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ABSTRACT from the previous work where the authors studied the test with

In this paper we study functions on the Boolean hypercube that
have the property that after applying certain random restrictions,
the restricted function is correlated to a linear function with non-
negligible probability. If the given function is correlated with a
linear function then this property clearly holds. Furthermore, the
property also holds for low-degree functions as low-degree func-
tions become a constant function under a random restriction with a
non-negligible probability. We show that this essentially is the only
possible reason. More specifically, we show that the function must
be correlated to a product of a linear function and a low-degree
function. One of the main motivations of studying this question
comes from the recent work of the authors towards understanding
approximability of satisfiable Constraint Satisfaction Problems.

Towards proving our structural theorem, we analyze a 2-query
direct product test for the table F : (EZ"J) — {0, 1}9" where q € (0, 1).
We show that, for every constant ¢ > 0, if the test passes with
probability ¢ > 0, then there is a global function g : [n] — {0,1}
such that for at least d(¢) fraction of sets, the global function g
agrees with the given table on all except a(e) many locations. The
novelty of this result lies in the fact that a(¢) is independent of the
set sizes. Prior to our work, such a conclusion (in fact, a stronger
conclusion with @ = 0) was shown by Dinur, Filmus, and Harsha
albeit when the test accepts with probability 1—¢ for a small constant
e > 0. The setting of parameters in our direct product tests is
fundamentally different compared to the previous results and hence
our analysis involves new techniques, including the use of the small-
set expansion property of graphs defined on multi-slices.

As one application of our structural result, we give a 4-query
linearity test under the p-biased distribution. More specifically, for
any p € (%, %), we give a test that queries a given function f :
{0,1}" — {0, 1} at 4 locations, where the marginal distribution of
each query is /,t;? " The test has perfect completeness and soundness
% + ¢ — in other words, for every constant ¢ > 0, if the test passes
with probability at least % + ¢, then the function f is correlated to a
linear function under the ,u?” measure. This qualitatively improves
the results on the linearity testing under the p-biased distribution
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soundness 1 — ¢, for ¢ close to 0.

CCS CONCEPTS

+ Theory of computation — Problems, reductions and com-
pleteness.

KEYWORDS

constraint satisfaction problems, hardness of approximation, lin-
earity test, direct product test

ACM Reference Format:

Amey Bhangale, Subhash Khot, and Dor Minzer. 2023. On Approximability
of Satisfiable k-CSPs: IIL. In Proceedings of the 55th Annual ACM Symposium
on Theory of Computing (STOC ’23), June 20-23, 2023, Orlando, FL, USA. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3564246.3585121

1 INTRODUCTION

Analysis of Boolean functions plays a crucial role in many areas of
mathematics and computer science, including complexity theory,
hardness of approximation, coding theory, additive combinatorics,
social choice, etc. Among the set of Boolean functions, linear func-
tions are among the simplest class of functions and hence linearity
testing, i.e., checking whether a given Boolean function is a linear
function or far from it, is one of the most fundamental and well-
studied problems in the analysis of Boolean functions. In this paper,
we study certain problems in the analysis of Boolean functions
and problems in property testing, including linearity testing and
agreement testing.

The main motivation for studying these set of problems comes
from the recent work by the authors and this work can be thought of
as a continuation of the line of research from the previous work by
the authors [3, 4]. The primary focus in this paper is to understand
the structure of a boolean function under a random restriction. Fix
a distribution v on {0, 1} and a constant n € (0, 1). Given a function
f:{0,1}"" — {0, 1}, consider the process of randomly restricting
a subset of the variables as follows. First choose a random subset
I C [n] by including i € I with probability 7 independently for
each i € [n] and then select z € {0, 1}|I | from the distribution
vl. The function f under the restriction (I, z) is defined as f_, :
{0,1}" Ml = {0,1} where fi-z(x) = f(x,z|1), ie., we fix the
variables from I according to z. In this work, we study the properties
of f if fi—,, is correlated with a linear function with noticeable
probability. In order prove the structural result, we also study the
direct product testing under a different regime of parameters that
was not studied before. Finally, we use our structural result to
analyze linearity tests under a biased distribution.

We now formally describe these problems and the main results
that we prove in this work.
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1.1 Problem 1: Large Fourier Coefficient after a
Random Restriction

Let p be a distribution over {0, 1} in which the probability of each
atom is at least @ > 0, and write p = fU + (1 — B)p’ where U is the
uniform distribution over {0, 1}, 1’ is some distribution over {0, 1}
with full support, and 0 < ff < /2 is thought of as a constant. We
denote I ~, [n] the choice a random subset of [r] that results from
including each element from [n] in it with probability p. Suppose
that f: ({0,1}", y®") — R is a function with 2-norm at most 1
satisfying that

I~1}j;[n] [35 cl, (E(S)‘ > 5] > . (1)
z~p'!

In other words, with noticeable probability, after a suitable random
restriction and looking at the underlying measure of the restricted
function as the uniform distribution, the restricted function has a
significant Fourier coefficient. What can we say about the structure
of the function f in that case?

The most natural guess would be that the function f itself has

to be correlated with some linear function ys(x) = [] (-1)*. In-
ieS
specting, it is indeed clear that any function f that is correlated

with some ys indeed satisfies (1), however it turns out that there
are other examples. If f is a low-degree function, say a function
of degree much smaller than 1/, then we expect the random re-
striction to fix the value of f with considerable probability, and

hence we expect ‘ f1— Z((Z))| to be large with considerable probability.

More generally, it is enough that f is correlated with a low-degree
function for the above to occur with noticeable probability.

More generally, one could combine the two examples above and
show that any function f that is correlated with a function of the
form ys(x) - g(x), where g is a low-degree function, satisfies (1)
provided that deg(g) is significantly smaller than 1/f. Indeed, after
such random restriction, the restriction of ys is a different character
(up to a sign), and the restriction of g is close to being a constant
function with significant probability. Hence we would get that after
random restriction f is correlated with a function of the form ays
for some real number a € R, and in particular it has a significant
Fourier coefficient.

Our first result asserts that this structure in fact captures all
functions f satisfying (1).

THEOREM 1. Foralla, > 0 and 8,1 > 0, there are §'(6) > 0,
d(a,8) € N such that if a function f: ({0,1}"*, u®") — R with
2-norm at most 1 as in the above set-up satisfies (1), then there is
S C [n] and a function g: {0,1}"* — R of 2-norm at most 1 of degree
at most d, such that

E
x~p

L, fxs(x)g(x)l) > 6"

Moreover, the function g is given as g = (ys f)<<.

Motivation. Besides being a natural question to consider, we
are motivated to study the above problem and prove Theorem 1
by the study of satisfiable CSPs. In particular, in [4] the authors
proved an analytical lemma [4, Lemma 1] that plays a crucial role in
classifying the complexity of approximation of satisfiable constraint
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satisfaction for the case of 3-ary CSPs. En route to extending this
result to larger arity CSPs, the authors have been thinking about
a stability version of this problem [5] which naturally leads to
a structure as given in (1). While such structure, by its own, is
already significant, it is hard to really call it a global structure, since
it only asserts that f possesses some distinctive structure after a
random restriction, which limits its applicability. Indeed, while we
believe such structure to be sufficient for some applications (such
as resolving the non-linear embedding hypothesis from [3]), we can
see that to make further progress one needs a more “full-fledged”
global characterization of a function f satisfying (1). This is where
the current paper enters the picture, and the original motivation
for us to prove Theorem 1.

Upon trying to think of Theorem 1, we have realized it is related
to two other notable problems in TCS, namely the linearity testing
problem over the biased cube, and the direct product testing prob-
lem. Below, we discuss these problems, and state our results about
them.

1.2 Problem 2: The Linearity Testing Problem
over the Biased Cube

The next problem we consider is the biased version of the classical
linearity testing problem. Let 4 be the g-biased distribution over
{0, 1}, i.e. the distribution in which pg(1) = g and pg(0) = 1 -g,
and let v be a distribution over

{(abc,d)e{0,1}* [a+b+c+d=0 (mod 2)}

whose marginal on each coordinate is 14 in which the probability of
each element is at least @ > 0. In the linearity testing problem over
the g-biased cube, we have a function f: ({0,1}", y?”) - {-1,1}
satisfying that

FOf@f@fw =115 +8 @
(x,y,z,w)~v®n 2

namely that f(x)f(y)f(z)f(w) = 1 with probability noticeably
larger than 1/2, and the goal is to prove that f must possess some
special structure in this case. The classical version of this problem
is concerned with the case that ¢ = 1/2, in which case it was shown
that f must have a heavy Fourier coefficient, i.e. must be correlated
with a function of the form ys. Initially, this was shown for the
so-called 99% regime [6], in which § > 1/2 — ¢ for some small ¢,
and later this was extended to the 1% regime, in which case ¢ is
thought of as small [1, 16].

For any q # 1/2, one can recover the result for the 99% regime
using the same local-correction techniques [9, 17] and show that
f must be in fact close to a function of the form ys. However, the
techniques in the more challenging 1% regime completely break
down, and as far as we know the linearity testing question is open
for any g # % in this regime.

Theorem 1 already by itself gives some structural result for func-
tions f satisfying (2), and to see that, we re-write (2) as

E [f)f @) f)f(w)] = 26.

(x,y,z,w)~v®n

(3)

Inspecting (3), one may apply random-restrictions properly so as
to transform inequality (3) to measuring the advantage certain
restrictions of f have in the standard linearity testing problem
over the uniform hypercube, which shows that with noticeable



On Approximability of Satisfiable k-CSPs: 111

probability, a random restriction of f has a significant Fourier
coefficient as in the setting of Theorem 1. Thus, f must be correlated
with a function of the form ygg for a low-degree function g.

Ideally, one would expect that the answer to the linearity testing
question over the g-biased cube to also be about correlations just
with ys, which raises the question of whether the g part is necessary
in the above result. In general, we do not know the answer to that,
but we are able to show that it boils down to the following problem,
for which we need the notion of resilient functions.

DEFINITION 1. Let u be a probability measure over {0, 1}. A func-
tion g: ({0,1}", u®™) — R is called (r, €) resilient if for any S C [n]
of size at most r and any s € {0, 1}5,

< e

Ex~pon Lf() |xs =s]= E_ [f(x)]

x~p

In words, restricting any set of at most r coordinates changes the
average of g by at most ¢.

It turns out that to “remove” the g part from the above structural
result, it is sufficient (and also necessary, in a sense) to show that
if g1, ..., g4 are bounded, noise stable functions (which should be
thought of as low-degree functions), that are resilient, then

o, [91(3)92(y)g3(2)ga(w)]| < o(1). 4

(x,y,z,w)~v®n

In general, we do not know how to solve this problem, however in
some cases of interest we are able to do so, namely in the case that
v is pairwise independent.

To spell it out, in this case, v is the distribution in which (a)
each one of (1, 1,0, 0), (1,0, 1,0), (1,0,0, 1), (0, 1, 1, 0), (0, 1,0, 1) and
(0,0, 1, 1) receives probability g1, (b) the point (1,1, 1, 1) receives
probability gz, and (c) the point (0, 0, 0, 0) receives probability g3,
where g1 = M,qz = M and g3 = 1 — 57(] + %.Inthis
case, we are able to resolve the above problem, thereby prove the
following result:

THEOREM 2. Let q € (%, %) and suppose that v is a pairwise
independent distribution over the set
{(a,b,c,d) e {0, 1}* |a+b+c+d: 0 (mod 2)}
in which the marginal of each coordinate is j1g. Then for every 8 > 0,
there is 8’ > 0 such that if f: ({0, 1}”,/,1?") — {—1, 1} satisfies (3),
then there is S C [n] such that

>4

E [fexs(x)]
X~ p®n

We remark that our argument gives in fact a version of Theorem 2
for real-valued functions with bounded 12-norms, as well as a list-
decoding version. We refer to the full-version of the paper the proof
of the above theorem.

1.3 Problem 3: Direct Product Testing

The third and final problem considered in this paper is the direct
product testing problem which is described as follows. Fix any
q € (0,1) and consider a table F : (EI"J) — {0,1}9™. For a subset
S C [n] of size gn, the entry F[S] can be thought of as a function
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fs : S — {0, 1}, by fixing an arbitrary ordering of the set [n]. F is
called a direct product table if there is a function g : [n] — {0, 1}
such that for all S, F[S] = g|s. Here, g|s is the function g restricted
to the coordinates in S. In direct product testing, one would like to
check, by querying a few locations from the table F, if the table is
coming from a global function g : [n] — {0, 1}. In other words, is
there a function g : [n] — {0, 1} such that for many subsets S C [n],
the entry F[S] is equal to g|s?

The direct product testing problem has been extensively studied
in [9, 10, 12, 13, 15] and one of the main motivations of studying
direct product testing is its application to constructing Probabilisti-
cally Checkable Proofs with small soundness (for instance, see [15]).
There is a natural test to check if the table F is a direct product and
it is as follows: Select a random set A of size ¢’n and two random
subsets By C [n]\ Aand By C [n]\ A each of size (q— q’)n, for some
q’ <4q, and check ifF[Sl]|SlﬂSz = F[SZ]|SIOSZ) where S; = AU B;
for i = 1,2. Denote the distribution on the sets (S1,S52) by Dy, 4.
Clearly, if F is a direct product function, then the test passes with
probability 1. The challenging task is to show that if the test passes
with non-negligible probability, then F is close to being a direct
product function.

Similar to linearity testing, the direct product testing has been
studied in the 99% regime [9, 12] (in which one wants to draw the
conclusion when the test passes with probability 1 — ¢) and in the
1% regime [10, 13, 15] (in which one wants to draw the conclusion
when the test passes with probability ¢). Here, ¢ can be though of
as a small quantity. In this work, we study the direct product test
in the 1% regime when gq, ¢’ are constants independent of n. The
regime of parameters we consider is tailored to our applications
(i.e., proving Theorem 1, and hence proving Theorem 2), and to the
best of our knowledge does not currently appear in the literature.

If the test passes with probability ¢, then one possibility is that
the table F could be obtained (probabilistically) by choosing some
g : [n] — {0,1}, and defining F[S] independently for each S as
gls with probability /¢, and otherwise to be a random element of
{0, 1}9™. More generally, one can take a list of functions g1, . . ., gm :
[n] — {0, 1} such that for all i # j we have that A(g;, gj) < O(1),
and then for each S independently, with probability /¢ choosing
F[S] = gi|s for some random i € [m], and otherwise taking F[S] to
be uniformly chosen. Our direct product theorem asserts that the
above examples essentially exhaust all possible F’s that satisfy the
direct product test.

THEOREM 3. Forall0 < ¢’ < q < 1ande > 0, therearer € N and
& > 0 such that the following holds. Suppose that F : (E]”n]) — {0,1}9"
satisfies

P F[S = F[S > €.
(51,52)51)(1,(1/[ [S1lls,ns, = FlS2lls,ns, ] > ¢
Then there exists a function g : [n] — {0, 1} such that for at least a §
fraction of S € (EI"J) we have |{i € S | F[S]; # g(i)}| < r.

We refer to the full-version of the paper for the proof of the the-
orem. The novelty of this result lies in the fact that r is independent
of n. Prior to our work, such a conclusion (in fact, a stronger conclu-
sion with r = 0) was shown by Dinur, Filmus, and Harsha [9] albeit
when the test accepts with probability 1 — ¢ for small constants
& > 0. We cannot have r = 0 in our conclusion as the test passes
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with a small probability.! Furthermore, the setting of parameters
in our direct product tests are fundamentally different compared to
the previous work on direct product testing and hence our analysis
involves new techniques, including the use of the small-set expan-
sion property of graphs defined on multi-slices.? Such expansion
property was recently shown in [7].

For our application, we need to apply the direct product theorem
over a g-biased hypercube which is defined as follows. Consider
the g-biased measure over P([n]), i.e. ,u?"(A) = q|A|(1 - q)”’|A|,
and let G: (P[n],pf;”) — P([n]) be an assignment that to each
A € P([n]) assigns a subset of it G[A] C A in a locally consistent
manner. Namely, for a € (0, 1), consider the distribution Dy,a
over A,A’ C [n] that results from by taking, for each i € [n]
independently, i to be both in A, A” with probability agq, i to be
in A\ A’ with probability (1 — a)g, i to be in A"\ A with probability
(1 — @)q. The function G is locally consistent if

7’ 7 ’
(A’A&Dq’a [GIAIN(ANA) =GIAIN(ANA)] > e
The following corollary, that follows from Theorem 3, asserts that
in this case, G must be correlated to a global subset S C [n].

1

CoRrOLLARY 1. Foralla,e >0 and0 < q < 53—, therearer € N
and & > 0 such that the following holds. Suppose that a function
G: (P[n],yg’”) — P([n]) satisfies

Pr [GIAIN(ANA") =GIAIN(ANA")] > e.
(A,A)~Dg.a
Then there exists S C [n] such that
Pr [|IG[AJA(SNA)| <r] = 6.
A~pd"

1.4 Related Work

As mentioned before, various kinds of linearity tests have been
extensively studied. To begin with, Blum, Luby and Rubienfeld [6]
gave the 3-query lineary test under uniform distribution in the 99%
regime. [1, 16] improved this result by showing that if the function
on {0, 1}" passes the BLR test with probability % +¢, for any constant
¢ > 0, then it has a non-trivial correlation with some linear function.
In the p-biased setting, Kopparty and Saraf [17] gives Op(1)-query
linearity test with soundness 1 — ¢ for ¢ close to 0. David, Dinur,
Goldenberg, Kindler and Shinkar [8] gave a linearity testing in
the 99% regime on a slice of the Boolean hypercube. Recently, in
order to reduce the number of queries in the biased linearity testing,
Dinur, Filmus and Harsha [9] gave a 4-query linearity test (more
generally, a 29+1
p-biased setting.

The direct product tests (also known as agreement tests) were
first studied by Goldreich and Safra [14] in which they show that
it can be testable with constantly many queries. Dinur and Rein-
gold [12] gave a 2-query direct product test in the 99% accepting
regime. Dinur and Goldenberg [10] improved this to the 1% regime.

-query degree-d test) with soundness 1 — ¢, in the

Consider a global function g : [n] — {0, 1} and define F[S] = ¢(S) + 17, where 1
is a random noise with hamming weight < C for some constant C. It is easy to see
that F will pass the test with a small constant probability and yet there is no global

function that fully agrees with F[S] on a constant fraction of S € (E;nl)
2Given an alphabet size m € N, thought of as a constant, and k= (ks kay oo oy km)
whose entries sum of up n, the k-multi-slice is the set of vectors x € [m]” in which
each symbol i € [m] appears precisely k; times.
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More specifically, given a table F : ([Z]) — {0, 1}*, if the test de-
scribed in the introduction passes with probability at least & > 1/k“
for some a < 1, then there is a global function g : [n] — {0,1}

<k®
such that for at least €2 fraction of the sets S, F[S] # ¢(S) for
<p
some constant 0 < § < 1. Here the notation # means that the

two strings agree on all except f many locations. They also show
that one cannot get a meaningful conclusion of the test passes with
probability less than % More formally, there is a function F such
that the test accepts F with probability at least Q(k’/k), where k’
is the intersection size of the two sets from the test distribution,
for any function g : [n] — {0, 1}, the fraction of sets S on which

<0.9k
g(S) # F[S]isatmost % Thus, for k” = @(k), and k = n'~¢, the

claim says there is no global structure even if the test passes with
probability Q(1). In our case, though, this claim does not give any

meaningful conclusion, as the quantity % = q, a large constant.

In order to bring down the soundness of the test (compared to
the quantity 2k, which is the alphabet size), Impagliazzo, Kabanets,
and Wigderson gave a 3-query test that has soundness exp(—k%)
for some a > 0. They also gave a different proof of the 2-query test
from [10] and obtained similar results. Dinur and Livni Navon [11]
improved the soundness of the 3-query test to ¢ = exp(—Q(k))
when N > k (N > 29(")). In the latter result, the global function
approximately agrees with F on at least ¢ — 4¢? fraction of the
sets. Here, the approximate agreement can be taken as an all but
arbitrary small constant fraction of the coordinates in S.

Recently, Dinur, Filmus and Harsha [9] analyzed the 2-query test
in the 99% regime to get a stronger conclusion. More specifically,
they showed that if the test passes with probability at least 1 — ¢ for
a sufficiently small constant ¢ > 0, then there is a global function
g such that for at least 1 — O(¢) fraction of the sets S, F[S] = g(S).
Note that in the conclusion, they get a stronger agreement with
the global function. They also gave a higher-dimension version of
the direct product test where F[S] represents a degree d functions
(as opposed to linear functions) on the variables in S. In the same
work [9], the authors use this direct product test to get a 4-query
linearity test over a biased measure on the hypercube.

1.5 Techniques

In this section, we give the proofs overview of the three theorems
mentioned in the introduction.

1.5.1  Proof Overview of Theorem 1. By the hypothesis of the the-
orem, we know that after a random restriction, the function f is
correlated with a linear function with non-negligible probability.
If we put a further restriction on the function, then the (further)
restricted function stays correlated with the same linear function
with non-negligible probability. We use this fact to conclude that
the correlated linear function is independent of the actual restric-
tion, i.e., it depends on the subset being restricted but independent
of the settings to the variables in the subset. Once we establish this
structure, we show that for different subsets I; and I; that intersect
at many locations, the corresponding linear functions are similar
on the domain {0, 1}1"2. We exploit this structure further by using
our direct product theorem to conclude that f is correlated to a
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global nearly-linear function. We now explain each of these parts
in more detail.

We denote I ~, [n] the choice a random subset of [n] that results
from including each element from [n] in it with probability p. Let
xs(x) := [1(-1)* the multiplicative character over the uniform

measure.
Step I: Local linear structure. Suppose we have a function f asin
the statement of Theorem 1. By the premise, we know that choos-
ing a random restriction I ~;_g [n] and z ~ ,u’I, the restricted
function fr_,, has a significant Fourier coefficient Sj , with no-
ticeable probability. A priori, it may be the case that even if we
fix the set of restricted coordinates I, for each z we would get a
completely different and unrelated character Sy ;, and the first step
in our argument is to show that this cannot be the case over all I.
Towards showing that Sy , typically does not depend on z, we
consider a heavier random restriction in which we first choose I as
above, then I’ ~1 /, I, and randomly restrict the coordinates of IUI"
according to a measure p’/, after which the underlying measure of
fi—z,P—z is still the uniform measure; in other words, 2z is chosen
uniformly from {0, 1}/ . Since after the restriction I — z we already
have a heavy Fourier coefficient S7 , with noticeable probability, it
follows that f7_,; 17—’ also has a heavy Fourier coefficient, namely
S1.z N I”, with noticeable probability. Note that the identity of this
coefficient now does not depend on the setting of z’. At the same
time, when we view the common random restriction I — 7 that
combines I and I’, there is no longer “separation” of what is the
I-part and what is the I’-part, and this allows us to argue that the
identity of Sy , does not really depend on z. Formally, for this step
we use the small set expansion property of the hypercube.
Step II: Local consistency. Thus, we can think that for each I, we
have a list of heavy coefficients, Wy that capture all of the heavy
coeflicients that may occur when we randomly restrict the coor-
dinates of I. Using a list-decoding type version of the argument
above, we show that together, all S C I that are individually only
rarely a heavy coefficient of a random restriction of f on I, even
together do not contribute much to the probability that a restriction
of f has a significant Fourier coefficient. Using this fact, we are
able to establish that the lists W; must have certain local consis-
tency properties. Roughly speaking, we show that if we choose
I;, I, randomly that intersect on (1 — ) of their elements (for suit-
ably chosen f > 0), with significant probability we have a pair of
compatible characters in the lists of I1, I. That is, with significant
probability we will be able to find S; € WII and Sy € sz such that
S1 NI} Ul = So NI U L. Clearly, such property would happen if
there was a global character S C [n] such that many of the lists Wy
contain S N I, and the intuition suggests that this is the only way
to create such a situation. In the next part of the argument, we use
a direct product theorem, namely Corollary 1, to carry out such an
argument.
Step III: Invoking the direct product testing theorem. We
show that on top of being locally consistent, the lists W are also
bounded, hence we may define an assignment G to the I's that to
each I selects randomly a character F[I] € W;. Having defined F,
we observe that the local consistency of the lists translates to the
fact that the assignment G[A] = F[A] passes the direct product test
with significant probability. Thus, we may invoke Corollary 1 to
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deduce that there exists S C [n] for which, for a significant fraction
of the I’s, [F[I]A(S N I)| = O(1).

Step IV: Deducing the correlation with a global nearly-linear
function. Stated otherwise, the last conclusion asserts that af-
ter random restriction, with significant probability the function
f1—7 is correlated with a function of the form ys: for S’ such that
|S’A(I N S)| = O(1). Thus, the function yjns - fi— has significant
mass on the low-degree part, and is hence not noise sensitive - i.e.
it has stability bounded away from 0. Thus, the function (ys- f);—,
(which up to a sign is the same as the previous function) is some-
what noise stable with significant probability over the choice of I
and z, which allows us to deduce via Lemma 2 that the function
Xs - f is somewhat noise stable, and hence is correlated with its
low-degree part.

1.5.2  Proof Overview of Theorem 2: Linearity Testing Over a Biased
Hypercube. We begin with an overview of the proof of Theorem 2
and the overall idea is as follows. We know that [1] if the func-
tion passes the linearity test with probability 1/2 + ¢ under the
uniform measure, then the function is correlated with a linear func-
tion. In order to use this structure, we first do a certain random
restriction on a subset of coordinates such that for the rest of the
coordinates, our test queries are distributed uniformly. Now, using
the linearity testing over the uniform measure, we can conclude
that the restricted functions are correlated with a linear function.
At this point, we use our Theorem 1 to conclude that the original
function must be correlated with a product of a linear function
and a low-degree polynomial. In order to get rid of the low-degree
polynomial from the conclusion, we design the test carefully so
that its contribution in the final correlation is negligible. We now
explain how to achieve these high-level ideas in more detail.

Step I: From linearity testing to large Fourier coefficients un-
der random restrictions. Suppose that we are given a function
f:({o,1}", p?") — {-1, 1} satisfying the premise of Theorem 2,
i.e. such that

E >9.

(x,y,z,w)~v®n

f@)f(y)f(2)f(w)] (©)

Using standard averaging arguments, after choosing restrictions
fi—a> fib> fioc> fi—a in a correlated manner that changes the
underlying measure to be uniform, with significant probability we
get that

E

(x,y,z,w)~v’

Ut fip @ fise(@) fima ]| > 5.

[n\I

where v/ is the uniform distribution over (x, y, z, w) € {0, 1}* such
that x + y + z + w = 0. Thus, using the standard Fourier analytic
analysis of the test over the uniform measure, we conclude that
with significant probability the function f7_,, has a heavy Fourier
coefficient. Invoking Theorem 1 we conclude that f is correlated
with a function of the form ys - g, where g is a low-degree function,
and moreover g takes the form g = (ys f)<¢ for some d = O5(1).

Step II: The list decoding argument. We would like to argue
that since f is correlated with ys - g, we can “switch” one of the
f’s above with ys - g, and still get that the expectation in (5) is
significant. To carry out such argument, we require a list-decoding
version of the previous argument. Namely, we need to find a list of
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functions ys, - g1, ..., Xs,, - gm that are all correlated with f and
furthermore that “explain” all of the advantage of the expectation
in (5), in the sense that

=o(1). (6)

(F = D xs: - g FW)FR)f (w)
i=1

E [
(x,y,z,w)~v®n

Such arguments are rather easy to carry out in the uniform measure,
however in our setting we are facing two additional challenges.
First, since our decoding procedure above is not very simple, we
are only able to apply it in a black-box way, so if we want to apply
it iteratively we have to be careful so that the functions we work
with satisfy the prerequisites of our basic decoding procedure. In
our situation, this amounts to the functions not having too large 2-
norm. Second, in contrast to the standard hypercube, the functions
Xs; - gi need not be orthogonal hence there is no “natural” bound
on the list size m. Indeed, such bound is simply false, so one cannot
simply take all of the functions ys, - g; that are correlated with f.

We overcome these challenges by allowing some flexibility in
the degree of g;’s and in the level of correlation we require. Roughly
speaking, the idea is that for ys g1 and ys, g2 to be correlated, the
characters S1, S, must be close to each other (in the sense that
[S1AS2| is small). Thus, as g is the low-degree part of f - ys, and
g2 is the low-degree part of f - ys,, we expect these to overlap, and
so if we “increase” the degree in which we truncate, we expect the
function ys, g1 to already include in it all of the mass of ys, g2, and
so we would be able to drop ys,g2 from the list.

After carefully doing this argument, we are indeed able to find a
bounded m and a list xs,g1,. .., Xs,,9m as above so that (6) holds.
This means that for some i, we get that

E

(x,y,2,w)~v®

s, 9@ fWf@fw)]| > Q6 /m).

and we have effectively switched one of the f’s into a function with
the desired structure. Repeating this argument a few more times, we
find S1,...,S4and gy, . . ., g4 of low degree given as g; = ()(Sif)Sdi
for some d; = Og(1) such that

on [Cxsy - 90)C(xs, - 92)W)(xs; - 95)(2)xs, - ga)(w)]

(x,y,z,w)~Vv

>6.

™

Step III: The invariance principle argument. Letting T = S; N
S2 N S3 NS4, we show that unless all of the S;’s are almost equal
to T (in the sense that |S;AT| = O(1)), the above expectation is
small. Hence, we get that each one of the S;’s is close to T, and for
simplicity of presentation in this overview, we assume that S; = T
for all i. Thus, as y1(x) T (y) x7(2) yT(W) = 1 in the support of v, it
follows that

E [91(x)g2(y)g3(2)ga(w)]| > 8"

(x,y,z,w)~v®n

In other words, we have reduced the original problem of studying
the structure of functions f that have an advantage in the linearity
test over yq to the same problem, except that now the functions
g1, - - ., g4 are low-degree. The slight caveat here is that while f’s
were bounded (in fact, Boolean), the g;’s are not, however this is
easy to fix, and we show that instead of using degree truncations,
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one can apply a suitable noise operator and still get an inequality
as above. Thus, for the sake of this overview, we think of g;’s as
low-degree bounded functions.

It can be shown that if f is not correlated with any ys, then
the average of g; is close to 0, even after restricting any set of
O(1) many coordinates. Thus, using standard regularity arguments,
we can show that there is a set of coordinates T’ of size O(1)
such that after restricting them, the restrictions of gy, ..., g4 all
have small low-degree influence and still have averages close to
0. In this case, we are able to appeal to the invariance princi-
ple [19], and more specifically to a version from [18]. For the
sake of simplicity of presentation, we ignore the restriction of T’
for now, so that the invariance principle implies that the value
of B(x,y,z,w)~ven [91(x)g2(y)g3(2)ga(w)] is close to the value of an
expectation of the form

[P1(z")Py(2%)P3(2°)Pa(2*)].

(21,22,23,24)'“1;@"

where Py, ...,Ps: R®™ — [—1, 1] are functions over Gaussian space
with the same average as g1, . . ., g4, and 7V is a distribution of jointly
distributed Gaussian random variables with the same pairwise
correlations as of v. However, v is pairwise independent (this is
the only place in which we use this fact), so the last Gaussian
expectation is easy to compute and is just equal to the product of
averages of Py, ..., P4, which is 0. This is a contradiction to (7),
and so it is not possible that f is not correlated with any of ys,
completing the overview of the proof.

1.5.3  Proof Overview of Theorem 3: Direct Product Testing. In the
99% regime, in order to come up with the global function that agrees
with the given table F, in most cases, just taking the majority vote
works. More formally, if we define the function g : [n] — {0, 1}
by setting g(i) = Majorityg g5;F[S]l;, then this g will have the
property that it will approximately agree with F on almost all of
the domain ([In’b Such a proof strategy was shown to work [9, 12]
in the high acceptance regime of the direct product tests.

This above strategy, however, fails badly in the 1% regime. To

see this, for every S, define F[S] to be a random element from
{09, 19"} with equal probability. It is easy to see that F will pass
the test with probability 1/2. On the other hand, the function g
defined by taking the majority vote, looks like a random function
and hence is very far from the table F.
Step I: Getting the local structure. One of the frameworks that
was very successful in analyzing various direct product tests in
the 1% regime is from the work of Impagliazzo, Kabanets, and
Wigderson [15]. This framework, that we will explain next, has been
used in [2, 11] to analyze various agreement tests. As seen before,
although taking the majority vote among all the sets containing i
does not work, we can define functions that have agreement with
F locally. More specifically, given a subset S and an assignment
o €{0,1}9", if we define a function gs , : [n] — {0, 1} by setting
9s,0(i) = Majority g g5 pls7]|sngr=c|sns F 1S 1li- then at least for
the earlier example, one of the gs will end up being the all 0s
function and will have agreement with the table F. In other words,
we define the function by taking the majority vote only among the
sets that are consistent with the given pair (S, o).
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This intuition can be made to work even when the test passes

with probability € > 0 where ¢ is a small constant, or even a sub-
constant. However, in general, the functions gs , agree with the
table F on only a o(1)-fraction of the domain. Recall, we are inter-
ested in finding a global function g that agrees with F on at least
d(¢) fraction of the domain for some fixed function § independent
of n.
Step II: Stitching different local functions. To remedy this, the
next important component in the framework is to stitch these local
functions gs s to come up with a global function g that has the
required property. In our set-up, we differ from the previous work
in this step of stitching different local functions.If we define the
domain Cs 5 C (["J) as those sets of size gn on which the function
gs,o agrees with the table F[.], then one way to show that these
different functions gs s are similar to each is to show that the
families Cs,» and Cs/_ 5 have many sets in common for a typical
(S,0) and (S, ¢’). This would be enough to conclude that gs , =
gs'.o and then get the final required global structure. This was
shown to work in [10, 15] where the set sizes gn = o(+/n), i.e., when
g = o(1/n).

The difficulty that arises in our setting of the parameters is that
the sets S are of size ©(n) and hence we cannot directly show that
for a typical pair (S, o) and (S’, o’), the corresponding functions
agree with each other. We can, however, show that for a typical
(S, 0), there are many (S,0"), where Sisa slight perturbation of the
set S resulting in changing a constant fraction of the coordinates in
S, such that the families Cs , and CS,a’ have many sets in common.

<O(1)
From this, we can conclude that the functions gs » # 95 o for

a typical (S, o). This still is not enough to guarantee an existence
of the global function that agrees with the table F on §(¢) fraction
of the domain and the reason is that we could only show the ap-
proximate equality between gs , and 95,00 where § is correlated
to S.

Step III: Using the small-set expansion property. In order to
break the correlation between the pairs (S, o) and (S, o) for which
we could show gs,o ~ g5 ./, We use the small set expansion prop-

erty of a certain graph defined on the multi-slice {0, 1,2}". Note
<0(1)
that from the approximate equality g5, # g5 ,/» we have

(gs.0(T)=g5 (D[ > 90,

E [ E
(S,0),(8,0) LTC[n],|T|=n/C

where C is a large constant depending on the approximate equality
of the functions gs » and gg . This gives,

E 1 o > 00,
TClnl,|T|=n/C [95*"(”‘9&6'(”] ‘

E
(S,0),(S,0")

Now for a typical subset T, we define a graph on (S, o) where the
edges are given by the distribution in the above expectation.> We
partition the vertex set based on the values of gs (T). Then it is
possible that all the parts in the partition are small but still the

3In the actual argument, we do not need o and we view S = AU B where ANB = 0.
Hence we use the multi-slice {0, 1, 2} to represent the vertices. For instance, S =
AU B is represented by a string x where x; = 1ifi € A, x; =2ifi € Bandx; =0
otherwise.
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above expectation is large, unless the graph is a small set expander.
The graph in our case turns out to be a small-set expander and
hence we can conclude that one of the parts in the partition is large
and therefore, we can break the correlation to conclude that

> 68(e),

[lgs,a(T)=gs".a"(T)]

E E
TC[n],|T|=n/C L(S,0).(5",0")

for some function § of e. From this, we conclude that gs » <(;(1)
gs», s~ happens with probability d(¢) for a random pairs (S, o) and
(S”,¢""). This shows that a constant fraction of these local function
gs,o are close to each other and hence there is a global function
that (approximately) agrees with the table F on a constantly many
sets in the domain.

2 PRELIMINARIES

In this section we introduce some basic tools used throughout the
paper, mostly from analysis of Boolean functions. We refer the
reader to [20] for a more thorough introduction and discussion.

Notations. We denote I ~p, [n] the choice a random subset of [n]
that results from including each element from [n] in it with proba-
bility p. Here and throughout, we denote by ys(x) = [](—1)* the

ieS

multiplicative character over the uniform measure. Later on, when
we discuss character over the g-biased measures we will denote
it by )(Sq(x) = \/%. We use big-O notations, meaning that the
notation f = O(g) says that f < C - g where C > 0 is an absolute
constant, and f = Q(g) says that f > cg where ¢ > 0 is an absolute
constant. To simplify keeping track of various parameters, we shall
use the notation 0 < a < b < ¢ < 1 to say that first c is chosen,
then b is chosen sufficiently smaller compared to ¢, and then a is
chosen sufficiently small with respect to a.

2.1 The Efron-Stein Decomposition

Throughout the paper, we will be dealing with product probability
measures over the Boolean hypercube, i.e. ({0, 1}7, g = p1X. . . Xpip),
and mostly with the case that each one of the y;’s is the g-biased
distribution.

Given any product space (Q = Q1 X... X Qu, 0 = 1 X... X tp),
one may consider the space of real-valued functions Ly(Q = Q1 X
X Qpp =1 X ... X lip) equipped with the inner product

(fr9) = E [f(x)g(x)]
x~p
forall f,g: Q = R.

The Efron-Stein decomposition of a function f: Q — Risa
natural orthogonal decomposition of f that is often convenient to
use. Here, for each S C [n] we define the space V<% of functions
over Q that depend only on coordinates from S, and then V=5 =
veSn Nscs Vgs/l, which is the space of functions depending
only on coordinates from S and orthogonal to any function that
depends on less coordinates. With respect to this, we denote by
=5 € V=5 the projection of f to V=5, so that

f=2, 1

Scln]
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Given this decomposition, one can verify that the Parseval and
Plancherel identities hold, i.e. that
2
Y

9= (5,975,
Scln

Scln]

[

The degree decomposition. Sometimes, it will be convenient for

n
us to consider the coarser degree decomposition f = Y =4,
d=0

d .
wherein we define f:d = Y f£=5. We also define fgd = f7h
|S|=d i=0

and refer to £<¢ as the degree d part of f. The degree of f, denoted
by deg(f), is defined to be the largest d so that f=¢ # 0.

DEFINITION 2. The degree d weight of a function f: (Q, ) = R
2
is defined as W=4[f] = f:dHZ. The weight of f up to degree d is

fsd
It is easy to see, by orthogonality of the f=’s, that W<¢[f] =

d .

> wAILf],

=0

2
defined as WS4[f] = ‘ ,

2.2 Influences

Influences are a central notion in analysis of Boolean functions, and
our arguments use the notions of influences as well as low-degree
influences.

DEFINITION 3. Fora function f: (Q = Q1 X ... X Qp,pu=p1 X
... X up) — Roandi € [n], the influence of the ith coordinate is
defined to be as follows. Sample x ~ y, and then sample y by taking
yj = xj forall j # i and sampling y; ~ p; independently; we define

Llfl= E [(f) = fF@)Y]-

Subsequently, the low-degree influence of a function f is defined
as

DEFINITION 4. For a function f: (Q = Q1 X ... X Qp, =1 X
...Xpup) > R,d e Nandi € [n], the degree d influence of the ith
coordinate is defined to be Ifd[f] = Il-[f<d]‘

2.3 Fourier Decomposition

The Fourier decomposition is a refinement of the Efron-Stein de-
composition that is available in some settings, such as the g-biased
probability measure.

DEFINITION 5. Let ¢ € (0,1), and denote o vq(1 —q) the
standard deviation of a q-biased random coin. We define the function
x!:{0,1} > Ras

i —
Xy = =L,
o

For S C [n], we define )(g: {0,1}" > R by )(g(x) =11 )(l.q(xi).
ieS

For the g-biased measure, one can show that for a function
]: £ (0.1}, u§™) — R, it holds that £=5(x) = f(S; ptq) xd(x) where
f(S; pg) is called the Fourier coefficient of f with respect to S and
is given by

F(Sipg) = (f. xd).
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2.4 Random Restrictions

In this section, we define the notions of restrictions and of random
restrictions that will be extensively used in the paper. Since the
focus of current paper is on the Boolean hypercube with a biased
measure, we restrict our discussion to this domain.

Given a function f: ({0,1}", u®") — R, a set of coordinates
I C [n] and a partial input z € {0, l}I , the restricted function
f1—z: {0, 1"\ 5 R is defined as

Jioz(y) = fxr = z,xp = y).
Here and throughout, we denote by (x; = z,x; = y) the point
whose I-coordinates are set according to z, and whose I coordinates
are set according to y.

A random restriction of a function f: ({0, 1}"*u®") — R refers
to a restriction in which either (or both) I and z are chosen randomly.
Typically, when one says random restriction one has a parameter
a € (0,1), chooses I C [n] by including each element i € [n] inde-
pendently with probability a, choosing z ~ u! and then considering
the function f7_,, as a function from ({0, 1} ,u[”]\l) to R. For
us, however, it will be important to consider a more general no-
tion of random restriction, in which the underlying measure of the
restricted function changes.

Suppose that the measure y can be writtenas y = fD1+(1-5)D3,
where D1 and D; are distributions and § € (0, 1). In such situations
(that have already appeared in the introduction), we will often
consider the following random restriction process: choose I C
[n] by including each element i € [n] in it with probability S,
choose z ~ Z)lI , and consider the function f7_,, as a function from

({0, 1} Dgn]\l) to R. Note that under these random choices,

choosing y ~ Z)gn]\l, the distribution of the point (x7 = z,x; = y)

is still p, hence this restriction process still makes sense.

Indeed, this restriction process and some of its properties has
already appeared in previous works in this series [3, 4], and it will
also play a crucial role in this work. In a sense, it allows us to
change distributions to other distributions that are more favorable
to work with, so long as the supports of the distributions are the
same. Indeed, a typical scenario wherein we use this idea is to go
from some distribution over a domain to the uniform distribution
over the same domain.

2.5 Noise Stability

In this section, we define the standard notion of noise stability and
prove several basic properties of it.

DEFINITION 6. Let j1 be a distribution over {0, 1}, and let p € [0, 1].
Forx € {0, 1}, a p-correlated bity € {0, 1} is sampled by takingy = x
with probability p, and otherwise sampling y ~ u independently. We
denote this distribution by y ~p ; X.

Given a distribution p over {0,1} and p € [0, 1], we denote by
Ty,p: L2({0,1}, 1) — L2({0,1}, 4) the corresponding averaging
operator defined as Ty, p f(x) = By~ ,x [f(x)].

For multi-variate functions f: ({0, 1}", u®") — R, one similarly
defines p-correlated inputs; given x € {0, 1}, the distribution over
Yy ~uen , x is sampled by taking, for each i € [n] independently,
y; = x; with probability p, and otherwise sampling y; ~ p. The
corresponding averaging operator T en , is easily seen then to be
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the same as TE';, When the measure p and n are clear from context,

we often omit them from the notation.

DEFINITION 7. Let pi be a distribution over {0, 1}, let p € [0, 1]
and let f: ({0,1}", u®") — R be a function. The noise stability of f
with correlation parameter p is defined as

Stabp(f: ") = (f. Tpf) =B [f)f )]
X~ LY~ pX

When the measure is clear from context, we often abbreviate the
stability notation, and simply write Stab,(f).

Intuitively, for a function f which is noise stable, the values of
f(x) and f(y) are correlated if x and y are correlated inputs. One
way to generate correlated inputs x and y is to choose a common
random restriction on a subset of coordinates, and sample the rest
of the coordinates independently; the correlation of f(x) and f(y),
after the random restriction then, may be associated with the bias
the function has after random restriction. Indeed, the following
lemma expresses the noise stability of f as a function of the empty
Fourier coefficient of a random restriction of f (which captures its
bias).

LEMMA 1. Let p be a distribution over {0, 1}, and let

f: ({0,1}", u®™) — R be a function. Then
Stabic(f) = B |fioe@?]:
INI—K’Z"’N

Proor. Expanding the right hand side, we see it is equal to

E

T~y z~pd xy ul

1S 2)f (v, Z)]]

Note that the joint distribution of (x, z) and (y, z) is 1 — k correlated,
and so the result follows. O

The following lemma is [4, Lemma 2.14], restated below. To
interpret it, intuitively one should think of small noise stability
Stabi_«(f) < & as saying that the degree of f is high (roughly
log(1/&)/x). With this in mind, the lemma asserts that if a function
f is high degree, then a random restriction of it is also high degree,
albeit with some quantitative loss in the parameters.

LEMMA 2. There exists an absolute constant ¢ > 0 such that the
following holds. Let p1, iz be distributions over {0, 1}, a € (0, 1) and

<

let p = apg + (1 — a)uy. Then EI~a[n],Z~,uf [Stabl—x(flqz;llg)]
Stabl—c(l—a)lc(f)<

2.6 Small-set Expansion and
Hypercontractivity

Our arguments use the well-known hypercontractive inequality
over the g-biased cube, stated below.

THEOREM 4. For every r € Nandgq € (0,1) there isC(q,r) > 0
such that if f: ({0,1}", p ™) — R is a function of degree at most d,

then || fll, < C(g ) Ifl,.

We will also use the following well known consequence of the
hypercontractive inequality, asserting that a Boolean function with
small average has most of its mass on high levels.

651

STOC ’23, June 20-23, 2023, Orlando, FL, USA

THEOREM 5. For every q € (0, 1), there is cg >0 such that the
following holds. Suppose that a function f: ({0, 1}", ,u(?") — {0,1}
has average is at most{ > 0; then ford = cqlog(1/{) it holds that

< IFI3 < VCEIf

In words, since the total spectral mass of f is ||f||§ = E[f] (since
f is Boolean), Theorem 5 asserts that almost of the spectral mass
of f lies above level d.

2.7 Markov Chains

Finally, we need the following result from [18], showing that re-
versible connected Markov chains have a spectral gap. For us, we
will identify a reversible Markov chain T over [m] with the aver-
aging operator it defines over Ly([m]; u), where p is the stationary
distribution of T.

LEMMA 3. [[18, Lemma 2.9]] Suppose that T is a reversible, con-
nected Markov chain on [m], in which the probability of each transi-

tion is at least a«. Then Ao(T) < 1 — “72.

3 PROOF OF THEOREM 1

This section is devoted for the proof of Theorem 1.

3.1 Auxiliary Facts

In this section, we prove a few basic facts about random restrictions
and Fourier coefficients that were hinted in the proof overview, and
will be used throughout the proof.

The following fact asserts that if a function f: {0,1}" — R
has a heavy Fourier coefficient and a bounded 2-norm (over the
uniform distribution), then after random restriction, it still has a
heavy Fourier coefficient with noticeable probability.

Fact 1. Suppose that f: {0,1}" — R is a function with || f||, < 1
and )f(S)‘ > § for some S. Then for allI C [n],
52

.

fI—m(S N I))

ae{o 1M [

Proor. Fixing I, we have
F(8) = E|xsnr@fima(s 0 D),

so by the triangle inequality

6<E Hﬁ:;(s n T)”.

On the other hand,
[)f[—»a(sml)) ”fI—)a” ] = ”f”% <1
Hence, we get by the Paley-Zygmund inequality that
— _ 12
o 1\2 Ba|[froats nD)|
‘Zf[fm(“”)‘ 1k (1‘5) I TE— ey
Ea D)
O
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The following fact is similar in spirit to Fact 1, except that the
underlying measure of the function changes after random restric-
tion. It asserts that if a function f is correlated with a character ys
and has bounded 2-norm under some distribution, and we perform
a random restriction that changes the underlying measure of the
restricted function, then with noticeable probability the restriction
of f is still correlated with some character y7.

FACT 2. Let p1, o be distributions over {0, 1}, € (0,1) and let
u = apy+(1—a)ps. Suppose that f: ({0,1}", u®") — R is a function
with || fll, < 1 and [Ex [f(x)xs(x)]| = & for someS. Then

) 52
Pr E [fima@xslima®l] > 2| > 2.
IN(Z[”]’“N}‘II X~,uZI 2 4
ProOOF. We have
f&= E E [fioa@xslioa@l|.

I~g[n]a~py |x~pl

so by the triangle inequality

6 < Ef[f[—m(x))(sll—m(x)] .
I~g[nl,a~p! x~pt
On the other hand,
2
E E 7[fIHa(x)XS|I~>a(X)]

I~a["]’““’ﬂll x~y21

< E E _[lfima@xsli—at)l]| = I£15 < 1.

I~a[ﬂ],ﬂ~ﬂ1] x~;12[

Hence, the result follows again by the Paley-Zygmund inequality.
m]

The third and last fact is an auxiliary statement in probability. It
asserts that if we have independent random variables X and Y and
an event E that depends on them that has a significant probability,
then sampling x!,...,x™ ~ X and y',...,y™ ~ Y all indepen-
dently, the event that E holds for all pairs (x!,4/) for 1 < i < r!
and 1 < j < r? has significant probability.

FacT 3. Suppose X, Y are independent random variables, and E is
an event depending on X, Y such that Pryx y~y [E(x,y)] > 3. Then
forallry,ry,

rn o n

ﬂ ﬂE(xi,yf) > 8N,

1 T~ 1 r
x1,..., x"1~X,yt,..., yn2~Y i=1j=1

PRrROOF. By Jensen’s inequality

"< B |lhey]” < E

x~X,y~Y x~X

2
E ]E 1—[1E(X J
.y7)

A S e A

LLEY [1E<x,y>]”}
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By Jensen’s inequality again

n

ra
5r1r2 < E E HlE(x j
YY)
Xyl ynY | g
s n
= E E || |15y
gy~ |oox 1] (x,y7)
r 1"
< E E || | teey
yl,..., yri~Y [x~X i E(x,y/)
-rl r2
<z T
x! x:;~;( i1 joi (xi.y)
Y15---5 ye~xy b

and the proof is concluded.

3.2 Local Linear Structure

In this section, we begin the formal proof of Theorem 1, and first
show that with each I C [n] one may associate a set of characters
which are the ones that can become heavy after randomly restrict-
ing the coordinates of I. Fix f as in Theorem 1; throughout the
proof, we will have the parameters

lxk<sris{<exé<dnsf<ac<l.

ForasetI C [n] and z € {0, 1}, define
Wi, = {s gTHf,:(S)| > 5}, Wiz = {s ngf,:(S)) > g}

where g(S) = Ex [g(x)xs(x)]. Note that by the premise of Theo-
rem 1, we have that choosing I ~;_g [n] and z ~ 1’1, we have that
Wr,z # 0 with probability at least 7.

We now consider I’ ~;_g/5 [n] and 2’ ~ ' where p” =

- B2
1t T 1z

sampling I1 ~y_g [n]. I ~1/2 [n] \ [, 2(1) ~ ,u’I1 and z(2) ~ UL
and taking I’ = I; U I and z’ = z(1) o z(2). Then by our earlier
observation, W, (1) # @ with probability at least n; we condition
on this event and take some S € Wy, (1), thus getting from Fact 2

U. Then note that sampling I’, z’ can be done by

that fp_,z/ Sn E)| > §/2 with probability at least §2/2, and so we
get that

_ - 52
I [S NIz € Whun,z(1)0z(2) ‘S € Wh,z(l)] >
1542
2(1),2(2)
Sampling I; independently of I, and 2(2), z(3) assignments for I

and z(2)’, z(3)" assignments for I; independently, we get by Fact 3
that

SGEGWIUL, 1)o ZQWIUI, 1)oz(3
Pr 7”_122()2()_122()2() Sewllz(l)

I,L,I, SmIZEwllulé,z(l)oz(z)/mwllulé,z(l)oz(S)' >
2(1),2(2),2(3)
z(2)',z(3)

58
> —. 8
T (8)
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For each I’, we define the set of S C I’ that occur somewhat
frequently as characters when restricting the coordinates of I’:

{s;? }

One can show that with significant probability over the choice of
I" ~1_gs2 [n], the set collection Wy is non-empty, but we need the
following stronger statement. It asserts that the probability that

Wp

Df]'—»z(s)|

Z~ﬂ

WL UL, z(1)0z(2) N WLUL,z(1)0z(2y intersect in T which is rare, i.e.
such that T ¢ VT’IIU I,» is small.

Cram 1. ForallI’, we have that

Pr [EITsTewllulz,z(l)oz(z)nwllUIZ,Z(I)oz(S)s] <E
L,I:UL=I T¢wyp
2(1),2(2),2(3)

Proor. For each T C I/, define the set
|| 1
Xr = {z’ e o) |[frmz > 5}.

We note that T € Wy if and only if p”/(X7) > {. We also note that:

ZT]u"(Xﬂ = ; Z W o
Wizl
_Zu"(Z)Z [ 2 \; W

622

where in the last 1nequa11ty we used Parseval. The last expression
2
e
Next, consider the distribution over z’ = z(1) o z(2) and z”’
z(1) 0 z(3) as in (8). Note that this is a product distribution, in which
independently for each i € I’, with probability (1 — §)/(1 — /2)
we take z] = z]’ according to the distribution p’, and otherwise

we take 2}, z}’ independently according to U. We define the cor-

is equal to

responding Markov chain p,_,;, = Pr [z}’ = b |2| = a], and note
that it is connected, reversible and each transition has probability
at least /2. Thus, defining the corresponding averaging opera-
tor T: Lp({0, 1}, p””) — L2({0, 1}, u”’), by Lemma 3 we have that
A2(T) < 1= Q(B?).

Fix T ¢ Wy, so that u”/(XT) < {. By Theorem 5, we get that for
d = Qp(log(1/{)) it holds that W g[1x,;p”'] < ep”’(XT), hence

(g TV 1) < Weeg[xeps o771+ 22(T)AWe g1z 17’1
< e (X7) + (1 - QB p" (X7) < 268" (XT),

and summing over T ¢ Wy gives

’ 8¢
D (T ) < D2 (Xr) < 5
T¢Wp T

<&

On the other hand, inspecting the left hand side, it is equal to

Z (Axp T 1x,) = Z Z]E2 [12,27exr

TeWy T¢Wy

z’ 2 Z‘/; lTeWI/ /1TEWI/ ”
T¢ I

ZfI,Ezu le 1TGF"VI',z’ﬁWI',z”1T€EW” ’
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which is at least the left hand side in the claim. The proof is thus
concluded. O

From the above claim we deduce the following claim, which
asserts that choosing I; and independently I, and I, the collections
Wi, and Wy n 1 contain compatible sets T and T’ with noticeable
probability.

DEFINITION 8. Let Iy C [n], and let I, I} C [n] \ I;. We say that
twosets T C [n]\ (I; UL2) and T' C [n] \ (I; U I) are compatible if

thereis S C [n] such thatT=SNL UL andT' =SNL UL,

CraiM 2. We have
58
Pr

[35 Cnl,SNG e Wy ASNT, € w,lup] >
L.L,1 2

64
ProOF. Let E be the event in (8). Combining Claim 1 and (8), we
get that

[35 € W11 2(1) E/\Sﬂ[z € Wpur, /\50[2 € WI UI’]
11,12,

z(1),2(2), 2(3)
z(2),z(3)

58
> oPr{Wi, z0) # 0] -2,

and as the probability that Wy, ,(q) is non-empty is at least /2, we
get that the left hand side of the claim is at least

Pr [35 €Wy, LapEASNT e Wyup ASNT € WIlulzz]
L,L,I, ’
2(1),2(2),2(3)
2(2),z(3)
8 3
> 5_2 — 2é-’ > ﬁ
16 2 64
O
Next, we show that each |Wp | is not too large.
Cramv 3. Foralll’, |Wp| < 75
Proor. Note that
Ig [HS | lsew}’,z/} ] Z 1SEW1/ 2
SEWI/
= E [1Sewp ] > {wrl.
Sew,,
On the other hand,
2l o M) 2| S e |
. Il frr— 113 I1£113 i
o Tere | T e S
and the result follows. ]

Note that the distribution of I; U I is ~1-B/2 [n], and we next
want to deﬁne a function over such sets. We define a function
F: (P([n]), ”1 ﬂ/z) — P([n]) that assigns to each I’ C [n] a subset

of I/, denoted by F[I’], in the following way: for each input I C [n],
consider Wy . If it is non-empty, choose a random T € Wp and set
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F[I'] = T.If it is empty, choose a random T C I’ and output
F[I'] = T. For convenience, we define G: (P([n]), pf/';) — P([n])
by G[A] = F[[n] \ A], and note that G[A] C A always.

We consider the following direct product test over the assign-
ment G:

(1) Choose I1 ~_g [n] and independently I, I; ~1/; T;. Set
A=LULA =1 UIZ’.

(2) Take T = G[A], T = G[A"].

(3) Acceptif TNANA'=TNANA

Craim 4. Over the randomness of the choice of the assignment F,
we have that
2512
o e

Pr [Direct product test succeeds ] > .
IE [ [ p 1 1024

8
Proor. By Claim 2, with probability at least % the collections
Wrur, and Wy 1, contain a pair of compatible sets, call them T and
T’. Conditioned on that, by Claim 3 the probability that F[I; UI,] =
2\ 2
T and F[I; U IJ] = T’ is at least (%) , in which case the direct
product test between I; U I and I; U IZ’ accepts. We conclude that

8 254
with probability at least % . % over the randomness of I, I, I
and F, the direct product test between I; UL and I; U IZ’ accepts,

and the claim is proved. O

2512
It follows that with probability at least % over the choice of
randomness over the assignment F, the direct product test above

2512
succeeds with probability at least %. We fix such assignment
F henceforth.

3.3 Applying the Direct Product Theorem
Using Corollary 1, we find S such that

Pr  [|G[A]AS| <r] = s.
A~pgpa[n]

Next, we argue that this global consistency does not come from
the A’s that were randomly assigned. Let Ay be the set of A C [n]
of size k for which W4 was empty. For each S, we note that by Cher-
noff’s inequality, the probability that |G[A]AS| < r for more than
s/2 fraction of A of size k is at most 2= s (7)) (since the events that
the various A satisfy it are independent, and the probability of each
one is exponentially small in n hence much smaller than s). Thus,
by the union bound over all S C [n] it follows that the probability
this occurs for some S is at most 2”2_Q’v5<(z)) < 2_9”((2)), and
by the Union bound over k it follows that the probability that there
is k for which there is such S is at most Z_Q”‘((Z)). Thus, it follows
that we could have fixed the randomness of the choice of F so that
F has the above property and also passes the direct product test

2512
with probability at least ’750 g , and doing so we conclude that then
we have s
Pr [|IG[AIAS| < r,Wa 0] > 2.
A~/3/2[n] [ ] 2

Define the function g(x) = ys(x) and consider f'(x) = f(x)g(x).
For A such that |G[A]AS| < r and Wy is non-empty, choosing
A’ C Aby including each element i € A in A’ with probability
£, we get that G[A] N A’ = § N A” with probability 1 — O(x). As
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G[A] € W, when we choose z ~ p”’ 4 with probability at least
we have ‘)’%HZ(G[A])‘ > % and so fA/ZA)Z(G[A]AS) > % (note

that we have switched from f to f’). Thus, choosing z/ ~ UA\4’
we get that

o

=z E

(G[A]AS mA’)Z]—
ALz

I:fA,Z—>Z,A\A'—)Z
Pr [(GIAIAS) N A" # 0],

which is at least Q(6%) — O(k) > Q(8%). On the other hand, by
Lemma 1 the left hand side is equal to Stabl_K(fo ). Thus, we
—2Z

get from Lemma 2 that for some absolute constant ¢ > 0 we have

Stab;_c(1-p(f) 2 AE [Stabl_,c(fz_)z)]

,Z

4
> A]?z [1G[A]€WX1|G[A]Asw<r5tab1—'<(fz—>z)
> Q(s62).

2
This means that for d = O (%) we have that W[ f'] >

Q(s6%), hence f” is Q(s82)-correlated with the function 7/ = f/<¢,
and therefore f is Q(sd?)-correlated with the function gf”’, as
desired.
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