera directly [1]. Attempts have been
made to address the limitation in a long-range biometric
setup by algorithms reconstructing missing facial features
in profile images, but asymmetries in the face remain
challenging to restore accurately. Other biometric
identification methods such as finger vein pattern and palm
vein pattern have also been explored. Finger vein pattern
uses the veins present underneath the skin of a finger,
making them more secure than fingerprints. Palm vein
pattern is a better version of finger vein pattern because it
uses more reference points [2]. However, control systems
that use this technology are expensive. The availability of
high-quality cameras at low costs has also ensured that
people can now use irises of humans for recognition.
Unlike fingerprints, which are prone to duplication because
of their high false acceptance rates, irises are more reliable
because of their low false acceptance rates. Iris has a lot
more unique characteristics than fingerprints, allowing for
more comparisons between the images, reducing the
possibility of misclassification [3].

Iris recognition, despite being one of the best biometric
identification systems in the market, is not as widely
accepted as fingerprints. This is attributed to several
factors. One of the biggest reasons is the discomfort
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humans face when their irises are being scanned. They
must assume a certain posture and face the camera to let
their eyes be scanned. Another big drawback is the speed
at which the iris scanning is done. Since iris recognition
works well only when the iris images are frontal in nature,
that is, the person must be facing the camera and looking
at it, it is hard to always capture such an image straight
away. So, iris systems capture multiple images or a video
stream to capture the correct image. This greatly impacts
the time taken to successfully identify a person using this
system.

The above problems created the necessity to build
standoff iris recognition systems. Some of the
unconstrained iris recognition systems capture images
from long range in the visible spectrum, as traditional iris
systems capture images in the near-infrared spectrum,
resulting in noisy and blurry images. One such problem
that could speed up iris recognition is the problem of
recognizing off-angle iris images.

The off-angle iris images suffer from various challenges,
such as reflections, gaze angle, corneal refraction, depth of
field blur, limbus occlusion, and the complex 3D structure
of the iris. All these challenges mean that intra-class
hamming distance scores increase, and the inter-class
hamming distance scores decrease when compared with
the frontal iris images. This would make it harder for the
iris recognition systems to differentiate individuals, when
the iris images are captured at off-angles, which is the less
intrusive way of capturing the iris images. This paper
discusses a technique to convert the off-angle iris images
into their frontal versions to speed up the process of iris
recognition and make it more reliable. The rest of the paper
is organized as follows: Section 2 explores the related work
in this field. Section 3 discusses the methodology. Section
4 demonstrates the experiments conducted and the results.
The paper is concluded in Section 5.

2. Related Work

The earliest work in frontal iris recognition was done by
Daugman [4]. They used the Gabor-phase quadrant feature
descriptor for iris recognition. These filters converted the
normalized iris images into a binary image called an iris
code. These iris codes were then used for identification.
Hamming distances were calculated for the iris codes, and
the intra-class and inter-class distances were used to
distinguish one person from another.

Several challenges, such as corneal refraction, depth-of-
field blur, three-dimensional structure of the iris, the
limbus effect, and the gaze angle, did not play an important
role when comparing iris images taken from a frontal angle
[5]. However, these challenges significantly affected the
iris images when they were taken from an off-angle.
Daugman [6] suggested a preprocessing technique that
used affine transformations to counter the geometric

deformations that occurred due to the difference in gaze
angle. However, this method did not factor other
challenges of off-angle images. Zuo et al. [7] used ellipses
to fit iris boundaries to correct for the geometric
deformations, and Li et al. [8] used support vector
machines to classify frontal and off-angle iris images and
built separate models for both sets of images. However,
these methods did not work for off-angle images captured
at a gaze angle of over 30°.

A few others have worked on the other set of challenges
plaguing off-angle iris recognition. Santos-Villalobos et al.
[9] used the ray tracing method to compute the effect of
corneal refraction on images and provided a way to convert
off-angle iris images to their frontal versions. This method
worked well for synthetic images but failed for real images
due to the presence of the limbus. Karakaya et al. [10,11]
investigated the effect of limbus occlusion and the three-
dimensional structure of the iris on off-angle iris
recognition. They noticed that the presence of the limbus
could significantly increase the intra-class hamming
distance scores and bring them closer to the inter-class
hamming distance scores. They also noticed that the effect
of the limbus was compounded for images captured at
higher gaze angles.

Generating a related image based on a seed image has
been studied recently in different areas of interest. One
such area of interest is the generation of face images.
Zhang et al. [12] used a Conditional Adversarial
Autoencoder to generate a person’s face images
corresponding to different ages, given one image with the
corresponding age label. A Conditional Adversarial
Autoencoder consists of an encoder that transforms the
input face image into a latent space vector. This vector is
coupled with an age label, and traversing along forward
and backward directions in the latent space can produce
faces corresponding to different ages. A generator is then
used to map the latent space vector to an output face image.
However, this methodology cannot be extended to iris
images as the traversal alone is not sufficient to learn the
iris patterns, and the traversal in latent space based on the
off-angle does not lead to frontal image conversion.
Another way to generate images is by using a Generative
Adversarial Network (GAN) [13]. GAN has a generator
and a discriminator. The generator takes random noise as
input and outputs an image, whereas the discriminator
distinguishes a fake image from a real one. They both are
trained simultaneously to generate highly realistic images.
Conditional Generative Adversarial Networks (CGANSs)
use label information to generate images corresponding to
a particular class. The main difference between GAN and
CGAN is that the generator in CGAN takes noise and a
label as input. There are many versions of CGANS.
Taherkhani et al. [14] worked on matching profile face
images with their frontal versions in a database, by using
couple of conditional generative adversarial networks.
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Figure 1: Illustration of off-angle iris recognition pipeline using frontal image conversion.

Their model comprises two GAN modules. The generators
use a U-Net architecture, whereas the discriminator is a
patch-based discriminator. The two modules are connected
by Contrastive loss function. Their main objective is to
project the profile and frontal face images to a latent space
using generative modeling and use it for face matching.
They also suggest that the model can be used for frontal
face generation.

Pix2Pix GAN [15] is a type of CGAN that does Image-
to-lmage translation, using a similar but simpler
architecture. The label in CGAN becomes an image,
enabling the operation of translation. The generator used in
Pix2Pix GAN is a U-net with skip connections, and the
discriminator is a Patch-based discriminator. This method
uses an adversarial loss and an L-1 loss to generate realistic
images. Pix2Pix GAN is domain independent and can be
used for image translations of any nature.

Using GANSs to convert off-angle iris images into frontal
iris images has not been extensively studied in the
literature. This paper is one such attempt at efficiently
generating frontal iris images using their off-angle
versions. The paper specifically uses variations of the
Pix2Pix GAN networks.

3. Methodology

There exist several ways to convert off-angle iris image
to frontal view. First of all, directly employing the captured
off-angle image for the purpose of converting to its frontal
images presents inherent challenges due to the coexistence
of various facial and eye structures within the image,
including the skin, eyelids, pupil, and sclera. Second,
converting the segmented and masked iris image to its
frontal view appears to be a practical solution. However,
even the segmented iris image can suffer from problems
such as pupil dilation that can lead to fluctuations in the iris
size by contracting and expanding. To address such
challenges, we utilized the normalized iris image as a
preferable solution. Normalization standardizes the input
image by allowing for more consistent and reliable
processing. Therefore, the effect of pupil dilation can be
minimized, and it will improve the accuracy and stability

of off-angle to frontal iris image conversion. In the
proposed method, the iris texture in the eye image is
segmented and normalized to a standard 64 x 512 image to
be used as the input of the frontal conversion module. Since
the inputs are normalized images, the generated outputs
will be normalized images. Comparisons between iris
images are done using the iris codes of these generated
normalized images with the iris codes of the original
frontal images.

The proposed methodology of the off-angle iris
recognition using frontal image conversion is illustrated in
Fig. 1. It is developed in two separate branches including
frontal iris database generation and frontal image
conversion. The frontal iris database is generated using the
traditional pipeline where frontal iris image is captured,
segmented, normalized, and encoded before including in
the database for later comparison with probe images. The
second branch of the proposed methodology is focused on
the generation of the encoded iris code as the probe image.
First, the captured off-angle iris image is segmented to fit
ellipses to its inner and outer boundaries. After
segmentation, the angle of the off-angle segmented iris
image is predicted using the gaze estimation method [16].
At the same time, the segmented off-angle iris image is
normalized. Then, the estimated gaze angle and normalized
off-angle image are used for frontal iris conversion. The
frontal iris conversion generates a normalized frontal
version of the off-angle image. The generated normalized
iris image is then converted into a binary code using Gabor
filters [4]. Finally, the generated iris code is compared with
other codes in the database using hamming distance. If the
frontal and off-angle image belong to the same subject, the
hamming distance score is expected to be low. If they
belong to different subjects, the hamming distance score
will be high.

One of the important initial steps of the off-angle to
frontal iris image conversion is the estimation of the gaze
angle, i.e., the angle of the iris with respect to the camera.
Diab et al. [16] have used CNN models with a regression
analysis for gaze estimation. Their method showed an
average error of 4° in angle. Our proposed method utilizes



this gaze estimation model to achieve the task of off-angle
to frontal iris image conversion.

This paper adopts the Pix2PixGAN architecture [15] for
the frontal iris reconstruction. The generator of the
architecture is comprised of a U-net with skip connections.
The input to a generator is a normalized off-angle iris
image. U-net comprises an encoder and a decoder. The
encoder acts as a down sampler, and the decoder acts as an
up sampler. A single block in the encoder consists of 3
layers — Convolution, Batch normalization, and ReLU. A
single block in the decoder consists of 3 layers too
including dropout for the first three layers, transposed
convolution, and batch normalization. The encoder and
decoder are also connected using skip connections. The
discriminator is a patch-based discriminator [15].

3.1. Loss functions

The original Pix2Pix GAN generator has two loss
functions for generating images: (i) Sigmoid Cross Entropy
loss function (L¢gan), (i1) L1 loss (L 1). The Sigmoid cross
entropy loss function compares the discriminator's output
of the generated images to an array of ones, while the L1
loss calculates the mean absolute error between the
generated and original images.

These Pix2Pix GAN loss functions can be expressed as
follows:

Legan = Ey[logD()] + Ey, [log (1) = (D
D(x, G(x, Z)))]

L, = x,y,z[” y—G(x,2)|]] )

where D is the discriminator, G is the generator, x is the
input off-angle iris image, y is the expected real frontal iris
image, z is random noise.

In addition to these two loss functions, we have
added two more for the generator. The first is the Matrix
Multiplication loss function, which is the dot product of the
generated and original image pixel values. The average of
the resulting matrix is used as the loss function value. This
function helps to better understand the texture of the image
by considering the interaction of pixel intensities from
different parts of the image.

The Matrix Multiplication loss can be expressed as:

Lym = Exy [y * G(x,2)] 3)

where G is the generator, x is the input off-angle iris image,
z is random noise, y is the expected real frontal iris image,
Ly 1s the Matrix Multiplication loss function.

The second loss function is the Structural Similarity
Index (SSIM) loss function [17]. While the L1 loss only
captures the difference in the value of the grayscale
intensities at a given pixel, the SSIM loss extracts three key
features from images - luminance, contrast, and structure.

For iris images, all three features play a significant role in
distinguishing individuals. The expressions for luminance,
contrast, and structure are given as follows:

1
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where p, (luminance) is the mean value of all pixels, g,
(contrast) is the standard deviation, and s, (structure) is the
normalized version of intensity.

The formulae for the comparison of luminance, contrast,
and structure for two different images are as follows:
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where [(x,y), c(x,y), and s(x,y) are the comparative
measures for luminance, contrast, and structure for the off-
angle input iris image x and the expected real frontal iris
image y. C;, C,, C5 are the constants.

The final expression for SSIM is a combination of
luminance, contrast, and structure. This is given as follows:

SSIM(x,y) = [10e, 1% [c (e, 1] [s(x, )]V (10)

(2um, + C1) (20, + C2)
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Lssim = ( (1)
where Lggpy is the SSIM loss function.

Using (1), (2), (3) and (11), the new generator loss
function for the conversion of off-angle iris images to their
frontal versions is given as follows:

Leotar = Legan + ALy + Lyy + Losin - (12)

where A is the regularization parameter set as 100 in the
original Pix2Pix GAN paper.
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Figure 2: Sample iris images (a) frontal, (b) off-angle.

4. Experimental Setup and Results

The dataset [10] used in the paper consists of frontal and
off-angle iris images captured using a moving camera in a
controlled environment. Images were captured from 100
subjects at angles ranging from -50° to +50° with an
increment of 10°. At each angle, 10 images were captured
for each subject. The negative effects of gaze angle on iris
images are not as vivid at lower angles, i.e., at 10° and 20°,
because the elliptical unwrapping normalization method
can tolerate challenges such as refraction of light at cornea
and occlusion at limbus [18]. Therefore, only the results of
images captured at 30°, 40°, and 50° angles were included
in this study. The images are further divided into five folds
with an 80/20 train-test split to conduct different sets of
experiments. Segmentation of the pupil, iris, and eyelids is
done by fitting ellipses to boundaries of the iris and pupil
and using two quadratic curves for the eyelids.

The first fold comprises 80 subjects as the training
dataset and the last 20 subjects as the test dataset. Training
dataset has everything except the first 20 subjects. The first
20 are used as the test dataset for this fold. Similarly,
following a cyclical approach, five different training and
test datasets were created. This ensured that every subject
in the dataset is evaluated at least once. Since we
considered six different sets of angles (i.e., 30°, 40°, 50°, -
30°, -40°, and -50°), we further partitioned each dataset
based on angles. The proposed Pix2Pix GAN model is
applied on these 30 datasets separately, resulting in 30
different models. To compare the generated normalized
images with the original normalized images, we used
Gabor filters to generate iris codes and hamming distance
to measure their similarity. Gabor filters are spatial image
filters that convert the grayscale-normalized image into a
binary image. Hamming distances are calculated using
these binary images. The formula for hamming distance
calculation is as follows:

HD = ||(CA @ cz) N (my nt)” (13)
||mAnt||

where, ¢, is the iris code of the first image, cp is the iris
code of the second image, m, is the mask of the first
image, mp is the mask of the second image.

(©
Figure 3: Normalized iris images of (a) frontal iris, (b) off angle
iris, (c) generated iris image of the off-angle image in (b).

In the rest of the paper, we will refer to the normalized
iris images as iris images, interchangeable. For images
belonging to the same subject, the hamming distance
scores should be lower than for images belonging to
different subjects. These scores are referred to as intra-
class hamming distance and inter-class hamming distance,
respectively. Ideally, inter-class hamming distance scores
should be high and intra-class hamming distance scores
should be low. The baseline for comparison in our
experiments is the hamming distance scores between off-
angle and frontal iris images. We will compare them with
hamming distance scores between the generated iris
images and the frontal iris images. We analyze their
performance using Receiver Operating Curve (ROC) and
compare their Area Under Curve.

To demonstrate the effect of gaze angle, the frontal and
the off-angle eye images of the same subject are shown in
Fig. 2. We normalized iris images using elliptical
unwrapping and showed their normalized iris images in
Fig. 3(a-b), respectively. Since Pix2Pix GAN model
requires the input size as 256x256, we normalized the iris
images as 256x256. The generated normalized image of
off-angle image in (b) using proposed Pix2Pix GAN is
shown in Fig. 3(c). The dark abnormal structures at the
bottom of each normalized image are the upper eyelid.
Notice how the texture in (c) becomes closer to the original
frontal image in (a). This is in stark contrast to the frontal
image in (a) and the off-angle image in (b).
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Figure 4: Distributions of hamming distance scores for (top) the
frontal vs. off angle iris images (-50° in angle) (bottom) the frontal
vs. generated frontal images.

The histogram plots of intra-class and inter-class
hamming distance distributions for original off-angle iris
images and the generated iris images are presented in Fig.
4. The test subject is compared with 19 other subjects for
inter-class evaluations. Fig. 4(top) shows the hamming
distance scores for traditional approach where frontal and
off-angle images are compared with elliptical unwrapping.
Fig. 4(bottom) shows the distribution of hamming distance
scores for proposed method where generated frontal
images compared with frontal images. We observed that
the hamming distance plots reveal that the intra-class and
inter-class hamming distances overlap differently at
traditional and proposed methods. The mean intra-class
hamming distance score for the off-angle images is 0.40,
whereas the intra-class hamming distance score goes down
to 0.36 for the generated images. In addition, we analyzed
their performance using the ROC plots as shown in Fig. 5.
It also confirms that the generated images perform better
than the baseline traditional method with a higher
accuracy. This demonstrates that the proposed method can
identify the subject much better than the baseline model
with off-angle images. On the other hand, the mean inter-
class hamming distance score for the off-angle images is
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Figure 5: Performance analysis using ROC plots for off-angle
images at -50° in angle vs. generated frontal images for the test
subjects.
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Figure 6: Performance analysis using ROC plots for off-angle
images at -50° in angle for different loss functions.

0.47, whereas the same metric for the generated frontal
images is 0.49. This shows that the new model can
distinguish the subject from the rest much better than the
baseline model with off-angle images.

To evaluate the performance of this model against other
loss functions, we considered different combinations of
loss functions including Wasserstein loss [19], SSIM loss,
L1 loss, and Matrix Multiplication. In this set of
experiments, we considered -50° off-angle iris images in
the dataset where 85% images were in training and 15% in
test. Fig. 6 compares their performances using ROC plots.
For the first combination, we considered the Wasserstein
loss function applied at the pixel level, the L1 loss function,
and the SSIM loss function. The Wasserstein loss function
is a loss function that increases the gap between real and
generated images. The second combination is the
Wasserstein loss function applied at the pixel level without
the calculation of the mean of the matrices, the L1 loss
function, and the SSIM loss function. The third
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Figure 7: Performance analysis of all subjects using ROC plots
for off-angle images at (top) -40° and (bottom) -50° in angle.

combination is the base Pix2Pix model. The fourth
combination is the loss function described in this paper as
the Matrix Multiplication loss, in combination with the
SSIM loss and L1 losses. We observed that the Matrix
Multiplication loss with the combination of the SSIM loss
function showed a better performance compared with other
loss functions. It highlights the superiority of the proposed
model over the existing ones.

Due to the heterogeneity of the dataset, this
improvement over the traditional approach is not consistent.
The overall performance comparison of the proposed
Pix2Pix GAN model and baseline is shown in Fig. 7 for
off-angle images at -40° and -50° in angle. For -40° off-
angles images, improvement is limited where their equal
error rate (EER) values are similar as 0.002 and the Area
Under Curve (AUC) are 0.989 and 0.994, respectively. For
off-angle images at -50° in angle, AUC improves from
0.907 to 0.959 where their EER are 0.014 to 0.008 for
proposed and traditional method. The off-angle images at -
30° and +30° in angle did not show any improvement, as
the images were already being identified without any errors,
where they have perfect ROC. This is the reason why
smaller angles were also not considered in further analysis.

Although this does not account for most of the tested
datasets, a closer look at each of the above models revealed
many more cases where the improvised Pix2Pix GAN
model is working better than the base off-angle iris
recognition case. Some of them are detailed below.

The proposed method performed the best on off-angle
images at -50° and -40° in angle. A closer inspection of
each individual subject revealed that among the -50°
images, 95 out of 100 test subjects had perfect ROC curves.
The proposed method exceeded the baseline model in three
of the imperfect cases, whereas the baseline was still the
best in the other three cases. Some of the commonalities
among the images on which the proposed method worked
better were eyelids occluding the iris view and the presence
of limbus to some extent. For those images with no
improvement, the iris texture seemed to be of low contrast.
The proposed method also performed well on off-angle
images at -40° in angle. The performance of two out of all
subjects had been improved. The performance of one out
of the remaining 99 subjects could not be improved. The
remaining 98 cases already exhibited a flawless ROC. The
presence of eyelids with good contrast iris images was
improved by the model, while those with low contrast were
not improved. The decreasing number of challenging
images at -50° to -40° in angle explains the reason behind
the near-perfect recognition performance at -30° angles.

For positive angles, the proposed model did not perform
as well as the baseline model with off-angle iris images at
+40° and +50° in angle. However, closer individual
observation revealed that the proposed method is
performing better than what the cumulative ROC curves
suggest. For 11 out of all subjects, the proposed method
yielded better ROC curves. These images shared common
issues such as pupil dilation and a blur effect. For another
11 out of the remaining 90 subjects, performance was not
improved. These subjects suffered from low contrast iris
texture, the 3D structure of the iris, uneven limbus, and a
partial occlusion of iris portion by nose. Nose occlusion is
not an issue in other angles because +50° is the most
extreme of all angles. In addition, the visual and geometric
axis of the eye do not overlap. When the subject looks to
the camera, there is an 8° angle between the cameras and
the eye. This makes the appearance of iris images captured
at +50° angle as +58° [20]. This explains why the iris
image conversion for positive gaze angles requires a more
complex approach compared with the negative angles in
left eyes. The remaining 79 subjects have a perfect ROC.
Among the off-angle images at +40° in angle, only 3 out of
all subjects achieved better performance than the baseline,
while the remaining subjects have a perfect ROC.

5. Conclusion and Future Work

Frontal iris images have traditionally obtained very low
false acceptance rates because of the huge gap between



intra-class and inter-class hamming distance scores. The
iris images are distinguishable with high accuracy even in
off-angle images. However, the thresholds of intra-class
and inter-class hamming distances come closer, causing
concern. The concern becomes a bigger problem when the
two hamming distances overlap, making identification
more challenging.

This paper suggests a method to convert off-angle iris
images to frontal iris images, thereby broadening the gap
between intra-class and inter-class hamming distance
scores. The use of matrix multiplication as a loss function,
in addition to L1 loss and SSIM loss functions in a Pix2Pix
GAN network, has yielded significant improvements in
performance for images captured at -50° and -40° angles.
However, images captured at +40° and +50° angles did not
show improvement cumulatively. A subject-wise analysis
of the images revealed that the recognition performance is
also improved for subjects with specific characteristics.
The common characteristics for iris images that were
improved were pupil dilation, eyelid occlusion with high
contrast iris images, and limbus occlusion of iris pixels.
The common characteristics for the iris images that were
not improved were the nose or the eyelids occluding most
of the pixels, low contrast iris texture, uneven limbus
occlusion, and the distortion caused by the 3D structure of
the iris images. Images captured at lower angles have very
little room for improvement.

This study suggests that tweaking the loss functions on
a Pix2Pix GAN-like architecture to learn the contrast better
can yield better results for off-angle iris recognition than
perspective transformations like affine, which could yield
good performance for only up to images captured at a gaze
angle of 30°. Furthermore, the problem gets harder with
more extreme angles, giving more insights into the causes
of the comparatively poor recognition performances at
those angles. Capturing iris images at those angles could
provide more information. Additionally, using the Iris
Codes instead of the normalized iris images could be an
alternate way to look at the problem.
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