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ABSTRACT

In this paper we study functions on the Boolean hypercube that

have the property that after applying certain random restrictions,

the restricted function is correlated to a linear function with non-

negligible probability. If the given function is correlated with a

linear function then this property clearly holds. Furthermore, the

property also holds for low-degree functions as low-degree func-

tions become a constant function under a random restriction with a

non-negligible probability. We show that this essentially is the only

possible reason. More speci�cally, we show that the function must

be correlated to a product of a linear function and a low-degree

function. One of the main motivations of studying this question

comes from the recent work of the authors towards understanding

approximability of satis�able Constraint Satisfaction Problems.

Towards proving our structural theorem, we analyze a 2-query

direct product test for the table F :
([n]
qn

)
→ {0, 1}qn whereq ∈ (0, 1).

We show that, for every constant ε > 0, if the test passes with

probability ε > 0, then there is a global function д : [n] → {0, 1}
such that for at least δ (ε) fraction of sets, the global function д

agrees with the given table on all except α(ε) many locations. The

novelty of this result lies in the fact that α(ε) is independent of the
set sizes. Prior to our work, such a conclusion (in fact, a stronger

conclusion with α = 0) was shown by Dinur, Filmus, and Harsha

albeit when the test acceptswith probability 1−ε for a small constant

ε > 0. The setting of parameters in our direct product tests is

fundamentally di�erent compared to the previous results and hence

our analysis involves new techniques, including the use of the small-

set expansion property of graphs de�ned on multi-slices.

As one application of our structural result, we give a 4-query

linearity test under the p-biased distribution. More speci�cally, for

any p ∈ ( 13 , 23 ), we give a test that queries a given function f :

{0, 1}n → {0, 1} at 4 locations, where the marginal distribution of

each query is µ⊗np . The test has perfect completeness and soundness
1
2 + ε – in other words, for every constant ε > 0, if the test passes

with probability at least 1
2 + ε , then the function f is correlated to a

linear function under the µ⊗np measure. This qualitatively improves

the results on the linearity testing under the p-biased distribution
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from the previous work where the authors studied the test with

soundness 1 − ε , for ε close to 0.
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1 INTRODUCTION

Analysis of Boolean functions plays a crucial role in many areas of

mathematics and computer science, including complexity theory,

hardness of approximation, coding theory, additive combinatorics,

social choice, etc. Among the set of Boolean functions, linear func-

tions are among the simplest class of functions and hence linearity

testing, i.e., checking whether a given Boolean function is a linear

function or far from it, is one of the most fundamental and well-

studied problems in the analysis of Boolean functions. In this paper,

we study certain problems in the analysis of Boolean functions

and problems in property testing, including linearity testing and

agreement testing.

The main motivation for studying these set of problems comes

from the recent work by the authors and this work can be thought of

as a continuation of the line of research from the previous work by

the authors [3, 4]. The primary focus in this paper is to understand

the structure of a boolean function under a random restriction. Fix

a distribution ν on {0, 1} and a constant η ∈ (0, 1). Given a function

f : {0, 1}n → {0, 1}, consider the process of randomly restricting

a subset of the variables as follows. First choose a random subset

I ⊆ [n] by including i ∈ I with probability η independently for

each i ∈ [n] and then select z ∈ {0, 1} |I | from the distribution

ν I . The function f under the restriction (I , z) is de�ned as fI→z :

{0, 1}n−|I | → {0, 1} where fI→z (x) = f (x, z |I ), i.e., we �x the

variables from I according to z. In this work, we study the properties

of f if fI→z is correlated with a linear function with noticeable

probability. In order prove the structural result, we also study the

direct product testing under a di�erent regime of parameters that

was not studied before. Finally, we use our structural result to

analyze linearity tests under a biased distribution.

We now formally describe these problems and the main results

that we prove in this work.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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1.1 Problem 1: Large Fourier Coe�cient after a

Random Restriction

Let µ be a distribution over {0, 1} in which the probability of each

atom is at least α > 0, and write µ = βU + (1 − β)µ ′ whereU is the

uniform distribution over {0, 1}, µ ′ is some distribution over {0, 1}
with full support, and 0 < β < α/2 is thought of as a constant. We

denote I ∼p [n] the choice a random subset of [n] that results from
including each element from [n] in it with probability p. Suppose

that f : ({0, 1}n, µ⊗n ) → R is a function with 2-norm at most 1

satisfying that

Pr
I∼1−β [n]
z∼µ′I

[
∃S ⊆ I ,

����fI→z (S)
��� ⩾ δ

]
⩾ η. (1)

In other words, with noticeable probability, after a suitable random

restriction and looking at the underlying measure of the restricted

function as the uniform distribution, the restricted function has a

signi�cant Fourier coe�cient. What can we say about the structure

of the function f in that case?

The most natural guess would be that the function f itself has

to be correlated with some linear function χS (x) =
∏
i ∈S

(−1)xi . In-
specting, it is indeed clear that any function f that is correlated

with some χS indeed satis�es (1), however it turns out that there

are other examples. If f is a low-degree function, say a function

of degree much smaller than 1/β , then we expect the random re-

striction to �x the value of f with considerable probability, and

hence we expect
����fI→z (∅)

��� to be large with considerable probability.

More generally, it is enough that f is correlated with a low-degree

function for the above to occur with noticeable probability.

More generally, one could combine the two examples above and

show that any function f that is correlated with a function of the

form χS (x) · д(x), where д is a low-degree function, satis�es (1)

provided that deg(д) is signi�cantly smaller than 1/β . Indeed, after
such random restriction, the restriction of χS is a di�erent character

(up to a sign), and the restriction of д is close to being a constant

function with signi�cant probability. Hence we would get that after

random restriction f is correlated with a function of the form aχS ′

for some real number a ∈ R, and in particular it has a signi�cant

Fourier coe�cient.

Our �rst result asserts that this structure in fact captures all

functions f satisfying (1).

Theorem 1. For all α, β > 0 and δ ,η > 0, there are δ ′(δ ) > 0,

d(α, δ ) ∈ N such that if a function f : ({0, 1}n, µ⊗n ) → R with

2-norm at most 1 as in the above set-up satis�es (1), then there is

S ⊆ [n] and a function д : {0, 1}n → R of 2-norm at most 1 of degree

at most d , such that����� Ex∼µ⊗n
[f (x)χS (x)д(x)]

����� ⩾ δ ′.

Moreover, the function д is given as д = (χS f )⩽d .
Motivation. Besides being a natural question to consider, we

are motivated to study the above problem and prove Theorem 1

by the study of satis�able CSPs. In particular, in [4] the authors

proved an analytical lemma [4, Lemma 1] that plays a crucial role in

classifying the complexity of approximation of satis�able constraint

satisfaction for the case of 3-ary CSPs. En route to extending this

result to larger arity CSPs, the authors have been thinking about

a stability version of this problem [5] which naturally leads to

a structure as given in (1). While such structure, by its own, is

already signi�cant, it is hard to really call it a global structure, since

it only asserts that f possesses some distinctive structure after a

random restriction, which limits its applicability. Indeed, while we

believe such structure to be su�cient for some applications (such

as resolving the non-linear embedding hypothesis from [3]), we can

see that to make further progress one needs a more “full-�edged”

global characterization of a function f satisfying (1). This is where

the current paper enters the picture, and the original motivation

for us to prove Theorem 1.

Upon trying to think of Theorem 1, we have realized it is related

to two other notable problems in TCS, namely the linearity testing

problem over the biased cube, and the direct product testing prob-

lem. Below, we discuss these problems, and state our results about

them.

1.2 Problem 2: The Linearity Testing Problem

over the Biased Cube

The next problem we consider is the biased version of the classical

linearity testing problem. Let µq be the q-biased distribution over

{0, 1}, i.e. the distribution in which µq (1) = q and µq (0) = 1 − q,

and let ν be a distribution over
{
(a,b, c,d) ∈ {0, 1}4

��a + b + c + d = 0 (mod 2)
}

whose marginal on each coordinate is µq in which the probability of

each element is at least α > 0. In the linearity testing problem over

the q-biased cube, we have a function f : ({0, 1}n, µ⊗nq ) → {−1, 1}
satisfying that

Pr
(x ,y,z,w )∼ν ⊗n

[f (x)f (y)f (z)f (w) = 1] ⩾ 1

2
+ δ , (2)

namely that f (x)f (y)f (z)f (w) = 1 with probability noticeably

larger than 1/2, and the goal is to prove that f must possess some

special structure in this case. The classical version of this problem

is concerned with the case that q = 1/2, in which case it was shown

that f must have a heavy Fourier coe�cient, i.e. must be correlated

with a function of the form χS . Initially, this was shown for the

so-called 99% regime [6], in which δ ⩾ 1/2 − ε for some small ε ,

and later this was extended to the 1% regime, in which case δ is

thought of as small [1, 16].

For any q , 1/2, one can recover the result for the 99% regime

using the same local-correction techniques [9, 17] and show that

f must be in fact close to a function of the form χS . However, the

techniques in the more challenging 1% regime completely break

down, and as far as we know the linearity testing question is open

for any q , 1
2 in this regime.

Theorem 1 already by itself gives some structural result for func-

tions f satisfying (2), and to see that, we re-write (2) as

E
(x ,y,z,w )∼ν ⊗n

[f (x)f (y)f (z)f (w)] ⩾ 2δ . (3)

Inspecting (3), one may apply random-restrictions properly so as

to transform inequality (3) to measuring the advantage certain

restrictions of f have in the standard linearity testing problem

over the uniform hypercube, which shows that with noticeable
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probability, a random restriction of f has a signi�cant Fourier

coe�cient as in the setting of Theorem 1. Thus, f must be correlated

with a function of the form χSд for a low-degree function д.

Ideally, one would expect that the answer to the linearity testing

question over the q-biased cube to also be about correlations just

with χS , which raises the question of whether theд part is necessary

in the above result. In general, we do not know the answer to that,

but we are able to show that it boils down to the following problem,

for which we need the notion of resilient functions.

Definition 1. Let µ be a probability measure over {0, 1}. A func-

tion д : ({0, 1}n, µ⊗n ) → R is called (r , ε) resilient if for any S ⊆ [n]
of size at most r and any s ∈ {0, 1}S ,

�����Ex∼µ⊗n [ f (x) | xS = s] − E
x∼µ⊗n

[f (x)]
����� ⩽ ε .

In words, restricting any set of at most r coordinates changes the

average of д by at most ε .

It turns out that to “remove” the д part from the above structural

result, it is su�cient (and also necessary, in a sense) to show that

if д1, . . . ,д4 are bounded, noise stable functions (which should be

thought of as low-degree functions), that are resilient, then
����� E
(x ,y,z,w )∼ν ⊗n

[д1(x)д2(y)д3(z)д4(w)]
����� ⩽ o(1). (4)

In general, we do not know how to solve this problem, however in

some cases of interest we are able to do so, namely in the case that

ν is pairwise independent.

To spell it out, in this case, ν is the distribution in which (a)

each one of (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1) and
(0, 0, 1, 1) receives probability q1, (b) the point (1, 1, 1, 1) receives
probability q2, and (c) the point (0, 0, 0, 0) receives probability q3,
where q1 =

q(1−q)
2 , q2 =

q(3q−1)
2 and q3 = 1 − 5q

2 +
3q2

2 . In this

case, we are able to resolve the above problem, thereby prove the

following result:

Theorem 2. Let q ∈ ( 13 , 23 ), and suppose that ν is a pairwise

independent distribution over the set
{
(a,b, c,d) ∈ {0, 1}4

��a + b + c + d = 0 (mod 2)
}

in which the marginal of each coordinate is µq . Then for every δ > 0,

there is δ ′ > 0 such that if f : ({0, 1}n, µ⊗nq ) → {−1, 1} satis�es (3),
then there is S ⊆ [n] such that

����� Ex∼µ⊗n
[f (x)χS (x)]

����� ⩾ δ ′.

We remark that our argument gives in fact a version of Theorem 2

for real-valued functions with bounded 12-norms, as well as a list-

decoding version. We refer to the full-version of the paper the proof

of the above theorem.

1.3 Problem 3: Direct Product Testing

The third and �nal problem considered in this paper is the direct

product testing problem which is described as follows. Fix any

q ∈ (0, 1) and consider a table F :
([n]
qn

)
→ {0, 1}qn . For a subset

S ⊆ [n] of size qn, the entry F [S] can be thought of as a function

fS : S → {0, 1}, by �xing an arbitrary ordering of the set [n]. F is

called a direct product table if there is a function д : [n] → {0, 1}
such that for all S , F [S] = д |S . Here, д |S is the function д restricted

to the coordinates in S . In direct product testing, one would like to

check, by querying a few locations from the table F , if the table is

coming from a global function д : [n] → {0, 1}. In other words, is

there a function д : [n] → {0, 1} such that for many subsets S ⊆ [n],
the entry F [S] is equal to д |S ?

The direct product testing problem has been extensively studied

in [9, 10, 12, 13, 15] and one of the main motivations of studying

direct product testing is its application to constructing Probabilisti-

cally Checkable Proofs with small soundness (for instance, see [15]).

There is a natural test to check if the table F is a direct product and

it is as follows: Select a random set A of size q′n and two random

subsets B1 ⊆ [n] \A and B2 ⊆ [n] \A each of size (q−q′)n, for some

q′ < q, and check if F [S1]|S1∩S2 = F [S2]|S1∩S2 , where Si = A ∪ Bi
for i = 1, 2. Denote the distribution on the sets (S1, S2) by Dq,q′ .

Clearly, if F is a direct product function, then the test passes with

probability 1. The challenging task is to show that if the test passes

with non-negligible probability, then F is close to being a direct

product function.

Similar to linearity testing, the direct product testing has been

studied in the 99% regime [9, 12] (in which one wants to draw the

conclusion when the test passes with probability 1 − ε) and in the

1% regime [10, 13, 15] (in which one wants to draw the conclusion

when the test passes with probability ε). Here, ε can be though of

as a small quantity. In this work, we study the direct product test

in the 1% regime when q,q′ are constants independent of n. The
regime of parameters we consider is tailored to our applications

(i.e., proving Theorem 1, and hence proving Theorem 2), and to the

best of our knowledge does not currently appear in the literature.

If the test passes with probability ε , then one possibility is that

the table F could be obtained (probabilistically) by choosing some

д : [n] → {0, 1}, and de�ning F [S] independently for each S as

д |S with probability
√
ε , and otherwise to be a random element of

{0, 1}qn . More generally, one can take a list of functionsд1, . . . ,дm :

[n] → {0, 1} such that for all i , j we have that ∆(дi ,дj ) ⩽ O(1),
and then for each S independently, with probability

√
ε choosing

F [S] = дi |S for some random i ∈ [m], and otherwise taking F [S] to
be uniformly chosen. Our direct product theorem asserts that the

above examples essentially exhaust all possible F ’s that satisfy the

direct product test.

Theorem 3. For all 0 < q′ < q < 1 and ε > 0, there are r ∈ N and

δ > 0 such that the following holds. Suppose that F :
([n]
qn

)
→ {0, 1}qn

satis�es

Pr
(S1,S2)∼Dq ,q′

[
F [S1]|S1∩S2 = F [S2]|S1∩S2

]
⩾ ε .

Then there exists a function д : [n] → {0, 1} such that for at least a δ

fraction of S ∈
([n]
qn

)
, we have |{i ∈ S | F [S]i , д(i)}| ⩽ r .

We refer to the full-version of the paper for the proof of the the-

orem. The novelty of this result lies in the fact that r is independent

of n. Prior to our work, such a conclusion (in fact, a stronger conclu-

sion with r = 0) was shown by Dinur, Filmus, and Harsha [9] albeit

when the test accepts with probability 1 − ε for small constants

ε > 0. We cannot have r = 0 in our conclusion as the test passes
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with a small probability.1 Furthermore, the setting of parameters

in our direct product tests are fundamentally di�erent compared to

the previous work on direct product testing and hence our analysis

involves new techniques, including the use of the small-set expan-

sion property of graphs de�ned on multi-slices.2 Such expansion

property was recently shown in [7].

For our application, we need to apply the direct product theorem

over a q-biased hypercube which is de�ned as follows. Consider

the q-biased measure over P([n]), i.e. µ⊗nq (A) = q |A |(1 − q)n−|A | ,
and let G : (P[n], µ⊗nq ) → P([n]) be an assignment that to each

A ∈ P([n]) assigns a subset of it G[A] ⊆ A in a locally consistent

manner. Namely, for α ∈ (0, 1), consider the distribution Dq,α

over A,A′ ⊆ [n] that results from by taking, for each i ∈ [n]
independently, i to be both in A,A′ with probability αq, i to be

in A \A′ with probability (1−α)q, i to be in A′ \Awith probability

(1 − α)q. The function G is locally consistent if

Pr
(A,A′)∼Dq ,α

[
G[A] ∩ (A ∩A′) = G[A′] ∩ (A ∩A′)

]
⩾ ε .

The following corollary, that follows from Theorem 3, asserts that

in this case, G must be correlated to a global subset S ⊆ [n].
Corollary 1. For all α, ε > 0 and 0 < q < 1

2−α , there are r ∈ N
and δ > 0 such that the following holds. Suppose that a function

G : (P[n], µ⊗nq ) → P([n]) satis�es
Pr

(A,A′)∼Dq ,α

[
G[A] ∩ (A ∩A′) = G[A′] ∩ (A ∩A′)

]
⩾ ε .

Then there exists S ⊆ [n] such that

Pr
A∼µ⊗nq

[|G[A]∆(S ∩A)| ⩽ r ] ⩾ δ .

1.4 Related Work

As mentioned before, various kinds of linearity tests have been

extensively studied. To begin with, Blum, Luby and Rubienfeld [6]

gave the 3-query lineary test under uniform distribution in the 99%

regime. [1, 16] improved this result by showing that if the function

on {0, 1}n passes the BLR test with probability 1
2+ε , for any constant

ε > 0, then it has a non-trivial correlation with some linear function.

In the p-biased setting, Kopparty and Saraf [17] gives Op (1)-query
linearity test with soundness 1 − ε for ε close to 0. David, Dinur,

Goldenberg, Kindler and Shinkar [8] gave a linearity testing in

the 99% regime on a slice of the Boolean hypercube. Recently, in

order to reduce the number of queries in the biased linearity testing,

Dinur, Filmus and Harsha [9] gave a 4-query linearity test (more

generally, a 2d+1-query degree-d test) with soundness 1 − ε , in the

p-biased setting.

The direct product tests (also known as agreement tests) were

�rst studied by Goldreich and Safra [14] in which they show that

it can be testable with constantly many queries. Dinur and Rein-

gold [12] gave a 2-query direct product test in the 99% accepting

regime. Dinur and Goldenberg [10] improved this to the 1% regime.

1Consider a global function д : [n] → {0, 1} and de�ne F [S ] = д(S ) + η, where η
is a random noise with hamming weight ⩽ C for some constant C . It is easy to see
that F will pass the test with a small constant probability and yet there is no global

function that fully agrees with F [S ] on a constant fraction of S ∈
([n]
qn

)
.

2Given an alphabet sizem ∈ N, thought of as a constant, and ®k = (k1, k2, . . . , km )
whose entries sum of up n, the ®k -multi-slice is the set of vectors x ∈ [m]n in which
each symbol i ∈ [m] appears precisely ki times.

More speci�cally, given a table F :
([n]
k

)
→ {0, 1}k , if the test de-

scribed in the introduction passes with probability at least ε ⩾ 1/kα
for some α < 1, then there is a global function д : [n] → {0, 1}

such that for at least εO (1) fraction of the sets S , F [S]
⩽kδ

, д(S) for
some constant 0 < δ < 1. Here the notation

⩽β
, means that the

two strings agree on all except β many locations. They also show

that one cannot get a meaningful conclusion of the test passes with

probability less than 1
k
. More formally, there is a function F such

that the test accepts F with probability at least Ω(k ′/k), where k ′
is the intersection size of the two sets from the test distribution,

for any function д : [n] → {0, 1}, the fraction of sets S on which

д(S)
⩽0.9k
, F [S] is at most kn . Thus, for k

′
= Θ(k), and k = n1−ε , the

claim says there is no global structure even if the test passes with

probability Ω(1). In our case, though, this claim does not give any

meaningful conclusion, as the quantity k
n = q, a large constant.

In order to bring down the soundness of the test (compared to

the quantity 2k , which is the alphabet size), Impagliazzo, Kabanets,

and Wigderson gave a 3-query test that has soundness exp(−kα )
for some α > 0. They also gave a di�erent proof of the 2-query test

from [10] and obtained similar results. Dinur and Livni Navon [11]

improved the soundness of the 3-query test to ε = exp(−Ω(k))
when N ≫ k (N > 2Ω(k)). In the latter result, the global function

approximately agrees with F on at least ε − 4ε2 fraction of the

sets. Here, the approximate agreement can be taken as an all but

arbitrary small constant fraction of the coordinates in S .

Recently, Dinur, Filmus and Harsha [9] analyzed the 2-query test

in the 99% regime to get a stronger conclusion. More speci�cally,

they showed that if the test passes with probability at least 1− ε for

a su�ciently small constant ε > 0, then there is a global function

д such that for at least 1 −O(ε) fraction of the sets S , F [S] = д(S).
Note that in the conclusion, they get a stronger agreement with

the global function. They also gave a higher-dimension version of

the direct product test where F [S] represents a degree d functions

(as opposed to linear functions) on the variables in S . In the same

work [9], the authors use this direct product test to get a 4-query

linearity test over a biased measure on the hypercube.

1.5 Techniques

In this section, we give the proofs overview of the three theorems

mentioned in the introduction.

1.5.1 Proof Overview of Theorem 1. By the hypothesis of the the-

orem, we know that after a random restriction, the function f is

correlated with a linear function with non-negligible probability.

If we put a further restriction on the function, then the (further)

restricted function stays correlated with the same linear function

with non-negligible probability. We use this fact to conclude that

the correlated linear function is independent of the actual restric-

tion, i.e., it depends on the subset being restricted but independent

of the settings to the variables in the subset. Once we establish this

structure, we show that for di�erent subsets I1 and I2 that intersect

at many locations, the corresponding linear functions are similar

on the domain {0, 1}I1∩I2 . We exploit this structure further by using

our direct product theorem to conclude that f is correlated to a
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global nearly-linear function. We now explain each of these parts

in more detail.

We denote I ∼p [n] the choice a random subset of [n] that results
from including each element from [n] in it with probability p. Let

χS (x) :=
∏
i ∈S

(−1)xi the multiplicative character over the uniform

measure.

Step I: Local linear structure. Suppose we have a function f as in

the statement of Theorem 1. By the premise, we know that choos-

ing a random restriction I ∼1−β [n] and z ∼ µ ′I , the restricted

function fI→z has a signi�cant Fourier coe�cient SI ,z with no-

ticeable probability. A priori, it may be the case that even if we

�x the set of restricted coordinates I , for each z we would get a

completely di�erent and unrelated character SI ,z , and the �rst step

in our argument is to show that this cannot be the case over all I .

Towards showing that SI ,z typically does not depend on z, we

consider a heavier random restriction in which we �rst choose I as

above, then I ′ ∼1/2 Ī , and randomly restrict the coordinates of I ∪ I ′

according to a measure µ ′′, after which the underlying measure of

fI→z,I ′→z′ is still the uniformmeasure; in other words, z′ is chosen
uniformly from {0, 1}I ′ . Since after the restriction I → z we already

have a heavy Fourier coe�cient SI ,z with noticeable probability, it

follows that fI→z,I ′→z′ also has a heavy Fourier coe�cient, namely

SI ,z ∩ Ī ′, with noticeable probability. Note that the identity of this

coe�cient now does not depend on the setting of z′. At the same

time, when we view the common random restriction Ĩ → z̃ that

combines I and I ′, there is no longer “separation” of what is the

I -part and what is the I ′-part, and this allows us to argue that the

identity of SI ,z does not really depend on z. Formally, for this step

we use the small set expansion property of the hypercube.

Step II: Local consistency. Thus, we can think that for each I , we

have a list of heavy coe�cients, W̃I that capture all of the heavy

coe�cients that may occur when we randomly restrict the coor-

dinates of I . Using a list-decoding type version of the argument

above, we show that together, all S ⊆ Ī that are individually only

rarely a heavy coe�cient of a random restriction of f on I , even

together do not contribute much to the probability that a restriction

of f has a signi�cant Fourier coe�cient. Using this fact, we are

able to establish that the lists W̃I must have certain local consis-

tency properties. Roughly speaking, we show that if we choose

I1, I2 randomly that intersect on (1 − β) of their elements (for suit-

ably chosen β > 0), with signi�cant probability we have a pair of

compatible characters in the lists of I1, I2. That is, with signi�cant

probability we will be able to �nd S1 ∈ W̃I1 and S2 ∈ W̃I2 such that

S1 ∩ I1 ∪ I2 = S2 ∩ I1 ∪ I2. Clearly, such property would happen if

there was a global character S ⊆ [n] such that many of the lists W̃I

contain S ∩ Ī , and the intuition suggests that this is the only way

to create such a situation. In the next part of the argument, we use

a direct product theorem, namely Corollary 1, to carry out such an

argument.

Step III: Invoking the direct product testing theorem. We

show that on top of being locally consistent, the lists W̃I are also

bounded, hence we may de�ne an assignment G to the I ’s that to

each I selects randomly a character F [I ] ∈ W̃I . Having de�ned F ,

we observe that the local consistency of the lists translates to the

fact that the assignmentG[A] = F [A] passes the direct product test
with signi�cant probability. Thus, we may invoke Corollary 1 to

deduce that there exists S ⊆ [n] for which, for a signi�cant fraction
of the I ’s, |F [I ]∆(S ∩ I )| = O(1).
Step IV: Deducing the correlationwith a global nearly-linear

function. Stated otherwise, the last conclusion asserts that af-

ter random restriction, with signi�cant probability the function

fI→z is correlated with a function of the form χS ′ for S
′ such that

|S ′∆(I ∩ S)| = O(1). Thus, the function χI∩S · fI→z has signi�cant

mass on the low-degree part, and is hence not noise sensitive – i.e.

it has stability bounded away from 0. Thus, the function (χS · f )I→z

(which up to a sign is the same as the previous function) is some-

what noise stable with signi�cant probability over the choice of I

and z, which allows us to deduce via Lemma 2 that the function

χS · f is somewhat noise stable, and hence is correlated with its

low-degree part.

1.5.2 Proof Overview of Theorem 2: Linearity Testing Over a Biased

Hypercube. We begin with an overview of the proof of Theorem 2

and the overall idea is as follows. We know that [1] if the func-

tion passes the linearity test with probability 1/2 + ε under the

uniform measure, then the function is correlated with a linear func-

tion. In order to use this structure, we �rst do a certain random

restriction on a subset of coordinates such that for the rest of the

coordinates, our test queries are distributed uniformly. Now, using

the linearity testing over the uniform measure, we can conclude

that the restricted functions are correlated with a linear function.

At this point, we use our Theorem 1 to conclude that the original

function must be correlated with a product of a linear function

and a low-degree polynomial. In order to get rid of the low-degree

polynomial from the conclusion, we design the test carefully so

that its contribution in the �nal correlation is negligible. We now

explain how to achieve these high-level ideas in more detail.

Step I: From linearity testing to large Fourier coe�cients un-

der random restrictions. Suppose that we are given a function

f : ({0, 1}n, µ⊗nq ) → {−1, 1} satisfying the premise of Theorem 2,

i.e. such that ����� E
(x ,y,z,w )∼ν ⊗n

[f (x)f (y)f (z)f (w)]
����� ⩾ δ . (5)

Using standard averaging arguments, after choosing restrictions

fI→a , fI→b , fI→c , fI→d in a correlated manner that changes the

underlying measure to be uniform, with signi�cant probability we

get that
����� E
(x ,y,z,w )∼ν ′[n]\I

[fI→a (x)fI→b (y)fI→c (z)fI→d (w)]
����� ⩾

δ

2
,

where ν ′ is the uniform distribution over (x,y, z,w) ∈ {0, 1}4 such
that x + y + z +w = 0. Thus, using the standard Fourier analytic

analysis of the test over the uniform measure, we conclude that

with signi�cant probability the function fI→a has a heavy Fourier

coe�cient. Invoking Theorem 1 we conclude that f is correlated

with a function of the form χS ·д, where д is a low-degree function,

and moreover д takes the form д = (χS f )⩽d for some d = Oδ (1).
Step II: The list decoding argument. We would like to argue

that since f is correlated with χS · д, we can “switch” one of the

f ’s above with χS · д, and still get that the expectation in (5) is

signi�cant. To carry out such argument, we require a list-decoding

version of the previous argument. Namely, we need to �nd a list of
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functions χS1 · д1, . . . , χSm · дm that are all correlated with f and

furthermore that “explain” all of the advantage of the expectation

in (5), in the sense that����� E
(x ,y,z,w )∼ν ⊗n

[
(f −

m∑

i=1

χSi · дi )(x)f (y)f (z)f (w)
] ����� = o(1). (6)

Such arguments are rather easy to carry out in the uniformmeasure,

however in our setting we are facing two additional challenges.

First, since our decoding procedure above is not very simple, we

are only able to apply it in a black-box way, so if we want to apply

it iteratively we have to be careful so that the functions we work

with satisfy the prerequisites of our basic decoding procedure. In

our situation, this amounts to the functions not having too large 2-

norm. Second, in contrast to the standard hypercube, the functions

χSi · дi need not be orthogonal hence there is no “natural” bound

on the list sizem. Indeed, such bound is simply false, so one cannot

simply take all of the functions χSi · дi that are correlated with f .

We overcome these challenges by allowing some �exibility in

the degree of дi ’s and in the level of correlation we require. Roughly

speaking, the idea is that for χS1д1 and χS2д2 to be correlated, the

characters S1, S2 must be close to each other (in the sense that

|S1∆S2 | is small). Thus, as д1 is the low-degree part of f · χS1 and
д2 is the low-degree part of f · χS2 , we expect these to overlap, and
so if we “increase” the degree in which we truncate, we expect the

function χS1д1 to already include in it all of the mass of χS2д2, and

so we would be able to drop χS2д2 from the list.

After carefully doing this argument, we are indeed able to �nd a

boundedm and a list χS1д1, . . . , χSmдm as above so that (6) holds.

This means that for some i , we get that
����� E
(x ,y,z,w )∼ν ⊗n

[
(χSi · дi )(x)f (y)f (z)f (w)

]
����� ⩾ Ω(δ/m),

and we have e�ectively switched one of the f ’s into a function with
the desired structure. Repeating this argument a fewmore times, we

�nd S1, . . . , S4 and д1, . . . ,д4 of low degree given as дi = (χSi f )⩽di
for some di = Oδ (1) such that

����� E
(x ,y ,z ,w )∼ν ⊗n

[
(χS1 · д1)(x )(χS2 · д2)(y)(χS3 · д3)(z)(χS4 · д4)(w )

]
�����

⩾ δ ′
. (7)

Step III: The invariance principle argument. Letting T = S1 ∩
S2 ∩ S3 ∩ S4, we show that unless all of the Si ’s are almost equal

to T (in the sense that |Si∆T | = O(1)), the above expectation is

small. Hence, we get that each one of the Si ’s is close to T , and for

simplicity of presentation in this overview, we assume that Si = T

for all i . Thus, as χT (x)χT (y)χT (z)χT (w) = 1 in the support of ν , it

follows that����� E
(x ,y,z,w )∼ν ⊗n

[д1(x)д2(y)д3(z)д4(w)]
����� ⩾ δ ′.

In other words, we have reduced the original problem of studying

the structure of functions f that have an advantage in the linearity

test over µq to the same problem, except that now the functions

д1, . . . ,д4 are low-degree. The slight caveat here is that while f ’s

were bounded (in fact, Boolean), the дi ’s are not, however this is

easy to �x, and we show that instead of using degree truncations,

one can apply a suitable noise operator and still get an inequality

as above. Thus, for the sake of this overview, we think of дi ’s as

low-degree bounded functions.

It can be shown that if f is not correlated with any χS , then

the average of дi is close to 0, even after restricting any set of

O(1) many coordinates. Thus, using standard regularity arguments,

we can show that there is a set of coordinates T ′ of size O(1)
such that after restricting them, the restrictions of д1, . . . ,д4 all

have small low-degree in�uence and still have averages close to

0. In this case, we are able to appeal to the invariance princi-

ple [19], and more speci�cally to a version from [18]. For the

sake of simplicity of presentation, we ignore the restriction of T ′

for now, so that the invariance principle implies that the value

of E(x ,y,z,w )∼ν ⊗n [д1(x)д2(y)д3(z)д4(w)] is close to the value of an

expectation of the form

E
(z1,z2,z3,z4)∼ν̃ ⊗n

[
P1(z1)P2(z2)P3(z3)P4(z4)

]
,

where P1, . . . , P4 : R
n → [−1, 1] are functions over Gaussian space

with the same average as д1, . . . ,д4, and ν̃ is a distribution of jointly

distributed Gaussian random variables with the same pairwise

correlations as of ν . However, ν is pairwise independent (this is

the only place in which we use this fact), so the last Gaussian

expectation is easy to compute and is just equal to the product of

averages of P1, . . . , P4, which is 0. This is a contradiction to (7),

and so it is not possible that f is not correlated with any of χS ,

completing the overview of the proof.

1.5.3 Proof Overview of Theorem 3: Direct Product Testing. In the

99% regime, in order to come up with the global function that agrees

with the given table F , in most cases, just taking the majority vote

works. More formally, if we de�ne the function д : [n] → {0, 1}
by setting д(i) = MajorityS ,S ∋iF [S]|i , then this д will have the

property that it will approximately agree with F on almost all of

the domain
([n]
qn

)
. Such a proof strategy was shown to work [9, 12]

in the high acceptance regime of the direct product tests.

This above strategy, however, fails badly in the 1% regime. To

see this, for every S , de�ne F [S] to be a random element from

{0qn, 1qn } with equal probability. It is easy to see that F will pass

the test with probability 1/2. On the other hand, the function д

de�ned by taking the majority vote, looks like a random function

and hence is very far from the table F .

Step I: Getting the local structure. One of the frameworks that

was very successful in analyzing various direct product tests in

the 1% regime is from the work of Impagliazzo, Kabanets, and

Wigderson [15]. This framework, that wewill explain next, has been

used in [2, 11] to analyze various agreement tests. As seen before,

although taking the majority vote among all the sets containing i

does not work, we can de�ne functions that have agreement with

F locally. More speci�cally, given a subset S and an assignment

σ ∈ {0, 1}qn , if we de�ne a function дS ,σ : [n] → {0, 1} by setting

дS ,σ (i) = MajorityS ′,S ′∋i ,F [S ′] |S∩S′=σ |S′∩S F [S
′]|i , then at least for

the earlier example, one of the дs will end up being the all 0s

function and will have agreement with the table F . In other words,

we de�ne the function by taking the majority vote only among the

sets that are consistent with the given pair (S,σ ).
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This intuition can be made to work even when the test passes

with probability ε > 0 where ε is a small constant, or even a sub-

constant. However, in general, the functions дS ,σ agree with the

table F on only a o(1)-fraction of the domain. Recall, we are inter-

ested in �nding a global function д that agrees with F on at least

δ (ε) fraction of the domain for some �xed function δ independent

of n.

Step II: Stitching di�erent local functions. To remedy this, the

next important component in the framework is to stitch these local

functions дS ,σ to come up with a global function д that has the

required property. In our set-up, we di�er from the previous work

in this step of stitching di�erent local functions.If we de�ne the

domain CS ,σ ⊆
([n]
qn

)
as those sets of size qn on which the function

дS ,σ agrees with the table F [.], then one way to show that these

di�erent functions дS ,σ s are similar to each is to show that the

families CS ,σ and CS ′,σ ′ have many sets in common for a typical

(S,σ ) and (S ′,σ ′). This would be enough to conclude that дS ,σ ≈
дS ′,σ ′ and then get the �nal required global structure. This was

shown to work in [10, 15] where the set sizes qn = o(√n), i.e., when
q = o(1/√n).

The di�culty that arises in our setting of the parameters is that

the sets S are of size Θ(n) and hence we cannot directly show that

for a typical pair (S,σ ) and (S ′,σ ′), the corresponding functions

agree with each other. We can, however, show that for a typical

(S,σ ), there are many (S̃,σ ′), where S̃ is a slight perturbation of the

set S resulting in changing a constant fraction of the coordinates in

S , such that the families CS ,σ and C
S̃ ,σ ′ have many sets in common.

From this, we can conclude that the functions дS ,σ
⩽O (1)
, д

S̃ ,σ ′ for

a typical (S,σ ). This still is not enough to guarantee an existence

of the global function that agrees with the table F on δ (ε) fraction
of the domain and the reason is that we could only show the ap-

proximate equality between дS ,σ and д
S̃ ,σ ′ where S̃ is correlated

to S .

Step III: Using the small-set expansion property. In order to

break the correlation between the pairs (S,σ ) and (S̃,σ ′) for which
we could show дS ,σ ≈ д

S̃ ,σ ′ , we use the small set expansion prop-

erty of a certain graph de�ned on the multi-slice {0, 1, 2}n . Note
that from the approximate equality дS ,σ

⩽O (1)
, д

S̃ ,σ ′ , we have

E
(S ,σ ),(S̃ ,σ ′)

[
E

T ⊆[n], |T |=n/C
[1дS ,σ (T )=дS̃ ,σ ′ (T )]

]
⩾ εO (1)

,

whereC is a large constant depending on the approximate equality

of the functions дS ,σ and д
S̃ ,σ ′ . This gives,

E
T ⊆[n], |T |=n/C

[
E

(S ,σ ),(S̃ ,σ ′)

[
1дS ,σ (T )=дS̃ ,σ ′ (T )

] ]
⩾ εO (1)

,

Now for a typical subset T , we de�ne a graph on (S,σ ) where the
edges are given by the distribution in the above expectation.3 We

partition the vertex set based on the values of дS ,σ (T ). Then it is

possible that all the parts in the partition are small but still the

3In the actual argument, we do not need σ and we view S = A ∪ B where A ∩ B = ∅.
Hence we use the multi-slice {0, 1, 2}n to represent the vertices. For instance, S =
A ∪ B is represented by a string x where xi = 1 if i ∈ A, xi = 2 if i ∈ B and xi = 0
otherwise.

above expectation is large, unless the graph is a small set expander.

The graph in our case turns out to be a small-set expander and

hence we can conclude that one of the parts in the partition is large

and therefore, we can break the correlation to conclude that

E
T ⊆[n], |T |=n/C

[
E

(S ,σ ),(S ′′,σ ′′)

[
1дS ,σ (T )=дS′′,σ ′′ (T )

] ]
⩾ δ (ε),

for some function δ of ε . From this, we conclude that дS ,σ
⩽O (1)
,

дS ′′,σ ′′ happens with probability δ (ε) for a random pairs (S,σ ) and
(S ′′,σ ′′). This shows that a constant fraction of these local function

дS ,σ are close to each other and hence there is a global function

that (approximately) agrees with the table F on a constantly many

sets in the domain.

2 PRELIMINARIES

In this section we introduce some basic tools used throughout the

paper, mostly from analysis of Boolean functions. We refer the

reader to [20] for a more thorough introduction and discussion.

Notations. We denote I ∼p [n] the choice a random subset of [n]
that results from including each element from [n] in it with proba-

bility p. Here and throughout, we denote by χS (x) =
∏
i ∈S

(−1)xi the
multiplicative character over the uniform measure. Later on, when

we discuss character over the q-biased measures we will denote

it by χ
q
S
(x) = xi−q√

q(1−q)
. We use big-O notations, meaning that the

notation f = O(д) says that f ⩽ C · д where C > 0 is an absolute

constant, and f = Ω(д) says that f ⩾ cд where c > 0 is an absolute

constant. To simplify keeping track of various parameters, we shall

use the notation 0 < a ≪ b ≪ c ⩽ 1 to say that �rst c is chosen,

then b is chosen su�ciently smaller compared to c , and then a is

chosen su�ciently small with respect to a.

2.1 The Efron-Stein Decomposition

Throughout the paper, we will be dealing with product probability

measures over the Boolean hypercube, i.e. ({0, 1}n, µ = µ1×. . .×µn ),
and mostly with the case that each one of the µi ’s is the q-biased

distribution.

Given any product space (Ω = Ω1 × . . .×Ωn, µ = µ1 × . . .× µn ),
one may consider the space of real-valued functions L2(Ω = Ω1 ×
. . . × Ωn, µ = µ1 × . . . × µn ) equipped with the inner product

⟨f ,д⟩ = E
x∼µ

[f (x)д(x)]

for all f ,д : Ω → R.
The Efron-Stein decomposition of a function f : Ω → R is a

natural orthogonal decomposition of f that is often convenient to

use. Here, for each S ⊆ [n] we de�ne the space V ⊆S of functions

over Ω that depend only on coordinates from S , and then V =S =

V ⊆S ∩ ⋂
S ′⊊S V

⊆S ′⊥, which is the space of functions depending

only on coordinates from S and orthogonal to any function that

depends on less coordinates. With respect to this, we denote by

f =S ∈ V =S the projection of f to V =S , so that

f =
∑

S ⊆[n]
f =S .

649



STOC ’23, June 20–23, 2023, Orlando, FL, USA Amey Bhangale, Subhash Khot, and Dor Minzer

Given this decomposition, one can verify that the Parseval and

Plancherel identities hold, i.e. that

⟨f ,д⟩ =
∑

S ⊆[n]
⟨f =S ,д=S ⟩, ∥ f ∥22 =

∑

S ⊆[n]




f =S




2

2
.

The degree decomposition. Sometimes, it will be convenient for

us to consider the coarser degree decomposition f =
n∑

d=0
f =d ,

wherein we de�ne f =d =
∑

|S |=d
f =S . We also de�ne f ⩽d =

d∑
i=0

f =i ,

and refer to f ⩽d as the degree d part of f . The degree of f , denoted

by deg(f ), is de�ned to be the largest d so that f =d , 0.

Definition 2. The degree d weight of a function f : (Ω, µ) → R
is de�ned asW =d [f ] =




f =d




2

2
. The weight of f up to degree d is

de�ned asW ⩽d [f ] =



f ⩽d





2

2
.

It is easy to see, by orthogonality of the f =i ’s, thatW ⩽d [f ] =
d∑
i=0

W =i [f ].

2.2 In�uences

In�uences are a central notion in analysis of Boolean functions, and

our arguments use the notions of in�uences as well as low-degree

in�uences.

Definition 3. For a function f : (Ω = Ω1 × . . . × Ωn, µ = µ1 ×
. . . × µn ) → R and i ∈ [n], the in�uence of the ith coordinate is

de�ned to be as follows. Sample x ∼ µ, and then sample y by taking

yj = x j for all j , i and sampling yi ∼ µi independently; we de�ne

Ii [f ] = E
x ,y

[
(f (x) − f (y))2

]
.

Subsequently, the low-degree in�uence of a function f is de�ned

as

Definition 4. For a function f : (Ω = Ω1 × . . . × Ωn, µ = µ1 ×
. . . × µn ) → R, d ∈ N and i ∈ [n], the degree d in�uence of the ith

coordinate is de�ned to be I⩽di [f ] = Ii [f ⩽d ].

2.3 Fourier Decomposition

The Fourier decomposition is a re�nement of the Efron-Stein de-

composition that is available in some settings, such as the q-biased

probability measure.

Definition 5. Let q ∈ (0, 1), and denote σ =
√
q(1 − q) the

standard deviation of a q-biased random coin. We de�ne the function

χ
q
i : {0, 1} → R as

χ
q
i (xi ) =

xi − q

σ
.

For S ⊆ [n], we de�ne χq
S
: {0, 1}n → R by χ

q
S
(x) = ∏

i ∈S
χ
q
i (xi ).

For the q-biased measure, one can show that for a function

f : ({0, 1}n, µ⊗nq ) → R, it holds that f =S (x) = f̂ (S ; µq )χqS (x)where
f̂ (S ; µq ) is called the Fourier coe�cient of f with respect to S and

is given by

f̂ (S ; µq ) = ⟨f , χq
S
⟩.

2.4 Random Restrictions

In this section, we de�ne the notions of restrictions and of random

restrictions that will be extensively used in the paper. Since the

focus of current paper is on the Boolean hypercube with a biased

measure, we restrict our discussion to this domain.

Given a function f : ({0, 1}n, µ⊗n ) → R, a set of coordinates

I ⊆ [n] and a partial input z ∈ {0, 1}I , the restricted function

fI→z : {0, 1}[n]\I → R is de�ned as

fI→z (y) = f (xI = z, x Ī = y).
Here and throughout, we denote by (xI = z, x Ī = y) the point

whose I -coordinates are set according to z, and whose Ī coordinates

are set according to y.

A random restriction of a function f : ({0, 1}nµ⊗n ) → R refers

to a restriction in which either (or both) I and z are chosen randomly.

Typically, when one says random restriction one has a parameter

α ∈ (0, 1), chooses I ⊆ [n] by including each element i ∈ [n] inde-
pendently with probability α , choosing z ∼ µI and then considering

the function fI→z as a function from ({0, 1}[n]\I , µ[n]\I ) to R. For
us, however, it will be important to consider a more general no-

tion of random restriction, in which the underlying measure of the

restricted function changes.

Suppose that themeasure µ can bewritten as µ = βD1+(1−β)D2,

whereD1 andD2 are distributions and β ∈ (0, 1). In such situations
(that have already appeared in the introduction), we will often

consider the following random restriction process: choose I ⊆
[n] by including each element i ∈ [n] in it with probability β ,

choose z ∼ DI
1 , and consider the function fI→z as a function from

({0, 1}[n]\I ,D[n]\I
2 ) to R. Note that under these random choices,

choosing y ∼ D[n]\I
2 , the distribution of the point (xI = z, x Ī = y)

is still µ, hence this restriction process still makes sense.

Indeed, this restriction process and some of its properties has

already appeared in previous works in this series [3, 4], and it will

also play a crucial role in this work. In a sense, it allows us to

change distributions to other distributions that are more favorable

to work with, so long as the supports of the distributions are the

same. Indeed, a typical scenario wherein we use this idea is to go

from some distribution over a domain to the uniform distribution

over the same domain.

2.5 Noise Stability

In this section, we de�ne the standard notion of noise stability and

prove several basic properties of it.

Definition 6. Let µ be a distribution over {0, 1}, and let ρ ∈ [0, 1].
For x ∈ {0, 1}, a ρ-correlated bity ∈ {0, 1} is sampled by takingy = x

with probability ρ, and otherwise sampling y ∼ µ independently. We

denote this distribution by y ∼ρ ,µ x .

Given a distribution µ over {0, 1} and ρ ∈ [0, 1], we denote by
Tµ ,ρ : L2({0, 1}, µ) → L2({0, 1}, µ) the corresponding averaging

operator de�ned as Tµ ,ρ f (x) = Ey∼ρ ,µx [f (x)].
For multi-variate functions f : ({0, 1}n, µ⊗n ) → R, one similarly

de�nes ρ-correlated inputs; given x ∈ {0, 1}n , the distribution over

y ∼µ⊗n ,ρ x is sampled by taking, for each i ∈ [n] independently,
yi = xi with probability ρ, and otherwise sampling yi ∼ µ. The

corresponding averaging operator Tµ⊗n ,ρ is easily seen then to be
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the same as T⊗n
µ ,ρ . When the measure µ and n are clear from context,

we often omit them from the notation.

Definition 7. Let µ be a distribution over {0, 1}, let ρ ∈ [0, 1]
and let f : ({0, 1}n, µ⊗n ) → R be a function. The noise stability of f

with correlation parameter ρ is de�ned as

Stabρ (f ; µ⊗n ) = ⟨f ,Tρ f ⟩ = E
x∼µ ,y∼ρx

[f (x)f (y)].

When the measure is clear from context, we often abbreviate the

stability notation, and simply write Stabρ (f ).
Intuitively, for a function f which is noise stable, the values of

f (x) and f (y) are correlated if x and y are correlated inputs. One

way to generate correlated inputs x and y is to choose a common

random restriction on a subset of coordinates, and sample the rest

of the coordinates independently; the correlation of f (x) and f (y),
after the random restriction then, may be associated with the bias

the function has after random restriction. Indeed, the following

lemma expresses the noise stability of f as a function of the empty

Fourier coe�cient of a random restriction of f (which captures its

bias).

Lemma 1. Let µ be a distribution over {0, 1}, and let
f : ({0, 1}n, µ⊗n ) → R be a function. Then

Stab1−κ (f ) = E
I∼1−κ ,z∼µ I

[
f̂I→z (∅)2

]
.

Proof. Expanding the right hand side, we see it is equal to

E
I∼1−κ ,z∼µ I

[
E

x ,y∼µ Ī
[f (x, z)f (y, z)]

]
.

Note that the joint distribution of (x, z) and (y, z) is 1−κ correlated,

and so the result follows. □

The following lemma is [4, Lemma 2.14], restated below. To

interpret it, intuitively one should think of small noise stability

Stab1−κ (f ) ⩽ ξ as saying that the degree of f is high (roughly

log(1/ξ )/κ). With this in mind, the lemma asserts that if a function

f is high degree, then a random restriction of it is also high degree,

albeit with some quantitative loss in the parameters.

Lemma 2. There exists an absolute constant c > 0 such that the

following holds. Let µ1, µ2 be distributions over {0, 1}, α ∈ (0, 1) and
let µ = αµ1 + (1 − α)µ2. Then EI∼α [n],z∼µ I1

[
Stab1−κ (fI→z ; µ

Ī
2)
]
⩽

Stab1−c(1−α )κ (f ).

2.6 Small-set Expansion and

Hypercontractivity

Our arguments use the well-known hypercontractive inequality

over the q-biased cube, stated below.

Theorem 4. For every r ∈ N and q ∈ (0, 1) there is C(q, r ) > 0

such that if f : ({0, 1}n, µ⊗nq ) → R is a function of degree at most d ,

then ∥ f ∥r ⩽ C(q, r )d ∥ f ∥2.

We will also use the following well known consequence of the

hypercontractive inequality, asserting that a Boolean function with

small average has most of its mass on high levels.

Theorem 5. For every q ∈ (0, 1), there is cq > 0 such that the

following holds. Suppose that a function f : ({0, 1}n, µ⊗nq ) → {0, 1}
has average is at most ζ > 0; then for d = cq log(1/ζ ) it holds that

W ⩽d [f ] ⩽ ∥ f ∥32 ⩽
√
ζ E[f ].

In words, since the total spectral mass of f is ∥ f ∥22 = E[f ] (since
f is Boolean), Theorem 5 asserts that almost of the spectral mass

of f lies above level d .

2.7 Markov Chains

Finally, we need the following result from [18], showing that re-

versible connected Markov chains have a spectral gap. For us, we

will identify a reversible Markov chain T over [m] with the aver-

aging operator it de�nes over L2([m]; µ), where µ is the stationary

distribution of T .

Lemma 3. [[18, Lemma 2.9]] Suppose that T is a reversible, con-

nected Markov chain on [m], in which the probability of each transi-

tion is at least α . Then λ2(T ) ⩽ 1 − α 2

2 .

3 PROOF OF THEOREM 1

This section is devoted for the proof of Theorem 1.

3.1 Auxiliary Facts

In this section, we prove a few basic facts about random restrictions

and Fourier coe�cients that were hinted in the proof overview, and

will be used throughout the proof.

The following fact asserts that if a function f : {0, 1}n → R

has a heavy Fourier coe�cient and a bounded 2-norm (over the

uniform distribution), then after random restriction, it still has a

heavy Fourier coe�cient with noticeable probability.

Fact 1. Suppose that f : {0, 1}n → R is a function with ∥ f ∥2 ⩽ 1

and
��� f̂ (S)

��� ⩾ δ for some S . Then for all I ⊆ [n],

Pr
a∈{0,1}I

[����fI→a (S ∩ I )
��� ⩾ δ

2

]
⩾

δ2

4
.

Proof. Fixing I , we have

f̂ (S) = E
a

[
χS∩I (a)�fI→a (S ∩ I )

]
,

so by the triangle inequality

δ ⩽ E
a

[����fI→a (S ∩ I )
���
]
.

On the other hand,

E
a

[����fI→a (S ∩ I )
���
2
]
⩽ E

a

[
∥ fI→a ∥22

]
= ∥ f ∥22 ⩽ 1.

Hence, we get by the Paley-Zygmund inequality that

Pr
a

[����fI→a (S ∩ I )
��� ⩾ δ

2

]
⩾

(
1 − 1

2

)2 Ea
[����fI→a (S ∩ I )

���
]2

Ea

[����fI→a (S ∩ I )
���
2
] ⩾ δ2

2
.

□
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The following fact is similar in spirit to Fact 1, except that the

underlying measure of the function changes after random restric-

tion. It asserts that if a function f is correlated with a character χS
and has bounded 2-norm under some distribution, and we perform

a random restriction that changes the underlying measure of the

restricted function, then with noticeable probability the restriction

of f is still correlated with some character χT .

Fact 2. Let µ1, µ2 be distributions over {0, 1}, α ∈ (0, 1) and let
µ = αµ1+(1−α)µ2. Suppose that f : ({0, 1}n, µ⊗n ) → R is a function
with ∥ f ∥2 ⩽ 1 and |Ex [f (x)χS (x)]| ⩾ δ for some S . Then

Pr
I∼α [n],a∼µ I1



������
E

x∼µ I2
[fI→a (x)χS |I→a (x)]

������
⩾

δ

2


⩾

δ2

4
.

Proof. We have

f̂ (S) = E
I∼α [n],a∼µ I1


E

x∼µ I2
[fI→a (x)χS |I→a (x)]


,

so by the triangle inequality

δ ⩽ E
I∼α [n],a∼µ I1



������
E

x∼µ I2
[fI→a (x)χS |I→a (x)]

������


.

On the other hand,

E
I∼α [n],a∼µ I1



������
E

x∼µ I2
[fI→a (x)χS |I→a (x)]

������

2

⩽ E
I∼α [n],a∼µ I1


E

x∼µ I2

[
| fI→a (x)χS |I→a (x)|2

]
= ∥ f ∥22 ⩽ 1.

Hence, the result follows again by the Paley-Zygmund inequality.

□

The third and last fact is an auxiliary statement in probability. It

asserts that if we have independent random variables X and Y and

an event E that depends on them that has a signi�cant probability,

then sampling x1, . . . , xr1 ∼ X and y1, . . . ,yr2 ∼ Y all indepen-

dently, the event that E holds for all pairs (x i ,y j ) for 1 ⩽ i ⩽ r1

and 1 ⩽ j ⩽ r2 has signi�cant probability.

Fact 3. Suppose X ,Y are independent random variables, and E is

an event depending on X ,Y such that Prx∼X ,y∼Y [E(x,y)] ⩾ δ . Then

for all r1, r2,

Pr
x 1, ...,x r1∼X ,y1, ...,yr2∼Y



r1⋂

i=1

r2⋂

j=1

E(x i ,y j )

⩾ δ r1r2 .

Proof. By Jensen’s inequality

δ r2 ⩽ E
x∼X ,y∼Y

[
1E(x ,y)

]r2
⩽ E

x∼X

[
E

y∼Y

[
1E(x ,y)

]r2
]

= E
x∼X


E

y1, ...,yr2∼Y



r2∏

j=1

1E(x ,y j )




.

By Jensen’s inequality again

δ r1r2 ⩽ E
x∼X


E

y1, ...,yr2∼Y



r2∏

j=1

1E(x ,y j )





r1

= E
y1, ...,yr2∼Y


E

x∼X



r2∏

j=1

1E(x ,y j )





r1

⩽ E
y1, ...,yr2∼Y


E

x∼X



r2∏

j=1

1E(x ,y j )



r1 

= E
x 1

, ...,x r1∼X
y1, ...,y

r2∼Y



r1∏

i=1

r2∏

j=1

1E(x i ,y j )


,

and the proof is concluded. □

3.2 Local Linear Structure

In this section, we begin the formal proof of Theorem 1, and �rst

show that with each I ⊆ [n] one may associate a set of characters

which are the ones that can become heavy after randomly restrict-

ing the coordinates of I . Fix f as in Theorem 1; throughout the

proof, we will have the parameters

0 ≪ κ ≪ s, r−1 ≪ ζ ≪ ε ≪ ξ ≪ δ ,η ≪ β < α < 1.

For a set I ⊆ [n] and z ∈ {0, 1}I , de�ne

WI ,z =

{
S ⊆ I

���
����fI→z (S)

��� ⩾ δ
}
, W̃I ,z =

{
S ⊆ I

���
����fI→z (S)

��� ⩾ δ

2

}
,

where д̂(S) = Ex [д(x)χS (x)]. Note that by the premise of Theo-

rem 1, we have that choosing I ∼1−β [n] and z ∼ µ ′I , we have that
WI ,z , ∅ with probability at least η.

We now consider I ′ ∼1−β/2 [n] and z′ ∼ µ ′′I , where µ ′′ =
1−β
1−β/2 µ

′
+

β/2
1−β/2U . Then note that sampling I ′, z′ can be done by

sampling I1 ∼1−β [n], I2 ∼1/2 [n] \ I1, z(1) ∼ µ ′I1 and z(2) ∼ U I2

and taking I ′ = I1 ∪ I2 and z′ = z(1) ◦ z(2). Then by our earlier

observation,WI1,z(1) , ∅ with probability at least η; we condition

on this event and take some S ∈WI1,z(1), thus getting from Fact 2

that
��� f̂I ′→z′(S ∩ I2)

��� ⩾ δ/2 with probability at least δ2/2, and so we
get that

Pr
I1,I2

z(1),z(2)

[
S ∩ I2 ∈ W̃I1∪I2,z(1)◦z(2)

��� S ∈WI1,z(1)
]
⩾

δ2

2
.

Sampling I ′2 independently of I2, and z(2), z(3) assignments for I2
and z(2)′, z(3)′ assignments for I ′2 independently, we get by Fact 3

that

Pr
I1,I2,I

′
2

z(1),z(2),z(3)
z(2)′,z(3)′

[
S∩I2∈W̃I1∪I2 ,z(1)◦z(2)∩W̃I1∪I2 ,z(1)◦z(3)
S∩I ′2∈W̃I1∪I ′2 ,z(1)◦z(2)

′∩W̃I1∪I ′2 ,z(1)◦z(3)
′

���� S ∈WI1,z(1)

]

⩾
δ8

16
. (8)
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For each I ′, we de�ne the set of S ⊆ I ′ that occur somewhat

frequently as characters when restricting the coordinates of I ′:

WI ′ =

{
S ⊆ I ′

��� Pr
z∼µ′′I ′

[����fI ′→z (S)
��� ⩾ δ

2

]
⩾ ζ

}
.

One can show that with signi�cant probability over the choice of

I ′ ∼1−β/2 [n], the set collectionWI ′ is non-empty, but we need the

following stronger statement. It asserts that the probability that

W̃I1∪I2,z(1)◦z(2) ∩ W̃I1∪I2,z(1)◦z(2)′ intersect in T which is rare, i.e.

such that T < W̃I1∪I2 , is small.

Claim 1. For all I ′, we have that

Pr
I1,I2:I1∪I2=I ′
z(1),z(2),z(3)

[
∃T ,T ∈W̃I1∪I2 ,z(1)◦z(2)∩W̃I1∪I2 ,z(1)◦z(3),

T <WI ′

]
⩽ ξ .

Proof. For each T ⊆ I ′, de�ne the set

XT =

{
z′ ∈ {0, 1}I ′

���
����fI ′→z′(T )

��� ⩾ δ

2

}
.

We note that T ∈WI ′ if and only if µ ′′(XT ) ⩾ ζ . We also note that:
∑

T

µ ′′(XT ) =
∑

T

∑

z′
µ ′′(z′)1����fI ′→z′ (T )

���⩾ δ2

=

∑

z′
µ ′′(z′)

∑

T

1����fI ′→z′ (T )
���⩾ δ2
⩽

∑

z′
µ ′′(z′)

∥ fI ′→z′ ∥22
(δ/2)2 ,

where in the last inequality we used Parseval. The last expression

is equal to
∥f ∥22
(δ/2)2 ⩽

4
δ 2 .

Next, consider the distribution over z′ = z(1) ◦ z(2) and z′′ =
z(1) ◦z(3) as in (8). Note that this is a product distribution, in which

independently for each i ∈ I ′, with probability (1 − β)/(1 − β/2)
we take z′i = z′′i according to the distribution µ ′, and otherwise

we take z′i , z
′′
i independently according to U . We de�ne the cor-

responding Markov chain pa→b = Pr
[
z′′1 = b

�� z′1 = a
]
, and note

that it is connected, reversible and each transition has probability

at least β/2. Thus, de�ning the corresponding averaging opera-

tor T: L2({0, 1}, µ ′′) → L2({0, 1}, µ ′′), by Lemma 3 we have that

λ2(T) ⩽ 1 − Ω(β2).
Fix T <WI ′ , so that µ ′′(XT ) < ζ . By Theorem 5, we get that for

d = Ωβ (log(1/ζ )) it holds thatW⩽d [1XT ; µ ′′] ⩽ εµ ′′(XT ), hence

⟨1XT ,TI
′
1XT ⟩ ⩽W⩽d [1XT ; µ ′′] + λ2(T)dW>d [1XT ; µ ′′]

⩽ εµ ′′(XT ) + (1 − Ω(β2))d µ ′′(XT ) ⩽ 2εµ ′′(XT ),
and summing over T <WI ′ gives

∑

T <WI ′

⟨1XT ,TI
′
1XT ⟩ ⩽

∑

T

2εµ ′′(XT ) ⩽
8ε

δ2
⩽ ξ .

On the other hand, inspecting the left hand side, it is equal to
∑

T <WI ′

⟨1XT ,TI
′
1XT ⟩ =

∑

T <WI ′
E

z′,z′′

[
1z′,z′′∈XT

]

= E
z′,z′′



∑

T <WI ′

1
T ∈W̃I ′,z′

1
T ∈W̃I ′,z′′



= E
z′,z′′

[∑

T

1
T ∈W̃I ′,z′∩W̃I ′,z′′

1T <WI ′

]
,

which is at least the left hand side in the claim. The proof is thus

concluded. □

From the above claim we deduce the following claim, which

asserts that choosing I1 and independently I2 and I
′
2, the collections

WI1∩I2 andWI1∩I ′2 contain compatible sets T and T ′ with noticeable

probability.

Definition 8. Let I1 ⊆ [n], and let I2, I ′2 ⊆ [n] \ I1. We say that

two sets T ⊆ [n] \ (I1 ∪ I2) and T ′ ⊆ [n] \ (I1 ∪ I ′2) are compatible if

there is S ⊆ [n] such that T = S ∩ I1 ∪ I2 and T
′
= S ∩ I1 ∪ I ′2.

Claim 2. We have

Pr
I1,I2,I

′
2

[
∃S ⊆ [n], S ∩ I2 ∈WI1∪I2 ∧ S ∩ I ′2 ∈WI1∪I ′2

]
⩾

ηδ8

64
.

Proof. Let E be the event in (8). Combining Claim 1 and (8), we

get that

Pr
I1,I2,I

′
2

z(1),z(2),z(3)
z(2)′,z(3)′

[
∃S ∈WI1,z(1) : E ∧ S ∩ I2 ∈WI1∪I2 ∧ S ∩ I2 ∈WI1∪I ′2

]

⩾
δ8

16
Pr

[
WI1,z(1) , ∅

]
− 2ξ ,

and as the probability thatWI1,z(1) is non-empty is at least η/2, we
get that the left hand side of the claim is at least

Pr
I1,I2,I

′
2

z(1),z(2),z(3)
z(2)′,z(3)′

[
∃S ∈WI1,z(1), E ∧ S ∩ I2 ∈WI1∪I2 ∧ S ∩ I2 ∈WI1∪I ′2

]

⩾
δ8

16

η

2
− 2ξ ⩾

ηδ8

64
.

□

Next, we show that each |WI ′ | is not too large.

Claim 3. For all I ′, |WI ′ | ⩽ 4
ζ δ 2 .

Proof. Note that

E
z′

[���
{
S | 1

S ∈W̃I ′,z′

}���
]
⩾ E

z′



∑

S ∈WI ′

1
S ∈W̃I ′,z′


=

∑

S ∈WI ′
E
z′

[
1
S ∈W̃I ′,z′

]
⩾ ζ |WI ′ | .

On the other hand,

E
z′

[���
{
S | 1

S ∈W̃I ′,z′

}���
]
= E

z′

[∑

S

1
S ∈W̃I ′,z′

]

⩽ E
z′

[
∥ fI ′→z′ ∥22
(δ/2)2

]
=

∥ f ∥22
(δ/2)2 ⩽

4

δ2
,

and the result follows. □

Note that the distribution of I1 ∪ I2 is ∼1−β/2 [n], and we next

want to de�ne a function over such sets. We de�ne a function

F : (P([n]), µ⊗n
1−β/2) → P([n]) that assigns to each I ′ ⊆ [n] a subset

of I ′, denoted by F [I ′], in the following way: for each input I ′ ⊆ [n],
considerWI ′ . If it is non-empty, choose a random T ∈WI ′ and set
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F [I ′] = T . If it is empty, choose a random T ⊆ I ′ and output

F [I ′] = T . For convenience, we de�ne G : (P([n]), µ⊗n
p/2) → P([n])

by G[A] = F [[n] \A], and note that G[A] ⊆ A always.

We consider the following direct product test over the assign-

ment G:

(1) Choose I1 ∼1−β [n] and independently I2, I
′
2 ∼1/2 I1. Set

A = I1 ∪ I2, A
′
= I1 ∪ I ′2.

(2) Take T = G[A], T ′
= G[A′].

(3) Accept if T ∩A ∩A′
= T ∩A ∩A′.

Claim 4. Over the randomness of the choice of the assignment F ,

we have that

E
F

[
Pr [Direct product test succeeds]

]
⩾

ηζ 2δ12

1024
.

Proof. By Claim 2, with probability at least
ηδ 8

64 the collections

WI1∪I2 andWI1∪I ′2 contain a pair of compatible sets, call themT and

T ′. Conditioned on that, by Claim 3 the probability that F [I1 ∪ I2] =
T and F [I1 ∪ I ′2] = T ′ is at least

(
ζ δ 2

4

)2
, in which case the direct

product test between I1 ∪ I2 and I1 ∪ I ′2 accepts. We conclude that

with probability at least
ηδ 8

64 · ζ
2δ 4

16 over the randomness of I1, I2, I
′
2

and F , the direct product test between I1 ∪ I2 and I1 ∪ I ′2 accepts,
and the claim is proved. □

It follows that with probability at least
ηζ 2δ 12

2048 over the choice of

randomness over the assignment F , the direct product test above

succeeds with probability at least
ηζ 2δ 12

2048 . We �x such assignment

F henceforth.

3.3 Applying the Direct Product Theorem

Using Corollary 1, we �nd S such that

Pr
A∼β/2[n]

[|G[A]∆S | ⩽ r ] ⩾ s .

Next, we argue that this global consistency does not come from

the A’s that were randomly assigned. Let Ak be the set of A ⊆ [n]
of size k for whichW̃A was empty. For each S , we note that by Cher-

no�’s inequality, the probability that |G[A]∆S | ⩽ r for more than

s/2 fraction ofA of size k is at most 2−Ωr ,s ((nk)) (since the events that
the various A satisfy it are independent, and the probability of each

one is exponentially small in n hence much smaller than s). Thus,

by the union bound over all S ⊆ [n] it follows that the probability
this occurs for some S is at most 2n2−Ωr ,s ((nk)) ⩽ 2−Ωr ,s ((nk)), and
by the Union bound over k it follows that the probability that there

is k for which there is such S is at most 2−Ωr ,s ((nk)). Thus, it follows
that we could have �xed the randomness of the choice of F so that

F has the above property and also passes the direct product test

with probability at least
ηζ 2δ 12

2048 , and doing so we conclude that then

we have

Pr
A∼β/2[n]

[
|G[A]∆S | ⩽ r ,W̃A , ∅

]
⩾

s

2
.

De�ne the function д(x) = χS (x) and consider f ′(x) = f (x)д(x).
For A such that |G[A]∆S | ⩽ r and W̃A is non-empty, choosing

A′ ⊆ A by including each element i ∈ A in A′ with probability
κ
r , we get that G[A] ∩ A′

= S ∩ A′ with probability 1 − O(κ). As

G[A] ∈W
A
, when we choose z ∼ µ ′′A with probability at least ζ

we have
��� f̂A→z

(G[A])
��� ⩾ δ

2 , and so
��� f̂ ′A→z

(G[A]∆S)
��� ⩾ δ

2 (note

that we have switched from f to f ′). Thus, choosing z′ ∼ UA\A′

we get that

E
A′,z′

[
f̂ ′

A→z,A\A′→z′(∅)
2
]

⩾ E
A′,z′

[
f̂ ′

A→z,A\A′→z′(G[A]∆S ∩A′)2
]
−

Pr
A′

[
(G[A]∆S) ∩A′

, ∅
]
,

which is at least Ω(δ2) − O(κ) ⩾ Ω(δ2). On the other hand, by

Lemma 1 the left hand side is equal to Stab1−κ (f ′
A→z

). Thus, we
get from Lemma 2 that for some absolute constant c > 0 we have

Stab1−c(1−β )κ (f ′) ⩾ E
A,z

[
Stab1−κ (f ′

A→z
)
]

⩾ E
A,z

[
1G[A]∈WA

1 |G[A]∆S |⩽r Stab1−κ (f ′A→z
)
]

⩾ Ω(sδ2).

This means that for d = O
(
log(1/sδ 2)
(1−β )κ

)
, we have thatW⩽d [f ′] ⩾

Ω(sδ2), hence f ′ is Ω(sδ2)-correlated with the function f ′′ = f ′⩽d ,
and therefore f is Ω(sδ2)-correlated with the function д f ′′, as
desired.
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