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ABSTRACT

This study explores the impact of blinking on deep learning based

iris recognition, addressing a critical aspect in the development of

robust, reliable, and non-intrusive biometric systems. While previ-

ous research has demonstrated the promise of Convolutional Neural

Networks (CNNs), such as AlexNet, GoogleLeNet, and ResNet, the

impact of blinking remains underexplored in this context. To ad-

dress this gap, our research focuses on training multiple ResNet

models with varying degrees of iris occlusion exposure. Using a

dataset with 101 subjects, we generated cohorts of synthetically

occluded images ranging from 0% occlusion to 90% occlusion. Our

findings reveal a noteworthy linear performance decrease in models

unexposed to blinked images as iris occlusion increases. However,

augmenting the training dataset with occluded images significantly

mitigates this performance degradation, highlighting the impor-

tance of accounting for blinking in the development of reliable iris

recognition systems.
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1 INTRODUCTION AND BACKGROUND

Biometric-driven identification has become an increasingly valuable

tool in modern applications. Among different biometric systems,

iris recognition is valuable as irises do not significantly change with

age or emotional state. Furthermore, iris recognition is discrete,

accurate, and non-intrusive even when part of a subject’s face is

obscured or contorted. However, despite these advantages, tradi-

tional iris recognition methods face challenges, primarily stemming

from the limitations of algorithms employed in earlier research [3].
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The initial approaches relied on traditional algorithms, restricting

reliable usage to only frontal images captured under specific condi-

tions due to variations in iris geometry with viewing angles. Despite

attempts to rectify distortions through techniques like segmenta-

tion using active contours [1] and perspective transformations [9],

achieving consistent and reliable results remained challenging.

The limitations of traditional iris recognition methods led to

an exploration of convolutional neural networks (CNNs) for iris

biometric systems. The previous investigations of CNNs included

models such as AlexNet [6], GoogleLeNet [10], and ResNet50 [4]

using transfer learning [5]. These studies revealed that training

with off-angle images and incorporating features around the iris

led to improved performance, particularly for images captured at

non-frontal angles. Since most images in these datasets had limited

iris images with occlusion caused by blinking, they ignored the

effect of blinking on deep learning based iris recognition.

Blinking emerges as a critical factor in deep learning based iris

recognition, especially in establishing robust standoff biometric

systems. A minimally intrusive system that accommodates natural

blinking while ensuring accuracy is imperative for enabling sub-

jects to move freely at a distance. While excluding highly occluded

images, such as those captured during complete blinking, may seem

feasible, subjects are unlikely to keep their eyes wide open without

specific instructions. Coupled with other factors like gaze angle,

this could lead to suboptimal image conditions for standoff iris

recognition in a majority of real-world situations. Therefore, to cre-

ate standoff iris biometric systems that are reliable under a variety

of conditions, it is important to investigate the effects of blinking on

iris recognition and to explore how performance can be improved

in situations where iris occlusion is not optimal.

In literature, the existing research on the impact of blinking

in deep learning iris recognition remains relatively limited. Con-

temporary studies, employing both traditional and deep learning

methods, have predominantly focused on investigating factors other

than such as pupil dilation. However, there has been little research

related to blinking. Liu et al., for instance, proposed a methodol-

ogy involving sequential forward floating selection (SFFS) for opti-

mizing feature selection and a non-linear support vector machine

(SVM) for identification [7]. Their findings present promising re-

sults, demonstrating efficacy for both blinked and unblinked images.

Our research varies from this approach, instead using out-of-box

models modified using transfer learning as the foundation for iris

recognition, and then elaborating on the baseline by augmenting

using blinked images.

This paper extends the exploration of CNNs with transfer learn-

ing in the context of iris recognition. Our research contributions

include i) investigating the impact of blinking on iris recognition

using pre-trained CNN models, ii) augmenting CNN training with

synthetically occluded iris images to enhance performance, and iii)
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Figure 1: Flowchart of Transfer Learning with ResNet50

quantifying the tradeoffs associated with training CNNs using such

synthetic occlusions. Our research contributes valuable insights to

guide the evolution of biometric iris recognition for more versatile

and robust implementations.

2 METHODOLOGY

Our methodology includes three main denominations: i) the selec-

tion and modification of a deep learning model through transfer

learning, ii) the modification of our existing dataset, and iii) design-

ing experiments for the testing of iris occlusion.

2.1 Deep Learning Framework

The research utilized a Convolutional Neural Network (CNN), specif-

ically ResNet50 [4], for feature extraction from iris images and

classification of different irises. ResNet50 was selected due to its

demonstrated effectiveness [5] when compared to other models

such as AlexNet [6] and GoogleLeNet [10]. The model’s input is a

3-dimensional tensor with a shape of 3 by 224 by 224, represent-

ing the three color channels and an image resolution of 224x224

pixels. ResNet50 systematically extracts features from the image

through four convolutional blocks, each consisting of multiple lay-

ers, progressing from simple to more complex features. The ex-

tracted features are then decreased using a pooling layer that stores

2048 features. Finally, the last layer employs a softmax activation

function, producing the probability that a sample matches one of

the defined classes.

Deep learning based iris recognition systems can be designed in

two distinct scenarios: closed-world and open-world. In a closed-

world setup, the recognition system assumes a well-defined and

known set of individuals for both training and testing. Since it

operates under the premise that all encountered subjects are part

of the existing dataset, it classifies them into one of the existing

classes. Therefore, closed-world scenario suitable for controlled en-

vironments with a fixed and identifiable user base. On the contrary,

an open-world setup is designed to address real-world scenarios

where the system may encounter individuals not present in the

training set. This setup is characterized by a broader applicability,

enabling the recognition system to handle unknown subjects or

impostors not accounted for during training. Therefore, we also

generated results without using classification and softmax layers

by exposing the 2048 features to calculate metrics between different

subjects such as Euclidean distance.

Transfer learning is a method by which to speed up the con-

vergence of a model by training a preexisting model with weights

that are optimized for a similar task. To facilitate transfer learning,

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 2: Example Orbital Camera and Frontal Camera Eye

Images

(a) (b) (c)

Figure 3: Example Periocular, Ocular, and Ocular Iris Images

ResNet50 was employed with pre-trained weights obtained from

training on the ImageNet dataset [2]. The original output layer with

1000 classes that correspond with various real-world objects was

replaced with a new softmax layer featuring 101 classes, aligning

with the number of classes in our dataset. The flowchart in Fig-

ure 1 visually illustrates this process. Our implementation utilized

the Python [11] library, PyTorch [8], along with Torchvision for

creating, training, and validating the ResNet50 model.

2.2 Dataset

There is no publicly available iris dataset that includes images at

different blink levels to evaluate the effects of blinking on deep

learning iris recognition. To generate an iris dataset with blinks,

we modified our existing off-angle iris dataset. The original dataset

includes the left and right eye iris images from 113 subjects. Each

subject was captured with two cameras, an orbital camera and a

frontal camera. The orbital camera would rotate around the subject

as the frontal camera remained stationary. 10 images per angle

were taken by the orbital camera at angles -50 through 50, with a

step size of 10 degrees. This resulted in 110 images per subject from

the orbital camera. The frontal camera took images in sync with

the orbital camera, resulting in a frontal version of each image for

each off-angled image taken. However, the orbital camera occludes

the frontal camera when at 0 degrees, resulting in 100 images per

subject for the frontal camera. Figure 2 shows example images taken

at 0 through 50 degrees by both cameras for the same subject. The

first row displays images taken by the orbital camera, while the

second row showcases those captured by the frontal camera at the

same time as the orbital camera.

Once the images were captured, further modifications were done

using image segmentation. Three pertinent cohorts were created:
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Figure 4: Original Ocular Iris Dataset Occlusion Distribution

Figure 5: Flowchart of Synthetic Blink Occlusion Image

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6: Examples of Synthetic Blink Occlusion Images

periocular, ocular, and ocular iris as shown in Figure 3. The perioc-

ular image on the left is cropped from the sides of the rectangular

original image to generate a square image. It includes the most

surrounding eye features in addition to the iris itself. The ocular

cohort in the middle constrains the image to the iris and the features

in its immediate vicinity. We generated this by further cropping

the periocular image with the iris as the center point. Finally, the

ocular iris cohort contains only the iris texture and was made by

segmenting the iris’s inner and outer boundaries and masking all

other structures.

To design experiments to investigate the impact of blinking on

iris recognition, the dataset needed to contain discrete cohorts of

iris images at different levels of blinking. However, our original

dataset was not equipped for this purpose. Figure 4 shows the dis-

tribution of iris visibility in the original dataset changing by eye

blinking. The light green plot shows the visibility distribution for

the frontal camera and the blue plot shows the distribution of the

orbital camera. The dark green part shows the overlap between the

two cameras. In the original dataset, the majority of images had

irises that were less than 20% occluded. Since this distribution was

not conducive to measuring the effects of occlusion on iris recogni-

tion, the existing dataset had to be further modified by synthetically

occluding existing iris images to create discrete blinking cohorts.

This allowed for the use of our established database that has been

used for previous experiments. Furthermore, synthetic occlusion

does a good job of matching real-world blinking but allows for the

precise measurement of its impact. Extending the ocular iris cohort

was the obvious choice for this since ocular iris images have an

existing eyelid mask that can be adjusted.

Figure 5 shows the flowchart describing the process of generating

synthetically occluded ocular iris images. To create the synthetically

occluded ocular iris images, the iris was segmented using ellipti-

cal inner and outer boundaries. Then, the eyelid was segmented

using second-degree polynomial curves for the upper and lower

eyelids. After iris and eyelid segmentation, the visibility area was

calculated. This was achieved by taking the difference between the

area of the iris ellipse and the visible area of the iris after masking

was applied. Then, the visibility area was used to determine how

occluded the iris was already, and how far it needed to be further

occluded to fit into a designated cohort. Finally, the original iris

image was segmented using the iris boundaries and the adjusted

eyelid parameters, resulting in the synthetically occluded image.

The generated ocular iris images were sorted into 10 occlusion

cohorts. Each cohort included 0-2% , 10%, 20%, ..., and 90% occlusion

respectively. We chose to have ten cohorts and a step size of 10

percent as it is a good balance between having occlusion levels that

are distinct, but not too far apart. To fill the cohorts, any images

from the original dataset that did not specifically align with an

occlusion cohort first had their mask adjusted to fit the occlusion

level. For example, an iris imagemeasured to be 25% occludedwould

be artificially occluded by another 5% to reach 30% occlusion. The

0% occlusion cohort included images ranging from 0-2% occlusion

because there were very few iris images that contained irises with

true 0% occlusion, and so 0-2% was used instead. Next, the eyelid

mask was adjusted repeatedly to fill each of the corresponding

occlusion cohorts. Figure 6 shows the results of sorting an ocular

iris image into the 0-2% occlusion cohort and then incrementing

the occlusion by 10% for each subsequent cohort.

Two separate datasets were created, one for the frontal cam-

era images and one for the orbital camera images. Each dataset

contained 101 subjects as some subjects had images unfit for the

occlusion dataset. Furthermore, each dataset only contained images

of the left eye. Finally, the generated dataset is not perfect. There are

fewer images for the low occlusion cohorts, particularly the 0-2%

cohort. This is because the original distribution of iris occlusion

was not comprised of only iris images with 0% occlusion. Therefore,

some images were not available for low occlusion cohorts. Table 1

shows the image count for each occlusion cohort generated for the

frontal and orbital camera datasets. The original ocular iris dataset
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Table 1: Image Counts of Each Occlusion Cohort

Cohort Frontal Camera Orbital Camera

Original 9,880 10,886

0-2% Occl. 1,382 831

10% Occl. 3,614 911

20% Occl. 7,360 6,024

30% Occl. 9,310 8,799

40% Occl. 9,868 10,415

50% Occl. 9,876 10,811

60% Occl. 9,878 10,882

70% Occl. 9,880 10,886

80% Occl. 9,880 10,001

90% Occl. 9,880 10,886

image count is also shown for the frontal camera dataset because it

was used during the experimentation.

For usage with ResNet50, we processed the images before feeding

them into the network. The images for the training and validation

datasets were normalized to the ImageNet standard [2]; the mean

values being 0.485, 0.456, and 0.406, and the standard deviation

values being 0.229, 0.224, and 0.225 for the red, green, and blue

channels respectively. The images were also resized to a 224x224

resolution image for the ResNet50 input. For the training dataset,

some augmentations were applied before the normalization and

resizing. These included a random -10% to 10% translation of the

image, a random -20 to 20-degree image rotation using bicubic in-

terpolation, and a Gaussian blur with a kernel size of 3 and sigma of

0.1 minimum to 0.5 maximum. These augmentations were shown to

improve results and reduce overfitting during the training process.

2.3 Experimental Design

Our goals in the experiments were twofold: i) to measure the effects

of blinking on a baseline model without much exposure to blinked

images and ii) to investigate potential performance improvements

using synthetically occluded images during training. For these

reasons, different models were trained and validated using the

same basic experimental setup.

The training dataset for each model used frontal camera images

taken at all angles except angle 0, meaning -50, ..., -10, 10, ..., and 50

degrees. The testing and validation dataset used only angle 0 images

from the orbital camera. This means that training and validation

were done using only images captured from the front. However, the

validation images were taken at a different time than the training

images and therefore had enough variance to avoid overfitting.

The occlusion cohorts used in the training dataset were configured

differently in each experiment. Meanwhile, every occlusion cohort,

except for the original ocular iris dataset, was included in the testing

and validation dataset. This was done to get an accurate testing loss

during training and to evaluate each occlusion cohort distinctly

during validation.

ResNet50 training was performed with the following parameters:

The cross-entropy loss was used as a loss function and mini-batch

gradient descent was the optimizer with the following parameters:

a batch size of 128, a learning rate of 0.01, a momentum of 0.9, and

Table 2: Model Training Metadata

Model Image Count

Original Dataset 9880

Original + 0-30% Occl. 31546

Original + 0-60% Occl. 61168

Original + 0-90% Occl. 90808

Table 3: Validation Dataset Metadata

Cohort Image Count

0-2% Occl. 80

10% Occl. 104

20% Occl. 561

30% Occl. 801

40% Occl. 979

50% Occl. 988

60% Occl. 990

70% Occl. 990

80% Occl. 904

90% Occl. 990

a weight decay rate of 2e-5. For each epoch in training, each batch

in the training dataset was passed through the network and the

weights were adjusted using the batch loss. The batch losses were

summed and divided by the number of batches to get the mean

training loss for the epoch. Next, the testing dataset was passed

through the network in batches, and the mean testing loss was

computed in the same manner as the mean training loss. Training

was halted when the testing loss stopped improving.

Using the aforementionedmethodologies, four experiments were

designed using different training datasets: 1) only the original ocu-

lar iris dataset for training, 2) the original ocular iris dataset and

the 0-2% through 30% occlusion cohorts, 3) the original ocular iris

dataset and the 0-2% through 60% occlusion cohorts, and 4) the

original ocular iris dataset and the 0-2% through 90% occlusion co-

horts. The first experiment establishes a baseline performance for

a model trained on mostly open ocular iris images, while the subse-

quent experiments investigate the performance changes caused by

training with increasingly higher occlusion.

3 RESULTS

This section presents the performance results of four sets of ex-

periments mentioned in the experimental design. To evaluate the

models in each experiment, we used two different metrics including

the receiver operating characteristic (ROC) curve and Euclidean

distance histogram plots. We chose these two metrics due to their

extensive use in previous iris biometric research. In addition, these

metrics provide important information about the model’s perfor-

mance in both closed-world and open-world scenarios. Different

ROC plots were generated for each occlusion cohort in the valida-

tion dataset, resulting in a stratified view of the model performance

for each level of occlusion. Euclidean distance histograms were

generated for the 0%, 30%, 60%, and 90% occlusion cohorts to show
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Figure 7: ROC Plots for Baseline Results

(a) 0% Occlusion (b) 30% Occlusion

(c) 60% Occlusion (d) 90% Occlusion

Figure 8: Euclidean Distance Histograms of Baseline Model

for 0-2%, 30%, 60%, and %90 Occlusion Cohorts

how the feature distances between irises changed at different levels

of occlusion. Furthermore, the intra-class and inter-class images

were plotted on separate curves to show the model’s ability to dis-

tinguish between the features of a single subject and the rest, an

important metric for open-world applications. Table 2 shows the

number of images used during the training of each model and Table

3 shows the number of images used in each occlusion cohort to

validate each model. We can see that the number of available im-

ages at lower occlusions was small compared to higher occlusions.

Therefore, some subjects were not equally represented at low levels

of occlusion.

Figure 9: ROC Plots for Original and 0-30% Occlusion Cohorts

(a) 0% Occlusion (b) 30% Occlusion

(c) 60% Occlusion (d) 90% Occlusion

Figure 10: Euclidean Distance Histograms of Original and

0-30% OcclusionModel for 0-2%, 30%, 60%, and %90 Occlusions

3.1 Baseline Results

In the first set of experiments, we trained a model using only the

original ocular iris dataset to determine the baseline performance.

ROC curves shown in Figure 7 presents the performance at 0-2%,

10%, ..., and 90% iris occlusion cohorts where the x-axis is the false

positive rate and the y-axis is the true positive rate. It shows a

steady reduction in performance as the occlusion increases. We

can also see that the performance does not drop severely until the

occlusion surpasses 40%. This makes sense as the distribution of

occlusion in the original dataset includes many images with 0-30%

occlusion.

Figure 8 shows the Euclidean Distance histograms of the baseline

model for different occlusion cohorts. It presents how the distances
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Figure 11: ROC Plots for Original and 0-60% Occlusions

(a) 0% Occlusion (b) 30% Occlusion

(c) 60% Occlusion (d) 90% Occlusion

Figure 12: Euclidean Distance Histograms of Original and

0-60% OcclusionModel for 0-2%, 30%, 60%, and %90 Occlusions

between the extracted features change based on the occlusion. We

can see that at low occlusion, the intra-class images and inter-

class images have very different features. However, as occlusion

increases, the variance between the features decreases, eventually

leading to severe overlap between the intra-class and inter-class

distances. This is because the masking of the iris obscures features

that the model is adept at extracting, resulting in much of the

extracted feature vector being flat.

3.2 Results for Original and 0-30% Occlusions

In the second set of experiments, we trained the model with the

original and 0-30% occlusion cohorts. It showed slightly improved

results compared to the baseline experiment. Figure 9 shows that the

Figure 13: ROC Plots for Original and 0-90% Occlusions

(a) 0% Occlusion (b) 30% Occlusion

(c) 60% Occlusion (d) 90% Occlusion

Figure 14: Euclidean Distance Histograms of Original and

0-90% OcclusionModel for 0-2%, 30%, 60%, and %90 Occlusions

performance using ROC plots where it starts to decrease severely

after 50% occlusion. The difference between this results and the

baseline results is small because the images in the original ocular iris

dataset overlaps substantially with the 0-2% through 30% occlusion

cohorts.

Figure 10 shows the distribution histograms of the Euclidean

Distance from the second model for different occlusion cohorts due

to the eye blinks. We observed that the distribution of Euclidean

distances is mostly unchanged when compared to the first model,

which makes sense considering the overlap between the images in

the original ocular iris dataset and the 0-2% through 30% occlusion

cohort images.
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3.3 Results for Original and 0-60% Occlusions

The third experiment trained the model with the original and 0-

60% occlusion iris image cohorts, showing significant performance

improvements when compared to the baseline and second set of

experiments. Figure 11 shows the performance results using ROC

plots. We observed that there is little performance degradation until

the occlusion level surpasses 70%.

The Euclidean distance histograms for the third set of exper-

iments are shown in Figure 12. It shows some distinct changes

where we observed an overall greater separation of intra-class and

inter-class distances. This includes the 90% occlusion cohort, where

we can see more separation between the distances compared with

the first two sets of experiments.

3.4 Results for Original and 0-90% Occlusions

In the final set of experiments, we trained the model with the

original and 0-90% occlusion iris image cohorts. The fourth model

shows a consistent, but slightly inferior performance for any level

of occlusion. We observed that each of the plots, excluding the 0%

occlusion cohort follow a similar curve. However, compared to the

previous models, the curve is not as tightly bound to the upper left

of the ROC, indicating a sacrifice in performance.

The fourth set of Euclidean distance histograms shows a distinct

separation of distances between intra-class and inter-class images

for all occlusion levels. In Figure 14, we can see that, unlike for

previous models, the 90% occlusion cohort’s intra-class and inter-

class distances have high separation.

4 DISCUSSION

Our results draw a conclusive trend, that model performance in-

creases as the level of occlusion shown during training increases.

However, there is some nuance. When training on all levels of oc-

clusion, including 90%, the overall performance of the model was

slightly hindered. This is due to a limitation of the ocular iris seg-

mentation. All features of the image are excluded except for the

iris, meaning that at high occlusion, there are very few unmasked

pixels to be observed as distinct features. Due to this limitation,

ResNet50 learned to prioritize features in the lower-middle iris.

The result of this can be seen in the Euclidean distance histograms,

particularly for the third model and fourth model, where there is

still a high separation between intra-class and inter-class distances

despite limited iris features. ResNet50 prioritizing only some of the

total available features in the iris images caused the performance

for low occlusion images to degrade as other viable features were

ignored. For this reason, we can say that, for the ocular iris dataset,

it is likely best to expose up to 60% or 70% occlusion to the model

during training.

The success in separating the features between intra-class and

inter-class features indicates that training the model to account for

blinking is a viable way to augment biometric systems for open-

world applications as the limited number of features still have a

unique profile. Of course, this could change given thousands or

millions of subjects, where there is bound to be more overlap for a

small subsection of features. Recognizing our dataset limitations,

future research might benefit from employing eye images where

features surrounding the iris are not masked, mitigating ocular iris

image constraints and potentially enhancing performance through

the inclusion of additional distinctive features beyond the iris.

It is also worth discussing the effects of fewer available images

at lower occlusions. One distinctive result is the 0-2% occlusion

validation cohort displaying almost perfect performance for every

model. This may be caused by the limited number of validation

images at that level of occlusion; in this case, only 80. Those limited

images may be optimal for each subject, with high feature vari-

ance between subjects, resulting in an almost perfect performance.

Despite this outlier, the results are still quite clear.

5 CONCLUSION

This paper aimed to extend the understanding of CNN-based stand-

off iris biometric systems by examining the impact of blinking on

iris recognition performance. The methodology involved simulat-

ing blinking on ocular iris images through masking and subse-

quently retraining the ResNet50 model via transfer learning. Ini-

tially, a baseline model was established using the original ocular

iris dataset, followed by experimentation with augmented train-

ing employing progressively more occluded images. The baseline

model exhibited a linear decrease in performance as occlusion levels

increased. In contrast, models trained with synthetically occluded

images displayed substantial performance enhancements. However,

challenges emerged when training with very high occlusion, high-

lighting limitations associated with ocular iris images due to the

constrained availability of features for the model. A noteworthy

recommendation for future research is to explore augmentation

techniques involving unmasked blinked images and delve into alter-

native forms of augmentation tailored for iris recognition training.
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