
 

 

 

Abstract 

 

Person identification using biometrics has become a 

safer and trustworthy mechanism with the advancement of 

technology. Among all biometric identification methods, 

iris recognition has achieved very low false acceptance 

rates due to its complex and unique patterns. The low 

acceptance rates apply only to frontal iris images. 

Capturing frontal iris images is not always possible, 

especially in uncontrolled environments, where most of the 

iris images captured tend to be non-ideal, such as off-angle 

images. Off-angle iris images suffer from several issues, 

including corneal refraction, limbus occlusion, the effect of 

gaze angle, and depth of field blur. These effects distort the 

iris patterns, causing the similarity scores between the 

same individual to widen and scores between different 

individuals to become closer. This also causes false 

acceptance rates to increase, as it increases the chances of 

misclassification. This highlights the need for improving 

the performance of off-angle iris recognition. 

By leveraging the low false-acceptance rates of the 

frontal iris images, we build generated frontal version of 

the iris images using off-angle iris images and achieved 

better performance compared with the perspective 

transformation. We built a modified version of the Pix2Pix 

GAN to achieve the frontal projection of off-angle iris 

images. Instead of using a Mean Squared loss function in 

the Pix2Pix GAN, we use a combination of Mean Squared 

loss function, Matrix Multiplication loss, and SSIM loss 

function to generate sharper images that can capture the 

textural information of the original image better. 

1. Introduction 

The practice of biometric human identification is a 

longstanding concept. Over time, humans have utilized 

multiple sensory cues, including facial features, vocal 

nuances, and occasional tactile interactions, to facilitate the 

recognition and differentiation of individuals. These 

methods of identification are adequate when subjects are in 

close proximity. As human civilizations began expanding, 

there was a need to identify other humans from a distance. 

This problem gave rise to other identification mechanisms, 

such as signatures, passwords, and encrypted messages. 

However, these methods are highly prone to manipulation 

and are not always reliable. This led humans to go back to 

using biometrics as an identification mechanism even 

when they are not in proximity. Fingerprints, handprints, 

and footprints were used for a long time to handle 

biometric identification.  

Amongst these, fingerprints remain the most widely 

used biometric identification method, even in 

contemporary times. With continuous advancements in 

camera technology, facial recognition has emerged as a 

prominent area of research. Facial recognition relies on 

various facial features, including the shape and position of 

the eyes, ears, nose, and mouth, along with the skin. 

Although frontal facial recognition has achieved low false 

acceptance rates historically, the limitation lies in requiring 

subjects to face the camera directly [1]. Attempts have been 

made to address the limitation in a long-range biometric 

setup by algorithms reconstructing missing facial features 

in profile images, but asymmetries in the face remain 

challenging to restore accurately. Other biometric 

identification methods such as finger vein pattern and palm 

vein pattern have also been explored. Finger vein pattern 

uses the veins present underneath the skin of a finger, 

making them more secure than fingerprints. Palm vein 

pattern is a better version of finger vein pattern because it 

uses more reference points [2]. However, control systems 

that use this technology are expensive. The availability of 

high-quality cameras at low costs has also ensured that 

people can now use irises of humans for recognition. 

Unlike fingerprints, which are prone to duplication because 

of their high false acceptance rates, irises are more reliable 

because of their low false acceptance rates. Iris has a lot 

more unique characteristics than fingerprints, allowing for 

more comparisons between the images, reducing the 

possibility of misclassification [3]. 

Iris recognition, despite being one of the best biometric 

identification systems in the market, is not as widely 

accepted as fingerprints. This is attributed to several 

factors. One of the biggest reasons is the discomfort 
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humans face when their irises are being scanned. They 

must assume a certain posture and face the camera to let 

their eyes be scanned. Another big drawback is the speed 

at which the iris scanning is done. Since iris recognition 

works well only when the iris images are frontal in nature, 

that is, the person must be facing the camera and looking 

at it, it is hard to always capture such an image straight 

away. So, iris systems capture multiple images or a video 

stream to capture the correct image. This greatly impacts 

the time taken to successfully identify a person using this 

system. 

The above problems created the necessity to build 

standoff iris recognition systems. Some of the 

unconstrained iris recognition systems capture images 

from long range in the visible spectrum, as traditional iris 

systems capture images in the near-infrared spectrum, 

resulting in noisy and blurry images. One such problem 

that could speed up iris recognition is the problem of 

recognizing off-angle iris images. 

The off-angle iris images suffer from various challenges, 

such as reflections, gaze angle, corneal refraction, depth of 

field blur, limbus occlusion, and the complex 3D structure 

of the iris. All these challenges mean that intra-class 

hamming distance scores increase, and the inter-class 

hamming distance scores decrease when compared with 

the frontal iris images. This would make it harder for the 

iris recognition systems to differentiate individuals, when 

the iris images are captured at off-angles, which is the less 

intrusive way of capturing the iris images. This paper 

discusses a technique to convert the off-angle iris images 

into their frontal versions to speed up the process of iris 

recognition and make it more reliable. The rest of the paper 

is organized as follows: Section 2 explores the related work 

in this field. Section 3 discusses the methodology. Section 

4 demonstrates the experiments conducted and the results. 

The paper is concluded in Section 5. 

2. Related Work 

The earliest work in frontal iris recognition was done by 

Daugman [4]. They used the Gabor-phase quadrant feature 

descriptor for iris recognition. These filters converted the 

normalized iris images into a binary image called an iris 

code. These iris codes were then used for identification. 

Hamming distances were calculated for the iris codes, and 

the intra-class and inter-class distances were used to 

distinguish one person from another. 

Several challenges, such as corneal refraction, depth-of-

field blur, three-dimensional structure of the iris, the 

limbus effect, and the gaze angle, did not play an important 

role when comparing iris images taken from a frontal angle 

[5]. However, these challenges significantly affected the 

iris images when they were taken from an off-angle. 

Daugman [6] suggested a preprocessing technique that 

used affine transformations to counter the geometric 

deformations that occurred due to the difference in gaze 

angle. However, this method did not factor other 

challenges of off-angle images. Zuo et al. [7] used ellipses 

to fit iris boundaries to correct for the geometric 

deformations, and Li et al. [8] used support vector 

machines to classify frontal and off-angle iris images and 

built separate models for both sets of images. However, 

these methods did not work for off-angle images captured 

at a gaze angle of over 30°. 

A few others have worked on the other set of challenges 

plaguing off-angle iris recognition. Santos-Villalobos et al. 

[9] used the ray tracing method to compute the effect of 

corneal refraction on images and provided a way to convert 

off-angle iris images to their frontal versions. This method 

worked well for synthetic images but failed for real images 

due to the presence of the limbus. Karakaya et al. [10,11] 

investigated the effect of limbus occlusion and the three-

dimensional structure of the iris on off-angle iris 

recognition. They noticed that the presence of the limbus 

could significantly increase the intra-class hamming 

distance scores and bring them closer to the inter-class 

hamming distance scores. They also noticed that the effect 

of the limbus was compounded for images captured at 

higher gaze angles. 

Generating a related image based on a seed image has 

been studied recently in different areas of interest. One 

such area of interest is the generation of face images. 

Zhang et al. [12] used a Conditional Adversarial 

Autoencoder to generate a person’s face images 

corresponding to different ages, given one image with the 

corresponding age label. A Conditional Adversarial 

Autoencoder consists of an encoder that transforms the 

input face image into a latent space vector. This vector is 

coupled with an age label, and traversing along forward 

and backward directions in the latent space can produce 

faces corresponding to different ages. A generator is then 

used to map the latent space vector to an output face image. 

However, this methodology cannot be extended to iris 

images as the traversal alone is not sufficient to learn the 

iris patterns, and the traversal in latent space based on the 

off-angle does not lead to frontal image conversion. 

Another way to generate images is by using a Generative 

Adversarial Network (GAN) [13]. GAN has a generator 

and a discriminator. The generator takes random noise as 

input and outputs an image, whereas the discriminator 

distinguishes a fake image from a real one. They both are 

trained simultaneously to generate highly realistic images. 

Conditional Generative Adversarial Networks (CGANs) 

use label information to generate images corresponding to 

a particular class. The main difference between GAN and 

CGAN is that the generator in CGAN takes noise and a 

label as input. There are many versions of CGANs. 

Taherkhani et al. [14] worked on matching profile face 

images with their frontal versions in a database, by using 

couple of conditional generative adversarial networks. 



 

 

Their model comprises two GAN modules. The generators 

use a U-Net architecture, whereas the discriminator is a 

patch-based discriminator. The two modules are connected 

by Contrastive loss function. Their main objective is to 

project the profile and frontal face images to a latent space 

using generative modeling and use it for face matching. 

They also suggest that the model can be used for frontal 

face generation. 
Pix2Pix GAN [15] is a type of CGAN that does Image-

to-Image translation, using a similar but simpler 

architecture. The label in CGAN becomes an image, 

enabling the operation of translation. The generator used in 

Pix2Pix GAN is a U-net with skip connections, and the 

discriminator is a Patch-based discriminator. This method 

uses an adversarial loss and an L-1 loss to generate realistic 

images. Pix2Pix GAN is domain independent and can be 

used for image translations of any nature. 

Using GANs to convert off-angle iris images into frontal 

iris images has not been extensively studied in the 

literature. This paper is one such attempt at efficiently 

generating frontal iris images using their off-angle 

versions. The paper specifically uses variations of the 

Pix2Pix GAN networks. 

3. Methodology 

There exist several ways to convert off-angle iris image 

to frontal view. First of all, directly employing the captured 

off-angle image for the purpose of converting to its frontal 

images presents inherent challenges due to the coexistence 

of various facial and eye structures within the image, 

including the skin, eyelids, pupil, and sclera. Second, 

converting the segmented and masked iris image to its 

frontal view appears to be a practical solution. However, 

even the segmented iris image can suffer from problems 

such as pupil dilation that can lead to fluctuations in the iris 

size by contracting and expanding. To address such 

challenges, we utilized the normalized iris image as a 

preferable solution. Normalization standardizes the input 

image by allowing for more consistent and reliable 

processing. Therefore, the effect of pupil dilation  can be 

minimized, and it will improve the accuracy and stability 

of off-angle to frontal iris image conversion. In the 

proposed method, the iris texture in the eye image is 

segmented and normalized to a standard 64 x 512 image to 

be used as the input of the frontal conversion module. Since 

the inputs are normalized images, the generated outputs 

will be normalized images. Comparisons between iris 

images are done using the iris codes of these generated 

normalized images with the iris codes of the original 

frontal images.  

The proposed methodology of the off-angle iris 

recognition using frontal image conversion is illustrated in 

Fig. 1. It is developed in two separate branches including 

frontal iris database generation and frontal image 

conversion. The frontal iris database is generated using the 

traditional pipeline where frontal iris image is captured, 

segmented, normalized, and encoded before including in 

the database for later comparison with probe images. The 

second branch of the proposed methodology is focused on 

the generation of the encoded iris code as the probe image. 

First, the captured off-angle iris image is segmented to fit 

ellipses to its inner and outer boundaries. After 

segmentation, the angle of the off-angle segmented iris 

image is predicted using the gaze estimation method [16]. 

At the same time, the segmented off-angle iris image is 

normalized. Then, the estimated gaze angle and normalized 

off-angle image are used for frontal iris conversion. The 

frontal iris conversion generates a normalized frontal 

version of the off-angle image. The generated normalized 

iris image is then converted into a binary code using Gabor 

filters [4]. Finally, the generated iris code is compared with 

other codes in the database using hamming distance. If the 

frontal and off-angle image belong to the same subject, the 

hamming distance score is expected to be low. If they 

belong to different subjects, the hamming distance score 

will be high. 

One of the important initial steps of the off-angle to 

frontal iris image conversion is the estimation of the gaze 

angle, i.e., the angle of the iris with respect to the camera. 

Diab et al. [16] have used CNN models with a regression 

analysis for gaze estimation. Their method showed an 

average error of 4° in angle. Our proposed method utilizes 

Figure 1: Illustration of off-angle iris recognition pipeline using frontal image conversion. 

 



 

 

this gaze estimation model to achieve the task of off-angle 

to frontal iris image conversion. 

This paper adopts the Pix2PixGAN architecture [15] for 

the frontal iris reconstruction. The generator of the 

architecture is comprised of a U-net with skip connections. 

The input to a generator is a normalized off-angle iris 

image. U-net comprises an encoder and a decoder. The 

encoder acts as a down sampler, and the decoder acts as an 

up sampler. A single block in the encoder consists of 3 

layers – Convolution, Batch normalization, and ReLU. A 

single block in the decoder consists of 3 layers too 

including dropout for the first three layers, transposed 

convolution, and batch normalization. The encoder and 

decoder are also connected using skip connections. The 

discriminator is a patch-based discriminator [15]. 

3.1. Loss functions 

The original Pix2Pix GAN generator has two loss 

functions for generating images: (i) Sigmoid Cross Entropy 

loss function (𝐿𝐶𝐺𝐴𝑁), (ii) L1 loss (𝐿𝐿1). The Sigmoid cross 

entropy loss function compares the discriminator's output 

of the generated images to an array of ones, while the L1 

loss calculates the mean absolute error between the 

generated and original images. 

These Pix2Pix GAN loss functions can be expressed as 

follows: 

𝐿𝐶𝐺𝐴𝑁 = 𝐸𝑦[𝑙𝑜𝑔𝐷(𝑦)] + 𝐸𝑥,𝑧 [𝑙𝑜𝑔 ((1) −

𝐷(𝑥, 𝐺(𝑥, 𝑧)))]      

 

𝐿𝐿1 = 𝐸𝑥,𝑦,𝑧[|| 𝑦 − 𝐺(𝑥, 𝑧)||] 

where D is the discriminator, G is the generator, x is the 

input off-angle iris image, y is the expected real frontal iris 

image, z is random noise. 

In addition to these two loss functions, we have 
 added two more for the generator. The first is the Matrix 

Multiplication loss function, which is the dot product of the 

generated and original image pixel values. The average of 

the resulting matrix is used as the loss function value. This 

function helps to better understand the texture of the image 

by considering the interaction of pixel intensities from 

different parts of the image. 

The Matrix Multiplication loss can be expressed as: 

𝐿𝑀𝑀 = 𝐸𝑥,𝑦,𝑧[𝑦 ∗ 𝐺(𝑥, 𝑧)] 

where G is the generator, x is the input off-angle iris image, 

z is random noise, y is the expected real frontal iris image, 

𝐿𝑀𝑀 is the Matrix Multiplication loss function. 

The second loss function is the Structural Similarity 

Index (SSIM) loss function [17]. While the L1 loss only 

captures the difference in the value of the grayscale 

intensities at a given pixel, the SSIM loss extracts three key 

features from images - luminance, contrast, and structure. 

For iris images, all three features play a significant role in 

distinguishing individuals. The expressions for luminance, 

contrast, and structure are given as follows: 

𝜇𝑥 =
1
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where 𝜇𝑥 (luminance) is the mean value of all pixels, 𝜎𝑥 

(contrast) is the standard deviation, and 𝑠𝑥(structure) is the 

normalized version of intensity. 

The formulae for the comparison of luminance, contrast, 

and structure for two different images are as follows: 

𝑙(𝑥, 𝑦) =
2μ𝑥μ𝑦 + 𝐶1

μ𝑥
2 + μ𝑦

2 + 𝐶1

 

 

𝑐(𝑥, 𝑦)  =  
2μ𝑥μ𝑦 + 𝐶2

μ𝑥
2 + μ𝑦

2 + 𝐶2

  

 

𝑠(𝑥, 𝑦) =
σ𝑥𝑦 + 𝐶3

σ𝑥σ𝑦 + 𝐶3

 

where 𝑙(𝑥, 𝑦) , 𝑐(𝑥, 𝑦) , and 𝑠(𝑥, 𝑦)  are the comparative 

measures for luminance, contrast, and structure for the off-

angle input iris image x and the expected real frontal iris 

image y. 𝐶1, 𝐶2, 𝐶3 are the constants. 
The final expression for SSIM is a combination of 

luminance, contrast, and structure. This is given as follows: 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝑙(𝑥, 𝑦)]α. [𝑐(𝑥, 𝑦)]β. [𝑠(𝑥, 𝑦)]γ 

 

𝐿𝑆𝑆𝐼𝑀 =
(2μ𝑥μ𝑦 + 𝐶1) (2σ𝑥𝑦 + 𝐶2)

(μ𝑥
2 + μ𝑦

2 + 𝐶1) (σ𝑥
2 + σ𝑦

2 + 𝐶2)
 

where LSSIM is the SSIM loss function. 

Using (1), (2), (3) and (11), the new generator loss 

function for the conversion of off-angle iris images to their 

frontal versions is given as follows: 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝐶𝐺𝐴𝑁 + λ. 𝐿𝐿1 + 𝐿𝑀𝑀 + 𝐿𝑆𝑆𝐼𝑀  

where λ is the regularization parameter set as 100 in the 

original Pix2Pix GAN paper.  
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4. Experimental Setup and Results 

The dataset [10] used in the paper consists of frontal and 

off-angle iris images captured using a moving camera in a 

controlled environment. Images were captured from 100 

subjects at angles ranging from -50º to +50º with an 

increment of 10º. At each angle, 10 images were captured 

for each subject. The negative effects of gaze angle on iris 

images are not as vivid at lower angles, i.e., at 10º and 20º, 

because the elliptical unwrapping normalization method 

can tolerate challenges such as refraction of light at cornea 

and occlusion at limbus [18]. Therefore, only the results of 

images captured at 30°, 40°, and 50° angles were included 

in this study.  The images are further divided into five folds 

with an 80/20 train-test split to conduct different sets of 

experiments. Segmentation of the pupil, iris, and eyelids is 

done by fitting ellipses to boundaries of the iris and pupil 

and using two quadratic curves for the eyelids. 

The first fold comprises 80 subjects as the training 

dataset and the last 20 subjects as the test dataset. Training 

dataset has everything except the first 20 subjects. The first 

20 are used as the test dataset for this fold. Similarly, 

following a cyclical approach, five different training and 

test datasets were created. This ensured that every subject 

in the dataset is evaluated at least once. Since we 

considered six different sets of angles (i.e., 30°, 40°, 50°, -

30°, -40°, and -50°), we further partitioned each dataset 

based on angles. The proposed Pix2Pix GAN model is 

applied on these 30 datasets separately, resulting in 30 

different models. To compare the generated normalized 

images with the original normalized images, we used 

Gabor filters to generate iris codes and hamming distance 

to measure their similarity. Gabor filters are spatial image 

filters that convert the grayscale-normalized image into a 

binary image. Hamming distances are calculated using 

these binary images. The formula for hamming distance 

calculation is as follows: 

𝐻𝐷 =
||(𝑐𝐴 ⊕ 𝑐𝐵) ∩ (𝑚𝐴 ∩ 𝑚𝐵)||

||𝑚𝐴 ∩ 𝑚𝐵||
 

where, 𝑐𝐴 is the iris code of the first image, 𝑐𝐵 is the iris 

code of the second image, 𝑚𝐴  is the mask of the first 

image, 𝑚𝐵 is the mask of the second image. 

In the rest of the paper, we will refer to the normalized 

iris images as iris images, interchangeable. For images 

belonging to the same subject, the hamming distance 

scores should be lower than for images belonging to 

different subjects. These scores are referred to as intra-

class hamming distance and inter-class hamming distance, 

respectively. Ideally, inter-class hamming distance scores 

should be high and intra-class hamming distance scores 

should be low. The baseline for comparison in our 

experiments is the hamming distance scores between off-

angle and frontal iris images. We will compare them with 

hamming distance scores between the generated iris 

images and the frontal iris images. We analyze their 

performance using Receiver Operating Curve (ROC) and 

compare their Area Under Curve. 

To demonstrate the effect of gaze angle, the frontal and 

the off-angle eye images of the same subject are shown in 

Fig. 2. We normalized iris images using elliptical 

unwrapping and showed their normalized iris images in 

Fig. 3(a-b), respectively. Since Pix2Pix GAN model 

requires the input size as 256x256, we normalized the iris 

images as 256x256. The generated normalized image of 

off-angle image in (b) using proposed Pix2Pix GAN is 

shown in Fig. 3(c). The dark abnormal structures at the 

bottom of each normalized image are the upper eyelid. 

Notice how the texture in (c) becomes closer to the original 

frontal image in (a). This is in stark contrast to the frontal 

image in (a) and the off-angle image in (b).  

Figure 3: Normalized iris images of (a) frontal iris, (b) off angle 

iris, (c) generated iris image of the off-angle image in (b). 

 

 

(a) (b) 

(c) 

Figure 2: Sample iris images (a) frontal, (b) off-angle. 

(a) (b) 

(13)

 



 

 

The histogram plots of intra-class and inter-class 

hamming distance distributions for original off-angle iris 

images and the generated iris images are presented in Fig. 

4. The test subject is compared with 19 other subjects for 

inter-class evaluations. Fig. 4(top) shows the hamming 

distance scores for traditional approach where frontal and 

off-angle images are compared with elliptical unwrapping. 

Fig. 4(bottom) shows the distribution of hamming distance 

scores for proposed method where generated frontal 

images compared with frontal images.  We observed that 

the hamming distance plots reveal that the intra-class and 

inter-class hamming distances overlap differently at 

traditional and proposed methods. The mean intra-class 

hamming distance score for the off-angle images is 0.40, 

whereas the intra-class hamming distance score goes down 

to 0.36 for the generated images. In addition, we analyzed 

their performance using the ROC plots as shown in Fig. 5. 

It also confirms that the generated images perform better 

than the baseline traditional method with a higher 

accuracy. This demonstrates that the proposed method can 

identify the subject much better than the baseline model 

with off-angle images. On the other hand, the mean inter-

class hamming distance score for the off-angle images is 

0.47, whereas the same metric for the generated frontal 

images is 0.49. This shows that the new model can 

distinguish the subject from the rest much better than the 

baseline model with off-angle images.  

 To evaluate the performance of this model against other 

loss functions, we considered different combinations of 

loss functions including Wasserstein loss [19], SSIM loss, 

L1 loss, and Matrix Multiplication. In this set of 

experiments, we considered -50º off-angle iris images in 

the dataset where 85% images were in training and 15% in 

test. Fig. 6 compares their performances using ROC plots. 

For the first combination, we considered the Wasserstein 

loss function applied at the pixel level, the L1 loss function, 

and the SSIM loss function. The Wasserstein loss function 

is a loss function that increases the gap between real and 

generated images. The second combination is the 

Wasserstein loss function applied at the pixel level without 

the calculation of the mean of the matrices, the L1 loss 

function, and the SSIM loss function. The third 

Figure 5: Performance analysis using ROC plots for off-angle 

images at -50o in angle vs. generated frontal images for the test 

subjects. 

 

Figure 6: Performance analysis using ROC plots for off-angle 

images at -50 in angle for different loss functions. 

Figure 4: Distributions of hamming distance scores for (top) the 

frontal vs. off angle iris images (-50o in angle) (bottom) the frontal 

vs. generated frontal images. 



 

 

combination is the base Pix2Pix model. The fourth 

combination is the loss function described in this paper as 

the Matrix Multiplication loss, in combination with the 

SSIM loss and L1 losses. We observed that the Matrix 

Multiplication loss with the combination of the SSIM loss 

function showed a better performance compared with other 

loss functions. It highlights the superiority of the proposed 

model over the existing ones. 

Due to the heterogeneity of the dataset, this 

improvement over the traditional approach is not consistent. 

The overall performance comparison of the proposed 

Pix2Pix GAN model and baseline is shown in Fig. 7 for 

off-angle images at -40° and -50° in angle. For -40º off-

angles images, improvement is limited where their equal 

error rate (EER) values are similar as 0.002 and the Area 

Under Curve (AUC) are 0.989 and 0.994, respectively. For 

off-angle images at -50º in angle, AUC improves from 

0.907 to 0.959 where their EER are 0.014 to 0.008 for 

proposed and traditional method. The off-angle images at -

30º and +30º in angle did not show any improvement, as 

the images were already being identified without any errors, 

where they have perfect ROC. This is the reason why 

smaller angles were also not considered in further analysis. 

Although this does not account for most of the tested 

datasets, a closer look at each of the above models revealed 

many more cases where the improvised Pix2Pix GAN 

model is working better than the base off-angle iris 

recognition case. Some of them are detailed below. 

The proposed method performed the best on off-angle 

images at -50° and -40° in angle. A closer inspection of 

each individual subject revealed that among the -50° 

images, 95 out of 100 test subjects had perfect ROC curves. 

The proposed method exceeded the baseline model in three 

of the imperfect cases, whereas the baseline was still the 

best in the other three cases. Some of the commonalities 

among the images on which the proposed method worked 

better were eyelids occluding the iris view and the presence 

of limbus to some extent. For those images with no 

improvement, the iris texture seemed to be of low contrast. 

The proposed method also performed well on off-angle 

images at -40° in angle. The performance of two out of all 

subjects had been improved. The performance of one out 

of the remaining 99 subjects could not be improved. The 

remaining 98 cases already exhibited a flawless ROC. The 

presence of eyelids with good contrast iris images was 

improved by the model, while those with low contrast were 

not improved. The decreasing number of challenging 

images at -50° to -40° in angle explains the reason behind 

the near-perfect recognition performance at -30° angles.  

For positive angles, the proposed model did not perform 

as well as the baseline model with off-angle iris images at 

+40° and +50° in angle. However, closer individual 

observation revealed that the proposed method is 

performing better than what the cumulative ROC curves 

suggest. For 11 out of all subjects, the proposed method 

yielded better ROC curves. These images shared common 

issues such as pupil dilation and a blur effect. For another 

11 out of the remaining 90 subjects, performance was not 

improved. These subjects suffered from low contrast iris 

texture, the 3D structure of the iris, uneven limbus, and a 

partial occlusion of iris portion by nose. Nose occlusion is 

not an issue in other angles because +50° is the most 

extreme of all angles. In addition, the visual and geometric 

axis of the eye do not overlap. When the subject looks to 

the camera, there is an 8° angle between the cameras and 

the eye. This makes the appearance of iris images captured 

at +50° angle as +58° [20]. This explains why the iris 

image conversion for positive gaze angles requires a more 

complex approach compared with the negative angles in 

left eyes. The remaining 79 subjects have a perfect ROC. 

Among the off-angle images at +40° in angle, only 3 out of 

all subjects achieved better performance than the baseline, 

while the remaining subjects have a perfect ROC.  

5. Conclusion and Future Work 

Frontal iris images have traditionally obtained very low 

false acceptance rates because of the huge gap between 

Figure 7: Performance analysis of all subjects using ROC plots 

for off-angle images at (top) -40° and (bottom) -50° in angle. 



 

 

intra-class and inter-class hamming distance scores. The 

iris images are distinguishable with high accuracy even in 

off-angle images. However, the thresholds of intra-class 

and inter-class hamming distances come closer, causing 

concern. The concern becomes a bigger problem when the 

two hamming distances overlap, making identification 

more challenging. 

This paper suggests a method to convert off-angle iris 

images to frontal iris images, thereby broadening the gap 

between intra-class and inter-class hamming distance 

scores. The use of matrix multiplication as a loss function, 

in addition to L1 loss and SSIM loss functions in a Pix2Pix 

GAN network, has yielded significant improvements in 

performance for images captured at -50° and -40° angles. 

However, images captured at  +40° and +50° angles did not 

show improvement cumulatively. A subject-wise analysis 

of the images revealed that the recognition performance is 

also improved for subjects with specific characteristics. 

The common characteristics for iris images that were 

improved were pupil dilation, eyelid occlusion with high 

contrast iris images, and limbus occlusion of iris pixels. 

The common characteristics for the iris images that were 

not improved were the nose or the eyelids occluding most 

of the pixels, low contrast iris texture, uneven limbus 

occlusion, and the distortion caused by the 3D structure of 

the iris images. Images captured at lower angles have very 

little room for improvement. 

This study suggests that tweaking the loss functions on 

a Pix2Pix GAN-like architecture to learn the contrast better 

can yield better results for off-angle iris recognition than 

perspective transformations like affine, which could yield 

good performance for only up to images captured at a gaze 

angle of 30°. Furthermore, the problem gets harder with 

more extreme angles, giving more insights into the causes 

of the comparatively poor recognition performances at 

those angles. Capturing iris images at those angles could 

provide more information. Additionally, using the Iris 

Codes instead of the normalized iris images could be an 

alternate way to look at the problem.  
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