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ABSTRACT

This study explores the impact of blinking on deep learning based
iris recognition, addressing a critical aspect in the development of
robust, reliable, and non-intrusive biometric systems. While previ-
ous research has demonstrated the promise of Convolutional Neural
Networks (CNNs), such as AlexNet, GoogleLeNet, and ResNet, the
impact of blinking remains underexplored in this context. To ad-
dress this gap, our research focuses on training multiple ResNet
models with varying degrees of iris occlusion exposure. Using a
dataset with 101 subjects, we generated cohorts of synthetically
occluded images ranging from 0% occlusion to 90% occlusion. Our
findings reveal a noteworthy linear performance decrease in models
unexposed to blinked images as iris occlusion increases. However,
augmenting the training dataset with occluded images significantly
mitigates this performance degradation, highlighting the impor-
tance of accounting for blinking in the development of reliable iris
recognition systems.
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1 INTRODUCTION AND BACKGROUND

Biometric-driven identification has become an increasingly valuable
tool in modern applications. Among different biometric systems,
iris recognition is valuable as irises do not significantly change with
age or emotional state. Furthermore, iris recognition is discrete,
accurate, and non-intrusive even when part of a subject’s face is
obscured or contorted. However, despite these advantages, tradi-
tional iris recognition methods face challenges, primarily stemming
from the limitations of algorithms employed in earlier research [3].
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The initial approaches relied on traditional algorithms, restricting
reliable usage to only frontal images captured under specific condi-
tions due to variations in iris geometry with viewing angles. Despite
attempts to rectify distortions through techniques like segmenta-
tion using active contours [1] and perspective transformations [9],
achieving consistent and reliable results remained challenging.

The limitations of traditional iris recognition methods led to
an exploration of convolutional neural networks (CNNs) for iris
biometric systems. The previous investigations of CNNs included
models such as AlexNet [6], GoogleLeNet [10], and ResNet50 [4]
using transfer learning [5]. These studies revealed that training
with off-angle images and incorporating features around the iris
led to improved performance, particularly for images captured at
non-frontal angles. Since most images in these datasets had limited
iris images with occlusion caused by blinking, they ignored the
effect of blinking on deep learning based iris recognition.

Blinking emerges as a critical factor in deep learning based iris
recognition, especially in establishing robust standoff biometric
systems. A minimally intrusive system that accommodates natural
blinking while ensuring accuracy is imperative for enabling sub-
jects to move freely at a distance. While excluding highly occluded
images, such as those captured during complete blinking, may seem
feasible, subjects are unlikely to keep their eyes wide open without
specific instructions. Coupled with other factors like gaze angle,
this could lead to suboptimal image conditions for standoff iris
recognition in a majority of real-world situations. Therefore, to cre-
ate standof iris biometric systems that are reliable under a variety
of conditions, it is important to investigate the effects of blinking on
iris recognition and to explore how performance can be improved
in situations where iris occlusion is not optimal.

In literature, the existing research on the impact of blinking
in deep learning iris recognition remains relatively limited. Con-
temporary studies, employing both traditional and deep learning
methods, have predominantly focused on investigating factors other
than such as pupil dilation. However, there has been little research
related to blinking. Liu et al., for instance, proposed a methodol-
ogy involving sequential forward floating selection (SFFS) for opti-
mizing feature selection and a non-linear support vector machine
(SVM) for identification [7]. Their findings present promising re-
sults, demonstrating efficacy for both blinked and unblinked images.
Our research varies from this approach, instead using out-of-box
models modified using transfer learning as the foundation for iris
recognition, and then elaborating on the baseline by augmenting
using blinked images.

This paper extends the exploration of CNNs with transfer learn-
ing in the context of iris recognition. Our research contributions
include i) investigating the impact of blinking on iris recognition
using pre-trained CNN models, ii) augmenting CNN training with
synthetically occluded iris images to enhance performance, and iii)
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Figure 1: Flowchart of Transfer Learning with ResNet50

quantifying the tradeoffs associated with training CNNs using such
synthetic occlusions. Our research contributes valuable insights to
guide the evolution of biometric iris recognition for more versatile
and robust implementations.

2 METHODOLOGY

Our methodology includes three main denominations: i) the selec-
tion and modification of a deep learning model through transfer
learning, ii) the modification of our existing dataset, and iii) design-
ing experiments for the testing of iris occlusion.

2.1 Deep Learning Framework

The research utilized a Convolutional Neural Network (CNN), specif-
ically ResNet50 [4], for feature extraction from iris images and
classification of different irises. ResNet50 was selected due to its
demonstrated effectiveness [5] when compared to other models
such as AlexNet [6] and GoogleLeNet [10]. The model’s input is a
3-dimensional tensor with a shape of 3 by 224 by 224, represent-
ing the three color channels and an image resolution of 224x224
pixels. ResNet50 systematically extracts features from the image
through four convolutional blocks, each consisting of multiple lay-
ers, progressing from simple to more complex features. The ex-
tracted features are then decreased using a pooling layer that stores
2048 features. Finally, the last layer employs a softmax activation
function, producing the probability that a sample matches one of
the defined classes.

Deep learning based iris recognition systems can be designed in
two distinct scenarios: closed-world and open-world. In a closed-
world setup, the recognition system assumes a well-defined and
known set of individuals for both training and testing. Since it
operates under the premise that all encountered subjects are part
of the existing dataset, it classifies them into one of the existing
classes. Therefore, closed-world scenario suitable for controlled en-
vironments with a fixed and identifiable user base. On the contrary,
an open-world setup is designed to address real-world scenarios
where the system may encounter individuals not present in the
training set. This setup is characterized by a broader applicability,
enabling the recognition system to handle unknown subjects or
impostors not accounted for during training. Therefore, we also
generated results without using classification and softmax layers
by exposing the 2048 features to calculate metrics between different
subjects such as Euclidean distance.

Transfer learning is a method by which to speed up the con-
vergence of a model by training a preexisting model with weights
that are optimized for a similar task. To facilitate transfer learning,
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ResNet50 was employed with pre-trained weights obtained from
training on the ImageNet dataset [2]. The original output layer with
1000 classes that correspond with various real-world objects was
replaced with a new softmax layer featuring 101 classes, aligning
with the number of classes in our dataset. The flowchart in Fig-
ure 1 visually illustrates this process. Our implementation utilized
the Python [11] library, PyTorch [8], along with Torchvision for
creating, training, and validating the ResNet50 model.

2.2 Dataset

There is no publicly available iris dataset that includes images at
different blink levels to evaluate the effects of blinking on deep
learning iris recognition. To generate an iris dataset with blinks,
we modified our existing off-angle iris dataset. The original dataset
includes the left and right eye iris images from 113 subjects. Each
subject was captured with two cameras, an orbital camera and a
frontal camera. The orbital camera would rotate around the subject
as the frontal camera remained stationary. 10 images per angle
were taken by the orbital camera at angles -50 through 50, with a
step size of 10 degrees. This resulted in 110 images per subject from
the orbital camera. The frontal camera took images in sync with
the orbital camera, resulting in a frontal version of each image for
each off-angled image taken. However, the orbital camera occludes
the frontal camera when at 0 degrees, resulting in 100 images per
subject for the frontal camera. Figure 2 shows example images taken
at 0 through 50 degrees by both cameras for the same subject. The
first row displays images taken by the orbital camera, while the
second row showcases those captured by the frontal camera at the
same time as the orbital camera.

Once the images were captured, further modifications were done
using image segmentation. Three pertinent cohorts were created:
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Figure 6: Examples of Synthetic Blink Occlusion Images

periocular, ocular, and ocular iris as shown in Figure 3. The perioc-
ular image on the left is cropped from the sides of the rectangular
original image to generate a square image. It includes the most
surrounding eye features in addition to the iris itself. The ocular
cohort in the middle constrains the image to the iris and the features
in its immediate vicinity. We generated this by further cropping
the periocular image with the iris as the center point. Finally, the
ocular iris cohort contains only the iris texture and was made by
segmenting the iris’s inner and outer boundaries and masking all
other structures.

To design experiments to investigate the impact of blinking on
iris recognition, the dataset needed to contain discrete cohorts of
iris images at different levels of blinking. However, our original

dataset was not equipped for this purpose. Figure 4 shows the dis-
tribution of iris visibility in the original dataset changing by eye
blinking. The light green plot shows the visibility distribution for
the frontal camera and the blue plot shows the distribution of the
orbital camera. The dark green part shows the overlap between the
two cameras. In the original dataset, the majority of images had
irises that were less than 20% occluded. Since this distribution was
not conducive to measuring the effects of occlusion on iris recogni-
tion, the existing dataset had to be further modified by synthetically
occluding existing iris images to create discrete blinking cohorts.
This allowed for the use of our established database that has been
used for previous experiments. Furthermore, synthetic occlusion
does a good job of matching real-world blinking but allows for the
precise measurement of its impact. Extending the ocular iris cohort
was the obvious choice for this since ocular iris images have an
existing eyelid mask that can be adjusted.

Figure 5 shows the flowchart describing the process of generating
synthetically occluded ocular iris images. To create the synthetically
occluded ocular iris images, the iris was segmented using ellipti-
cal inner and outer boundaries. Then, the eyelid was segmented
using second-degree polynomial curves for the upper and lower
eyelids. After iris and eyelid segmentation, the visibility area was
calculated. This was achieved by taking the difference between the
area of the iris ellipse and the visible area of the iris after masking
was applied. Then, the visibility area was used to determine how
occluded the iris was already, and how far it needed to be further
occluded to fit into a designated cohort. Finally, the original iris
image was segmented using the iris boundaries and the adjusted
eyelid parameters, resulting in the synthetically occluded image.

The generated ocular iris images were sorted into 10 occlusion
cohorts. Each cohort included 0-2% , 10%, 20%, ..., and 90% occlusion
respectively. We chose to have ten cohorts and a step size of 10
percent as it is a good balance between having occlusion levels that
are distinct, but not too far apart. To fill the cohorts, any images
from the original dataset that did not specifically align with an
occlusion cohort first had their mask adjusted to fit the occlusion
level. For example, an iris image measured to be 25% occluded would
be artificially occluded by another 5% to reach 30% occlusion. The
0% occlusion cohort included images ranging from 0-2% occlusion
because there were very few iris images that contained irises with
true 0% occlusion, and so 0-2% was used instead. Next, the eyelid
mask was adjusted repeatedly to fill each of the corresponding
occlusion cohorts. Figure 6 shows the results of sorting an ocular
iris image into the 0-2% occlusion cohort and then incrementing
the occlusion by 10% for each subsequent cohort.

Two separate datasets were created, one for the frontal cam-
era images and one for the orbital camera images. Each dataset
contained 101 subjects as some subjects had images unfit for the
occlusion dataset. Furthermore, each dataset only contained images
of the left eye. Finally, the generated dataset is not perfect. There are
fewer images for the low occlusion cohorts, particularly the 0-2%
cohort. This is because the original distribution of iris occlusion
was not comprised of only iris images with 0% occlusion. Therefore,
some images were not available for low occlusion cohorts. Table 1
shows the image count for each occlusion cohort generated for the
frontal and orbital camera datasets. The original ocular iris dataset
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Table 1: Image Counts of Each Occlusion Cohort

Cohort  Frontal Camera Orbital Camera
Original 9,880 10,886
0-2% Occl. 1,382 831
10% Occl. 3,614 911
20% Occl. 7,360 6,024
30% Occl. 9,310 8,799
40% Occl. 9,868 10,415
50% Occl. 9,876 10,811
60% Occl. 9,878 10,882
70% Occl. 9,880 10,886
80% Occl. 9,880 10,001
90% Occl. 9,880 10,886

image count is also shown for the frontal camera dataset because it
was used during the experimentation.

For usage with ResNet50, we processed the images before feeding
them into the network. The images for the training and validation
datasets were normalized to the ImageNet standard [2]; the mean
values being 0.485, 0.456, and 0.406, and the standard deviation
values being 0.229, 0.224, and 0.225 for the red, green, and blue
channels respectively. The images were also resized to a 224x224
resolution image for the ResNet50 input. For the training dataset,
some augmentations were applied before the normalization and
resizing. These included a random -10% to 10% translation of the
image, a random -20 to 20-degree image rotation using bicubic in-
terpolation, and a Gaussian blur with a kernel size of 3 and sigma of
0.1 minimum to 0.5 maximum. These augmentations were shown to
improve results and reduce overfitting during the training process.

2.3 Experimental Design

Our goals in the experiments were twofold: i) to measure the effects
of blinking on a baseline model without much exposure to blinked
images and ii) to investigate potential performance improvements
using synthetically occluded images during training. For these
reasons, different models were trained and validated using the
same basic experimental setup.

The training dataset for each model used frontal camera images
taken at all angles except angle 0, meaning -50, ..., -10, 10, ..., and 50
degrees. The testing and validation dataset used only angle 0 images
from the orbital camera. This means that training and validation
were done using only images captured from the front. However, the
validation images were taken at a different time than the training
images and therefore had enough variance to avoid overfitting.
The occlusion cohorts used in the training dataset were configured
differently in each experiment. Meanwhile, every occlusion cohort,
except for the original ocular iris dataset, was included in the testing
and validation dataset. This was done to get an accurate testing loss
during training and to evaluate each occlusion cohort distinctly
during validation.

ResNet50 training was performed with the following parameters:
The cross-entropy loss was used as a loss function and mini-batch
gradient descent was the optimizer with the following parameters:
a batch size of 128, a learning rate of 0.01, a momentum of 0.9, and

Table 2: Model Training Metadata

Model Image Count
Original Dataset 9880
Original + 0-30% Occl. 31546
Original + 0-60% Occl. 61168
Original + 0-90% Occl. 90808

Table 3: Validation Dataset Metadata

Cohort Image Count
0-2% Occl. 80
10% Occl. 104
20% Occl. 561
30% Occl. 801
40% Occl. 979
50% Occl. 988
60% Occl. 990
70% Occl. 990
80% Occl. 904
90% Occl. 990

a weight decay rate of 2e-5. For each epoch in training, each batch
in the training dataset was passed through the network and the
weights were adjusted using the batch loss. The batch losses were
summed and divided by the number of batches to get the mean
training loss for the epoch. Next, the testing dataset was passed
through the network in batches, and the mean testing loss was
computed in the same manner as the mean training loss. Training
was halted when the testing loss stopped improving.

Using the aforementioned methodologies, four experiments were
designed using different training datasets: 1) only the original ocu-
lar iris dataset for training, 2) the original ocular iris dataset and
the 0-2% through 30% occlusion cohorts, 3) the original ocular iris
dataset and the 0-2% through 60% occlusion cohorts, and 4) the
original ocular iris dataset and the 0-2% through 90% occlusion co-
horts. The first experiment establishes a baseline performance for
a model trained on mostly open ocular iris images, while the subse-
quent experiments investigate the performance changes caused by
training with increasingly higher occlusion.

3 RESULTS

This section presents the performance results of four sets of ex-
periments mentioned in the experimental design. To evaluate the
models in each experiment, we used two different metrics including
the receiver operating characteristic (ROC) curve and Euclidean
distance histogram plots. We chose these two metrics due to their
extensive use in previous iris biometric research. In addition, these
metrics provide important information about the model’s perfor-
mance in both closed-world and open-world scenarios. Different
ROC plots were generated for each occlusion cohort in the valida-
tion dataset, resulting in a stratified view of the model performance
for each level of occlusion. Euclidean distance histograms were
generated for the 0%, 30%, 60%, and 90% occlusion cohorts to show
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how the feature distances between irises changed at different levels
of occlusion. Furthermore, the intra-class and inter-class images
were plotted on separate curves to show the model’s ability to dis-
tinguish between the features of a single subject and the rest, an
important metric for open-world applications. Table 2 shows the
number of images used during the training of each model and Table
3 shows the number of images used in each occlusion cohort to
validate each model. We can see that the number of available im-
ages at lower occlusions was small compared to higher occlusions.
Therefore, some subjects were not equally represented at low levels
of occlusion.

1.0

e e

=
_// s

0% Occlusion

10% Occlusion
20% Occlusion
30% Occlusion
40% Occlusion
50% Occlusion
60% Occlusion
70% Occlusion
80% Occlusion
- 90% Occlusion

True Positive Rate

0.4 0.6 0.8

False Positive Rate

10

Figure 9: ROC Plots for Original and 0-30% Occlusion Cohorts
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3.1 Baseline Results

In the first set of experiments, we trained a model using only the
original ocular iris dataset to determine the baseline performance.
ROC curves shown in Figure 7 presents the performance at 0-2%,
10%, ..., and 90% iris occlusion cohorts where the x-axis is the false
positive rate and the y-axis is the true positive rate. It shows a
steady reduction in performance as the occlusion increases. We
can also see that the performance does not drop severely until the
occlusion surpasses 40%. This makes sense as the distribution of
occlusion in the original dataset includes many images with 0-30%
occlusion.

Figure 8 shows the Euclidean Distance histograms of the baseline
model for different occlusion cohorts. It presents how the distances
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between the extracted features change based on the occlusion. We
can see that at low occlusion, the intra-class images and inter-
class images have very different features. However, as occlusion
increases, the variance between the features decreases, eventually
leading to severe overlap between the intra-class and inter-class
distances. This is because the masking of the iris obscures features
that the model is adept at extracting, resulting in much of the
extracted feature vector being flat.

3.2 Results for Original and 0-30% Occlusions

In the second set of experiments, we trained the model with the
original and 0-30% occlusion cohorts. It showed slightly improved
results compared to the baseline experiment. Figure 9 shows that the
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performance using ROC plots where it starts to decrease severely
after 50% occlusion. The difference between this results and the
baseline results is small because the images in the original ocular iris
dataset overlaps substantially with the 0-2% through 30% occlusion
cohorts.

Figure 10 shows the distribution histograms of the Euclidean
Distance from the second model for different occlusion cohorts due
to the eye blinks. We observed that the distribution of Euclidean
distances is mostly unchanged when compared to the first model,
which makes sense considering the overlap between the images in
the original ocular iris dataset and the 0-2% through 30% occlusion
cohort images.
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3.3 Results for Original and 0-60% Occlusions

The third experiment trained the model with the original and 0-
60% occlusion iris image cohorts, showing significant performance
improvements when compared to the baseline and second set of
experiments. Figure 11 shows the performance results using ROC
plots. We observed that there is little performance degradation until
the occlusion level surpasses 70%.

The Euclidean distance histograms for the third set of exper-
iments are shown in Figure 12. It shows some distinct changes
where we observed an overall greater separation of intra-class and
inter-class distances. This includes the 90% occlusion cohort, where
we can see more separation between the distances compared with
the first two sets of experiments.

3.4 Results for Original and 0-90% Occlusions

In the final set of experiments, we trained the model with the
original and 0-90% occlusion iris image cohorts. The fourth model
shows a consistent, but slightly inferior performance for any level
of occlusion. We observed that each of the plots, excluding the 0%
occlusion cohort follow a similar curve. However, compared to the
previous models, the curve is not as tightly bound to the upper left
of the ROC, indicating a sacrifice in performance.

The fourth set of Euclidean distance histograms shows a distinct
separation of distances between intra-class and inter-class images
for all occlusion levels. In Figure 14, we can see that, unlike for
previous models, the 90% occlusion cohort’s intra-class and inter-
class distances have high separation.

4 DISCUSSION

Our results draw a conclusive trend, that model performance in-
creases as the level of occlusion shown during training increases.
However, there is some nuance. When training on all levels of oc-
clusion, including 90%, the overall performance of the model was
slightly hindered. This is due to a limitation of the ocular iris seg-
mentation. All features of the image are excluded except for the
iris, meaning that at high occlusion, there are very few unmasked
pixels to be observed as distinct features. Due to this limitation,
ResNet50 learned to prioritize features in the lower-middle iris.
The result of this can be seen in the Euclidean distance histograms,
particularly for the third model and fourth model, where there is
still a high separation between intra-class and inter-class distances
despite limited iris features. ResNet50 prioritizing only some of the
total available features in the iris images caused the performance
for low occlusion images to degrade as other viable features were
ignored. For this reason, we can say that, for the ocular iris dataset,
it is likely best to expose up to 60% or 70% occlusion to the model
during training.

The success in separating the features between intra-class and
inter-class features indicates that training the model to account for
blinking is a viable way to augment biometric systems for open-
world applications as the limited number of features still have a
unique profile. Of course, this could change given thousands or
millions of subjects, where there is bound to be more overlap for a
small subsection of features. Recognizing our dataset limitations,
future research might benefit from employing eye images where
features surrounding the iris are not masked, mitigating ocular iris

image constraints and potentially enhancing performance through
the inclusion of additional distinctive features beyond the iris.

It is also worth discussing the effects of fewer available images
at lower occlusions. One distinctive result is the 0-2% occlusion
validation cohort displaying almost perfect performance for every
model. This may be caused by the limited number of validation
images at that level of occlusion; in this case, only 80. Those limited
images may be optimal for each subject, with high feature vari-
ance between subjects, resulting in an almost perfect performance.
Despite this outlier, the results are still quite clear.

5 CONCLUSION

This paper aimed to extend the understanding of CNN-based stand-
off iris biometric systems by examining the impact of blinking on
iris recognition performance. The methodology involved simulat-
ing blinking on ocular iris images through masking and subse-
quently retraining the ResNet50 model via transfer learning. Ini-
tially, a baseline model was established using the original ocular
iris dataset, followed by experimentation with augmented train-
ing employing progressively more occluded images. The baseline
model exhibited a linear decrease in performance as occlusion levels
increased. In contrast, models trained with synthetically occluded
images displayed substantial performance enhancements. However,
challenges emerged when training with very high occlusion, high-
lighting limitations associated with ocular iris images due to the
constrained availability of features for the model. A noteworthy
recommendation for future research is to explore augmentation
techniques involving unmasked blinked images and delve into alter-
native forms of augmentation tailored for iris recognition training.
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